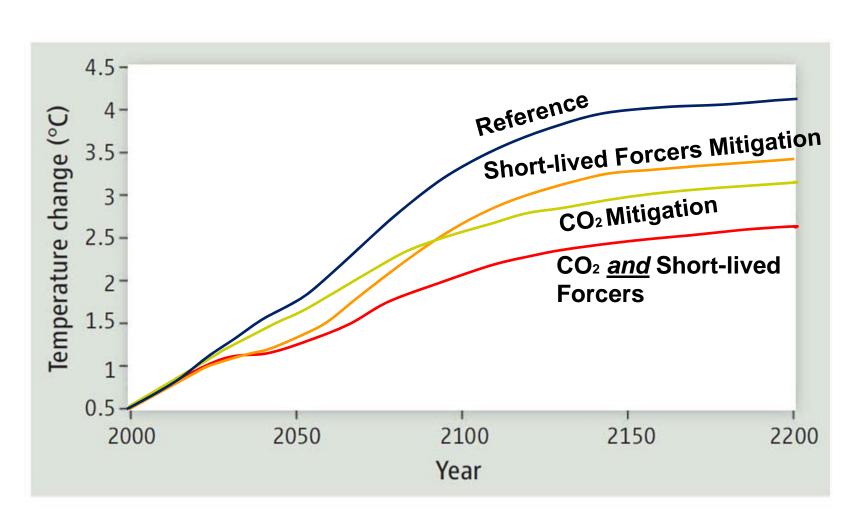
Oil and Gas Methane Emissions: Impacts, Sources, and Solutions

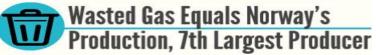
Andrew Williams June 27, 2016

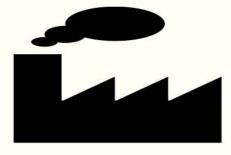
Visualizing Unseen Methane

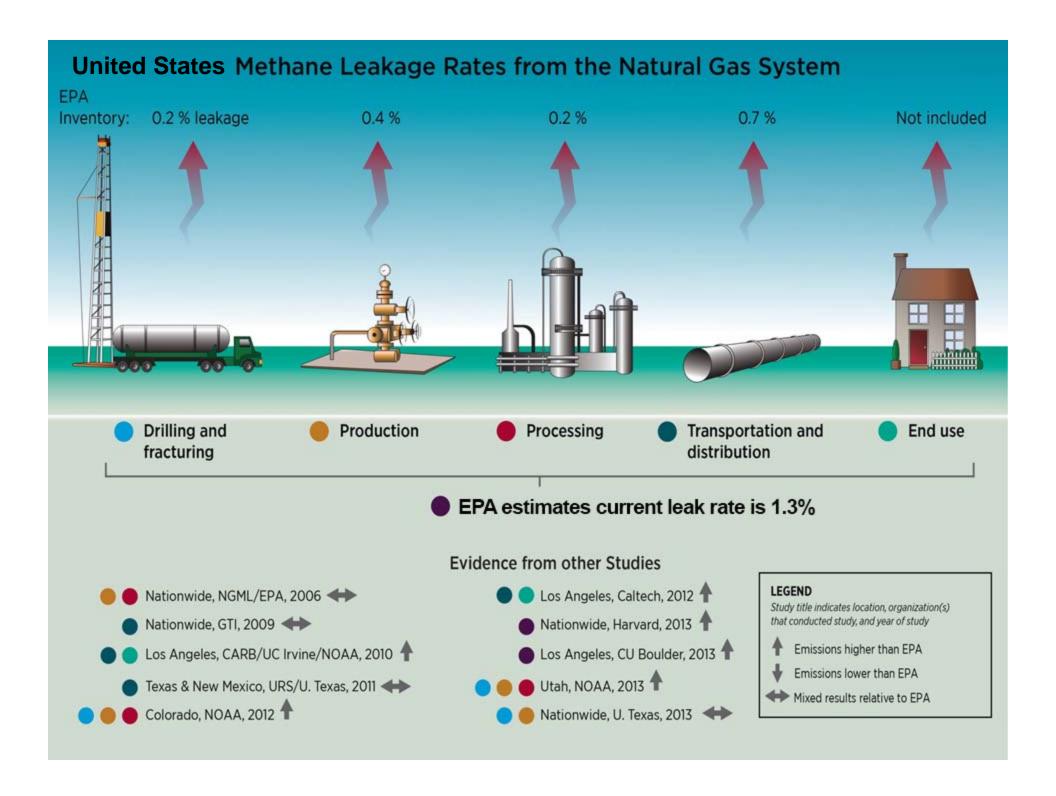
Climate Implications of Methane


POUND FOR POUND METHANE TRAPS
84X MORE HEAT OVER 20 YEARS

About **25 percent of the man-made warming** we are experiencing today is caused by methane.


Reduce Methane and CO2


GLOBAL OIL AND GAS METHANE EMISSIONS



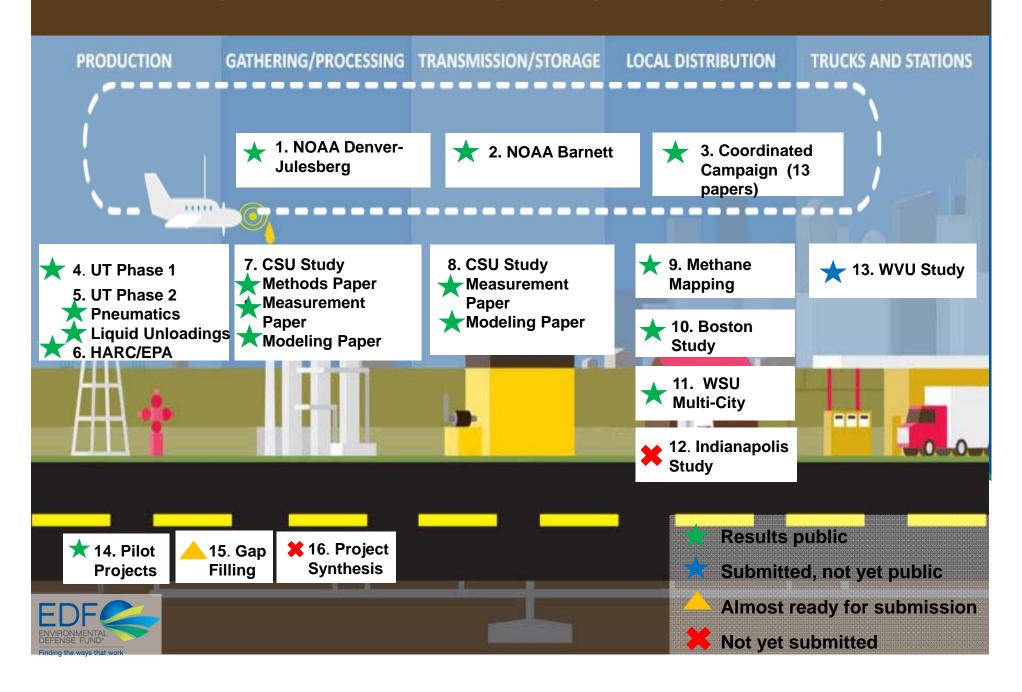
Oil and Gas Methane Emissions Equivalent to 40% of Global Coal Combustion

Even 1.3% Leakage is Too High...

OR

Equal to GHG emissions of 117 million cars (50% of US Cars)

141 Coal-fired Power Plants (35% of US Coal Plants)


Equal to gas carried by LNG 127 tankers

\$1.7 to 6.2 billion in lost revenue

Using 20 year GWP of 86

EDF CATALYZING MORE SCIENCE

24 Published Studies Thus Far...

http://www.pnas.org/lookup/doi/10.1073/pnas.1304880110

2.May 2014: NOAA DJ Basin Flyover: http://onlinelibrary.wiley.com/doi/10.1002/2013JD021272/pdf

3.November 2014: HARC/EPA Fence-line study: http://pubs.acs.org/doi/abs/10.1021/es503070q

4.December 2014 UT Pneumatics Study: http://pubs.acs.org/doi/abs/10.1021/es5040156

5.December 2014 UT Liquid Unloadings Study: http://pubs.acs.org/doi/abs/10.1021/es504016r

6.January 2015: Harvard Boston Urban Methane Study: http://www.pnas.org/content/early/2015/01/21/1416261112

7.February 2015: CSU Transmission and Storage study: Measurement paper:

http://pubs.acs.org/doi/abs/10.1021/es5060258

8.February 2015: CSU Gathering and Processing study: Measurement paper:

http://pubs.acs.org/doi/abs/10.1021/es5052809

9.March 2015: WSU Local Distribution study: http://pubs.acs.org/doi/abs/10.1021/es505116p

10.May 2015: CSU Gathering and Processing study, Methods paper: http://www.atmos-meas-

tech.net/8/2017/2015/amt-8-2017-2015.html

11.July 2015: CSU Transmission and Storage study National results paper:

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01669

12.August 2015: CSU Gathering and Processing study CSU Gathering and Processing study

National results paper: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02275

Barnett Coordinated Campaign Papers (July 2015)

13.Overview: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02305

14. NOAA led Top-down study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00217

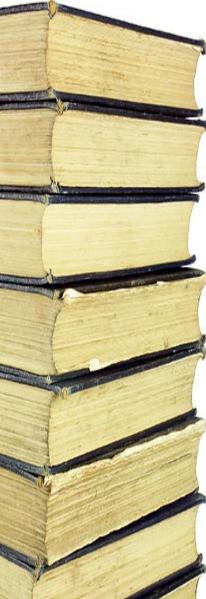
15.Bottom-up inventory - EDF: http://pubs.acs.org/doi/abs/10.1021/es506359c

16.Functional super-emitter study - EDF: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00133

17.Michigan airborne study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00219

18.WVU compressor study: http://pubs.acs.org/doi/abs/10.1021/es506163m

19.Princeton near-field study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00705

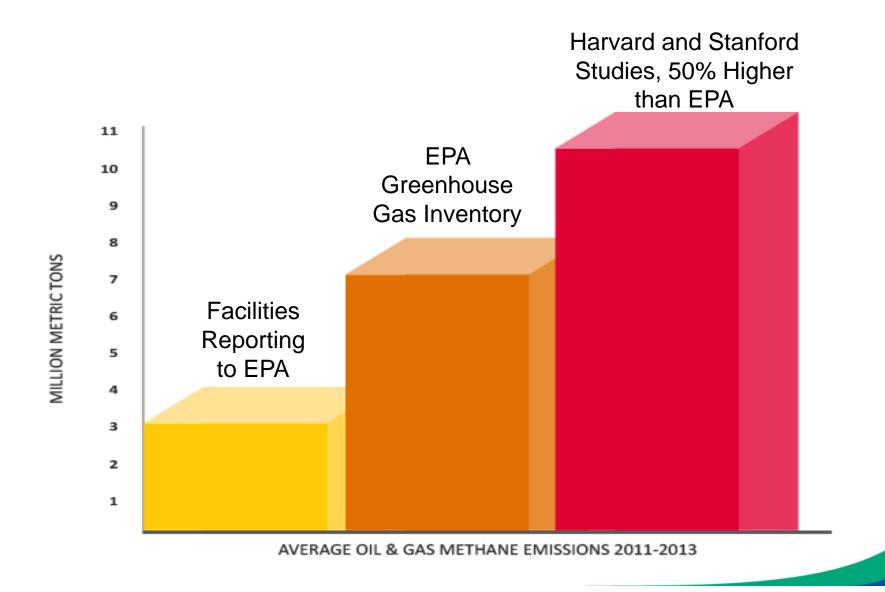

20.Purdue aircraft study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00410

21.Aerodyne mobile study: http://pubs.acs.org/doi/abs/10.1021/es506352i

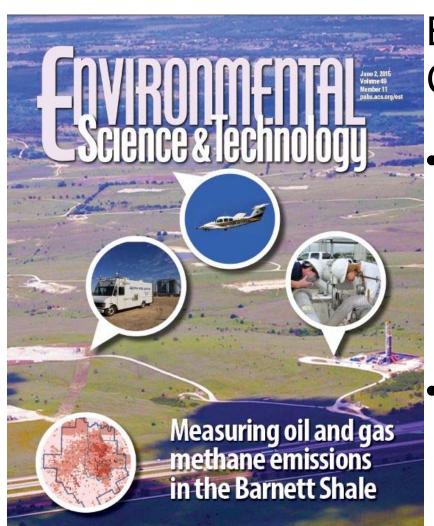
22.U of Houston mobile study: http://pubs.acs.org/doi/abs/10.1021/es5063055

23.Picarro mobile flux study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00099

24.Cincinnati tracer apportionment: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b0005


3 Lessons Learned from the Studies

 Oil and gas methane <u>emissions are</u> <u>higher</u> than conventional estimates suggest;

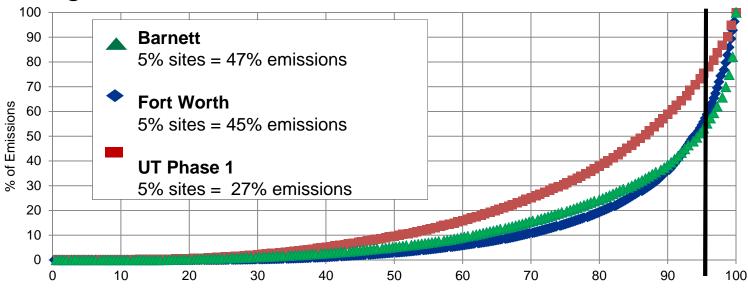

2. Reducing emissions is <u>straightforward</u> and <u>cost-effective</u>; and

3. Regulations work to narrow the range of performance amongst companies.

1. Emissions Higher than Estimates

Emissions Higher than Estimates

Barnett Coordinated Campaign (July 2015) found:

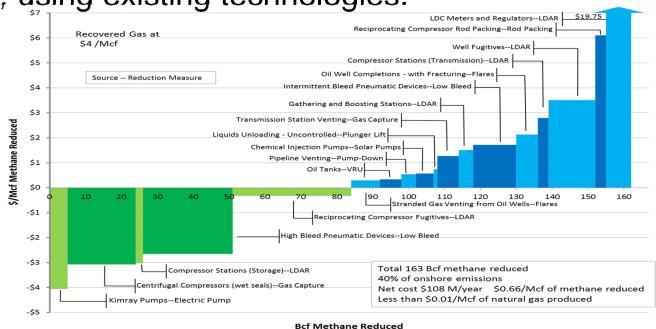

 Anthropogenic methane emissions were 50% higher than estimates derived from the EPA inventory,

and

 Actual number of facilities may be five times higher than reported by other sources.

2. Reducing Emissions is Straightforward... • Multiple studies found "super-emitters" where a small

percentage of sites drive overall emissions:



• Studies also identified biggest sources for key oil and gas sectors and we know the technologies to reduce these emissions.

Production Emissions		Transmission & Storage Emissions		Local Distribution Emissions	
Source	Gg 2012 CH4	Source	Gg 2012 CH4	Source	Gg 2012 CH4
Pneumatic Controllers	600	Reciprocating Compressors	366	Pipeline Mains	132
Equipment leaks	307	Equipment leaks	353	Service pipelines	63.6
Liquid Unloadings	270	Uncombusted Methane in Exhaust	117	M&R Facilities	42.3

...Reducing Emissions is Cost-Effective

 ICF Study found U.S. oil and gas methane emissions can be reduced by 40% for less than one cent per million cubic feet of gas, using existing technologies.

 Data shows Wyoming and Colorado methane regulations have led to increased oil and gas jobs and increased production.

3. Regulations Work

• UT study found regulations requiring reduced emission completion technologies reduced methane by 99%.

 CSU Transmission and Storage study found a wide range of performance amongst companies, with participating companies having emissions 30 percent lower than companies that were not involved. Smart regulations can narrow the gap and ensure best-practices are adopted by all companies, not just industry leaders

 Colorado, Wyoming and EPA regulations provide a template to follow, no need to reinvent the wheel.

Questions?

Andrew Williams

<u>awilliams@edf.org/</u> +1-202-572-3252