Advanced Biofuels for a Truly Sustainable Renewable Future

Advanced Biofuels USA www.AdvancedBiofuelsUSA.org 301-644-1395

Advanced Biofuels USA

501(c)3 Nonprofit

Educational Organization

Founded April 2008

Website:

www.AdvancedBiofuelsUSA.org

Frederick, MD

Advocates for the adoption of advanced biofuels as an

- energy security,
- military flexibility,
- economic development
- climate change mitigation
- pollution control

solution.

Feedstock, Process, Product Agnostic

Most Cost Effective/ Greatest Amount of GHG Reduction/ Shortest Time

- > Complement to EVs in the GHG Reduction Plan (Legacy, Long Haul, Aviation)
- > Not just ethanol; Not just corn
- > Benefits
- (Environmental Justice, Focus on High Pollution and Low Income Areas, Sustainability / Policy Considerations / Markets / Jobs)
- Our Proposals

Most Cost Effective/ Greatest Amount of GHG Reduction/ Shortest Time

- > Complement to EVs in the GHG Reduction Plan (Legacy, Long Haul, Aviation)
- > Not just ethanol; Not just corn
- > Benefits
- (Environmental Justice, Focus on High Pollution and Low Income Areas, Sustainability / Policy Considerations / Markets / Jobs)
- Our Proposals

From Draft Maryland Greenhouse Gas Reduction Act Plan, page 20

Figure 2.3-2: Maryland GHG Projected Emissions by Sector.

Maryland's projected emissions in 2030 (106.04 MMTCO₂E) will represent a slight decline in GHG emission from the 2006 Base Year.

RENEWABLE FUELS: the <u>most cost effective</u> way to <u>reduce the greatest</u> <u>amount of GHG</u> in the <u>shortest amount of time</u> and bring investments and jobs.

Maryland Electric and Hydrogen Fuel Cell Vehicle Sales Projection through 2030 (page 69 GHGA Draft Plan)

Figure 4.3-6 below presents the projected ZEV deployment curve through 2030 based on a 2017 base year. Maryland costs to facilitate this level of deployment includes up to \$1.2 million annually through 2030 for the Electric Vehicle Recharging Equipment Rebate Program and other costs associated with matching federal grants to expand public EV charging infrastructure throughout Maryland.

California Low Carbon Fuel Standard Success of Renewable Fuels Reducing GHG

Cumulative C02 Reductions (million tons)

SOURCE: Califorina Energy Commission, Low Carbon Fuel Standard Dashboard

High octane fuels for high mileage vehicles

Hydrogen or Ethanol for Fuel Cells

Most Cost Effective/ Greatest Amount of GHG Reduction/ Shortest Time

- Complement to EVs in the GHG Reduction Plan (Legacy, Long Haul, Aviation)
- > Not just ethanol; Not just corn
- > Benefits
- (Environmental Justice, Focus on High Pollution and Low Income Areas, Sustainability / Policy Considerations / Markets / Jobs)
- Our Proposals

Not just ethanol

Ethanol is a biofuel, not the only biofuel.

Biodiesel Renewable Diesel DME Biogas/Renewable Natural Gas Biojet (Sustainable Aviation Fuel (SAF)) Biobutanol Renewable Hydrogen Drop-in Hydrocarbons BioHeat ® Cooking Fuel **Rocket Fuel**

Feedstocks: Not Just Corn

- Algae
- Corn stover
- Corn cobs
- Energy cane
- Sorghum
- Forest waste, residues
- Municipal waste
- Sawdust
- Chicken manure
- Agricultural residues
- Dairy Waste
- Food ProcessingWaste

- Grasses such as
 - Switchgrass
 - Miscanthus
- Sugar beets/ Energy Beets
- Coffee grounds
- Jatropha
- Camelina, Carinata, Canol
- Cassava
- Paper/pulp mill waste
- Used telephone poles
- Oil seed crops
- Thin air
- Fatbergs
- Halophytes...

Renewable Fuels and Chemicals, Not Just Bio-Based -- Recycling Carbon

- Flue Gas/Industrial Waste Gas
- Recycled Plastic, Tires
- Municipal Waste
- Carbon Capture and Reuse

Some Feedstock Conversion Processes

Biochemical

- Fermentation
- Anaerobic digestion
- Plant extraction
- Transesterification
- Hydrolysis
- Enzymatic catalysis
- CO2-to-liquid biocatalytic conversion

Thermochemical

- •Gasification
- •Plasma arc gasification
- Pyrolysis
- •Hydrothermal liquefaction
- •Thermochemical conversion of sugars

Energy Beet Projects in Maryland, Florida

Algae Projects in Maryland

New Brunswic/

Dr. Viji Sitther, Morgan State

- CyanobacteriaWastewater Treatment
- Agricultural Algae
 Dr. Stephanie Lansing, UMD
 College Park

Process Path: Feedstock-to-Fuels and Products

Graphic by Zina Deretsky, National Science Foundation

Sustainability: Recycling Carbon / Life Cycle Analysis

Most Cost Effective/ Greatest Amount of GHG Reduction/ Shortest Time

- Complement to EVs in the GHG Reduction Plan (Legacy, Long Haul, Aviation)
- > Not just ethanol; Not just corn
- > Benefits
- (Environmental Justice, Focus on High Pollution and Low Income Areas, Sustainability / Policy Considerations / Markets / Jobs)
 - Our Proposals

Oil Disruption--Geo-Political --1973 Oil Embargo Spurred Development of Home-Grown Fuel

2006 Ethanol Replaces Carcinogenic MTBE as an oxygenate, serves as a source of octane.

Ethanol

- Substitute for Carcinogenic Aromatics
- Replaces MTBE in Gasoline -- Urban Air Initiative
- Less Expensive, Less Harmful Octane
- Fuel for Fuel Cells

Biodiesel and Renewable Diesel

- Low Sulfur
- Cleaner Burning
- Fewer Particulates
- Less Maintenance

A Few Types of Jobs Available in Advanced Biofuels from Feedstock Development and Production through Fuel Sales

- Agronomists
- Farmers / Farm workers
- Farm equipment designers
- Biologists
- Chemists/ Chemical engineers
- Mechanical engineers
- Electrical engineers
- Researchers into bioenergy crop development
- Lab Technicians
- Industrial Engineers
- Plant Operations Managers
- Welders/Boilermakers
- Accountants

- Agriculture/horticulture experts
- Freight railroad operators, engineers, loaders, unloaders
- Equipment operators, technicians
- Farm product purchasers/traders
- Agricultural Inspectors
- Computer Software Engineers
- Truck drivers
- Equipment operators
- Lawyers
- Office Personnel
- Investors
- Others?

Most Cost Effective/ Greatest Amount of GHG Reduction/ Shortest Time

- Complement to EVs in the GHG Reduction Plan (Legacy, Long Haul, Aviation)
- Not just ethanol; Not just corn
- > Benefits
- > (environmental justice, focus on high pollution and low income areas)
- > Our Proposals

Shortest Time

- Fuel for existing planes, trains, automobiles, equipment
- Fuel for non-EV vehicles that will continue to be bought, especially by:
- > Lower income people
- > Rural residents
- > Those with long commutes (responsible for
- > many vehicle miles traveled)
- Don't have to wait for electricity to be renewable or batteries "fair trade"

Most Cost Effective

- People who can't afford EVs can lower carbon footprint of current and future vehicles with less expensive fuel (November 1, 2019, in the US. Fossil gasoline with no ethanol was \$3.09/gallon; with E15, more than 60 cents less (\$2.45) and E85 nearly a dollar less (\$2.14)
- Infrastructure change to existing fuel stations; can be part of scheduled equipment replacement

Greatest Amount of GHG Reduction

Proposals

- Include Renewable Fuels in GHG Reduction Plan
- Financing Infrastructure and R&D
- Promote Development and Use
- Look at Low Carbon Fuel Standard models to address gaps
- Incorporate into regional Transportation and Climate Initiative (TCI)
- Disappearing Carbon User Fee
- Prioritize funding for renewable fuel infrastructure and use for low income and high pollution areas

Find out more: www.AdvancedBiofuelsUSA.org

For a Truly Sustainable, Renewable Future

Joanne M. Ivancic, Executive Director 301-644-1395 Info@AdvancedBiofuelsUSA.org

History of Ethanol in US: Federal Policy

2007 Renewable Fuel Standard

Sec. 202 Energy Independence and Security Act of 2007 (Billion Gallons/Year)

Conventional Biofuel (mostly corn) Cellulosic Biofuel

Biomass-based Diesel* Undifferentiated Advanced Biofuel

After 2022 EPA determines volumes based on six criteria

* After 2012, the volumes of biomass based diesel are determined by a regulatory process.

