Methane Emissions from the Baltimore-Washington Area: Airborne Observations and Comparison with Inventories

Russ Dickerson

Xinrong Ren, Hao He, Jonathan Hansford, Doyeon Ahn, Ross Salawitch,

The University of Maryland

Olivia Salmon and Paul Shepson (Purdue Univ.)

Outline

- Aircraft measurements and mass balance approach for CH₄ emissions
- Comparison with CH₄ Emission inventories
- CH_4 emissions based on CO & CO₂ inventories and observed $CH_4/CO & CH_4/CO_2$ ratios

Close collaboration with NIST & MDE.

- CO₂ is the big climate forcing factor.
- Initial results indicate emissions inventories for CO₂ are good to within 10-15%.
- It is not possible to do better with current technology, but we're working on improvements.
- Methane (CH₄) is harder to quantify.
- There are many sources of methane natural gas delivery systems, waste water treatment, agriculture, and landfills.
- UMD is working with MDE to improve CH₄ emissions estimates.

UMD Cessna & Purdue Duchess Research Aircraft

UMD Cessna

GPS Position (Lat, Long, Altitude) Met (T, RH, P, wind speed/direction) Trace gases: O₃: UV Absorption, modified TECO SO₂: Pulsed Fluorescence, modified TECO CH₄/CO₂/CO/H₂O: Cavity Ringdown, Picarro NO₂: Cavity Ring Down, Los Gatos NO: Chemiluminescence, modified TECO VOCs: grab canisters/GC-FID Aerosol Optical Properties: Scattering: b_{scat} (@450, 550, 700 nm), Nephelometer Absorption: b_{ap} (565 nm), PSAP Black Carbon: Aethalometer

Purdue Duchess

GPS Position (Lat, Long, Altitude) Met (T, RH, P, 3-D wind by BAT)

Trace gases:

O₃: UV Absorption, 2B Technology

 CH_4/CO_2 : Cavity Ring Down, Picarro

NO₂: Cavity Ring Down, Los Gatos

FLAGG-MD Flights during Winter 2015 and 2016

4

Different Flight Patterns in Winter 2015 and 2016

Mass Balance Approach to Estimate Emission Rates

Mass Balance Experiment (MBE) approach:

 $z_i + x$

What comes out of the box minus what went in is the flux.

[C]_b : concentrations (downwind) [C]_b : concentration in background U_{\perp} : perpendicular wind speed

6

Estimated GHG Emissions from the Baltimore-Washington Area

FLAGG-MD winter 2015

FLAGG-MD winter 2016

Flight Date	Flux(CO ₂) (moles s ⁻¹)	Flux(CH₄) (moles s⁻¹)	Flux(CO) (moles s ⁻¹)	Date	Flux(CO ₂) (moles s ⁻¹)	Flux(CH ₄) (moles s ⁻¹)	Flux(CO) (moles s ⁻¹)
2/6/15	94,500	557	521	02/08/16	73,200	418	430
2/13/15	71,000	290	281	02/12/16	93,000	350	510
2/18/15	91,200	795		02/17/16	107,800	1,078	365
2/19/15	156,800	932	567	02/18/16	98.100	373	611
2/20/15	118,100	518	753	02/19/16	142 800	722	688
2/23/15	107,900	641	417	02/20/20	112,000	, 22	000
2/24/15	110,300	476	640			\frown	
2/25/15	108,500	602	571	Mean±1σ	103,000	(588±312)	521±131
2/27/15	78,800	540			±25,600		
Moon+1g	104,000	E0E+194	536+152				
	±25,000	5951104	550±152	Mean CH₄	emission rate	e: 592 ± 248	3 moles s ⁻¹

600 moles/s ~ 30,000 tons/yr

A state of the set									
	[C	ap H ₄]	pear to	nave im	proved		WD	PBL Height	CH ₄ E.R.
40.3	unite Park 19 Devento	en	115510115).)	(deg)	(m AGL)	(moles s⁻¹
40.2	Wileeling 70 To 10 Laifonse	2050	8/25/15	1,967±22	2,023±39	9.7±1.4	260±12	2,200	2,391
() () () () () () () () () ()	oundar in a		8/29/15	2,016±16	2,119±50	6.6±1.4	226±13	1,950	2,315
39.8		2000	9/14/15	1,960±28	2,032±37	9.6±1.2	283±12	1,500	2,156
- 39.7 39.6 ^{bacter fay} 39.5 ^{solito} 39.4 -81	-80.5 -80 -79.5	- 1950 5	Fi	rom Marce From Ba	ellus (55x77 alt-DC (75x9!	km): 2,: 5 km):	287 ± 12 592 ± 2	20 moles Cl 48 moles C	H ₄ s ⁻¹ H ₄ s ⁻¹
	Longitude (°)								

A CONTRACTOR OF THE OWNER OF THE

Example Point Source: CH₄ from Brown Station Landfill

EPA GHGRP CH₄ emission rate for this landfill: 15.5 moles s⁻¹

A factor of 3.7 higher than the value in GHGRP

Mass Balance vs. Inventories

Landfill <u>(# of transects/flights)</u>	Mass Balance Flux Range** (moles CH ₄ /s) - Average of all transects	2015 EPA (moles CH ₄ /s)	2014 MDE (moles CH ₄ /s)	2012 Maasakkers (moles CH ₄ /s)
Brown Station (21/7)	24.6 - 64.0	3.44 or 15.5*	6.14	8.52
Eastern Sanitary (3/1)	9.9 – 49.5	4.54	6.85	10.01
Quarantine Road (7/3)	1.35 – 2.94	3.33	17.6	3.11
Harford Waste (2/2)	2.22 - 8.50	5.42	3.52	5.52
Reichs Ford (3/2)	12.8 – 26.2	5.88	1.83	4.96
Route 40 West (3/3)	2.66 - 10.01	6.89	10.23	6.70

* EPA GHGRP requires landfills with a gas collection system (Brown Station has a gas collection system) to estimate their emissions in two ways. Typically, the higher of the two results is reported as the "official" value, but in Brown Station's case, the lower number (3.44) was reported instead of the higher number (15.5).

**Flux range computed by varying horizontal transect width by 10% and PBL height by one-sigma.

New gridded US CH_4 NEI for 2012 (0.1° x 0.1°)

Article

CH₄ Emissions from Sources in Balt-DC in CH₄ NEI 2012

Others 2%, 0.07 kg/s

An alternative approach – CO_2 and CO emissions well constrained and we can use ratios to learn about the methane flux.

CH₄ Emission Estimate using CH₄/CO Ratio and CO Emissions

FLAGG-MD winter 2015

- Total CO emissions from Balt-DC in EDGAR v4.3 2010: 0.459
 MMtons/yr
- The total CH₄ emissions based on CH₄ to CO ratio: 642 moles CH₄ s⁻¹ (436 – 1,003 moles CH₄ s⁻¹)

CH₄ Emission Estimate using CH₄/CO₂ Ratio and CO₂ NEI 2014

FLAGG-MD winter 2016

- Total CO₂ emissions from Balt-DC in NEI2014: 89.0 MMtons/yr
- The total CH₄ emissions based on CH₄ to CO₂ ratio: 583 moles CH₄ s⁻¹ (293 – 1,029 moles CH₄ s⁻¹)

CO to **CO**₂ ratio: Observed vs. EDGAR Emissions

- Observed CO to CO₂ molar ratio = 0.53% (black line)
- CO to CO₂ molar ratio in EDGAR 2010 emission inventory: 0.59% (red dashed line)

CH₄ Emissions from the Balt-DC Area: Top-down vs. Bottom-up

<u>Summary</u>

- UMD is working with MDE to fine tune emissions inventories. CO_2 is the big player with $CH_4 \sim 10\%$ of total.
- Estimated total emissions of CH₄ from Balt/Wash area: 595±184 moles CH₄ s⁻¹ in winter 2015 588±312 moles CH₄ s⁻¹ in winter 2016 (~30,000 tons/yr)
- Major CH₄ sources in the area: landfills and broadly, NG system.
- Direct observations of CH₄ emissions 1.4 to 3 times higher than inventories.
- Only flew in winter so far; need summer flights.

Extra Slides

Summary

- UMD is working with MDE to fine tune emissions inventories. CO2 is the big player.
- Only flew in winter so far; need summer flights.
- Estimated total emissions of CH₄ from Balt/Wash area: 595±184 moles CH₄ s⁻¹ in winter 2015 588±312 moles CH₄ s⁻¹ in winter 2016 (~30,000 tons/yr)
- Major CH₄ sources in the area: landfills and broadly, NG system.
- Compared to CH₄ emission inventories:
 - (1) Observed CH_4 emissions are higher than the US NEI 2012 by a factor of 3
 - higher than the state EI by a factor of ~2
 - higher than the EDGAR 2010 by a factor of 1.4.
 - (2) Observed CH_4 emissions is similar to CH_4 emissions inferred from CO and CO_2 NEI with observed CH_4/CO and CH_4/CO_2 ratios.

EDGAR4.2 Global 0.1° x 0.1° CH₄ Emission Inventory 2010

Data source: http://edgar.jrc.ec.europa.eu/gallery.php?release=v42FT2010&substance=CH4§or=TOTALS

- The total CH₄ emissions in the yellow rectangle (an approximately surveyed area) is
 421 moles CH₄ s⁻¹.
- Issues with EDGAR emissions: mainly allocated based on population instead of source locations.

Mass Balance – CH₄ from DC/Baltimore

Flight Date	Emission Rate (moles CH ₄ s ⁻¹)	Emission Uncertainty Range – Horizontal Bounds* (moles CH ₄ s ⁻¹)	Flux Uncertainty Range – PBL Depth** (moles CH ₄ s ⁻¹)	Flux Uncertainty Range – Horizontal Bounds & PBL Depth Combined*** (moles CH ₄ s ⁻¹)
2/13/15	193	177 – 201	145 – 241	133 – 251
2/19/15	1260	1230 – 1270	853 – 1670	830 - 1680
2/20/15	509	452 – 509	351 – 667	311 – 667
2/23/15	157	141 – 169	110 - 204	99.0 - 219
2/24/15	951	857 – 1180	705 – 1200	633 – 1490
2/25/15	183	172 – 187	97.5 – 269	90.6 - 274
Mean	542	505 – 586 (-6.8% / +8.1%)	377 – 709 (-30.% / + 31%)	349 – 764 (-36% / +41%)

*Flux range computed by varying horizontal transect width by 10%

**Flux range computed by varying PBL height by one-sigma

***Flux range computed by varying horizontal transect width by 10% and PBL height by one-sigma.

Date Assimulation Using HYSPLIT: Collaboration with NOAA/ARL

Tianfeng Chai and Ariel Stein (NOAA/ARL)

Method

A variational data assimilation method is used to find the sources with which HYSPLIT would reproduce concentrations that match best with the observations.

Assumptions

- The two landfills causes for the measured excess CH_4 .
- The CH₄ emissions of the landfills vary each hour.

Two major limitations

- There are other sources that contribute to the excess CH₄.
- Meteorological fields in the HYSPLIT dispersion model has uncertainties.

Ongoing work

- To add more sources + constant emissions from landfills
- To use ensemble runs to include uncertainties of meteorological fields

CH₄ Emission Estimate using CH₄/CO₂ Ratio and CO₂ NEI 2014

- Total CO₂ emissions from Balt-DC in NEI2014: 89.0 MMtons/yr
- The total CH₄ emissions based on CH₄ to CO₂ ratio: 6.6 kg CH₄ /s (3.5 – 11.6 kg CH₄/s)
- Cold winter in 2015
- → expected more CO₂ emissions due to heating
- ➔ A larger inferred CH₄ emission rate

CH_4 Emission Estimate using CH_4/CO_2 Ratio and CO_2 NEI 2014

FLAGG-MD winter 2015

[SO₂] (ppbv)

- Total CO₂ emissions from 16 • Balt-DC in NEI2014: 89.0 **MMtons/yr**
- 10 The total CH₄ emissions based on CH_4 to CO_2 ratio: **6.6 kg CH_4 /s** (3.5 - 11.6 kg CH/s)
 - Cold winter in 2015

rate

- \rightarrow expected more CO₂ emissions due to heating
- \rightarrow A larger inferred CH₄ emission

25

CH₄ Emission Estimate using CH₄/CO Ratio and CO Emissions

FLAGG-MD winter 2016

- Total CO emissions from Balt-DC in EDGAR v4.3 2010: 0.459
 MMtons/yr
- The total CH₄ emissions based on CH₄ to CO ratio: 11.8 kg CH₄ /s (6.2-21.4 kg CH₄/s)

- Mean C₂H₆-to-CH₄ ratio in natural gas of Baltimore Gas & Electric: 0.1045
- Other major CH₄ sources (landfills, enteric fermentation, waste water treatment) has little ethane emissions.
- Emissions from the NG system account for 32% (2015) and 41% (2016) of total CH₄ emissions.

CH₄ Emission Estimate from Unaccount-for NG

- Total NG delivered to the Balt-DC area in February 2015: 54,495 million CF in Feb. 2015.
- Lost & unaccounted-for (LAUF) NG : **3.34% of total NG delivered** (PHMSA data)
- Total lost & unaccounted for (LAUF) gas : 12.9 kg CH_4/s
- Not all LAUF gas is leaked into the atmosphere because besides leaks, unaccounted-for gas is also due to gas theft, accounting & meter errors, etc.
- The worth of the LAUF gas = $54,495 \times 10^{6}$ CF x $3.34\% \times 0.012$ /CF

= \$22 M in Feb. 2015

Facility level CH₄ Emissions in EPA's GHGRP (excluding emissions from Petroleum & NG System)

- Mostly landfills
- The total CH₄ emissions (other than the NG system) from the yellow rectangle is 1.21 kg/s

Based on the unaccounted-for natural gas and other CH_{4} sources in GHGRP, the total CH₄ emission rate from the **Balt-DC area:**

12.86 + 1.21 = 14.07 kg/s

This may overestimate CH₄ emissions since not all LAUF gas is emitted into the atmosphere.

Brown Station – Mass Balance Calculations

RF	Mass Balance Flux (moles / s) (Mean of flux calculated on each individual transect)
1	30.7
2	44.7
4	31.9
5	59.9
6	21.1
7	71.8
8	66.3
Mean ± St. Deviation	46.6 ± 18.3

CH₄ emissions from King George Landfill

31

Estimate of CH₄ Emissions from King George Landfill

CH₄ emission rate from King George landfill **based on a single downwind transect**:

24.0 moles $CH_4 s^{-1}$, or <u>12,100 tons $CH_4 yr^{-1}$ </u>

This is close to EPA's GHGRP CH_4 emission data for this landfill: <u>11,800 tons CH_4 yr⁻¹</u>