Draft

Ecological Risk Assessment Dundalk Marine Terminal Baltimore, Maryland

Prepared for

Honeywell

101 Columbia Rd. Morristown, N. J.

Maryland Port Administration

401 East Pratt St. Baltimore, Md.

September 2009

Prepared by

Background

This Ecological Risk Assessment (ERA) has been prepared pursuant to the requirements of Section III.B.7 of the April 5, 2006, Consent Decree entered into by the Maryland Port Administration (MPA), the Maryland Department of the Environment (MDE), and Honeywell International Inc. (Honeywell) for Dundalk Marine Terminal (hereafter referred to as DMT, or Site), located within the City and County of Baltimore, Maryland. The ERA was performed in accordance with the ERA work plan (CH2M HILL, 2006). Although the Consent Decree focuses exclusively on chromium, other constituents related to chromite ore processing residue (COPR) (aluminum, calcium, iron, manganese, and vanadium) in pore water, surface water, and sediment were also assessed. The ERA results establish that chromium and other COPR constituents do not pose unacceptable risk to ecological receptors near DMT. The data and conclusions provided in the ERA meet the requirements stipulated in the Consent Decree. No additional sampling or analysis is required to assess the environmental impacts of COPR constituents from the Site.

Technical Approach

The ERA focuses on releases from the Site to the adjacent waterways which include the Patapsco River and Colgate Creek (hereafter referred to as the study area). The basic approach for the ERA is consistent with U.S. Environmental Protection Agency (USEPA) guidance (1997, 1998, 2000, 2001), which provides an eight-step process with built-in critical management and decision points. Steps 1 and 2 make up the screening level ecological risk assessment (SLERA), while Step 3 is the initial step of the baseline ecological risk assessment (BERA). Step 1 consists of the screening level problem formulation and effects evaluation. The problem formulation includes describing the environmental setting; constituents of interest (COIs) in pore water, surface water, and sediment; fate and transport mechanisms; ecotoxicity mechanisms for the COIs; and potential receptors, exposure pathways, and ecological endpoints. Conservative ecological screening values (ESVs), or concentrations associated with adverse effects, are also defined as part of the ecological effects assessment component of Step 1.

Step 2 comprises a screening level exposure estimate and risk calculation, during which the exposure point concentrations (EPCs) for each identified pathway are compared to the screening level ESVs identified in Step 1. In this ERA, COIs that were measured in pore water, surface water, and surficial sediment samples from DMT at concentrations exceeding the ESVs were identified and were carried forward to Step 3 of the ERA process.

The Step 3a problem formulation evaluation for DMT refines assumptions related to considering regional background (reference) conditions and the spatial extent and magnitude of exposure; reviewing effects levels; and qualitatively reviewing biological data from the study area.

The ERA approach also follows USEPA's *Procedures for the Derivation of Equilibrium Partitioning (EqP) Sediment Benchmarks for the Protection of Benthic Organisms: Metal Mixtures* (USEPA, 2005a) and incorporates concepts identified in the *Issue Paper on the Bioavailability and Bioaccumulation of Metals* submitted to USEPA by the Eastern Research group (McGeer et al., 2004) and in USEPA's *Framework for Metals Risk Assessment* (USEPA, 2007).

According to USEPA, geochemical processes govern the reduction of relatively toxic hexavalent chromium (Cr(VI)) to relatively nontoxic trivalent chromium (Cr(III)) in estuarine environments. Specifically, geochemical parameters such as sulfide and ferrous iron (Fe(II)) are lines of evidence that document the reducing conditions of the sediment wherein chromium exists thermodynamically as Cr(III) rather than Cr(VI). The toxicity of chromium is based on consideration of Cr(VI) and Cr(III) in pore water and surface water relative to USEPA Nationally Recommended Water Quality Criteria (NRWQC). USEPA's EqP approach for chromium is illustrated in Figure ES-1.

The following media were considered in the ERA:

- Pore water
- Surface water
- Surficial sediment

A set of assessment endpoints were identified on the basis of the conceptual site model (CSM) for the study area to guide the development of the measurement endpoints. The following assessment and measurement endpoints were used to assess the potential risks at DMT:

• Benthic Invertebrate Community Structure and Function. (I.e., the sediment-dwelling organism community) (1) Comparison of concentrations of COIs in pore water to USEPA's NRWQC or other ESVs considered protective of survival or reproduction; (2) comparison of

FIGURE ES-1 Summary of USEPA's Equilibrium Partitioning Approach for Chromium

Assessment Endpoints

- Benthic Invertebrate Community Structure
 and Function
- Aquatic Invertebrate Community Structure and Function
- Fish Population Survival and Reproductive Ability

concentrations of COIs in bulk surface sediment to conservative ESVs considered protective of survival or reproduction; and (3) consideration of the biological community present in Patapsco River sediments, particularly in areas where COPR constituents were measured.

• Water Column Invertebrate Community Structure and Function. Comparison of concentrations of COIs in surface water to USEPA's NRWQC or other ESVs considered protective of survival or reproduction.

• Fish Survival and Reproductive Ability. Comparison of concentrations of COIs in surface water adjacent to DMT to USEPA's NRWQC or other ESVs considered protective of survival or reproduction.

The data to support the ERA were collected during the Sediment and Surface Water Study, which comprised four quarterly sampling events in May, August, and December 2007 and February 2008 (CH2M HILL and ENVIRON, 2009). Forty-one DMT locations and three mid-channel reference locations were sampled as part of the Sediment and Surface Water Study. Maximum chemical concentration data for pore water, surface water, and surficial sediment from the four quarterly sampling events were compared to saltwater NRWQC and ESVs because those are most representative of conditions at DMT. In the absence of saltwater ESVs, freshwater ESVs were used. In addition, this ERA addresses the ancillary sampling of sediment and pore water near the shoreline of the 15th Street outfall conducted in May 2009.¹

Results and Conclusions

In Step 2 of the ERA, chemical concentration data for pore water, surface water, and sediment for four quarterly sampling events conducted at DMT were compared to conservative ESVs. All measured concentrations of Cr(III) and Cr(VI) in pore water and surface water were below ESVs. Thus, in accordance with the USEPA's approach, chromium was not retained for further evaluation.

Based on the results of Step 2, the following COIs and media were evaluated in Step 3a: iron, magnesium, and manganese in pore water; magnesium and manganese in surface water; and aluminum, manganese, and vanadium in surface sediment. In Step 3a, concentrations of these COIs measured within the study area were compared to those concentrations measured at reference locations. Concentrations of COIs within the study area were similar to those from reference locations for all of the COIs except manganese in surface water and sediment. A refined risk analysis considered the spatial extent and magnitude of exposure, a more detailed review of the ESVs for manganese, and a qualitative review of biological data from the study area with respect to manganese. These lines of evidence illustrate that the manganese concentrations in surface water and bulk sediment do not pose an unacceptable ecological risk to receptors adjacent to DMT. In summary, the Step 3a evaluation did not identify any refined COIs. Thus, ecological risks within the study area are considered acceptable, and no further action to address risk to ecological receptors is indicated.

¹ Data provided to MDE in a letter from Honeywell to MDE dated September 4, 2009.

Contents

Exec	utive	Summa	ury	ii				
Acro	nyms	and At	obreviations	viii				
1	Intro	duction	1	1-1				
	1.1							
	1.2	Technie	cal Approach	1-1				
	1.3	ERA Fo	prmat	1-3				
2	Step	1: Scree	ening Level Problem Formulation	2-1				
	2.1		nmental Setting					
		2.1.1	Study Area Description	2-1				
			Habitats					
	2.2		tuents of Interest					
			Chromium					
			Other COPR Constituents					
	2.3		cal and Physical Fate and Transport Mechanisms					
			Transport Pathways from DMT to the Adjacent Waterways					
			Chemical Fate and Transport Processes					
	. .		Physical Fate and Transport					
	2.4 Ecotoxicity Mechanisms for COIs							
	2.5	0	ical Receptors and Exposure Pathways					
			Ecological Receptors					
			Exposure Pathways					
	2.6		Summary of Exposure Pathways and Receptors					
	2.6		ary of the Conceptual Site Model					
	2.7		inary Assessment and Measurement Endpoints					
	2.8		ical Effects Assessment – Selection of Screening Ecotoxicity Values Screening Ecotoxicity Values for Surface Water and Pore Water					
			Screening Ecotoxicity Values for Sediment Chemicals of Interest					
	_							
3			sure Estimate and Risk Calculation					
	3.1		ble Data					
	3.2	Screeni	ing Risk Calculations	3-1				
4	Step	3a: BER	A Problem Formulation	4-1				
	4.1	Refined	d COIs	4-1				
			Pore Water					
			Surface Water					
			Sediment					
	4.2		d Risk Characterization					
		4.2.1	Spatial Extent and Magnitude of Exposures That Receptors Are Like	5				
			to Experience					
			Expanded Consideration of ESVs					
		4.2.3	Qualitative Biological Information from DMT	4-6				

	4.2.4	Ecological Risk Characterization Summary	4-7
		rtainty Assessment	
		Effects Assessment Uncertainties	
		Exposure Assessment Uncertainties	
5	Summary a	and Conclusions	5-1
		Ianagement Decision Point	
6	References	3	6-1

Appendices

- A Chemical Specific Fate, Transport, and Ecotoxicological Data Profiles
- B Qualitative Benthos Analysis
- C Pore Water, Surface Water, and Sediment Sampling Results

Tables

- 2-1 Water Quality Characteristics
- 2-2 In Situ Sediment Quality Parameters
- 2-3 Summary of Qualitative Benthic Invertebrate Sampling
- 2-4 Assessment Endpoints, Measures of Exposure and Effects, and Risk Hypotheses
- 2-5 Ecological Screening Values for Cr(III) and Cr(VI) in Pore Water and Surface Water
- 2-6 Ecological Screening Values for Other COPR Constituents in Pore Water and Surface Water
- 2-7 Ecological Screening Values for Chromium and Other COPR Constituents in Sediment
- 3-1 Exposure Point Concentrations for Pore Water
- 3-2 Exposure Point Concentrations for Surface Water
- 3-3 Exposure Point Concentrations for Surface Sediment
- 3-4 Summary of Data Considered in the Ecological Risk Assessment
- 3-5 Hazard Quotients for Pore Water
- 3-6 Hazard Quotients for Surface Water
- 3-7 Hazard Quotients for Surface Sediment
- 4-1 Comparison of Pore Water Exposure Point Concentrations to Reference Concentrations
- 4-2 Comparison of Surface Water Exposure Point Concentrations to Reference Concentrations
- 4-3 Comparison of Surface Sediment Exposure Point Concentrations to Reference Concentrations
- 4-4 Summary of Manganese Toxicity Studies
- 4-5a Summary of AVS/SEM Results by Location
- 4-5b Summary of AVS/SEM Results by Transect

Figures

- 1-1 Site Map
- 1-2 USEPA Expanded Eight-Step Ecological Risk Assessment Process
- 2-1 Quarterly DMT Sampling Locations
- 2-2 Bathymetric Map
- 2-3 Fate and Transport Conceptual Site Model for Chromium
- 2-4 Preliminary Ecological Conceptual Site Model
- 2-5a Classic Concentration-Response Curve
- 2-5b Chromium Concentration vs. Sediment Toxicity
- 4-1 Comparison of Detected Concentrations of Iron in Pore Water Between DMT and Reference Stations
- 4-2 Comparison of Detected Concentrations of Magnesium in Pore Water Between DMT and Reference Stations
- 4-3 Comparison of Detected Concentrations of Manganese in Pore Water Between DMT and Reference Stations
- 4-4 Comparison of Detected Concentrations of Magnesium in Surface Water Between DMT and Reference Stations
- 4-5 Comparison of Detected Concentrations of Manganese in Surface Water Between DMT and Reference Stations
- 4-6 Comparison of Detected Concentrations of Aluminum in Sediment Between DMT and Reference Stations
- 4-7 Comparison of Detected Concentrations of Manganese in Sediment Between DMT and Reference Stations
- 4-8 Comparison of Detected Concentrations of Vanadium in Sediment Between DMT and Reference Stations

Acronyms and Abbreviations

AET	Apparent Effects Threshold
AVS	acid volatile sulfides
BERA	baseline ecological risk assessment
B-IBI	benthic index of biological integrity
CCC cm/s COI COMAR COPR Cr(III) Cr(VI) CSM CTFR	criterion continuous concentration centimeter per second constituent of interest Code of Maryland Regulations chromite ore processing residue trivalent chromium hexavalent chromium conceptual site model (Johns Hopkins University) Center for Contaminant Transport, Fate, and Remediation
DMCF	dredged material containment facility
DMT	Dundalk Marine Terminal
DO	dissolved oxygen
DOC	dissolved organic carbon
EA	environmental assessment
EC50	effective concentration 50
EPC	exposure point concentration
EqP	equilibrium partitioning
ERA	ecological risk assessment
ER-M	effects range — median
ESB	equilibrium partitioning sediment benchmark
ESV	ecological screening value
Fe(II)	ferrous (divalent) iron
FONSI	finding of no significant impact
HQ	hazard quotient
IBI	index of biological integrity
LC50	lethal concentration 50
MDE	Maryland Department of the Environment
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MPA	Maryland Port Administration
NOAA	National Oceanic and Atmospheric Administration
NRWQC	Nationally Recommended Water Quality Criteria

ORP	oxidation reduction potential
PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyls
ppt	parts per thousand
redox	reduction-oxidation
SEM	simultaneously extracted metals
SLERA	screening level ecological assessment
SMDP	scientific management decision point
SQG	sediment quality guidelines
SQuiRT	screening quick reference tables
TCEQ	Texas Commission on Environmental Quality
TOC	total organic carbon
TOXNET	toxicology data network
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
WREC	Wye Research and Education Center

Section 1 Introduction

This Ecological Risk Assessment (ERA) has been prepared pursuant to the requirements of Section III.B.7 of the April 5, 2006, Consent Decree entered into by the Maryland Port Administration (MPA), the Maryland Department of the Environment (MDE), and Honeywell International Inc. (Honeywell) for Dundalk Marine Terminal (hereafter referred to as DMT, or Site), located within the City and County of Baltimore, Maryland (Figure 1-1). The ERA was performed in accordance with the ERA work plan (CH2M HILL, 2006). Although the Consent Decree focused exclusively on chromium, other constituents related to chromite ore processing residue (COPR) (aluminum, calcium, iron, manganese, and vanadium) in pore water, surface water, and sediment were also assessed (CH2M HILL, 2007a).

1.1 Purpose and Scope

The purpose of the ERA is to evaluate potential ecological risks associated with exposure to COPR constituents in the sediments and surface water in the Patapsco River and Colgate Creek immediately surrounding DMT. Exposure to hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) is the primary focus of the assessment; exposure to aluminum, calcium, iron, magnesium, manganese, and vanadium, which are also constituents of COPR, is also evaluated. The ERA is based primarily on the data obtained from the sediment and surface water study, which was performed adjacent to DMT from 2006 to 2008 (CH2M HILL and ENVIRON, 2009). The objectives of the study were to characterize the nature and extent of chromium in the Patapsco River within the zone potentially impacted by chromium releases at or from DMT and the geochemical conditions that influence the fate and transport of chromium in the river. The study area for the ERA is the same as the area investigated in the sediment and surface water study. The ERA also uses information from the chromium transport study being conducted pursuant to the requirements of Section III.B.2 of the Consent Decree (CH2M HILL, 2009).

1.2 Technical Approach

This ERA was conducted in accordance with the ERA work plan (CH2M HILL, 2006). As stated in the work plan, the approach follows the guidance in various other documents, including U.S. Environmental Protection Agency's (USEPA) *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments* (USEPA, 1997), 'Guidelines for Ecological Risk Assessment (USEPA, 1998), and 'Procedures for the Derivation of Equilibrium Partitioning (EqP) Sediment Benchmarks for the Protection of Benthic Organisms: Metal Mixtures (USEPA, 2005a). The technical approach also incorporates concepts discussed in the Issue Paper on the Bioavailability and Bioaccumulation of Metals submitted to USEPA by the Eastern Research Group (McGeer et al., 2004) and in USEPA's Framework for Metals Risk Assessment (USEPA, 2007), 'Amended Guidance on Ecological Risk Assessment at Military Bases: Process Considerations, Timing of Activities, and Inclusion of

Stakeholders (USEPA, 2000), and '*The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments* (USEPA, 2001).

This ERA has been conducted in accordance with recent and widely accepted chromium chemistry and toxicity research and interpretation. This includes recent scientific literature and regulatory guidance (e.g., USEPA, 1985, 2005a; Berry et al., 2002, 2004; MDE, 2004; Besser et al., 2004; Rifkin et al., 2004), and a recent study specific to chromium in Baltimore Harbor (Graham et al., 2009). According to USEPA, geochemical processes govern the reduction of relatively toxic Cr(VI) to relatively nontoxic Cr(III) in estuarine environments. Specifically, geochemical parameters such as sulfide and ferrous iron (Fe(II)) indicate reducing conditions in sediment under which chromium exists thermodynamically as Cr(III) rather than Cr(VI). In line with this research and guidance, in this ERA the toxicity of chromium is based on comparison of Cr(VI) and Cr(III) concentrations in pore water and surface water to USEPA Nationally Recommended Water Quality Criteria (NRWQC).

The basic approach for the ERA is consistent with USEPA guidance (1997, 1998, 2000, 2001), which provides an eight-step process with built-in critical management and decision points to allow stakeholder input on the evaluation of interim findings and refinement of the technical approach (Figure 1-2). Steps 1 and 2 make up the screening level ecological risk assessment (SLERA), while Step 3 is the initial step of the baseline ecological risk assessment (BERA). Step 1 consists of the screening level problem formulation and effects evaluation. The problem formulation for this ERA includes descriptions of the environmental setting; constituents of interest (COIs) in surface water, pore water, and sediment; fate and transport mechanisms; ecotoxicity mechanisms for the COIs; and potential receptors, exposure pathways, and ecological endpoints. Conservative ecological screening values (ESVs), or concentrations associated with adverse effects, were also defined as part of ecological effects assessment component of Step 1.

Step 2 comprises a screening level exposure estimate and risk calculation, during which the exposure point concentrations for each identified pathway are compared to the screening level ESVs identified in Step 1. In this ERA, COIs that were measured in surface water, pore water, and sediment samples from DMT at concentrations exceeding the ESVs were identified as potentially contributing to unacceptable risk and were carried forward to Step 3 of the ERA process. In cases where screening level ESVs for a particular pathway or COI were not exceeded, it was concluded that there was no unacceptable risk and the COI or pathway was not carried forward to Step 3.

Step 3, the initial step of the BERA (i.e., the Problem Formulation), is the critical step in the process of a more detailed evaluation of ecological risks. According to USEPA (2000):

"The Problem Formulation [i.e., Step 3] is commonly thought of in two parts: Step 3a and Step 3b. Step 3a serves to introduce information to refine the risk estimates from steps one and two. For the majority of Sites, ecological risk assessment activities will cease after completion of Step 3a. At many Sites, a single deliverable document consisting of the reporting of results from Steps 1, 2 and 3a may be submitted. At those Sites with greater ecological concerns, the additional problem formulation is called Step 3b. It is very important at this stage to perform a "reality check." Sites that do not warrant further study should not be carried forward." The Step 3a problem formulation evaluation for DMT provides a refinement of assumptions related to consideration of regional background (reference) conditions, the spatial extent and magnitude of exposure, a review of effects levels, and a qualitative review of biological data from the study area.

1.3 ERA Format

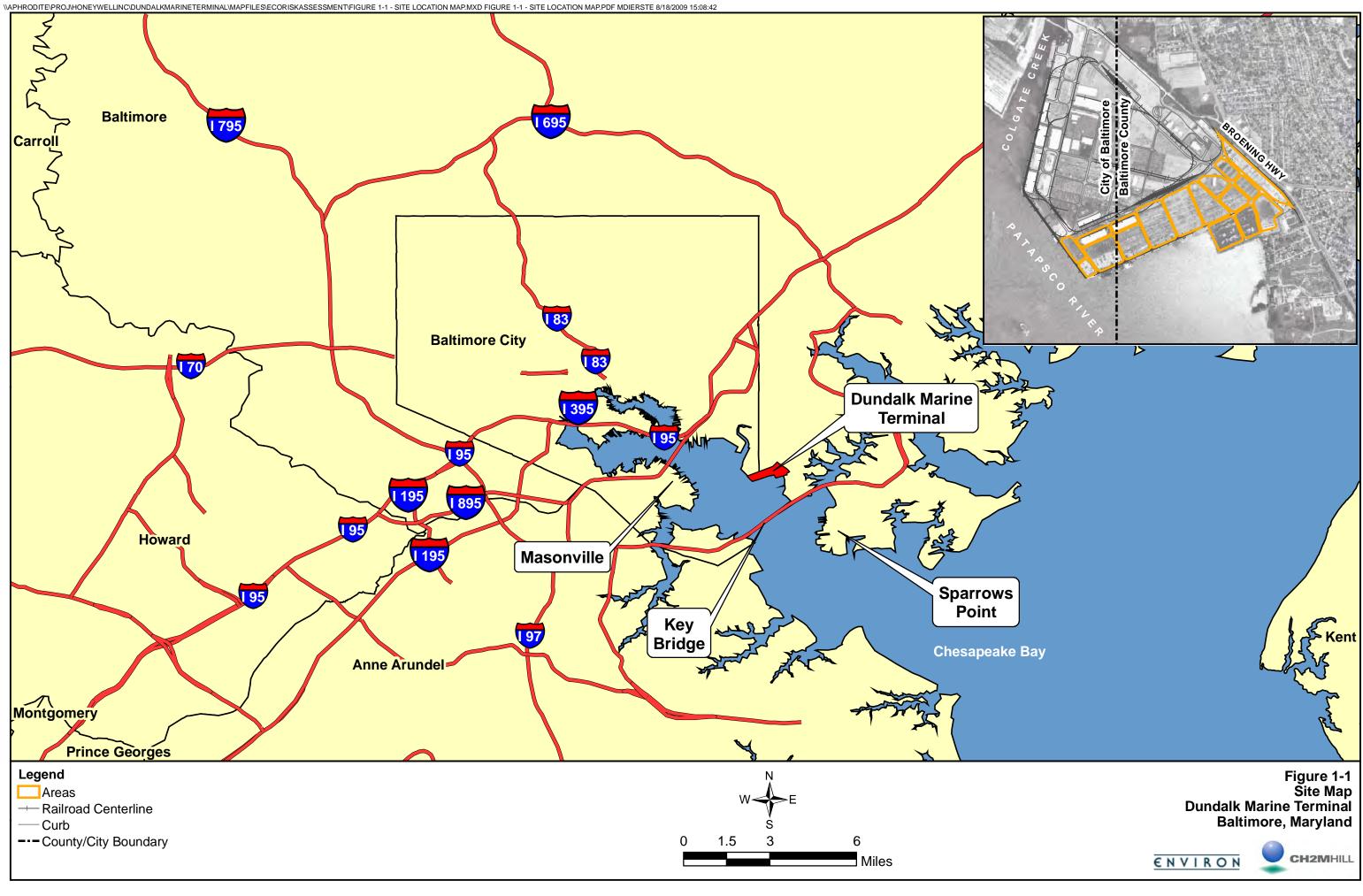
This document includes the primary components identified in the USEPA (1997, 1998, 2000, 2001) guidance (Figure 1-2) within the following five sections:

The **Executive Summary** presents a summary of the ERA including the background and objectives, technical approaches employed to evaluate data from the study area, and the conclusions.

Section 1 (Introduction) provides the administrative background, the purpose and scope of the ERA, and an overview of the technical approach that was used.

Section 2 (Step 1: Screening Level Problem Formulation and Effects Assessment) includes a comprehensive description of the factors that were considered during the problem formulation, including a detailed description of the environmental setting, the identification of COIs to be evaluated, mechanisms of ecotoxicity for each COI, fate and transport pathways, and ecological receptors and exposure pathways. This section also includes a summary of the conceptual site model (CSM) and assessment and measurement endpoints to be used in the ERA and identifies the screening level ESVs to be used for the screening level risk calculation in Step 2.

Section 3 (Step 2: Exposure Estimate and Risk Calculation) details the exposure estimates and initial risk characterization.


Section 4 (Step 3a: BERA Problem Formulation) refines exposure estimates and risk calculations and incorporates relevant site-specific factors into the evaluation of potential ecological risk within the study area.

Section 5 (Summary and Conclusions) summarizes the results of the ERA and discusses the scientific management decision point (SMDP).

Section 6 provides the references cited.

ERA information is presented concisely and in tabular format to the extent possible to expedite review. Supporting information is provided as appendices to the report.

USEPA SLERA	Identification of environmental settin Identification of constituents detecte Description of constituent fate and t Description of constituent mechanis	d ransport pathways ms of ecotoxicity ed (including threatened and endangered species habitat evaluation) pathways; conceptual site model	
	STEP 2: SLERA EXPOSURE ESTIMAT Identification of screening level exp Screening level risk calculations - Hazard quotients - Chemicals without screening - Evaluation of uncertainties	osure estimates (maximum concentrations)	
	Refinement of COPCs (consideration [e.g. biological survey data], addition Refinement of assessment and merical survey data.	ERA EXPSOURE ESTIMATES AND RISK CALCULATIONS (BERA PROBLEM FOR on of background concentrations, realistic exposure and effects assumptions, habitat ch nal screening or toxicity values) asurement endpoints for bioaccumulative COPCs and preliminary food web modeling (if by evaluation of weight of evidence and ecological significance	aracteristics, biological evidence
	STEP 3b: REFINEMENT OF MEASURE • Refinement of direct exposure appr • Refinement or expansion of food we	SMDP	
JSEPA BERA	STEP 4: STUDY DESIGN AND DQO PF Study design DQOs and statistical considerations 	SMDP	
BI	STEP 5: VERIFICATION OF FIELD SAI • Determine sampling feasibility • Final sampling location selection (in	IPLING DESIGN cluding reference areas) (any changes to Work Plan and Sampling and Analysis Plan a	greed upon with stakeholders)
	STEP 6: SITE INVESTIGATION AND D. • Implement Final Work Plan and Sar	ATA ANALYSIS npling and Analysis Plan (SMDP needed only if alterations to Work Plan or Sampling ar	nd Analysis Plan are necessary) SMDP
	STEP 7: RISK CHARACTERIZATION Analysis of data collected in Step 6 	using the methods developed in Step 4	
	STEP 8: RISK MANAGEMENT		SMDP
latas		Courses: LICEDA Draeses Adapted from	Figure 1-2
SERA baseline COPC constitu DOO data qu SLERA screenii SMPD Scientifi do not c	occurs EITHER after Step 2 or after Step 3a e ecological risk assessment ent of potential concern ality objectives rg-level ecological risk assessment c Management Decision Point (note that SMDPs constitute formal reporting requirements, but identify	 Sources: USEPA Process Adapted from: USEPA (1997). Ecological Risk Assessment Guidance for Superfund. USEPA (2000). Amended Guidance on Ecological Risk Assessment at Military Bases: Process Considerations, Timing of Activities, and Inclusion of Stakeholders. USEPA (2001). ECO-Update: Role of Screening-level Risk Assessments and Refining Contaminants of Concern in Baseline 	USEPA Expanded Eight-Step Ecological Risk Assessment Process Dundalk Marine Terminal Baltimore, Maryland
SEPA United S	akeholder communication should be considered) States Environmental Protection Agency 1-2_USEPA_Expanded_v2 09.10.09 sls		ENVIRON SCH2MHILL

SECTION 2 Step 1: Screening Level Problem Formulation

A screening level problem formulation was developed to identify the COIs, potential pathways, receptors, and exposure scenarios of concern. This information is presented below and provides the basis for the screening level risk characterization presented in Section 3. The problem formulation below focuses on chromium, which is the COPR constituent identified in the Consent Decree. However, other COPR constituents – including aluminum, calcium, iron, magnesium, manganese, and vanadium – are also evaluated in this ERA.

2.1 Environmental Setting

DMT is located in the central part of Baltimore Harbor, on the north side of the Patapsco River (Figure 1-1). DMT is on a peninsula that is bounded on the northwest by Colgate Creek, on the west, south and southeast by the Patapsco River, and on the northeast by the Broening Highway and Norfolk Southern Railroad. DMT is located on land that was created in part by the placement of COPR fill material. The fill material includes mixtures of COPR, man-made fill, and locally available fill materials. COPR is composed primarily of calcium, iron, aluminum, magnesium, and chromium, which comprise greater than 90 percent of its mass (CH2M HILL, 2007b). Trace amounts of manganese and vanadium are also present. Chromium occurs in COPR as both Cr(III) and Cr(VI) forms.

Baltimore Harbor has a long history of industrial use dating back to the 1800s, including steel production, sugar refinement, garment manufacturing, shipping, and more recently, biotechnology. In addition to chemical inputs, water quality in Baltimore Harbor has been impacted by other stressors such as excess nutrient levels, high suspended solids, and low dissolved oxygen (DO) levels. Baltimore Harbor is listed on Maryland's 303(d) list of impaired water bodies for biological impairment, bacteria, nutrients, suspended sediments, toxics (cyanide, chlordane, and polychlorinated biphenyls (PCBs)), and metals (MDE, 2005). Sediment toxicity has been observed at many locations within the Baltimore Harbor–Patapsco River system, and chemical constituents known to be present in the harbor sediments include polynuclear aromatic hydrocarbons (PAHs), PCBs, chlordane and other pesticides, and heavy metals (McGee et al., 1999; Klosterhaus et al., 2007).

2.1.1 Study Area Description

Information about the surface waters in the vicinity of DMT was collected as part of the Sediment and Surface Water Study (CH2M HILL and ENVIRON, 2009). The information collected included bathymetry, sediment characteristics, and water column characteristics and is summarized below. Study data were collected from 41 DMT locations (Transects A through J) and three midchannel reference locations in the Patapsco River (Figure 2-1). Sediment and water column properties were characterized in May 2007, August 2007, December 2007, and February 2008.

Bathymetry

A bathymetric study of the Patapsco River and Colgate Creek adjacent to DMT completed in December 2006 identified a network of steep-sided dredged navigation channels traversing the study area that allows shipping access to DMT and Seagirt Marine Terminal from the Fort McHenry navigation channel (Figure 2-2). The channels encompass nearly half of the area surveyed and range from 39 to 48 feet deep. The channel bottom topography is variable, a likely artifact of past dredging operations. Water depths measured outside the channels are generally less than 20 feet. Four prominent shallow-water areas were identified. The bottom topography in these shallow areas appears less variable than the channel topography.

Water Column Characteristics

Surface water quality parameters including temperature, salinity, turbidity, pH, and DO were measured in situ during the four quarterly field sampling events (Table 2-1). Surface water temperatures at DMT ranged from 2.5°C to 28.4°C (mean of 15.4°C), and were similar to temperatures at the reference locations (2.8°C to 27.4°C, with a mean of 14.2°C). Temperatures varied significantly with season, but did not appear to vary as a function of sampling location.

Salinities at DMT during all four quarterly sampling events ranged from 3.1 to 16.3 parts per thousand (ppt), with a mean of 10.7 ppt. These values are consistent with those at the reference location (range of 5.2 to 16 ppt; mean of 11 ppt). Salinities appear to be slightly lower in the shallow water transects (Transects A, B, C and J; mean of 8.9 ppt) than in the deeper water transects (D–H; mean of 11 ppt). Salinity profiles show a trend of increasing salinity with depth. The lower salinity measurements in the upper portion of the water column are characteristic of freshwater input (e.g. rainfall and storm drains) and the higher density associated with more saline waters. The salinities were also consistently lower in the spring compared to other seasons. According to MDE regulations, waters in the vicinity of DMT are identified as saline (Code of Maryland Regulations (COMAR) 26.08.02.03-1). The site-specific measures of salinity support this MDE designation.

DO concentrations in the Patapsco River near DMT were substantially higher in the colder months of December and February, with a mean of 10.5 milligrams per liter (mg/L), and lowest in August, with a mean of 3.75 mg/L. Overall, the vast majority of locations throughout the year were well above the MDE standard of 5 mg/L for waters supporting the protection of aquatic life (MDE, 2005). DO concentrations in the shallower transects (Transects A, B, C and J) indicated aerobic conditions throughout the water column except in August, and did not vary with depth. At the deeper sampling locations, DO concentrations declined dramatically with depth. At sampling locations with water depths of greater than 25 feet, the environment at the sediment-water interface was highly reducing, with DO concentrations averaging less than 2.5 mg/L. The pH values throughout the water column ranged from 6.9 to 9.1; overall, pH varied little among transect locations.

Overall, the water column profiles obtained during the quarterly sampling events indicate that in the shallowest areas the water column is typically well mixed. The deeper locations within the berthing areas and at the reference sites are typically stratified with increasing salinity and decreasing DO with depth.

Sediment Characteristics

Surficial sediment samples collected for the *Sediment and Surface Water Study* were generally composed of loosely consolidated sand, silt, and clay mixtures (CH2M HILL and ENVIRON, 2009). Sediments in the shallow area near Area 1501/1602 in the southeastern corner of the terminal (i.e., Transects A and J, and the first two stations on Transect C as shown in Figure 2-1) and to the south of the berthing areas (i.e. the outer extents of Transects D and E) were predominantly sand. Silts and clays were the dominant components of the surficial sediments from the deep berthing areas on the southern side of the terminal and along the northern and western edges of the terminal. The total organic carbon (TOC) content of the sediments ranged from 200 to 48,000 milligrams per kilogram (mg/kg) (0.02 to 4.8 percent), with the sandier areas containing the lowest TOC concentrations.

In situ measurements of pH and oxidation-reduction potential (ORP, or redox) conditions at DMT were collected during the four quarterly field-sampling events that were performed for the sediment and surface water study. The Eh/pH measurements from DMT are presented in Table 2-2. The Eh measurements indicate that reducing to moderately oxidizing conditions occur in surficial sediments within the study area and reference stations in all seasons. The extent of reducing conditions was greatest in August 2007, and least in February 2008. Positive Eh measurements were associated primarily with the shallow area in the southeastern part of the study area (Transects A–C). The pH measurements ranged from 5.5 to 9.8, with a mean pH of 7.4. The sediment pH measurements collected in the field generally ranged from 6.5 to 7.5.

2.1.2 Habitats

There are three primary habitats found in the vicinity of DMT: a shallow subtidal area to the east, deep waters to the south and southeast, and Colgate Creek.

A shallow water subtidal area found on the eastern side of DMT is composed of soft, unconsolidated sandy sediment. The depths of overlying surface water are shown on the bathymetric map (Figure 2-2). This area encompasses sediment and surface water study Transects A, B, C, and J and contained a significant amount of floating and submerged debris. The subtidal area is habitat to a number of benthic and pelagic organisms (see Section 2.5.1). The shallow, soft bottom provides fish and invertebrate habitat. Bottom algae and benthic animals would provide a food supply for both young and adult fish. The soft bottom of the subtidal area may also provide a hiding place for burrowing marine animals, such as clams and worms, as well as flat-bodied predators such as flounders.

Deep water channels surround DMT, specifically along the berthing area and beyond into the shipping area. Depths in the deep water habitat range from 30 to 45 feet (Figure 2-2). Sediment and surface water study Transects D, E, F, G, and H and the reference locations are primarily within deep water habitat, with the outermost station outside the dredged channels. The deep water habitat is in an area that is regularly dredged. Water circulation within this habitat may transport eggs, larvae, food, and oxygen to nursery, spawning, and foraging areas. Concrete marine platforms approximately 60 feet in width extend from DMT toward the deep water channels, creating a covered area between the bulkhead and the ship channel. The habitat beneath the platforms is limited due to the lack of light penetration but the platforms may provide refuge for some species of fish and other aquatic wildlife. Colgate Creek is west of DMT. Deep water habitat exists immediately adjacent to the terminal, as ocean faring vessels dock regularly on both sides of the creek. Transect H is within the deep water portion of the creek, parallel to the terminal. Where the creek is crossed by the Broening Highway Bridge, the creek becomes shallow with sandy soft bottom sediment similar to that found in the shallow subtidal area. The soft bottom of the subtidal area likely provides habitat for burrowing marine animals, such as clams and worms, as well as flat-bodied predators such as flounders.

Transect I is located perpendicular to DMT on the southwest side of the Broening Highway Bridge.

2.2 Constituents of Interest

The COIs to be considered in this ERA are chromium, aluminum, calcium, iron, magnesium, manganese, and vanadium. With the exception of Cr(VI), these metals are generally not considered toxic in an estuarine environment. There are more than 70 elements dissolved in seawater, but only six make up more than 99 percent of all the dissolved salts. Calcium and magnesium are among the six major elements (others are chloride, sodium, sulfur, and potassium) and comprise approximately 1.2 percent and 3.7 percent of all dissolved salts, respectively. In addition to the six major elements, there are many trace elements in seawater, including manganese, iron, and aluminum (GEOL, 2008). Calcium will not be considered further given its natural occurrence in estuarine waters and the lack of available ESVs for calcium in surface water (see Appendix A).

COI concentrations in pore water, surface water, and sediment were measured in the Sediment and Surface Water Study (CH2M HILL and ENVIRON, 2009). The field program was comprised of four quarterly sampling events in May, August, and December 2007 and February 2008 to ensure characterization of seasonal differences in geochemical conditions that govern chromium speciation. The evaluation of the nature and extent of chromium in the surface waters surrounding DMT was based on the comparison of Cr(VI) and dissolved total chromium concentrations in pore water and surface water to USEPA's NRWQC.² The study also included the comparison of DMT pore water, surface water, and sediment sample results for chromium and the other COPR constituents to midchannel reference area results, and characterization of geochemical conditions in the Patapsco River. Sampling results are reported in detail in the Sediment and Surface Water Study Report (CH2M HILL and ENVIRON, 2009) and are summarized below. Chemical concentration data are discussed further in Section 3.1. Ancillary sampling of sediment and pore water that was conducted in May 2009 near the shoreline by the 15th Street outfall is addressed briefly below and in greater detail in Section 4.3.2.

2.2.1 Chromium

Cr(VI) and total and dissolved total chromium were analyzed in all pore water and surface water samples. Sediment samples were analyzed for total chromium only because according

² USEPA (1986) adopted saltwater criteria to protect aquatic life only for Cr(VI) but not for Cr(III) due to its low toxicity in saltwater. Therefore, while saltwater and freshwater criteria are available for Cr(VI), only freshwater criteria are available for Cr(III). Nevertheless, freshwater criteria based on site-specific hardness values were determined for DMT as part of a conservative assessment of nature and extent.

to USEPA and other published studies, Cr(VI) partitions to pore water if present and biologically available in sediment, and therefore the pore water measurements for Cr(VI) are the accurate and accepted method of quantifying Cr(VI) associated with sediments (USEPA, 2005a; Berry et al., 2004; Besser et al., 2004). The major findings in the Sediment and Surface Water Study regarding the nature and extent of chromium in pore water, surface water, and sediment adjacent to DMT were as follows (CH2M HILL and ENVIRON, 2009):

- Cr(VI) was not detected in pore water in any of the samples taken from DMT in any of the four quarterly sampling events. The detection limit of 5 μ g/L was well below the USEPA's saltwater acute and chronic NRWQC for Cr(VI) of 1,100 and 50 μ g/L, respectively.
- Cr(VI) was not detected in 97 percent of the surface water samples analyzed,³ and in those limited locations where it was detected, concentrations were well below the USEPA's chronic NRWQC. Detected concentrations were consistently identified in areas adjacent to stormwater discharge outfalls, and with limited exception the detections followed wet weather events.
- Dissolved total chromium was detected at very low concentrations in pore water and surface water during the four quarterly sampling events. Detected concentrations were similar to those seen at the reference locations and were well below the USEPA's chronic NRWQC for Cr(III) in freshwater (note that there are no Cr(III) criteria for salt water).
- Total chromium concentrations in sediment were consistent with those found at the reference locations except near Area 1501/1602 at the southeast part of the study area, and in Colgate Creek in the northwest part of the study area. In Area 1501/1602, concentrations were highest in the surficial (0 to 6 inches in depth) and mid-depth samples (approximately 12 to 18 inches in depth), and decreased with increasing distance from the shoreline and with increasing depth in the sediment column. In Colgate Creek, the highest chromium concentrations in sediment were found at depth at the location farthest from DMT.

Ancillary sediment and pore water samples were collected along the shoreline of the 15th Street outfall after submittal of the Sediment and Surface Water Study Report to MDE. Sample results were provided to MDE in a letter from Honeywell to MDE dated September 4, 2009. Sample results from this targeted evaluation of the 15th Street outfall following a wet weather event were generally consistent with those from the Sediment and Surface Water Study and are addressed in Section 4.3.2. In the ancillary data collection effort, Cr(VI) was only detected at one location at a concentration of 108 μ g/L. While this detection is slightly above the chronic NRWQC of 50 μ g/L, it is well below the acute criterion of 1,100 μ g/L, and Cr(VI) was not detected at the surrounding locations.

2.2.2 Other COPR Constituents

Concentrations of other COPR constituents (aluminum, iron, magnesium, manganese, and vanadium) have been delineated relative to reference concentrations in pore water, surface water, and sediment. The Sediment and Surface Water Study presents data indicating that the measured concentrations of these constituents are generally within the range of

³ Sample count excludes duplicate samples.

concentrations observed at reference locations, except as discussed further in this ERA report.

2.3 Chemical and Physical Fate and Transport Mechanisms

The following section provides a summary of the transport pathways from DMT to the surrounding surface waters, and the fate and transport characteristics of the COPR constituents that are evaluated in this ERA. A detailed discussion of chromium geochemistry is presented, as chromium is the main focus of the Consent Order. Detailed discussions of the fate and transport properties of the other COPR constituents are included in Appendix A.

2.3.1 Transport Pathways from DMT to the Adjacent Waterways

The COPR fill used to create DMT is the site-related potential source of COIs to the Patapsco River adjacent to DMT. A detailed evaluation of the fate and transport of chromium at DMT is presented in the Chromium Transport Study Report (CH2M HILL, 2009). The CSM for the transport of chromium from DMT to the Patapsco River and the fate of chromium in the river based on the results of the Sediment and Surface Water Study is summarized below and illustrated in Figure 2-3:

- Areas of groundwater upwelling were identified in the near shore environment near Area 1501/1602 in the Trident probe groundwater upwelling survey; however, analytical results for groundwater samples from riverfront perimeter monitoring wells in Area 1501/1602 indicate that Cr(VI) is not detected at concentrations above the NRWQC. Therefore, groundwater does not appear to be a significant pathway for the transport of Cr(VI) from DMT to the river.
- The absence of Cr(VI) in pore water also indicates that Cr(VI) is not being transported from DMT to the river via groundwater upwelling. The data from the pore water samples also demonstrate that historical releases from DMT via surface water discharge and storm drain outfalls have not resulted in the accumulation of Cr(VI) in sediment.
- These results are consistent with the CSM, which shows that during wet weather, the influence of Cr(VI) from stormwater discharges on the adjacent water body is minimal, even in the area where the least mixing/dilution occurs. Furthermore, there is considerable evidence that the Cr(VI) released to the Patapsco is rapidly reduced to Cr(III).
- The presence of total chromium in sediment adjacent to the shoreline of Area 1501/1602 is likely related to historical surface water runoff from uncovered COPR stockpiles and other filling operations that occurred during past land reclamation activities. Total chromium in sediment in the vicinity of the 14th and 15th Street outfalls may also be related to historical releases of Cr(VI) via the storm drain outfalls that was reduced to Cr(III), which precipitated out of the water column and accumulated in sediment.
- The findings of the DMT sediment and surface water investigation are consistent with those seen by the USEPA and others in other estuarine environments and those seen by Johns Hopkins University (JHU) researchers at other locations in Baltimore Harbor (e.g.,

Berry et al., 2004; USEPA, 2005a; Sorensen et al., 2007; Graham et al., 2009; ENVIRON, 2008).

2.3.2 Chemical Fate and Transport Processes

Chromium geochemistry is summarized below. Information about the fate and transport of chromium in the Patapsco River based on the results of the Surface Water and Sediment Study is also presented.

Chromium Geochemistry

Chromium concentrations in excess of naturally occurring background levels are widespread in sediments in urbanized and industrialized estuaries, due to runoff from road surfaces, combined sewer overflows, and municipal and industrial discharges (Meador et al., 1994; Paul et al., 2002; USEPA, 2004). Although early efforts to evaluate sediment quality and the significance of chromium in sediment focused on analyses of total chromium (Long et al., 1995), recent studies suggest that chromium speciation in sediment must be understood to support more accurate evaluations of potential ecological impacts (USEPA, 2005a; Berry et al., 2004; Besser et al., 2004; Martello et al., 2007; and Sorensen et al., 2007).

USEPA (2005a) states that geochemical processes govern the reduction of Cr(VI) to Cr(III) in aquatic environments, and geochemical processes are critical to the attenuation of chromium in sediments. The presence of Cr(III) is strongly favored in natural waters and sediments because the concentrations of sediment constituents known to reduce Cr(VI) to Cr(III) generally far outweigh the concentrations of the few constituents known to oxidize Cr(III) to Cr(VI). Furthermore, once reduced, Cr(III) is very stable in aquatic environments and highly unlikely to oxidize to Cr(VI). Thus, chromium in sediments is more likely to be in its Cr(III) form than its Cr(VI) form (James and Bartlett, 1983; Fendorf and Zasoski, 1992; Milacic and Stupar, 1995; Weaver and Hochella, 2003).

The USEPA (2005a) approach can be summarized as follows with regard to acid volatile sulfides (AVS), one of the key geochemical indicators of chromium speciation:

- USEPA recognizes the geochemical relationship between chromium and reducing agents, including AVS.
- AVS is formed only in reducing environments.
- Cr(VI) is thermodynamically unstable in reducing environments (i.e., anaerobic sediments).
- Therefore, in the presence of AVS, Cr(VI) is readily transformed to Cr(III), making Cr(III) the dominant species in sediments where total chromium has been measured.
- Cr(VI) reduction is not necessarily limited to areas with high AVS and can be catalyzed by other reductants. The advantage of AVS is that it can be easily, reliably, and inexpensively measured.
- Aquatic toxicity data show that Cr(VI) is much more toxic than Cr(III), which is very poorly soluble in water and exhibits very low aquatic toxicity.

• Therefore, when AVS is present in sediment, chromium-related toxicity is unlikely, especially in estuarine environments.

Understanding chromium speciation and incorporating it in the ERA is important because Cr(III) and Cr(VI) exhibit widely differing chemical properties and ecotoxicological effects. Cr(VI) exhibits much greater solubility, mobility, bioavailability, and toxicity than Cr(III) in sediments and surface waters (Richard and Bourg, 1991; James, 2002; USEPA, 1985 and 2005a). Cr(III) is relatively insoluble at environmentally relevant pH levels, even in geochemically simple aqueous solutions, due to the formation of insoluble hydroxide and oxide compounds. In sediment, Cr(III) solubility is further limited by strong complexation with sediment minerals and organic ligands (Sass and Rai, 1987; Fendorf and Zasoski, 1992; James, 2002). For example, binding of iron and Cr(III)-containing compounds lowers solubility considerably, similar to the inert, highly crystalline chromite ore (FeO \cdot Cr₂O₃) (James, 2002). The insolubility of Cr(III) generally limits its bioavailability and mobility in saline environments (Eisler, 1986). Indeed, due to a lack of Cr(III) toxicity in saltwater exposures, the USEPA has adopted saltwater criteria to protect aquatic life only for Cr(VI) (USEPA, 1986).

Several organic and inorganic constituents in anaerobic sediments facilitate rapid reduction of Cr(VI) to Cr(III), including sulfides, Fe(II), and organic matter (Hansel et al., 2003); bacterially mediated reduction of Cr(VI) is also known (Schmieman et al., 1998). Reduction of Cr(VI) to Cr(III) is rapid under reducing or even mildly oxidizing conditions, occurring within minutes to days depending on the reducing agent (Berry et al., 2004; Lin, 2002; Richard and Bourg, 1991; Schroeder and Lee, 1975; Stollenwerk and Grove, 1985).

Fate and Transport of Chromium at DMT

The approach for evaluating the fate and transport of chromium in the Sediment and Surface Water Study was based on characterizing the geochemical conditions that influence chromium speciation and stability during each of the four sampling events. Seasonal variations in geochemical parameters were evaluated as they may affect the reducing conditions that govern chromium speciation. These parameters included divalent iron and divalent manganese, TOC and dissolved organic carbon (DOC), sulfide, ORP, and AVS/simultaneously extracted metals (SEM) (sediment only). The major findings based on the Sediment and Surface Water Study were as follows:

- Measurements of geochemical parameters in surface water, pore water and sediment (e.g. AVS and Fe(II)) demonstrate that conditions are favorable to the presence of chromium as Cr(III) rather than Cr(VI). Sediments at DMT consistently contained measurable concentrations of these geochemical constituents despite fluctuations that naturally occur with the change of season.
- A statistically significant relationship was observed between dissolved total chromium and Cr(VI) concentrations in surface water samples where Cr(VI) was detected (p <0.05). This relationship demonstrates that Cr(VI) is rapidly reduced to Cr(III) in the water column, where it most likely precipitates to the sediment.
- Based on the results of the Sediment and Surface Water Study and other related studies with respect to chromium geochemistry, total chromium in sediment is unlikely to

oxidize to Cr(VI) in the future because the geochemical conditions necessary for this process do not naturally occur in the estuarine environment.

The extent to which Cr(III) oxidizes to Cr(VI) in a laboratory environment depends on the presence and mineralogy of manganese (hydroxides, pH, and the form and solubility of Cr(III); however, once reduced in a natural aquatic environment, Cr(III) is very stable and highly unlikely to oxidize to Cr(VI) (Magar et al., 2008; James and Bartlett, 1983; Fendorf and Zasoski, 1992; Milacic and Stupar, 1995; Weaver and Hochella, 2003). Cr(III) oxidation is less likely to occur in the environment than under laboratory conditions, because aged waste materials containing Cr(III) are typically less soluble and more inert to oxidation and Cr(OH)₃ precipitates may form on manganese (hydr)oxide surfaces (James and Bartlett, 1983; Fendorf and Zasoski, 1992; Fendorf, 1995; Martello et al., 2007).

Johns Hopkins University Contaminant Transport, Fate and Remediation (CTFR) evaluated whether Cr(III) would oxidize to Cr(VI) from Baltimore Harbor sediments, including a location from DMT. Sediments were aerated continuously for 10 days and time series analyses of Cr(VI) in water were conducted. Results showed that Cr(VI) was not detected in any of the Baltimore Harbor aerated sediment controls (Graham and Wadhawan, 2007 and 2009; ENVIRON, 2008). Only highly artificial laboratory conditions induced the oxidation of any Cr(III) to Cr(VI) and even then, the Cr(VI) rapidly reduced back to Cr(III) in very short timeframes.

2.3.3 Physical Fate and Transport

Once released into the aquatic environment, chromium and other COPR constituents can be transported in dissolved phase in the water column, or adsorbed to sediment particles and transported in the solid phase. The hydrodynamic and sediment transport processes that may influence the transport of COIs are described below.

Multiple dye studies were conducted in April 1987 on the 15th Street (96-inch) drain at DMT (EA, 1987). Dye concentrations were measured with fluorometers at the bulkhead and onboard a vessel in the mixing zone. The results of the dye study suggested that a "conservative" parameter would undergo a dilution between 1:200 and 1:400 within 2,000 feet of the outfall. Dilutions of 1:1,000 to 1:3,000 would apply within 5,000 feet of the discharge point. These results can be used to estimate the attenuation of dissolved-phase COIs in the water column near DMT.

No flow or current measurements are available in the immediate vicinity of the DMT. Current velocities in the Patapsco River tend to be weak and variable, with maximum velocities of less than 30 centimeters per second (cm/s) (USACE, 2006). Baltimore Harbor is a net depositional environment for sediment. Shoaling rates in channels and anchorages adjacent to DMT are about 3 inches per year (USACE and MPA, 1997). Once deposited, sediments could potentially be resuspended by currents, tides, waves, dredging, ship traffic, or other human activities. A study of sediment resuspension in Baltimore Harbor indicated that a loosely consolidated surface "fluff" layer is commonly present on top of a wellconsolidated sediment bed (Maa et al., 1998). Under normal flow conditions, bottom shear stresses due to wave and current activity are insufficient to erode the consolidated sediment bed, but can readily resuspend and transport fluff. Based on existing information regarding flow velocities and sediment transport in Baltimore Harbor, COIs that are adsorbed to consolidated sediments in the vicinity of DMT are not likely to erode under typical hydrodynamic conditions.

2.4 Ecotoxicity Mechanisms for COIs

The constituent-specific mechanisms of ecotoxicity for each of the COIs evaluated in the ERA are described in detail in Appendix A. A discussion of toxicological screening values based upon these mechanisms of toxicity and the selection of these values for use in this ERA is provided in Section 3.2.

2.5 Ecological Receptors and Exposure Pathways

An essential component of the ERA is an understanding of the specific ecological receptors potentially present within the communities found within the study area or within the influence of the study area. Also of importance is an understanding of the complete pathways from the potential sources of contamination to these ecological receptors. The discussion below provides a summary of readily available information from the literature, Site-specific observations, and Site-specific knowledge regarding the ecological receptors and complete exposure pathways to those receptors.

2.5.1 Ecological Receptors

Benthic Community

Several studies conducted between 1975 and 2006 examined benthic community conditions within Baltimore Harbor and the Patapsco River watershed. A 1975 study in Baltimore Harbor found that the tubifex worm, a pollution-tolerant species, was fairly common, but that crustaceans and mollusks (species relatively intolerant to pollution) were scarce (USACE, 2001). In 1983, in response to deteriorating benthic community conditions within Chesapeake Bay and its tributaries, the USEPA along with several states in the Bay's watershed implemented biological monitoring under the Chesapeake Bay Agreement (MDNR, 2005a). Sediment toxicity was observed at many locations within the Harbor and tolerant communities were observed in the mid 1990s (McGee et al., 1999).

Benthic monitoring programs use a benthic index of biotic integrity (B-IBI) or index of biological integrity (IBI) to assess benthic community conditions. The IBI uses characteristics of the benthic macroinvertebrate assemblage structure and function to assess the overall water resource condition (MDNR, 2005a; Dauer et al., 2000). The Wye Research and Education Center (WREC) calculated IBI scores for sites in Baltimore Harbor beginning in 1996 in conjunction with toxicity tests using the estuarine amphipod *Leptocheirus plumulosus* (Klosterhaus et al., 2007). One station was established in Colgate Creek which showed degraded conditions based on low IBI scores as well as a low Shannon Weiner Diversity Index score. Amphipod survival and density studies were also performed in 1996 at a station in the open shallow water area across from DMT (i.e. just beyond Transects C, B, and A). Amphipod survival was nearly 100% and density was one of the highest in the study at over 30,000 organisms per square meter. Results for Colgate Creek, however, indicated low survival and limited organism abundance, and researchers noted elevated ammonia levels (i.e., approximately three to five times higher than anywhere else sampled) (Klosterhaus et

al., 2007). Ammonia is common in industrial and sewage effluents and the concentrations of ammonia seen by Klosterhaus et al. at the Colgate Creek location were above USEPA NRWQC for ammonia (USEPA, 1989). Ammonia is not a constituent of COPR.

During the first quarterly sampling event of the Sediment and Surface Water Study (May 2007), a qualitative benthos analysis was conducted at DMT to provide descriptions of biological assemblages (Appendix B). Observed organisms were typical of estuarine assemblages of two distinct benthic communities. The two most likely community types were predicted based on species identified, bottom sediment type, and water velocity. These communities are described below. There are no natural oyster bars in the area, although the Patapsco River Oyster Reef Restoration Project is located near Fort Carroll, approximately 5 miles from DMT (NOAA, 2008).

Sediments at the northwest side of DMT consisted of soft clay and silt, with traces of sand, shell marl, and gravel indicative of a low-energy depositional environment. The dominant organisms found in the sediment were polychaetes with a few observations of small amphipods (Table 2-3). Based on environment and biological observations, this area most likely supports a community of soft-bodied polychaetes that are probably a mix of deposit feeders, suspension feeders, detritivores, and large carnivores. While not observed, various smaller crustaceans, amphipods, and other worms are probably present in this community (Appendix B).

Sediments at the southeast side of DMT consisted of medium sand and some shell marl, which are indicative of a higher-energy environment. Small clams, polychaetes, amphipods, and a few arthropods were observed in the sediment. The sediment and biota found in this area most likely supports a community of armored organisms that specialize in burrowing in sandy sediment, and may include clams and other suspension feeders, amphipods, isopods, copepods, and armored arthropods (Appendix B). A second qualitative analysis was performed in June 2008 in the area adjacent to sampling location J4 (Table 2-3). Amphipods and crabs were dominant in this survey, confirming the predictions of the 2007 report; however, sampling also identified isopods, barnacles, mussels, pipefish, mysid shrimp, and worms (polychaetes and oligochaetes).

Pelagic Community

Long-term monitoring of phytoplankton densities shows higher surface phytoplankton concentrations in the Patapsco River relative to the mainstem Chesapeake Bay in most seasons, particularly in spring and summer (MDNR, 2005b). In general, estimations of phytoplankton biomass in surface water were typical for Baltimore Harbor, which commonly has eutrophic conditions.

Fisheries and plankton studies were conducted within and adjacent to the proposed Masonville Dredged Material Containment Facility (DMCF) (Figure 1-1), approximately 3 miles west of DMT, in July 2003, May 2004, October 2004, May 2005 and August 2005 (USEPA, 2006a). Due to the close proximity and similar environment (e.g., current velocity and sediment type), pelagic species observed at the Masonville DMCF site represent assemblages that can be expected at DMT. Zooplankton samples were dominated by mud and fiddler crab zoea, with moderate densities of copepods, shrimp larvae, and amphipods. The plankton communities near Masonville were similar to the control sites near Key Bridge (USEPA, 2006a). In another study, low abundance and diversity of plankton were observed and may be attributed to predation by the high density of comb jellyfish (*Ctenophora*) that were also observed inhabiting the waters during the July 2004 sampling efforts (EA, 2005).

Ichthyoplankton samples indicated low diversity and low abundance of fish species, primarily consisting of northern pipefish and goby, during summer 2004 surveys at Masonville. These results may be attributed to the high abundances of comb jellies inhabiting these waters during the sampling events and preying on the ichthyoplankton. In addition, young anadromous fish collected in seine surveys in May in all years sampled indicates that anadromous fish tend to develop beyond their planktonic stages before reaching the Masonville area (USEPA, 2006a).

In general, the estuarine portion of the Patapsco River salinity regime, ranging from 2 to 10 ppt, supports a slightly different finfish community than the mainstem Chesapeake Bay. Fish collected at Masonville DMCF were typical species of the mesohaline reaches of the Chesapeake Bay. Commercially and/or recreationally important species collected during trawl and gillnet efforts at Masonville included striped bass (*Morone saxatilis*), white perch (*Morone americana*), Atlantic menhaden (*Brevoortia tyrannus*), bluefish (*Pomatomus saltatrix*), largemouth bass (*Micropterus salmoides*), American eel (*Anguilla rostrata*), and blue crab (*Callinectes sapidus*). White perch dominated the collection for both trawl and gillnet efforts in all three seasons. However, samples collected at deeper areas supported only a limited numbers of pelagic species (USEPA, 2006a).

Wildlife

No avian studies have been conducted immediately adjacent to DMT. Thus, as with the pelagic community, studies from the nearby areas provide an understanding of wildlife found within the study area. A description of ecological communities is provided in the Final Supplemental Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) for the dredging of sites in Baltimore Harbor including the Seagirt terminal and the west side of DMT (i.e., Colgate Creek). A study at the Masonville DMCF also provides a description of what can be expected at DMT.

As reported in the Final Supplemental EA and FONSI for the Baltimore Harbor Dredging, the U.S. Fish and Wildlife Service (USFWS) reports the existence of two waterbird nesting colonies near Baltimore Harbor. An established colony of black-crowned night herons, consisting of approximately 350 breeding pairs, nest at Sollers Point near the northern end of the Francis Scott Key Bridge. Approximately 500 pairs of herring gulls nest at a site on Sparrows Point. Many resident species such as great blue herons (*Ardea herodias*), double-crested cormorants (*Phalocrocorax auritus*), and osprey are also located in the study area. Additionally, a variety of waterfowl species winter in the Baltimore Harbor area including mallards (*Anas brachyrhynchos*), scaup (*Aythya affinis*), bufflehead (*Bucephala albeola*), goldeneye (*Bucephala clangula*), ruddy duck (*Oxyura jamaicensis*), canvasbacks (*Aythya valisineria*), Canada geese (*Branta canadensis*), and black duck (*Anas rubripes*).

Bird census monitoring surveys were conducted in February, March, April, June, August, and September of 2005 at the Masonville DMCF (USEPA, 2006a). Birds observed associated with the shoreline and open water included resident species of waterfowl and herons such as Canada goose, mallard, and great blue heron. Year round resident species are

supplemented with a variety of wintering and migrant species of waterfowl including bufflehead, green-winged teal (*Anas crecca*), lesser scaup, ring-necked duck (*Aythya collaris*), canvasback, gadwall (*Anas strepera*), and ruddy duck (*Oxyura jamaicensis*). Summer resident species include great egret (*Ardea alba*), green heron (*Butorides virescens*), black-crowned night-heron (*Nycticorax nycticorax*) and double-crested cormorant.

The open water and near shore line near DMT indicate that some of these aquatic-oriented species seen at Masonville will likely have at least some lofting and foraging areas at DMT. Wintering sea ducks like scoters, long-tailed ducks, and mergansers, may use the open water for the shellfish, invertebrates and fish they eat during the winter months. Hooded mergansers (*Lophodytes cucullatus*) are known to occur within Baltimore City limits. The species is currently ranked as S1B (rare and a migrant with breeding status) and is actively tracked by the Wildlife and Heritage Service (MDNR, 2007). Hooded mergansers were not observed at the Masonville site; however, transient winter foraging may occur at DMT. In addition, a pair of bald eagles (*Haliaeetus leucocephalus*) was utilizing a nest tree at Masonville cove and was observed during spring, summer and fall 2004 surveys. The nest tree fell in March 2005, an adult bald eagle was sighted during the September 2005 survey, and another bald eagle nest site is located near Black Marsh, approximately 8 miles from the project area (USACE, 2005). Therefore, bald eagles may use the waters surrounding DMT for foraging throughout the year.

Special Status Species

There are 31 federally listed endangered or threatened species in Maryland; however, only a few occur in the general area of the DMT. Federally listed endangered sea turtle species found in the Chesapeake Bay include hawksbill (*Eretmochelys imbricate*), Kemp's ridley (Lepidochelys kempii), and leatherback (Dermochelys coriacea) (USFWS, 2008). Federally listed threatened sea turtle species found in the Bay include green (Chelonia mydas) and loggerhead (Caretta caretta) (USFWS, 2008). Due to the industrial character of the area, lacking natural shore line and vegetation, it would be unlikely to find a sea turtle from the Bay in the Harbor or Patapsco River. The shortnose sturgeon (Acipenser brevirostrum) is the only endangered species that could potentially occur in the DMT area (USFWS, 2008). Data from the reward program for incidental catches of shortnose and Atlantic sturgeon (Acipenser oxyrhynchus) showed no shortnose sturgeon captured upstream of the Key Bridge (Figure 1-1), approximately 4 miles from DMT, suggest that sturgeon are probably transient to the Harbor and likely to only use the channels (USFWS, 2005). The closest Atlantic sturgeon taken was in the mouth of the Patapsco River, approximately 7 miles from DMT (USFWS, 2005). Due to their preference for higher salinities and known distributions within the Bay, Atlantic sturgeons are expected to be transients within the Patapsco estuary and rare to the study area.

Representative Receptors of Potential Concern for the Study Area

Based on observations while collecting the abiotic media within the study area (i.e., pore water, surface water, and sediment samples), the qualitative benthic study conducted in the study area, and other studies of fish, wildlife, and benthic communities conducted in the vicinity of the study area, the following specific receptors of potential concern were identified for the SLERA:

- Benthic invertebrates amphipods, polychaetes, marine clams, and mysid shrimp
- Pelagic fish northern pipefish, white perch
- Omnivorous Birds mallard, hooded merganser
- Piscivorous Birds osprey

2.5.2 Exposure Pathways

Ecological receptors can potentially be exposed to chromium and other COPR constituents in surface water or sediments. In both of these media, exposure is primarily via direct contact. Presence of the COIs at detectable levels creates a direct ingestion exposure pathway. However, as summarized below, chromium and other COPR constituents do not enter the food web so ingestion of food is not a complete exposure pathway.

Surface Water

Organisms spending at least a portion of their life cycle in the water column (i.e., pelagicdwelling organisms) can be exposed to dissolved- or suspended-phase contaminants in the water. The exposure can be through dermal contact, ingestion, or exposure to gill surfaces as part of the gas exchange process. The organisms can be at risk from the combination of these exposure pathways and the ESVs developed for surface water account for the combination. As noted previously, Cr(VI) is very soluble in water, but Cr(III) is not. Other COPR constituents are also soluble in water including calcium, magnesium, and vanadium.

Sediment and Pore Water

For sediment dwelling organisms the exchange of nutrients, gases, and potential contaminants is most frequently through the pore water (water in the interstitial spaces in the sediment). Consistent with this exchange mechanism, the recent state of the science suggests that pore water is the more relevant inorganic constituent exposure pathway for benthic organisms. USEPA's *Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc)* (USEPA, 2005a) and the *Framework for Metals Risk Assessment* (USEPA, 2007) advocate evaluating metals in sediment in the aqueous phase (i.e., pore water) and incorporating additional information such as AVS in relation to SEM concentrations. In addition to this exposure mechanism, the sediment-dwelling community is in direct contact with the sediment and can incidentally ingest sediment during feeding.

Food Chain Exposure

Cr(III) is an essential nutrient for biological organisms; however, chromium does not biomagnify in the food web (Eisler, 1986; Newman, 1998; NPS, 1997). Flora and fauna have natural mechanisms to regulate uptake and elimination of Cr(III). Specifically, Cr(III) plays a role in sugar and protein metabolism. As a result of bioregulation, the extent to which Cr(III) is accumulated is expected to be concentration-dependent. That is, the ratio of chromium in tissue to bioavailable chromium in environmental media will be highest when bioavailable chromium is scarce and lowest when bioavailable chromium is relatively abundant (NPS, 1997). Cr(VI) does not persist in biological tissues. Cr(VI) is rapidly taken up by cells through the sulfate transport system and is quickly reduced to Cr(III) in all tissues (IRIS, 2003; NPS, 1997). There is no evidence that Cr(III) is converted to Cr(VI) in biological systems (IRIS, 2003). Thus, Cr(VI) exerts toxicity through direct contact mechanisms rather than bioaccumulation to a critical concentration in tissue. As with chromium, the other COPR constituents are not considered to bioaccumulate within the food web, particularly given that some of the COPR constituents are natural components of seawater (ATSDR, 2006; CBP, 2008; NOAA, 2007). A review the bioaccumulation potential of the other COPR constituents is provided in Appendix A.

Studies have shown that chromium associated with COPR does not accumulate in the food chain. Conder et al. (2008) demonstrated that avian receptors in Upper Newark Bay/ Hackensack River complex that forage adjacent to a COPR fill area with total chromium concentrations in soil up to 9,000 mg/kg (average of 1,300 mg/kg) are not exposed to unacceptable risks. The evaluation included avian receptors that consume fish, aquatic invertebrates, and incidentally ingest sediment. These findings were consistent with the lack of bioaccumulation of chromium in wildlife.

2.5.3 Summary of Exposure Pathways and Receptors

Based on the discussion of receptors and pathways above, the focus of the ERA will be on benthic and water column community exposure. As stated previously, COPR constituents do not biomagnify significantly within the food chain; thus, food chain risks are not evaluated. Exposure of benthic organisms to multiple media (e.g., surface water, pore water and sediment) will be considered for both the trivalent and hexavalent forms of chromium. In accordance with USEPA (2005a) and the ERA Work Plan (CH2M HILL, 2006), the focus will be on exposure to pore water because it is the most direct and well researched pathway. Exposure estimates will consider geochemical conditions governing speciation and toxicity of each form.

2.6 Summary of the Conceptual Site Model

A preliminary ecological CSM is presented in Figure 2-4. The model includes the pathways by which COIs can potentially reach the ecological receptors described in Section 2.5. The potential primary source of Site-related contamination to the Patapsco River from DMT is COPR that was used as fill.

If chromium is released to the Patapsco River from DMT, it may be present in the estuarine environment in a dissolved phase in surface water or pore water. It can also be associated with colloidal particles in the surface water, or sorbed to sediment in the solid phase. Once in the estuarine environment, the fate and toxicity of chromium is highly dependent on its chemical state, as discussed Section 2.3.

The results of the Sediment and Surface Water Study indicate that Cr(VI) is not being transported from DMT to the river via groundwater upwelling (CH2M HILL and ENVIRON, 2009). The study results also demonstrate that historical releases from DMT via storm drain outfalls have not resulted in the accumulation of Cr(VI) in sediment. During wet weather stormwater discharges, the influence of Cr(VI) on the adjacent water body is minimal. Furthermore, there is considerable evidence that the Cr(VI) released to the Patapsco River is rapidly reduced to Cr(III).

The primary exposure pathways and receptors are direct contact of the benthic community with sediment and pore water, and direct contact of pelagic communities with surface water.

2.7 Preliminary Assessment and Measurement Endpoints

Assessment endpoints define ecological entities that are to be protected and attributes that can be used to gauge the degree of impact that has or could occur (USEPA, 1997; 2003). Assessment endpoints most often relate to attributes of biological populations or communities, and focus the risk assessment on particular components of the ecosystem that could be adversely affected by contaminants from the study area (e.g., survival and reproductive abilities of fish populations) (USEPA, 1997). Assessment endpoints often cannot be measured directly, so measurement endpoints focus on measureable attributes that are related to the assessment endpoints and the overall ecological entities and attributes of focus for an ERA (e.g., reproductive survival in laboratory studies of fish).

Table 2-4 presents a summary of assessment and measurement endpoints, representative receptors, measures of exposures, effects, and testable hypotheses. The following assessment endpoints are considered further in this ERA:

- Benthic invertebrate community structure and function
- Water invertebrate community structure and function
- Fish population survival and reproductive ability

Measurement endpoints were developed to address the above risk questions. The following measurement endpoints are proposed to assess the potential for unacceptable risk at DMT:

- Benthic Invertebrate Community Structure and Function –

 (1) Comparison of concentrations of COIs in pore water to USEPA's NRWQC or other ESVs considered protective of survival or reproduction, (2) comparison of concentrations of COIs in bulk surface sediments reported on a dry weight basis (except chromium, see Section 2.8.2) to conservative ESVs considered protective of survival or reproduction, and (3) consideration of the biological community present in the Patapsco River sediments, particularly in areas where COPR constituents were measured.
- *Water Column Invertebrate Community Structure and Function* comparison of concentrations of COIs in surface water to USEPA's NRWQC or other ESVs considered protective of survival or reproduction.
- *Fish Survival and Reproductive Ability* comparison of concentrations of COIs in surface water adjacent to DMT to USEPA's NRWQC or other ESVs considered protective of survival or reproduction.

2.8 Ecological Effects Assessment – Selection of Screening Ecotoxicity Values

Potential risks were evaluated for chromium, aluminum, calcium, iron, magnesium, manganese, and vanadium. For chromium, the evaluation focused primarily on determining the exposure of organisms to the more-toxic hexavalent form instead of the less-toxic trivalent form. Risk within each medium was evaluated initially by comparing measured concentrations of Cr(III), Cr(VI), and other COPR constituents to ESVs for each medium.

2.8.1 Screening Ecotoxicity Values for Surface Water and Pore Water

ESVs based upon exposure to surface water are readily available whereas those for exposures to pore water are not. However, the exposure mechanisms for the two media are identical and concentrations in surface water that are detrimental would be similarly so in pore water. Hence, surface water ESVs were employed to evaluate risk attributable to both surface water and pore water exposure pathways.

Saltwater screening criteria are appropriate for the area surrounding DMT; however, marine criteria are only available for Cr(VI). Freshwater criteria are available for Cr(III) and the other COPR constituents and will be used for informative purposes only since freshwater criteria are typically much lower than marine criteria and concentrations exceeding these ESVs do not necessarily result in unacceptable ecological risk in a marine system. In instances where measured values exceed the ESVs, additional information will be incorporated to refine the risk estimate.

The key ESVs used in the initial evaluation are the acute and chronic NRWQC. The chronic or criterion continuous concentration (CCC) is an estimate of the highest concentration of a constituent in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. The acute or criteria maximum is an estimate of the highest concentration of a constituent in surface water to which an aquatic community can be exposed briefly without resulting in an unacceptable in surface water to which an aquatic community can be exposed briefly without resulting in an unacceptable effect.

NRWQC for both Cr(III) and Cr(VI) in surface water and pore water are shown in Table 2-5, which are consistent with the MDE Water Quality Standards (MDE, 2005). The freshwater criteria for Cr(III) are based upon a hardness of 100 mg/L CaCO₃ and toxicity decreases with increasing hardness. The average hardness for samples proximal to DMT is 2,250 mg/L CaCO₃. Should the exposure concentrations exceed these criteria, site-specific criteria would be presented based upon a hardness of 400 mg/L CaCO₃, the maximum allowable for the development for ambient water quality criteria using USEPA's recalculation criteria (USEPA, 1994; 2006b). While USEPA acknowledges that increased hardness results in decreased bioavailability, a maximum value of 400 mg/L is recommended for use in the derivation formulae because the formulae are calibrated for a relatively narrow range of hardness values that are more proximate to the freshwater end of the spectrum of naturally occurring hardness values. Given that the lowest site-specific hardness value for DMT is approximately 1,500 mg/L, the use of 400 mg/L is very conservative, as a 1995 publication of the Federal Register even stated "using 400 mg/L to calculate criteria, in waters with an ambient hardness of greater than 400 mg/L, may result in overprotective...".

The saltwater chronic criterion for Cr(VI) is anticipated to be the critical value and will be used on the basis of the "National Guidance on the Applicability of Freshwater and Saltwater Criteria" (USEPA, 2002). Saltwater values are applicable to waters with salinity greater than 10 ppt, and average salinity at DMT over the duration of the *Sediment and Surface Water Study* was 10.7 ppt.

The surface water ESVs are summarized in Tables 2-5 and 2-6. They are based on the following hierarchy for the designation of a single ESV for use in the ERA. This hierarchy provides greatest emphasis on the USEPA and MDE criteria, as available. The USEPA and MDE criteria are generally the most robust of the available criteria, with a minimum of eight genera included in the overall computation of a protective value (USEPA 2006b). MDE

criteria for chromium are the NRWQC. MDE has not established numeric criteria for the other COPR constituents. The need to use other criteria indicates the overall lack of criteria from the standard sources for the COPR constituents and the difficulty in obtaining ESVs for constituents that comprise seawater.

- USEPA National Recommended Water Quality Criteria (USEPA, 2006b)
- MDE Numerical Criteria for Toxic Substances in Surface Waters: COMAR 26.08.02.03-2
- Suter and Tsao Secondary Acute and Chronic Values (1996)
- Texas Commission on Environmental Quality (TCEQ) Aquatic Life Surface Water Risk-Based Exposure Limits from the Texas Surface Water Quality Standards (TCEQ, 2003)
- USEPA ECOTOX Database (2009)

2.8.2 Screening Ecotoxicity Values for Sediment Chemicals of Interest

There are two primary approaches to evaluating toxicity of sediments from chemical analysis of the sediments. One is to compare concentrations measured in bulk sediments, expressed as mass per unit mass (e.g. mg/kg) to values reported in the literature associated with ecological effects (sediment quality guidelines or SQGs). The other is to measure the concentration of the constituent in the pore water, as expressed as mass per unit volume (e.g. μ g/l) and compare it to water quality criteria. As discussed below, the bulk sediment-SQG approach has severe limitations and for the conditions adjacent to DMT the pore water comparison to water quality criteria approach is the more appropriate method for chromium, in accordance with USEPA (2005a).

The SQG approach can sometimes be useful as a screening tool because if the measured concentrations are below the no effects levels reported in the literature, there is a high degree of certainty that the sediments do not represent an unacceptable risk to organisms in close contact with the sediment. However, predicting toxicity using SQGs is highly uncertain due to limitations in the derivation methods (Long et al., 1995). Frequently cited SQGs (e.g., the effect range median (ER-M)) are often derived from large empirical data sets that included sediments containing mixtures of many chemicals. These data sets were statistically manipulated to identify concentrations of individual chemicals that were typically associated with toxicity (or lack of toxicity). Because many chemicals were strongly inter-correlated in these data sets, the resulting sediment-screening values were useful for predicting toxicity of the mixture but were much less useful for identifying the specific chemicals causing toxicity. Long et al. (1995) cautioned that ER-M values do not represent causality and are not intended for regulatory purposes. Long (2005) emphasized this point and clearly stated that the frequently used SWG ER-M does not predict which chemical causes sediment toxicity.

Another limitation of many SQGs is that the speciation of the chemical is not measured or considered in the analysis used to derive the SQG. This is particularly true for total chromium and is apparent from close examination of toxicity response curves. A classical concentration-response curve is shown in Figure 2-5a showing concentrations below which adverse impacts do not occur, and above which adverse impacts do occur. However, in a critical examination of a SQG, the presence of chromium at concentrations greater than the

ER-M have been documented in scientific literature showing no adverse effect (Figure 2-5b), and certainly no discernable concentration-response relative to the SQG (Besser et al., 2004; Berry et al. 2002; Exponent, 1998; McGee et al., 1999; NOAA, 2003/2005). One of these studies (McGee et al., 1999) is focused on Baltimore Harbor and examined toxicity associated with sediments containing mixtures of a wide range of contaminants, including many for which toxic effects are known to occur.

The SQG limitations do not apply when pore water concentrations are compared to water quality criteria. The water quality criteria were derived for individual chemicals using spiked toxicity tests, thus comparing measured concentrations in pore water to the criteria is an appropriate and well documented approach to evaluating toxicity. Also the form of the chemical, particularly chromium can be readily measured in pore water where as it cannot be readily measured in bulk sediment.

As described above, alternative methods using pore water comparisons have been pursued by USEPA and MDE given the limitations in using SQGs to predict chromium toxicity (USEPA, 2005a; MDE, 2004). A breakthrough in identifying specific causes of sediment toxicity was the understanding (1) that toxicity among differing sediments is well correlated, not with total chemical concentrations in whole sediment, but with concentrations observed in the interstitial or pore water; (2) that toxicity thresholds in pore water are essentially equal to those found in water-only exposures (Di Toro et al., 1991): and (3) the form of the chemical (e.g. Cr(III) vs. Cr(VI)) can strongly influence the toxic response. For these reasons, the USEPA EqP approach is used in this ERA to evaluate sediment toxicity and the associated ecological risk. Therefore, comparisons of chromium concentrations in bulk sediment to ecological risk thresholds are not presented in this ERA.

For the purpose of this ERA, for COPR constituents other than chromium the bulk sediment ESVs are considered only as a secondary line of evidence in the screening process. ESVs for bulk surface sediment for other COPR constituents are presented in Table 2-7. Saltwater ESVs for COPR constituents in sediment were selected by consulting the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference tables ((SQuiRTs), Buchman, 2008). This compendium is a useful tool for identifying values that can be used for screening purposes.

For many constituents which are considered toxic in sediments, such as priority pollutants, lower and upper effects values are presented to reflect the uncertainty in the bulk sediment ESVs. The intent of including two values is to provide a frame of reference for Site-specific sediment concentrations. The upper effects values represent concentrations at which toxicity is often observed and therefore adverse effects to aquatic organism are probable. The lower effects concentrations are concentrations at which adverse effects are infrequently observed. Concentrations below these values would have a low probability of adverse effects. However this is not the case for the COPR constituents and only one effect value was available (Apparent Effects Threshold (AET)). Concentrations were initially compared to these AET values to eliminate COIs for which there is no unacceptable risk.

Table 2-1Water Quality CharacteristicsDundalk Marine Terminal, Baltimore, Maryland

		May 2007 through February 2008								
					Dissolved	Oxygen	,	Sigma-		Specific
		Temperature	Turbidity	pН	Oxygen	Saturation	Depth	theta	Salinity	Conductanc
Location	Statistic	°C	NTU	SU	mg/L	%	ft	kg/m ³	PSU	µS/cm
A Transect	Average	15.9	10.6	8.11	7.83	76	3	1,005	8.6	14,859
	Min	2.5	5.8	7.23	1.44	18	1	1,002	4.8	8,577
	Max	24.2	25.9	8.93	15.62	131	5	1,010	12.9	22,266
B Transect	Average	13.4	12.2	8.08	8.94	84	5	1,006	9.4	16,272
	Min	3.4	2.4	7.19	2.31	30	1	1,002	4.2	7,933
	Max	26.3	39.1	8.61	13.06	109	10	1,011	13.6	23,439
C Transect	Average	15.5	11.8	8.25	8.90	86	5	1,005	8.5	14,807
	Min	3.8	7.6	7.27	1.99	26	1	1,002	4.1	7,701
	Max	25.7	26.5	8.93	13.82	128	10	1,011	13.7	23,358
D Transect	Average	14.0	8.8	7.89	7.56	74	20	1,007	11.2	19,160
	Min	3.4	4.3	6.86	0.08	1	1	1,001	3.6	6,655
	Max	28.0	21.2	8.96	14.23	145	42	1,012	16.3	26,590
E Transect	Average	15.2	9.5	7.93	7.09	71	20	1,007	10.9	18,656
	Min	3.1	3.9	6.92	0.09	1	1	1,000	3.1	5,654
	Max	28.1	27.5	9.01	14.06	145	45	1,012	16.3	26,828
F Transect	Average	16.1	9.2	7.94	6.92	72	19	1,007	11.2	19,125
	Min	3.0	4.9	6.89	0.61	6	1	1,002	4.6	8,294
	Max	28.4	19.2	9.07	14.77	176	44	1,012	16.2	27,103
G Transect	Average	16.1	8.3	7.92	7.40	77	20	1,007	10.6	18,190
	Min	3.4	4.0	6.94	0.11	1	1	1,000	3.1	5,705
	Max	28.2	23.5	9.02	14.27	156	43	1,012	16.0	26,530
H Transect	Average	16.1	8.2	7.87	6.25	63	19	1,007	11.0	18,777
	Min	3.2	4.2	6.95	0.08	1	1	1,001	3.8	6,960
	Max	28.1	20.4	8.81	12.54	132	41	1,012	15.6	25,557
I Transect	Average	17.3	8.7	8.25	8.79	90	5	1,005	8.7	15,123
	Min	4.5	4.3	7.38	2.35	32	0	1,001	3.9	7,071
	Max	27.2	35.8	8.98	13.38	151	11	1,011	14.1	23,907
J Transect	Average	4.9	8.7	7.48	10.50	87	2	1,007	9.1	16,155
	Min	4.0	3.5	7.29	7.61	66	1	1,006	8.2	14,547
	Max	7.1	10.3	8.18	11.36	100	5	1,007	9.3	16,437
37 Reference	Average	14.1	7.9	7.93	7.75	75	19	1,007	10.9	18,755
	Min	3.6	4.7	6.96	0.09	1	1	1,002	5.2	9,366
	Max	27.3	13.6	8.82	14.98	125	38	1,011	16.0	26,196
37a Reference	Average	14.3	8.6	7.96	8.28	83	18	1,007	10.9	18,766
	Min	3.1	4.9	6.95	1.85	19	1	1,002	5.2	9,306
	Max	27.3	14.3	8.93	14.26	123	37	1,011	15.0	24,784
37b Reference	Average	14.0	8.6	7.95	8.18	81	19	1,007	11.1	19,140
	Min	2.8	5.2	6.93	0.13	2	1	1,002	5.3	9,460
	Max	27.4	14.9	8.76	14.07	119	37	1,011	16.0	26,235
DMT Overall	Average	15.4	9.1	7.95	7.33	73	17	1,007	10.7	18,262
	Min	2.5	2.4	6.86	0.08	1	0	1,000	3.1	5,654
	Max	28.4	39.1	9.07	15.62	176	45	1,012	16.3	27,103
Reference Overall	Average	14.2	8.4	7.95	8.07	80	19	1,007	11.0	18,886
	Min	2.8	4.7	6.93	0.09	1	1	1,002	5.2	9,306
	Max	27.4	14.9	8.93	14.98	125	38	1,011	16.0	26,235

No	otes:
~ ~	

- °C Degrees Celsius. DMT Dundalk Marine Terminal.
- ft Feet.
- kg/m³ Kilograms per cubic meter.
- max Maximum.
- mg/L Milligrams per liter.
- min Minimum.

Not analyzed.

NA

- NTU Nephelometric Turbidity Units.
- PSU Practical Salinity Units.
- SU Standard Units.
- $\mu S/cm \qquad \mbox{Microsiemens per centimeter.}$
 - % percent.

Table 2-2 In Situ Sediment Quality Parameters Dundalk Marine Terminal, Baltimore, Maryland

	May 2007		August 2007		December 2007		February 2008					
_	Data Callastad			Data Callastad			Data Callastad			Data Callastad		
Transect	Date Collected	pH	Eh (mV)	Date Collected	pH	Eh (mV)	Date Collected	рН 7 70	Eh (mV)	Date Collected	pH	Eh (mV)
A1 A2	5/12/2007 5/17/2007	8.08 7.63	-283 58	8/22/2007 8/22/2007	7.4	-165 5 ^a	12/5/2007 12/11/2007	7.70 7.71	100 73	2/24/2008 2/24/2008	7.38	-93 224
A3	5/27/2007	7.93	65	8/22/2007	7.6	-48	12/11/2007	7.64	87	2/24/2008	7.42	224
A4	5/27/2007	8.4	106	8/22/2007	7.6	-138	12/11/2007	7.66	-230	2/24/2008	7.46	202
B1	5/17/2007	7.45	-11	8/20/2007	7.19	-300	12/7/2007	6.70	320	2/27/2008	7.03	390
B2	5/18/2007	7.46	147	8/20/2007	7.45	-260	12/7/2007	7.30	-120	2/27/2008	6.96	292
B3	5/13/2007	7.02	-95	8/20/2007	7.39	-250	12/7/2007	7.35	-140	2/26/2008	6.50	35
B4	5/13/2007	6.81	75	8/20/2007	7.36	-240	12/7/2007	7.33	-11	2/25/2008	7.24	75
B5										2/26/2008	7.13	186
C1	5/15/2007	8.07	-232	8/21/2007	7.77	-192	12/6/2007	8.26	50	2/26/2008	8.09	180
C2 C3	5/15/2007	7.94	-47 15	8/21/2007	7.55	-210	12/7/2007	7.61 7.19	71 17	2/26/2008	7.36	37
C3 C4	5/15/2007 5/15/2007	7.26	15	8/21/2007 8/21/2007	7.34	-251 -295	12/11/2007 12/11/2007	7.19	236	2/26/2008 2/26/2008	7.07 6.78	287 -95
D1	5/14/2007	8.54	-210	8/16/2007	7.88	-295	12/5/2007	8.71	-320	2/25/2008	8.61	-95
D1 D2	5/12/2007	7.57	-240	8/16/2007	6.94	-263	12/9/2007	7.18	-320	2/25/2008	7.55	-204
D3	5/13/2007	7.22	-168	8/18/2007	6.95	-233	12/10/2007	6.96	-370	2/25/2008	7.49	-273
D4	5/18/2007	7.11	75	8/19/2007	7.3	-202	12/9/2007	6.82	-95	2/25/2008	7.17	140
E1	5/11/2007	8.26	-255	8/16/2007	7.96	-310	12/5/2007	9.78	-311	2/23/2008	9.30	-230
E2	5/14/2007	7.31	-181	8/16/2007	7.42	-265	12/9/2007	7.38	-84	2/23/2008	6.88	-180
E3	5/16/2007	6.67	-249	8/18/2007	6.82	-293						
E4	5/18/2007	7.38	-170	8/19/2007	7.72	-165	12/9/2007	7.01	-12	2/25/2008	6.75	35
F1	5/14/2007	7.13	-109	8/19/2007	7.02	-260						
F2	5/14/2007	6.99	-79	8/19/2007	7.72	-290	12/12/2007	7.45	-265	2/29/2008	7.53	-327
F3	5/14/2007	7.11	-160	8/19/2007	7.32	-325						
F4 G1	5/18/2007 5/12/2007	7.47 7.22	-231 -221	8/17/2007	7.18 7.47	-256 -247	12/10/2007	7.50	-335	2/29/2008	7.59	-240
G1 G2	5/12/2007	6.9	-221	8/15/2007 8/18/2007	7.11	-247 -239		6.91	-280	2/23/2008	7.46	
G2 G3	5/11/2007	7.16	-140	8/18/2007	6.88	-239	12/12/2007		-200	2/23/2000	7.40	-201
G4	5/11/2007	7.10	-208	8/18/2007	7.25	-274	12/12/2008	7.23	210	2/23/2008	7.86	-260
H1	5/8/2007	7.22	-170	8/14/2007	6.71	-346	12/6/2007	7.07	-301	2/19/2008	7.99	-185
H2	5/8/2007	7.1	-163	8/14/2007	7.18	-360						
H3	5/11/2007	7.31	-200	8/14/2007	6.33	-330						
H4	5/11/2007	7.14	-225	8/14/2007	6.68	-360	12/6/2007	7.00	-340	2/23/2008	6.30	-560
11	5/9/2007	6.88	-170	8/15/2007	7.11	-240	12/5/2007	7.49	-120	2/19/2008	8.30	50
12	5/9/2007	6.41	151	8/15/2007	7.35	-335	12/6/2007	7.27	-285	2/19/2008	5.50	175
13	5/9/2007	6.93	-62	8/15/2007	7.14	-341	12/6/2007	7.30	-50	2/19/2008	7.50	140
4	5/9/2007	7.18	-175	8/15/2007	7.22	-360	12/5/2007	7.33	-100	2/19/2008	7.20	-140
J1 J2										2/21/2008 2/21/2008	8.70 8.50	-50 -128
J2 J3										2/21/2008	8.45 ^b	220
J4										2/21/2008	8.69	70
DMT Min	May-07	6.4	-283	August-07	6.3	-360	December-07	6.7	-370	February-08	5.5	-560
DMT Max	May-07	8.5	151	August-07	8.0	-48	December-07	9.8	320	February-08	9.3	390
DMT Avg	May-07	7.4	-106	August-07	7.3	-263	December-07	7.5	-99	February-08	7.5	-13
DMT Min	Overall	5.5	-560									
DMT Max	Overall	9.8	390									
DMT Avg	Overall	7.4	-122									
Reference Loc		7 40	404	0/47/0007	7.00	200	40/40/0007	704	070	0/04/0000	7 74	004
37 37A	5/16/2007	7.43 7.45	-161 -244	8/17/2007 8/17/2007	7.06 6.98	-300 -242	12/10/2007 12/11/2007	7.34 6.90	-378 -310	2/24/2008 2/29/2008	7.71	-264 -89
37A 37B	5/16/2007 5/16/2007	7.45	-244 -236	8/17/2007 8/17/2007	6.98	-242 -278	12/11/2007	6.90 7.42	-310	2/29/2008	7.70 7.74	-89 -250
REF Min	May-07	7.4	-230	August-07	7.0	-278	December-07	6.9	-202 -378	February-08	7.7	-250
REF Max	May-07	7.5	-244	August-07 August-07	7.1	-242	December-07	7.4	-282	February-08	7.7	-204
REF Avg	May-07	7.5	-214	August-07	7.0	-273	December-07	7.2	-323	February-08	7.7	-201
REF Min	Overall	6.9	-378					· · ·=				
REF Max	Overall	7.7	-89									
REF Avg	Overall	7.4	-253									

Notes:

No data. ---

- This data point may be inaccurate because it was difficult to penetrate the probe into sand and get accurate reading in this sample.
- a b The temperature when sediment from J3 was collected was very low and below the lower limit of the probe; the pH and eH values may be inaccurate due to the very low temperatures.

AVG Average. DMT Dundalk Marine Terminal. Max Maximum. Min Minimum. mV Millivolts. REF Reference.

Table 2-3

Summary of Qualitative Benthic Invertebrate Sampling Dundalk Marine Terminal, Baltimore, Maryland

Sampling Event	Location	Organism	Abundance*
May 2007	DMT - Northwest	Amphipods	Few
		Polychaetes	Dominant
	DMT - Southeast	Amphipods	Few
		Clams - small	Few
		Polychaetes	Few
		Other arthropods	Few
June 2008	DMT - Southeast	Amphipods	Dominant
		Barnacles	Few
		Crabs	Dominant
		Ctenophore	Few
		Isopods	Several
		Mussels	Few
		Mysid Shrimp	Few
		Oligochaets	Few
		Pipefish	Several
		Polychaetes	Many

Notes:

* Descriptions are intended to qualitatively describe the biological assemblages present at the location, and are not intended to quantitatively describe the number of individuals within a population.

DMT	Dundalk Marine Terminal.
DMT - Northwest	Includes transect H.

DMT - Southeast (2007) Includes transects A through G.

DMT - Southeast (2008) Includes Station J-4.

Assessment Endpoints, Measures of Exposure and Effects, and Risk Hypotheses *Dundalk Marine Terminal, Baltimore, Maryland*

			Representative		Measur	ement Endpoints	
Assessment Endpoint	Guild (Food Web)	Exposure Area	Receptor Species ^a	Exposure Routes	Measures of Exposure	Measures of Effects	Testable Hypotheses (Risk Questions)
1. Benthic	Benthic Invertebrates	surface sediments and pore water within surface sediments adjacent to DMT	blue crab, clams, polychaetes, arthropods	Direct exposure, ingestion	pore water	Comparison of concentrations of contaminants in bulk surface sediments (i. e., reported on a dry weight basis) to conservative ESVs considered protective of survival or reproduction. Comparison of concentrations of COIs in pore water to USEPA's NRWQC or other ESVs considered protective of survival or reproduction. Consideration of the biological community present in the Patapsco River sediments, particularly in areas where COPR	Are the levels of contaminants in bulk surface sediments adjacent to DMT greater than the sediment quality benchmarks? Are the levels of contaminants in pore water from sediments adjacent to DMT greater than the water quality benchmarks? Does the biological community change in response to COPR constituent concentrations?
2. Water Invertebrate Community Structure and Function		surface water adjacent to DMT	copepods, amphipods, plankton	Direct exposure, ingestion	Measured concentrations of contaminants in surface water	COIs in surface water to USEPA's	Are the levels of contaminants in surface water adjacent to DMT greater than the surface water quality benchmarks?
3. Fish Population Survival and Reproductive Ability	Pelagic Fish	surface water adjacent to DMT	bass species, perch, blue fish, sturgeon	Direct exposure, ingestion	Measured concentrations of contaminants in surface water	Comparison of concentrations of COIs in surface water adjacent to DMT to USEPA's NRWQC or other ESVs considered protective of survival or reproduction.	Are the concentrations of contaminants in overlying water adjacent to DMT greater than the surface water quality benchmarks?

Notes:

a Receptors for each guild were selected qualitatively based on the following criteria: 1) high potential for exposure via multiple pathways; 2) potential sensitivity to site contaminants; 3) distribution and range relative to site; and 4) availability of exposure and effects data.

COI Constituent of interest.

COPR Chrome Ore Processing Residue.

DMT Dundalk Marine Terminal.

ESV Ecological Screening Value.

NRWQC National Reccomended Water Quality Criteria.

USEPA United States Environmental Protection Agency.

Ecological Screening Values for Cr(III) and Cr(VI) in Pore Water and Surface Water Dundalk Marine Terminal, Baltimore, Maryland

Environment	Salinity (ppt)	CaCO ₃ Concentration (mg/L)	Cr(III) CMC (Acute FW NRWQC; mg/L)	Cr(III) CCC (Chronic FW NRWQC; mg/L)
Current USEPA Freshwater NRWQC	_	100	0.57	0.074
USEPA Upper Limit Hardness Value ^a	_	400	1.77	0.231
DMT May 2007 (Estuarine)	3–16	1,563 ^b	5.4	0.704
DMT August 2007 (Estuarine)	3–15	2,412 ^b	7.2	1
DMT December 2007 (Estuarine)	11-16	2,480 ^b	7.9	1.03
DMT February 2008 (Estuarine)	4–16	2,090 ^b	6.9	0.893

	Cr(VI) Acute SW NRWQC (mg/L)	Cr(VI) Chronic SW NRWQC (mg/L)	
Chronic dissolved	1.1	0.05	

Notes:

а	USEPA's upper limit for the use of hardness values in the equations provided below.
b	Based on mean measured CaCO3 concentration in surface water collected at DMT during specified event.
CaCO ₃	Calcium carbonate.
CCC	Criteria continuous concentration.
CMC	Criteria maximum concentration.
Cr (III)	Trivalent chromium.
Cr (VI)	Hexavelent chromium.
DMT	Dundalk Marine Terminal.
FW	Freshwater.
mg/L	Milligram per liter.
NRWQC	Nationally Recommended Water Quality Criteria.
ppt	Parts per thousand.
SW	Saltwater.
USEPA	United States Environmental Protection Agency

Example calculation:

Parameters for Calculating Freshwater Dissolved Metals Criteria That Are Hardness-Dependent:

						Freshwater Conversion Factors (CF)	
Chemical	m _A	b _A	m _c	b _C	CMC	CCC	
Chromium III	0.819	3.7256	0.819	0.6848	0.316	0.86	

Current Water Quality Standards based on 400 mg/L CaCO₃

```
<u>CMC (dissolved) = exp{m<sub>A</sub> [In(hardness)]+ b<sub>A</sub>} (CF)</u>
CMC (dissolved) = \exp\{0.819 [ln(400)] + 3.7256\} (0.316)
CMC (dissolved) = \exp\{0.819 [5.99] + 3.7256\} (0.316)
CMC (dissolved) = \exp\{4.91 + 3.7256\} (0.316)
CMC (dissolved) = \exp\{8.63\} (0.316)
CMC (dissolved) = 5597 \times 0.316
CMC (dissolved) = 1,769 ug/L = 1.77 mg/L
```

<u>CCC (dissolved) = $exp\{m_c [In(hardness)] + b_c\}$ (CF)</u>

CCC (dissolved) = $exp\{0.819 [ln(400)] + 0.6848\}$ (0.860) CCC (dissolved) = $\exp\{0.819 [5.99] + 0.6848\}$ (0.860) CCC (dissolved) = $\exp{4.91 + 0.6848}$ (0.860)

CCC (dissolved) = $\exp{5.59}$ (0.860)

CCC (dissolved) = 268×0.860

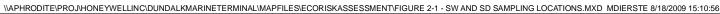
CCC (dissolved) = 231 ug/L = 0.231 mg/L

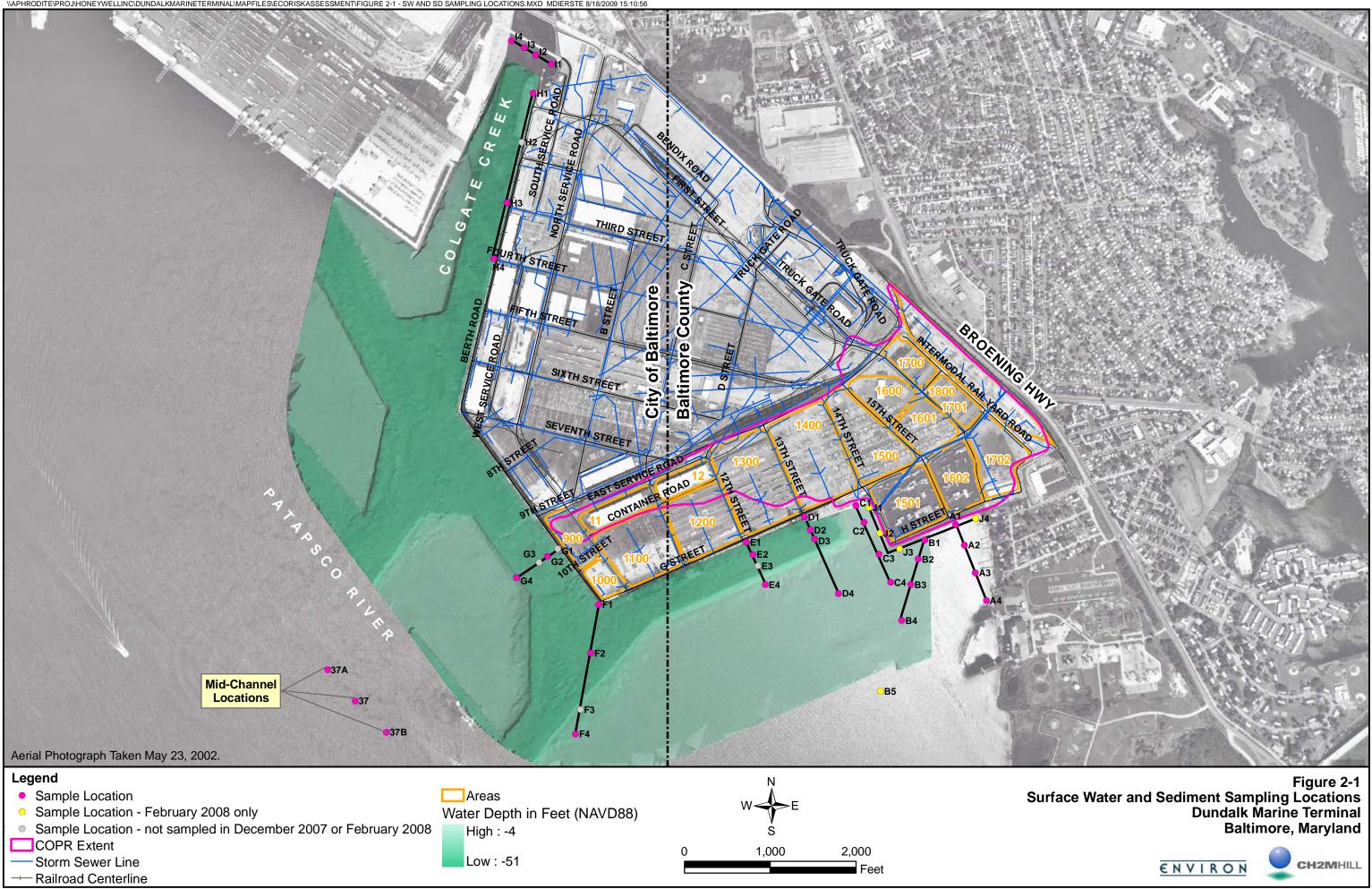
Source: http://www.epa.gov/waterscience/criteria/wqcriteria.html

Ecological Screening Values for the Other COPR Constituents in Pore Water and Surface Water Dundalk Marine Terminal, Baltimore, Maryland

COPR Constituent	Freshwater Chronic ESV (µg/L)	Source
Aluminum (total) pH range 6.5-9.0	87	National Recommended Ambient Water Quality Criteria
Calcium	NA	NA
Iron	1,000	National Recommended Ambient Water Quality Criteria
Magnesium	3,235	TCEQ, 2003
Manganese	120	Suter and Tsao, 1996 Secondary Acute and Secondary Chronic Values
Vanadium	20	Suter and Tsao, 1996 Secondary Acute and Secondary Chronic Values

Notes:

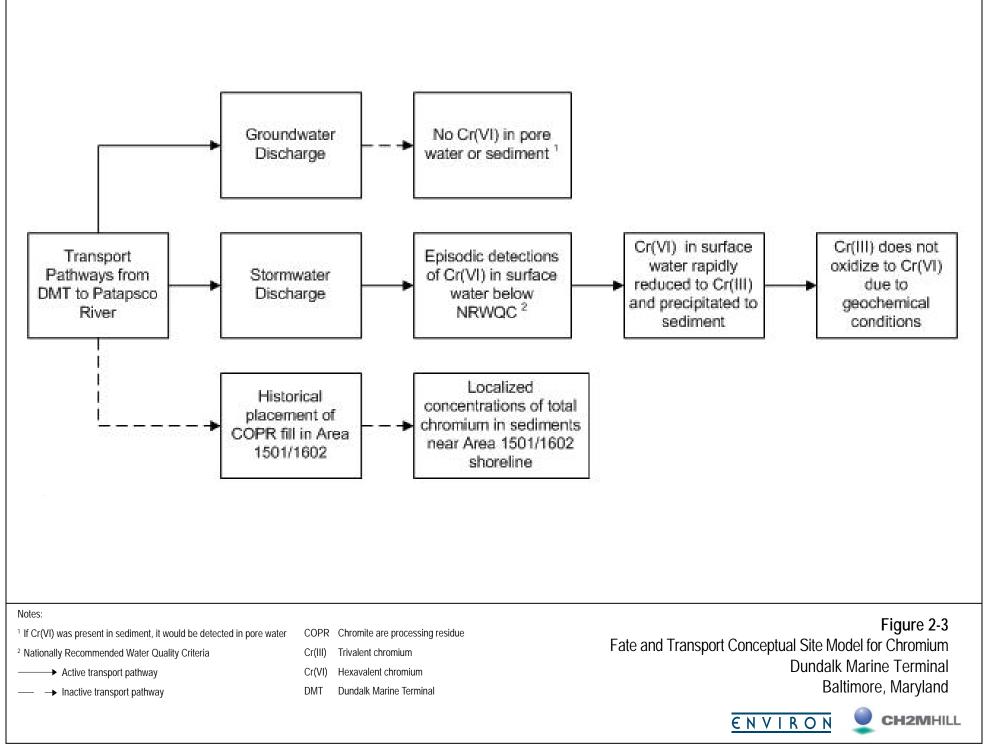

COPR	Chromite ore processing residue.
ESV	Ecological Screening Values.
NA	Not available for calcium.
TCEQ	Texas Commission on Environmental Quality.
µg/L	Micrograms per liter.

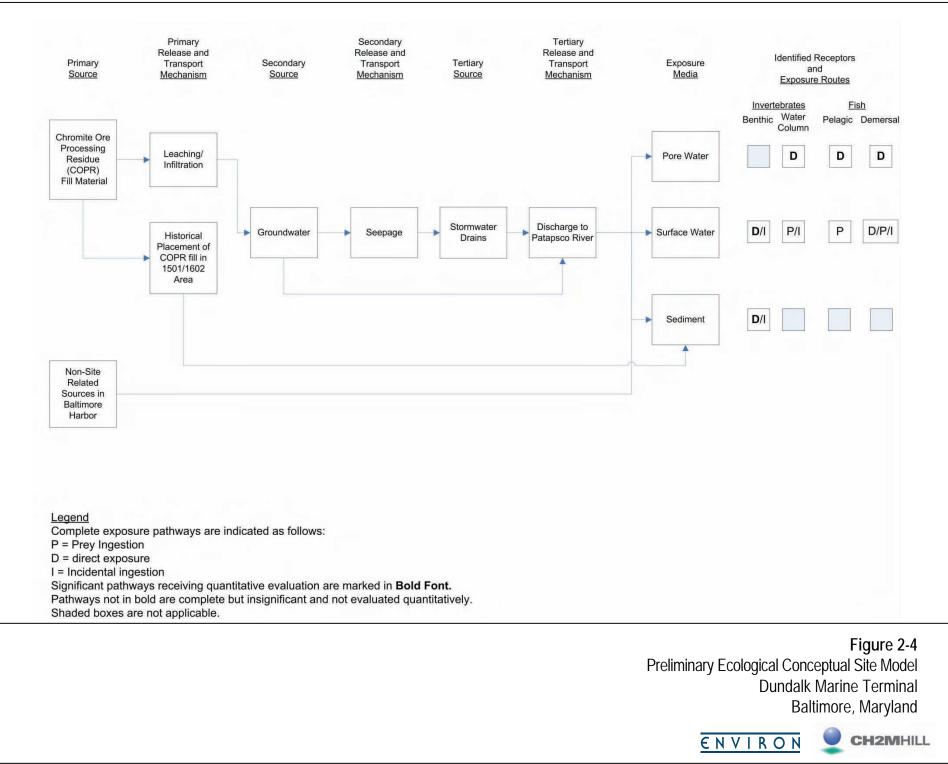

Ecological Screening Values for Chromium and Other COPR Constituents in Sediment Dundalk Marine Terminal, Baltimore, Maryland

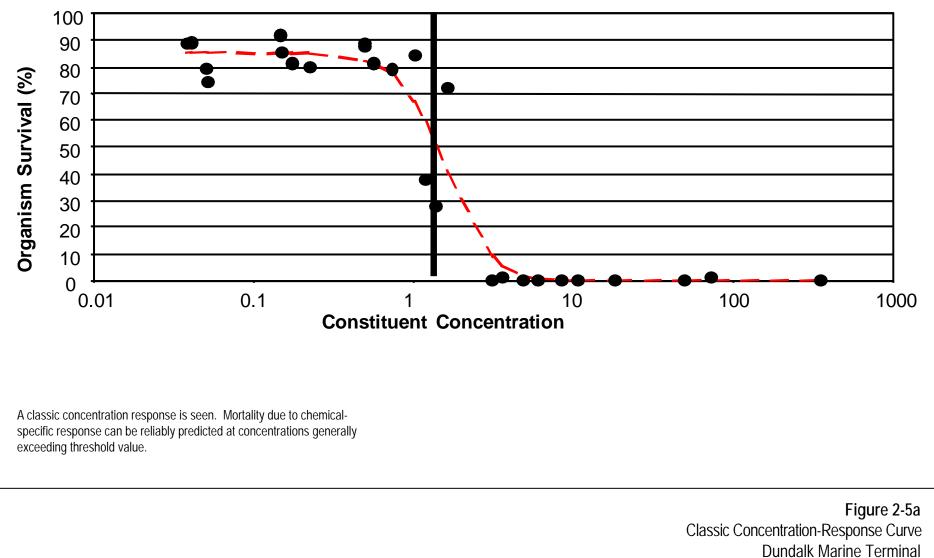
COPR Constituent	Saltwater ESV (mg/kg)	Source
Aluminum	18,000	AET (Buchman, 2008)
Calcium	NA	NA
Iron	220,000	AET (Buchman, 2008)
Magnesium	NA	NA
Manganese	260	AET (Buchman, 2008)
Vanadium	57	AET (Buchman, 2008)

Notes:

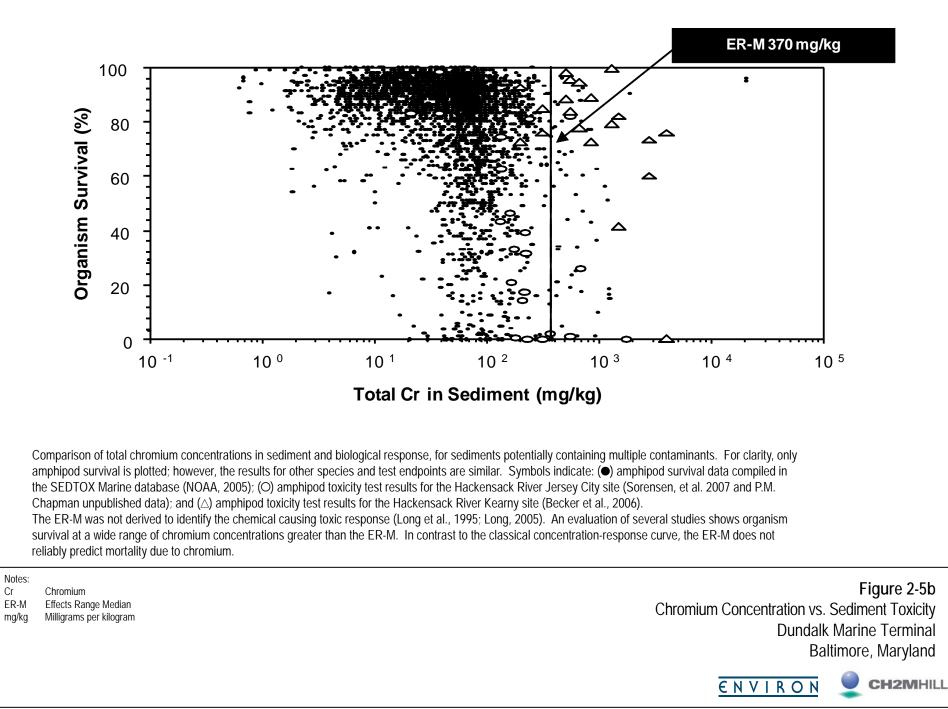
AET	Apparent Effects Threshold.
COPR	Chromite Ore Processing Residue.
ESV	Ecological Screening Values.
mg/kg	Milligram per kilogram.
NA	Not available for calcium and magnesium. Not applicable for chromium.


Feet


Low	:	-51


\APHRODITE\PROJHONEYWELLINC\DUNDALKMARINETERMINAL\MAPFILES\ECORISKASSESSMENT\FIGURE 2-2 - BATHYMETRICMAP.MXD BHATHAWA 9/10/2009 09:41:29

CH2MHILL



Baltimore, Maryland

Cr

SECTION 3 Step 2: Exposure Estimate and Risk Calculation

This section describes the methods and results used to characterize the potential ecological risks posed by the presence of chromium and other COPR constituents in pore water, surface water, and sediment in the vicinity of DMT. In order to make an initial determination of whether the study area posed potentially unacceptable ecological risk, exposure point concentrations (EPCs) were compared to available ESVs. The EPC is the maximum detected concentrations of a constituent in each matrix at each sampling location from the Sediment and Surface Water Study⁴. The EPCs for pore water, surface water, and surface sediment are summarized in Tables 3-1, 3-2, and 3-3, respectively. While the use of maximum concentrations is consistent with the approach outlined by USEPA (1997, 2000), in some cases, the maximum concentrations are not representative of the types of exposures that organisms like fish will experience. However, when considering sessile organisms, like benthic invertebrates, maximum concentrations do accurately indicate the types of exposures that some isolated organisms may experience.

3.1 Available Data

The data used in the risk assessment are the results of chemical analyses of surface water, pore water and sediment samples collected during four rounds of sampling between May 2007 and February 2008. Samples were collected and analyzed as described in the Sediment and Surface Water Study Report (CH2M HILL and ENVIRON, 2009). The complete data set of samples considered in the risk assessment is presented in Appendix C. A summary of available data is presented in Table 3-4.

For sediment and pore water, maximum detected concentrations were obtained from samples the upper 6 inches, which is the biologically active zone in which sediment dwelling organisms are present and potentially exposed to chromium and other COPR constituents. Equivalent data were also collected at three reference locations in the mid-channel of the Patapsco River during all four sampling events. Reference data were collected for the purpose of understanding regional background conditions in the Patapsco River. In accordance with USEPA methodology for screening constituents of potential concern (USEPA, 2001), a comparison of concentrations measured within the study area to those measured in the reference location is discussed further in Section 4 (Step 3a).

3.2 Screening Risk Calculations

Screening level risk calculations are represented by the hazard quotient (HQ) (USEPA 1997; 2000). HQs are the ratio of the EPCs to the ESVs; pore water HQs were generated by comparison to the available aquatic ESVs. HQs that exceed the USEPA threshold of 1 will be

⁴ As indicated in Section 2.2, ancillary sediment and pore water sampling results from May 2009 sampling near the 15th Street outfall are addressed in Section 4.3.2.

carried forward to Step 3a. Summaries of the HQs for pore water, surface water, and surface sediment are presented in Tables 3-5, 3-6, and 3-7, respectively. HQs of greater than 1 are shown in bold font. The following constituents generated HQs greater than 1 in pore water, surface water, and surface sediment and will be carried over to Step 3a for further evaluation:

- Pore water: iron, magnesium, and manganese
- Surface water: aluminum, magnesium, and manganese
- Surface sediment: aluminum, manganese, and vanadium.

Exposure Point Concentrations for Pore Water Dundalk Marine Terminal, Baltimore, Maryland

	Exposure Point Concentrations - µg/L						
Location	AI	Cr(III)	Cr (VI)	Fe	Mg	Mn	V
A1	ND	ND	ND	69.5	485,000	1,420	5.2
A2	ND	4.3	ND	ND	332,000	513	ND
A3	ND	3.1	ND	54.4	324,000	239	1.7
A4	ND	3.2	ND	ND	313,000	449	ND
B1	ND	3.5	ND	508	488,000	2,860	3.4
B2	ND	ND	ND	135	511,000	3,440	8.5
B3	ND	2.3	ND	3320	496,000	3,350	2.8
B4	ND	ND	ND	3430	467,000	2,630	2.6
B5	ND	ND	ND	ND	334,000	492	2.3
C1	ND	ND	ND	84.3	453,000	743	6.3
C2	ND	2.4	ND	109	469,000	1,620	4.8
C3	ND	3.4	ND	742	465,000	3,130	3.1
C4	ND	3.8	ND	1620	488,000	4,400	4.0
D1	ND	11.7	ND	191	645,000	7,210	9.0
D2	ND	16.2	ND	6830	528,000	25,600	6.5
D3	ND	12.4	ND	8910	547,000	23,200	4.4
D4	ND	3.1	ND	1760	507,000	2,280	ND
E1	ND	6.5	ND	107	599,000	3,100	5.9
E2	ND	12.2	ND	3580	557,000	13,400	11.1
E3	ND	13.5	ND	699	429,000	14,100	6.2
E4	ND	ND	ND	1230	514,000	5,090	ND
F1	ND	7.4	ND	128	472,000	4,440	5.5
F2	ND	6.2	ND	9300	533,000	19,300	4.9
F3	ND	10.1	ND	109	383,000	2,780	10.3
F4	ND	8.2	ND	1060	450,000	5,580	7.2
G1	ND	ND	ND	85.1	424,000	13,300	9.7
G2	ND	11.7	ND	90.3	470,000	3,010	10.0
G3	ND	10.1	ND	1410	458,000	4,230	10.4
G4	ND	13.4	ND	159	482,000	6,130	8.4
H1	ND	11.0	ND	517	504,000	9,890	7.0
H2	ND	4.3	ND	ND	468,000	7,640	8.6
H3	ND	5.5	ND	5280	440,000	5,300	5.4
H4	ND	12.2	ND	4820	556,000	15,900	6.8
11	ND	3.1	ND	72.7	458,000	1,420	5.1
12	ND	3.1	ND	68.6	473,000	662	5.3
13	ND	4.7	ND	77.1	472,000	430	3.7
14	ND	6.7	ND	64.2	442,000	372	5.5
J1	ND	ND	ND	61.7	327,000	162	4.0
J2	ND	ND	ND	ND	313,000	1,140	3.9
J3	ND	ND	ND	62.3	317,000	1,530	3.0
J4	ND	ND	ND	ND	195,000	43	11.9

Notes:

Data presented in Appendix C. Exposure point concentration equivalent to maximum detected concentrations

ND Nondetected value.

Al	Aluminum.
Cr(VI)	Hexavalent chromium.
Mg	Magnesium.
ug/L	Microgram per liter.

Detection limits:

	(µg/L)
Al	80.2
Cr(III)	2.3
Cr(VI)	5.0
Fe	52.2

V 1.5

- Cr(III) Trivalent chromium.
- Fe Iron.
- Mn Manganese. V Vanadium.

Exposure Point Concentrations for Surface Water Dundalk Marine Terminal, Baltimore, Maryland

	Exposure Point Concentrations - µg/L						
Location	Al	Cr(III)	Cr(VI)	Fe	Mg	Mn	V
A1	ND	5.6	ND	62.4	469,000	56.4	3.0
A2	ND	2.4	ND	ND	473,000	45.4	2.9
A3	ND	ND	ND	ND	463,000	41.6	2.2
A4	ND	ND	ND	55.7	471,000	47.5	2.6
B1	ND	5.2	ND	ND	463,000	65.8	2.3
B2	89.6	7.3	ND	ND	460,000	61.4	2.5
B3	ND	6.1	6	ND	506,000	54.5	2.7
B4	ND	29.7	34.9	ND	509,000	43.1	4.4
B5	ND	ND	ND	ND	322,000	41.3	ND
C1	ND	8.4	7	ND	499,000	55.6	2.1
C2	118	5.6	ND	ND	483,000	47.0	1.7
C3	117	5.8	ND	ND	466,000	44.6	2.2
C4	101	6.2	ND	ND	499,000	55.9	2.0
D1	ND	17.3	10.5	71.2	579,000	560	2.2
D2	ND	2.8	ND	ND	598,000	956	2.6
D3	145	9.4	6.7	ND	588,000	489	2.1
D4	ND	4.5	ND	ND	491,000	55.5	2.2
E1	ND	37.6	30.4	127	618,000	1,160	2.2
E2	ND	10.2	11	98.5	599,000	708	3.4
E3	ND	3.1	ND	ND	579,000	595	2.0
E4	ND	3.6	ND	ND	523,000	96.5	3.0
F1	ND	ND	ND	ND	496,000	307	3.3
F2	ND	ND	ND	54.6	608,000	384	2.6
F3	ND	ND	ND	ND	512,000	317	3.0
F4	ND	ND	ND	81.1	544,000	148	3.4
G1	ND	ND	ND	ND	536,000	188	2.7
G2	ND	2.6	ND	ND	521,000	386	3.0
G3	ND	ND	ND	ND	516,000	661	2.3
G4	ND	ND	ND	ND	594,000	143	3.0
H1	ND	3.6	ND	75.9	530,000	309	3.5
H2	ND	ND	ND	ND	546,000	597	2.9
H3	ND	ND	ND	ND	540,000	295	3.5
H4	ND	ND	ND	66.7	583,000	657	3.1
11	ND	2.3	ND	ND	484,000	44.3	1.8
12	87.7	2.9	ND	ND	506,000	42.5	2.1
13	ND	ND	ND	52.9	504,000	34.9	2.3
14	ND	ND	ND	54.4	489,000	41.5	2.6
J1	ND	ND	ND	ND	320,000	31.2	1.8
J2	ND	ND	ND	ND	325,000	45.3	ND
J3	ND	ND	ND	ND	324,000	43.3	ND
J4	ND	ND	ND	ND	301,000	32.2	2.4

Notes:

Data presented in Appendix C. Exposure point concentration equivalen ND Non-detected value.

	ND	Non-detected	value.		
	Al	Aluminum.		Cr(III)	Trivalent chromium.
	Cr(VI)	Hexavalent ch	romium.	Fe	Iron.
	Mg	Magnesium.		Mn	Manganese.
	ug/L	Micrograms pe	er liter.	V	Vanadium.
	Detection lir	nits:	(µg/L)		
		Al	80.2		
		Cr(III)	2.3		
		Cr(VI)	5.0		
		Fe	52.2		

Exposure Point Concentrations for Surface Sediment Dundalk Marine Terminal, Baltimore, Maryland

	Exposure Point Concentrations - mg/kg						
Location	Al	Fe	Mn	V			
A1	7,410	36,800	438	69.7			
A2	1,470	7,410	134	15			
A3	1,200	6,240	177	9.71			
A4	1,770	37,600	185	13.4			
B1	6,930	25,900	618	50.3			
B2	7,310	24,300	383	38			
B3	28,400	48,400	807	90.2			
B4	17,200	36,500	463	88.2			
B5	3,110	10,800	156	22.9			
C1	11,200	29,800	1,120	67.9			
C2	9,230	24,300	717	62.6			
C3	12,800	29,500	465	58.4			
C4	14,200	31,400	477	57.6			
D1	27,600	46,100	2,010	89			
D2	28,000	49,300	3,550	91.6			
D3	30,500	52,900	2,260	93.5			
D4	19,600	36,300	428	59.5			
E1	28,500	48,400	2,600	86.6			
E2	30,200	56,700	1,250	61.3			
E3	29,100	47,300	1,220	97.3			
E4	12,300	23,400	347	40.9			
F1	19,200	39,500	725	66.2			
F2	30,400	54,800	803	68.5			
F3	35,600	55,900	1,350	107			
F4	34,600	55,100	1,790	105			
G1	8,680	24,000	255	34.9			
G2	23,000	40,700	770	79.4			
G3	24,800	43,700	899	86.5			
G4	21,500	39,300	1,340	70.8			
H1	19,600	28,900	545	55.3			
H2	24,000	32,100	521	77			
H3	9,860	14,800	242	45.4			
H4	23,200	37,500	795	99.6			
11	9,320	19,200	218	70.8			
12	12,300	24,800	274	91.5			
13	20,400	34,400	425	237			
14	21,100	42,500	447	156			
J1	7,740	24,300	1,290	67.2			
J2	7,010	26,700	670	88.5			
J3	6,090	23,700	492	64.1			
J4	9,540	28,400	2,070	70			

Notes:

Data presented in Appendix C. Exposure point concentration equivalent to maximum mg/kg Milligrams per kilogram.

Al	Aluminum.	Fe	Iron.
Mn	Manganese.	V	Vanadium.

Summary of Data Considered in the Ecological Risk Assessment Dundalk Marine Terminal, Baltimore, Maryland

Media	Surface Water	Porewater	Bulk Sediment
Number Samples - DMT	320	136	77
Number Field Duplicates - DMT	4	2	5
Number Samples - Reference	42	12	12
Number Field Duplicates -	1	0	0
Reference			
Analytical Parameters Considered	Aluminum,	Aluminum,	Aluminum,
in the ERA	Total Chromium,	Total Chromium,	Iron,
	Hexavalent	Hexavalent	Magnesium,
	Chromium,	Chromium,	Manganese,
	Iron,	Iron,	Vanadium,
	Magnesium,	Magnesium,	Acid Volatile Sulfide
	Manganese,	Manganese,	Simultaneously
	Vanadium	Vanadium	Extracted Metals
	Hardness		

Notes:

Data used in ERA presented in Appendix C.

DMT Dundalk Marine Terminal. ERA Ecological Risk Assessment.

Table 3-5Hazard Quotients for Pore WaterDundalk Marine Terminal, Baltimore, Maryland

	Hazard Quotient (HQ) ^a						
Transect	Cr(III)	Fe	Mg	Mn	V		
A1		<1	150	12	<1		
A2	<1		103	4			
A3	<1	<1	100	2	<1		
A4	<1		97	4			
B1	<1	<1	151	24	<1		
B2		<1	158	29	<1		
B3	<1	3	153	28	<1		
B4		3	144	22	<1		
B5			103	4	<1		
C1		<1	140	6	<1		
C2	<1	<1	145	14	<1		
C3	<1	<1	144	26	<1		
C4	<1	2	151	37	<1		
D1	<1	<1	199	60	<1		
D2	<1	7	163	213	<1		
D3	<1	9	169	193	<1		
D4	<1	2	157	19	NA		
E1	<1	<1	185	26	<1		
E2	<1	4	172	112	<1		
E3	<1	<1	133	118	<1		
E4		1	159	42			
F1	<1	<1	146	37	<1		
F2	<1	9	165	161	<1		
F3	<1	<1	118	23	<1		
F4	<1	1	139	47	<1		
G1		<1	131	111	<1		
G2	<1	<1	145	25	<1		
G3	<1	1	142	35	<1		
G4	<1	<1	149	51	<1		
H1	<1	<1	156	82	<1		
H2	<1		145	64	<1		
H3	<1	5	136	44	<1		
H4	<1	5	172	133	<1		
l1	<1	<1	142	12	<1		
12	<1	<1	146	6	<1		
13	<1	<1	146	4	<1		
14	<1	<1	137	3	<1		
J1		<1	101	1	<1		
J2			97	10	<1		
J3		<1	98	13	<1		
J4			60	<1	<1		

Notes:

а

Null cells (--) indiate that the parameter was not detected at that location during any of the quarterly sampling events.

The hazard quotient (HQ) is equivalent to the EPC divided by the screening criteria for a given parameter (rounded to one significant figure).

Exposure point concentrations (EPCs) are identified in Table 3-3. Full data set considered in evaluation is provided in Appendix C.

Cr(III) Trivalent chromium.

Mg Magnesium. ug/L Microgram per liter. Fe Iron. Mn Manganese.

V Vanadium.

Marine-based screening criteria for these COPR constituents are not available, therefore the following freshwater aquatic screening values were used:

Cr(III)	704 ug/L
---------	----------

· · ·	•
Fe	1000 ug/L
Mg	3235 ug/L
Mn	120 ug/L
Vn	20 ug/L

Bold values exceed 1.

Hazard Quotients for Surface Water

Dundalk Marine Terminal, Baltimore, Maryland

	Hazard Quotient (HQ) ^a						
Transect	Al	Cr(III)	Cr(VI)	Fe	Mg	Mn	V
A1		<1		<1	145	<1	<1
A2		<1			146	<1	<1
A3					143	<1	<1
A4				<1	146	<1	<1
B1		<1			143	<1	<1
B2	1	<1			142	<1	<1
B3		<1	<1		156	<1	<1
B4		<1	<1		157	<1	<1
B5					100	<1	
C1		<1	<1		154	<1	<1
C2	1	<1			149	<1	<1
C3	1	<1			144	<1	<1
C4	1	<1			154	<1	<1
D1		<1	<1	<1	179	5	<1
D2		<1			185	8	<1
D3	2	<1	<1		182	4	<1
D4		<1			152	<1	<1
E1		<1	<1	<1	191	10	<1
E2		<1	<1	<1	185	6	<1
E3		<1			179	5	<1
E4		<1			162	<1	<1
F1					153	3	<1
F2				<1	188	3	<1
F3					158	3	<1
F4				<1	168	1	<1
G1					166	2	<1
G2		<1			161	3	<1
G3					160	6	<1
G4					184	1	<1
H1		<1		<1	164	3	<1
H2					169	5	<1
H3					167	2	<1
H4				<1	180	5	<1
11		<1			150	<1	<1
12	1	<1			156	<1	<1
13				<1	156	<1	<1
14				<1	151	<1	<1
J1					99	<1	<1
J2					100	<1	
J3					100	<1	
J4					93	<1	<1

Notes:

a Null cells (--) indiate that the parameter was not detected at that location during any of the quarterly sampling events.

The hazard quotient (HQ) is equivalent to the EPC divided by the screening criteria for a given parameter (rounded to one significant figure).

Exposure point concentrations (EPCs) are identified in Table 3.2. Full data set considered in evaluation is provided in Appendix C.

AI Aluminum.

Cr(III) Trivalent chromium.

- Cr(VI) Hexavalent chromium.
- Mg Magnesium. ug/L Microgram per liter.

Fe Iron. Mn Manganese.

V Vanadium.

Marine-based aquatic screening criteria for all COPR constituents except Cr(VI) are not available, therefore the following freshwater screening values were used:

Al	87 ug/L
Cr(III)	704 ug/L

- Cr(VI) 50 ug/L (marine value)
- Fe 1000 ug/L
- Mg 3235 ug/L
- Mn 120 ug/L
- V 20 ug/L

Bold values exceed 1.

Hazard Quotients for Surface Sediment

Dundalk Marine Terminal, Baltimore, Maryland

	Hazard Quotient (HQ) ^a						
Transect	AI	Fe	Mn	V			
A1	<1	<1	2	1			
A2	<1	<1	<1	<1			
A3	<1	<1	<1	<1			
A4	<1	<1	<1	<1			
B1	<1	<1	2	<1			
B2	<1	<1	1	<1			
B3	2	<1	3	2			
B4	<1	<1	2	2			
B5	<1	<1	<1	<1			
C1	<1	<1	4	1			
C2	<1	<1	3	1			
C3	<1	<1	2	1			
C4	<1	<1	2	1			
D1	2	<1	8	2			
D2	2	<1	14	2			
D3	2	<1	9	2			
D4	1	<1	2	1			
E1	2	<1	10	2			
E2	2	<1	5	1			
E3	2	<1	5	2			
E4	<1	<1	1	<1			
F1	1	<1	3	1			
F2	2	<1	3	1			
F3	2	<1	5	2			
F4	2	<1	7	2			
G1	<1	<1	1	<1			
G2	1	<1	3	1			
G3	1	<1	3	2			
G4	1	<1	5	1			
H1	1	<1	2	<1			
H2	1	<1	2	1			
H3	<1	<1	<1	<1			
H4	1	<1	3	2			
1	<1	<1	<1	1			
12	<1	<1	1	2			
13	1	<1	2	4			
4	1	<1	2 2 5	3			
J1	<1	<1	5	1			
J2	<1	<1	3 2	2			
J3	<1	<1		1			
J4	<1	<1	8	1			

Notes:

Null cells (--) indiate that the parameter was not detected at that а location during any of the quarterly sampling events. The hazard quotient (HQ) is equivalent to the EPC divided by the screening criteria for a given parameter (rounded to one significant Exposure point concentrations (EPCs) are identified in Table 3.4. Full data set considered in evaluation is provided in Appendix C. liron.

Manganese.

Al Aluminum. Fe mg/kg Milligram per kilogram. Mn

٧ Vanadium.

The following marine screening values were used:

Al 18,000 mg/kg

<i>7</i> u	10,000 mg/ng
Fe	220,000 mg/kg

- 220,000 mg/kg 260 mg/kg Mn
- V 57 mg/kg

Bold values exceed 1.

SECTION 4 Step 3a: BERA Problem Formulation

In contrast to the SLERA, the BERA problem formulation (Step 3a) is designed to more realistically identify the nature and extent of ecological risks in order to support informed environmental management decision making (USEPA, 1997, 2000). The BERA problem formulation method presented in this section is consistent with the following guidance:

- Ecological risk assessment guidance for Superfund (USEPA, 1997)
- Guidelines for ecological risk assessment (USEPA, 1998)
- Amended Guidance on Ecological Risk Assessment at Military Bases: Process Considerations, Timing of Activities, and Inclusion of Stakeholders (USEPA, 2000)
- The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments (USEPA, 2001)

Step 3a is a refinement of the Step 2 exposure estimates and risk characterization, as it is focused on COIs and media that progress beyond the SLERA. Step 3a assumptions are refined from conservative estimates of exposure and toxicological impacts to site-specific estimates of exposures and more relevant ecotoxicity screening values, if available (USEPA, 2001). Risks are recalculated using the refined assumptions. The following evaluation for DMT uses a comparison to reference concentrations, consideration of the spatial extent and magnitude of exposure, a review of ecological screening values, and a qualitative review of biological data from the study area.

4.1 Refined COIs

The refinement of the COIs identified in the SLERA is used to help focus further risk assessment. The outcome of this refined screening is that constituents either are retained as COIs or excluded from further evaluation in the BERA process. The refinement of COIs is based on the comparison of study area concentrations to reference concentrations considering maximum and average values (USEPA, 2001). This evaluation is particularly important for some of the COPR constituents because, as stated previously, magnesium, manganese, iron, and aluminum are natural components of seawater (GEOL, 2008).

For this ERA the refinement of COIs followed a stepwise process whereby concentrations of COPR constituents were compared to reference concentrations with more in-depth analysis included as necessary. Initially, the maximum COI concentrations in samples from each of the 41 locations in proximity to DMT were compared to the maximum reference concentrations. For COIs where the maximum study area concentration exceed the maximum reference concentration, the study area concentration was compared to a value of two times the maximum reference concentration. For COIs where the maximum study area concentration was compared to a value of two times the maximum reference concentration. For COIs where the maximum study area concentration exceeded a value of two times the maximum reference concentration, the total number of samples from all locations across all four sampling events with COI

concentrations exceeding the maximum reference concentration was determined to establish the frequency of exceedance. Along with frequency of exceedance, the locations of exceedances were reviewed to evaluate whether there are any obvious spatial patterns such as a concentration gradient away from DMT. COIs within a given medium were eliminated as COIs if one of the following was observed:

- The maximum concentration at all sampling locations was less than the maximum reference concentration.
- The maximum concentration at all sampling locations was less than two times the maximum reference concentration.
- The frequency of exceedance of the maximum reference concentration across all sampling locations and events was less than 5 percent *and* there was no spatial trend of decreasing concentration with increasing distance from DMT.

4.1.1 Pore Water

The measured concentrations of iron, magnesium, and manganese in pore water are compared to the maximum measured reference concentration (Table 4-1). This comparison clearly illustrates that the pore water concentrations of iron, magnesium, and manganese in pore water samples from DMT are similar to or much lower than concentrations found at the reference locations within the Patapsco River. Figures 4-1, 4-2, and 4-3 compare study area pore water concentrations to the reference stations for iron, magnesium, and manganese, respectively. The distribution of concentrations in DMT pore water overlaps that at reference stations for all three constituents. Maximum reference concentrations are exceeded in only two of 133 samples (1.5 percent) for iron (maximum ratio of 1.2), six of 133 samples (4.5 percent) for magnesium (maximum ratio of 1.2), and one exceedance for manganese. These results indicate that the concentrations of these COIs in pore water are not elevated relative to those at reference locations and may therefore reflect regional conditions. There are no obvious trends in the measured concentrations for these three COIs that would suggest decreasing concentration with increasing distance from DMT (Appendix C). Given the comparability of pore water constituents at DMT and reference locations, the limited frequency (less than 5 percent) and magnitude of any reference exceedances (less than two), and the lack of spatial trends in the data, no pore water constituents are retained as COIs for further evaluation.

4.1.2 Surface Water

The measured concentrations of magnesium, manganese, and aluminum measured in surface water are compared to the reference concentrations in Table 4-2. Concentrations greater than two times the maximum reference concentration are highlighted in bold. Maximum concentrations of magnesium were less than or approximately equal to the reference concentrations at all locations. Figure 4-4 compares magnesium concentrations in DMT surface water to the reference stations showing the overlap between the study area and reference data. Only 3.3 percent (11 of 324 samples) of the DMT samples exceed the maximum reference concentration. All exceedances are less than two times the maximum reference water adjacent to the study area are not different than those determined for the reference sites.

Exceedances are primarily located along Transects D and E with concentrations decreasing with distance from DMT for Transect E only. Exceedances at other stations are also farther out on the other transects (e.g., away from DMT). The distribution of magnesium concentrations show no clear pattern of exceeding reference concentrations and thus this may be a regional phenomenon and unrelated to Site activities. Therefore magnesium is not retained as a COI for further evaluation.

Figure 4-5 compares manganese concentrations in DMT surface water to the reference stations. Like magnesium, considerable overlap was seen between concentrations measured at the DMT and reference locations. For manganese, 4.7 percent (15 of 315 samples) of samples exceed the maximum reference concentration. All but three exceedances are below two times the maximum reference concentration suggesting that manganese concentrations in surface water adjacent to the Site are not different than those determined for the reference sites. The observed exceedances are confined to Transects D, E, F, G, and H, with no clear pattern relative to distance from DMT. All but three of the measurements of manganese in excess of the maximum reference concentration are from samples just above the river bottom. These higher measurements could be due to the low DO concentrations at depth particularly during the summer months, when higher temperatures increase the solubility of manganese in the water column. Manganese concentrations elevated for brief periods of time should not have a significant ecological impact if conditions for the remainder of the year are sufficiently low as to not impact benthic organisms in proximity to the berths along the terminal. Furthermore, many of these concentrations occur in an area that is regularly dredged to maintain sufficient depths for the ocean faring vessels using the berths. However, a significant number of the exceedances of reference are along Transect D, so magnesium is retained as a COI for further evaluation.

Dissolved aluminum was not detected in any of the reference samples; therefore, the comparison to reference is not included in Table 4-2. Aluminum was detected at levels above the laboratory method detection limit during only the February 2008 sampling event at six locations. Given the occurrence of aluminum in seawater, combined with the low frequency of detection, and considering that aluminum in sediment (discussed in Section 4.1.3) was detected at maximum concentrations less than reference locations, aluminum is not retained further as a COI.

4.1.3 Sediment

The measured sediment concentration for aluminum, manganese, and vanadium are compared to the maximum measured reference concentration in Table 4-3. Figures 4-6, 4-7, and 4-8 show the comparison of concentrations in surface sediment at the study area to the reference stations for aluminum, manganese, and vanadium, respectively. The distribution of concentrations in DMT sediments overlaps that at reference stations for these three constituents. All DMT aluminum concentrations were lower than the maximum reference concentration; therefore, no further evaluation of aluminum is necessary. Maximum reference concentrations were exceeded in nine of 77 samples for manganese (12 percent), so it is retained as a COI and is considered further in the refined risk characterization discussion.

Vanadium was detected only in three of 82 samples (4 percent) at concentrations that exceed that seen in reference locations (at locations I3 and I4). These three measurements are all less

than two times the maximum reference concentration, and that combined with a frequency of detection less than 5 percent indicates that further consideration of vanadium as a COI in sediment is not warranted.

4.2 Refined Risk Characterization

This section provides a focused discussion of the assessment endpoints identified in Section 2 with regard to the refined COIs (as identified in Section 4.1):

- Pore water none
- Surface water manganese
- Sediment manganese

This COI is related to potential exposures for the benthic invertebrate and aquatic invertebrate communities and the populations of fish frequenting the study area. A refined risk characterization considers a variety of factors that provide insight into whether chemicals at DMT are likely to pose an unacceptable risk, such as the following:

- The spatial extent and magnitude of exposures that receptors are likely to experience
- Expanded consideration of ESVs (as warranted)
- Qualitative biological information from DMT

4.2.1 Spatial Extent and Magnitude of Exposures That Receptors Are Likely to Experience

Given the prevalence of manganese in the marine environment, and an organisms inherent ability to regulate naturally occurring constituents, one of the better ways to address whether the manganese seen at DMT may pose a risk to the environment is to consider how organisms are exposed (e.g., benthic invertebrates versus fish) and the spatial extent of concentrations greater than reference locations. Manganese concentrations in surface water exceeded reference concentrations more than a factor of two at only three locations (D2, E1, and E2). While there were other exceedances of reference concentrations, they were below a factor of two (Table 4-2). Average concentrations of manganese are consistent with the reference locations. Fish are mobile, and as such, exceedances of reference conditions in localized areas are not ecologically relevant. Overall, fish are not likely to experience any adverse impacts to the low detections of manganese in the surface water. Aquatic invertebrates are mobile, but generally over much smaller areas. Nevertheless, given the limited spatial extent of these areas, these are considered de minimis for aquatic invertebrates.

Manganese was detected in sediment at only one location at two times the reference location (D2) (see Figure 2-1). Other locations along the Transect D and one location each along Transects E, F, and J had slightly elevated concentrations compared to reference locations, but overall, less than 1.5 times that seen in reference locations. Locations D2, E1, and E2 are generally near storm water outfalls. Manganese is not particularly elevated in sediment near the 14th and 15th Street outfalls (Transect C and locations J 1 and J2), so any potential influence due to discharge from the outfalls (if any) would be transient (i.e., elevated manganese should be evident in the area of the 14th and 15th Streets outfalls as well, if historic discharge from outfalls had contributed to sediment concentrations greater than

reference locations). This spatial distribution of manganese in sediment indicates that an isolated area is only slightly elevated. As such, manganese present in surficial sediment adjacent to DMT is highly unlikely to have adverse impacts to the overall benthic community or fish populations.

4.2.2 Expanded Consideration of ESVs

A component of the refined risk evaluation is consideration of additional ESVs. Because manganese is the only COI retained for this evaluation, the discussion herein is focused on ESVs related to manganese. Because there are few ESVs related to manganese, this section also discusses the basis of those that are available and explains how the conservative use of these ESVs demonstrates that manganese does not pose unacceptable risks to aquatic organisms via sediment or surface water exposures.

Few empirical association-based sediment screening values have been developed for manganese. The value used in the SLERA is based upon paired biological and chemistry data from investigations of field-collected (as opposed to laboratory-spiked) sediments. Key characteristics of the data sets compiled for this purpose include the presence of numerous chemical contaminants with unknown relative contributions to observed toxicity, high variability of geophysical characteristics (e.g., grain size, organic carbon content, and sulfide content) potentially affecting bioavailability, and unmeasured speciation of metals.

The potential to overpredict toxic effects by relying on paired biological and chemistry data collected from multiple independent sediment sites is great. Therefore there can be a high degree of uncertainty and conservatism when attempting to draw conclusions regarding the nature and extent of sediment contamination, ecological risks, and potential for injury to natural resources. Several studies have shown that the chemical screening values resulting from the synthesis of seemingly disparate sediment data do not necessarily reflect accurately the cause-effect relationships between chemical concentrations in sediment and toxicity or biological response in benthic organisms (Batley et al., 2005; Chapman et al., 1999; Word et al., 2005; Becker and Ginn, 2008). More specifically, the screening values for lesstoxic chemicals serve primarily as indicators of the likely presence of more toxic chemicals due to inter-correlation among chemicals in sediment. For instance, many sediment screening values fall within the range of naturally occurring background concentrations (Chapman et al., 1999; Rice, 1999) and thus are not reflective of accurate chemical-specific toxicity thresholds or indicators of risk at the majority of contaminated sediment sites. Despite recognition of these limitations by proponents of both empirical and cause-effect (mechanistic) approaches to sediment quality evaluation association-based sediment screening values have taken on inertia in the sediment management realm and are used, in some cases, in a manner well beyond their original intent and applicability (Wenning et al. 2005).

Manganese was identified as a COI for sediment using empirically derived paired chemistry and biological data, and thus is very conservative. Also there is limited spatial extent and magnitude of reference condition exceedances. Given these two combined limitations and conservative assumptions the weight of evidence is that manganese could not pose an unacceptable risk to the benthic community, aquatic invertebrate community, and fish populations. The ESV for manganese considered in Step 2 of the SLERA is based on a limited data set and suffers some of the constraints of empirically derived benchmarks. The source of the ESV used was the AET as reported by Buchman (2008). AETs are based on toxicity data solely from Puget Sound and they show the maximum detected concentration that demonstrated no toxicity (Buchmann, 2008). The weakness of this approach is that it does not show a concentration that does cause toxicity (i.e., this is an unbounded no-effects concentration). Thus, the manganese ESV is generally not considered highly predictive of adverse effects. Numerous additional sources of literature and toxicity were evaluated to find additional ESVs for manganese in estuarine surface water or sediments (e.g., Oak Ridge National Laboratories, the toxicology data network (TOXNET), EPA's ECOTOX database (USEPA, 2009), and guidance documents from other states and regions,) with no viable results.

Limited data were readily available for the effects of manganese on marine crustaceans (Table 4-4). Oweson et al. (2006) reported cellular effects, mainly haematopoietic cell death, in the Norway lobster, *Nephrops norvegicus*, at a concentration of 5,000 μ g/L manganese. Kimball (1978) reported no adverse effects at 1,100 μ g/L manganese in the freshwater planktonic crustacean *Daphnia magna*. Two studies were found that assessed the effects on manganese on mollusks. Calabrese et al. (1973) reported a lethal concentration 50 (LC50) of 16,000 μ g/L manganese for the American oyster, *Cassostrea virginica*. A half-maximal effective concentration 50 (EC50) of 30,000 μ g/L manganese was reported for larval development of the blue mussel, *Mytilus edulis* (Morgan et al., 1986). The toxicity of manganese to echinoderms was assessed by Hansen et al. (1995), who reported no mortality occurred in starfish *Asterias rubens* after a 7-day exposure to 25,000 μ g/L manganese, and Kobayashi (1971), who observed no effects on the development of sea urchin, *Anthocidaris crassisina*, larvae at 6,600 μ g/L manganese.

Considering these available data from the literature, the ESV used in the Step 2 screening (120 μ g/L manganese) appears to be overly conservative. The average concentration of manganese in surface water at DMT (244 μ g/L) is substantially lower than concentrations form the scientific literature associated with adverse effects to marine crustaceans (1,100 to 30,000 μ g/L). Manganese is not expected to cause risk from surface water exposure.

4.2.3 Qualitative Biological Information from DMT

An informal, qualitative analysis of the benthos at the study area was performed during the May 2007 field effort, and again in June 2008. Polychaetes, amphipods, clams, and arthropods were observed in sediments from DMT in May 2007, with differences in community composition dependent upon the sediment habitat. The dominant organisms found in June 2008 were amphipods and small crabs, however sampling also resulted in isopods, barnacles, mussels, pipefish, mysid shrimp, and worms (polychaetes and oligochaetes).

The types and varieties of organisms at the study area are indicative of the health of the biological community. As an example, amphipods were among the organisms identified and amphipods are commonly used test organisms in laboratory toxicity assays due to their sensitivity to several chemicals. The findings of the 2008 survey in the shallow water habitat near location J4 are consistent with the findings of the WREC's IBI work in 1996 (Klosterhaus et al., 2007).

4.2.4 Ecological Risk Characterization Summary

Overall, the levels of COIs in pore water, surface water, and surface sediment adjacent to DMT do not pose an unacceptable risk to the benthic invertebrate community, the aquatic invertebrate community, or fish populations based on the following findings:

- 1. The concentrations of COI(s) at the Site were below the NRWQC for those constituents with estuarine NRWQC, and below freshwater criteria for some constituents lacking estuarine criteria.
- 2. For the few cases where maximum concentrations of COIs were above the ESVs, most were below concentrations seen at the reference locations.
- 3. For the very few cases where maximum values in the vicinity of DMT exceeded reference values, the average values were comparable to reference concentrations. Also, conservative ESVs were used in these cases.
- 4. Qualitative surveys suggest biological diversity indicative of a healthy ecosystem.

4.3 Uncertainty Assessment

Uncertainties are inherent in all risk assessments. The nature and magnitude of the uncertainties depend on the amount and quality of data available, the degree of knowledge concerning study area conditions, and the assumptions made to perform the assessment. A qualitative evaluation of the major uncertainties associated with this assessment is outlined below in general categories.

4.3.1 Effects Assessment Uncertainties

Use of Freshwater Criteria Instead of Marine Criteria: Hardness data suggest that the environment adjacent to DMT should be evaluated as marine and not freshwater. However, with the exception of chromium species, no marine screening criteria are available for fish and aquatic organism. Freshwater criteria are available for the other COPR constituents and were used for informative purposes only. For constituents with both marine and freshwater screening values available, freshwater criteria are often much lower than marine criteria. Comparisons to the freshwater criteria were considered overly protective of marine waters. Concentrations exceeding these benchmarks do not necessarily result in unacceptable ecological risk in a marine system. However, concentrations exceeding these values were compared to reference concentrations as well as an additional line of evidence.

Bulk Sediment versus Pore Water: As discussed in previous sections, for the COI comparison of pore water concentrations to water quality criteria is a more accurate evaluation of risk than use of bulk sediment concentrations and associated criteria. Several uncertainties are associated with the use of bulk sediment comparison, including the assumption of kinetic equilibrium, ignoring potentially competing partitioning factors such as grain size and DOC fraction, and not considering other exposure pathways such as ingestion.

Insufficient Toxicity Data: Direct toxicity data were unavailable for calcium and magnesium in sediment. However, as has been presented in Appendix A, these compounds

are not considered toxic. Only limited sediment screening values are available for vanadium despite considerable effort to identify such criteria as described in the Vanadium white paper submitted to MDE (CH2M HILL, 2007a).

Additive Toxicity: In this assessment, risks for COIs were each considered independently. Because COIs may interact in an additive, antagonistic, or synergistic manner, the evaluation of single-chemical risk may either underestimate or overestimate risk associated with chemical mixtures.

The freshwater screening values that were used, except for magnesium, are all NRWQC. Many of the toxicity studies used to develop these criteria are single chemical laboratory toxicity tests. While directly addressing additive toxicity, these criteria are generally set with a level of conservatism. In addition, all criteria, except for chromium, were for freshwater environments. These criteria are overly conservative for evaluation of marine environments.

Comparison to Reference Concentrations: The screening criteria that were employed for evaluation of risk to fish and benthic organisms do not represent a no-effect or a lowest effect level (i.e., concentration at which no adverse effect or the lowest adverse effect is observed). Instead, these screening concentrations, particularly for sediment, are more indicative of concentrations at which effects occur and are used as a frame of reference as to whether the risk of effects is acceptable. For sediment, typically a lower and upper effects level is available representing levels at which effects are possible and probable. For surface water the concentrations represent levels which may lead to observed effects when exposure of chronic (long term) or acute (short term significantly high dose) duration is experienced. When concentrations are below the lower value, risks are considered acceptable and when in between, they are uncertain. In Step 3a, rather than compare the concentrations exceeding these lower effects levels to upper effects levels or acute surface water criteria, they were compared to maximum reference concentrations. The maximum reference concentrations represent the maximum concentrations observed in four sampling events at three locations within an exposure area with similar conditions to the study area. These reference areas are representative of conditions and concentrations throughout the Patapsco River, and not just adjacent to the study area. Potential contaminant sources for observed concentrations at the reference locations would include numerous anthropogenic sources upstream of these references. Comparing study area concentrations to these references provides an understanding of whether or not conditions within the influence of the sources at DMT differ from those observed throughout the rest of the Patapsco River. Potential risk posed by concentrations at the study area that are within the range of concentrations observed in the reference area should be considered acceptable and no further investigation should be necessary.

4.3.2 Exposure Assessment Uncertainties

Bioavailability: The exposure dose estimates in this screening risk assessment assume that 100 percent of the chemical concentrations to which receptors are exposed is in the bioavailable form. Most chemicals will not be 100 percent bioavailable. In the cases where bioavailability is less than 100 percent, risk is overestimated. Maximum concentrations were used as the EPCs in both the initial screening assessment in Step 2 and in the refined evaluation in Step 3a. The EPCs were assumed to remain constant for the duration of exposure. Physical, chemical, and biological processes that could reduce chemical

concentrations and their bioavailability over time are not factored into the calculation of the EPCs. Use of this additional conservative assumption likely overestimates the exposure to the COIs. AVS measurements in sediment suggest that metals influenced geochemically by reducing conditions in sediments around DMT are not bioavailable (Tables 4-5a and 4-5b).

Total Versus Dissolved Metals: USEPA guidance (USEPA, 1996) indicates that the dissolved metal fraction should be preferentially used rather than the total metal fraction in surface water screening because the dissolved fraction is the bioavailable fraction. Thus only dissolved concentrations were used in the ERA for the surface water screen. High levels of suspended solids and sediment-adsorbed metals would result in overstating bioavailable surface water concentrations and thus potential exposures and risks. Therefore, this uncertainty has been eliminated.

Spatial Distribution of Samples: The number and spatial distribution of surface water and sediment samples were sufficient to adequately estimate potential ecological risks for ecological receptors. A total of 320 surface water, 136 pore water, and 77 surface sediment samples (excluding field duplicates) were collected adjacent to DMT from four quarterly events. An additional 42 surface water, 12 pore water, and 12 surface sediment samples (excluding field duplicates) were collected from the reference area against which to compare measured concentrations impacted by the Site.

Detection Limits: Detection limits for some analytes exceeded applicable screening values in some media; these analytes were not retained as COIs unless they were detected. This approach could underestimate risk, although the analytes for which detection limits were too high are not constituents of COPR.

Area 1501/1602 Side Slope Assessment Data: Sediment and pore water samples collected in May 2009 at the 15th Street outfall following a wet weather event are included in this uncertainty assessment because the samples were collected and data were validated after the majority of the ERA was completed. The results are consistent with those from the Sediment and Surface Water Study. This section addresses how the data affect the ERA conclusions. This analysis shows that these data have no bearing on the final conclusions of this ERA. The data from this targeted study were reported to MDE via a letter from Honeywell to MDE dated September 4, 2009. Sediment and pore water samples were collected from three locations near the 15th Street outfall. Sediment and pore water sample results are summarized with regard to the ERA as follows:

- The sediment and pore water samples were collected at low tide in the intertidal and subtidal zones respectively, within a sandy area of limited areal extent. The sandy substrates that were sampled do not have particularly unique or distinctive characteristics that would make them more attractive to aquatic wildlife.
- The sediment and pore water sample locations included in the side slope study (JMDMT-7, -8, and -9) were bounded on all sides by locations included in the Sediment and Surface Water Study (i.e., the area is bounded by locations J1, C1, and C2, which were included in this ERA).
- Sediment samples were analyzed for total chromium and other COPR constituents. Total chromium concentrations in sediment collected from the side slope study ranged from 875 mg/kg to 1160 mg/kg, which is consistent with the sediment concentrations

from locations J1, C1, and C2. Concentrations of other COPR constituents were also similar to those evaluated in this ERA.

Cr(VI) was detected in one pore water sample (JMDMT-8) at a concentration of 108 μg/L. This detected concentration is most likely attributable to a wet weather event that occurred prior to sampling, and is not indicative of a persistent or areally extensive condition. Cr(VI) was not detected in pore water from adjacent sample locations JMDMT-7 or JMDMT-9, or in adjacent Sediment and Surface Water Study locations J1, C1, or C2 over four quarters of sampling (CH2M HILL and ENVIRON, 2009).

Although the Cr(VI) concentration of 108 μ g/L in the pore water sample from JMDMT-8 is slightly above the chronic NRWQC of 50 μ g/L, it is well below the acute criterion of 1,100 μ g/L. Given the extremely limited spatial extent of the detected Cr(VI) (as evidenced by the non-detections in immediately adjacent samples), the intermittent nature of the presence of Cr(VI) following a rainfall event (evidenced by numerous sampling results for adjacent locations over time), and consideration of relative species sensitivity distributions (Appendix A, Figure A-1), this isolated detected concentration is not considered indicative of an unacceptable risk to fish populations or benthic community structure. As such, this single detected result does not affect the overall conclusions of the ERA.

Comparison of Pore Water Exposure Point Concentrations to Reference Concer Dundalk Marine Terminal, Baltimore, Maryland

	Ratio of Porewater EPCs to Reference Concentrations ^a						
Transect	Fe	Mg	Mn				
A1	<1	<1	<1				
A2		<1	<1				
A3	<1	<1	<1				
A4		<1	<1				
B1	<1	<1	<1				
B2	<1	<1	<1				
B3	<1	<1	<1				
B4	<1	<1	<1				
B5		<1	<1				
C1	<1	<1	<1				
C2	<1	<1	<1				
C3	<1	<1	<1				
C4	<1	<1	<1				
D1	<1	1.2	<1				
D2	<1	<1	1.0				
D3	1.1	1.0	<1				
D4	<1	<1	<1				
E1	<1	1.1	<1				
E2	<1	1.0	<1				
E3	<1	<1	<1				
E4	<1	<1	<1				
F1	<1	<1	<1				
F2	1.2	<1	<1				
F3	<1	<1	<1				
F4	<1	<1	<1				
G1	<1	<1	<1				
G2	<1	<1	<1				
G3	<1	<1	<1				
G4	<1	<1	<1				
H1	<1	<1	<1				
H2		<1	<1				
H3	<1	<1	<1				
H4	<1	1.0	<1				
l1	<1	<1	<1				
12	<1	<1	<1				
13	<1	<1	<1				
14	<1	<1	<1				
J1	<1	<1	<1				
J2		<1	<1				
J3	<1	<1	<1				
J4		<1	<1				

Notes:

а

Null fields (--) indicate that the parameter was not detected in the pore water during any of the sampling events.

The ratios presented in this table are determined by dividing the EPC for each location (maximum detected concentration) and parameter by the maximum reference concentration. The reference values for the four parameters are as follows:

Iron (Fe)	8040 µg/L
Magnesium (Mg)	547,000 µg/L
Manganese (Mn)	24,600 µg/L

Comparison of Surface Water Exposure Point Concentrations to Reference Dundalk Marine Terminal, Baltimore, Maryland

	Ratio of Surface Wat	er EPCs to Reference
Transect	Mg	Mn
A1	<1	<1
A2	<1	<1
A3	<1	<1
A4	<1	<1
B1	<1	<1
B2	<1	<1
B3	<1	<1
B4	<1	<1
B5	<1	<1
C1	<1	<1
C2	<1	<1
C3	<1	<1
C4	<1	<1
D1	1.0	1.6
D2	1.0	2.8
D3	1.0	1.4
D4	<1	<1
E1	1.1	3.3
E2	1.0	2.0
E3	1.0	1.7
E4	<1	<1
F1	<1	<1
F2	1.1	1.1
F3	<1	<1
F4	<1	<1
G1	<1	<1
G2	<1	1.1
G3	<1	1.9
G4	1.0	<1
H1	<1	<1
H2	<1	1.7
H3	<1	<1
H4	1.0	1.9
l1	<1	<1
12	<1	<1
13	<1	<1
14	<1	<1
J1	<1	<1
J2	<1	<1
J3	<1	<1
J4	<1	<1

Notes:

(a) The ratios presented in this table are determined by dividing the EPC for each location (maximum detected concentration) and parameter by the maximum reference concentration. The reference values for the four parameters are as follows:

Magnesium (Mg)	571,000 µg/L
Manganese (Mn)	347 µg/L

Comparison of Surface Sediment Exposure Point Concentrations to Reference Concentrations Dundalk Marine Terminal, Baltimore, Maryland

	Ratio of EPC to Reference Value ^a							
Transect	Al	Mn	V					
A1	<1	<1	<1					
A2	<1	<1	<1					
A3	<1	<1	<1					
A4	<1	<1	<1					
B1	<1	<1	<1					
B2	<1	<1	<1					
B3	<1	<1	<1					
B4	<1	<1	<1					
B5	<1	<1	<1					
C1	<1	<1	<1					
C2	<1	<1	<1					
C3	<1	<1	<1					
C4	<1	<1	<1					
D1	<1	1.1	<1					
D2	<1	2.0	<1					
D3	<1	1.3	<1					
D4	<1	<1	<1					
E1	<1	1.5	<1					
E2	<1	<1	<1					
E3	<1	<1	<1					
E4	<1	<1	<1					
F1	<1	<1	<1					
F2	<1	<1	<1					
F3	<1	<1	<1					
F4	<1	1.0	<1					
G1	<1	<1	<1					
G2	<1	<1	<1					
G3	<1	<1	<1					
G4	<1	<1	<1					
H1	<1	<1	<1					
H2	<1	<1	<1					
H3	<1	<1	<1					
H4	<1	<1	<1					
l1	<1	<1	<1					
12	<1	<1	<1					
13	<1	<1	1.9					
14	<1	<1	1.2					
J1	<1	<1	<1					
J2	<1	<1	<1					
J3	<1	<1	<1					
J4	<1	1.2	<1					

Notes:

^aThe ratios presented in this table are determined by dividing the EPC for each location (maximum detected concentration) and parameter by the maximum reference concentration. The reference values for the four parameters are as follows:

	Aluminum (Al)	41,400 mg/kg						
	Manganese (Mn)	1770 mg/kg						
	Vanadium (V)	127 mg/kg						
EPC	Exposure Point Concent	rations .						
mg/kg	Milligrams per kilogram.							
Bold values exceed 2.								

Summary of Manganese Toxicity Studies

Dundalk Marine Terminal, Baltimore, Maryland

		Organism		Summary	
Environment	Common name	Scientific name	Concentration (µg/L)		
Freshwater	Water flea	Daphnia magna	1,100	No adverse effects.	Kimball, 1978
Marine	Norway lobster	Nephrops norvegicus	5,000	Cellular effects (heamatopoietic cell death).	Oweson et al., 2006
Marine	American oyster	Cassostrea virginica	16,000	Lethal concentation 50 (LC50).	Calabrese et al., 1973
Marine	Blue mussel	Mytilus edulis	30,000	Half-maximal effective concentration 50 (EC50) for larval development.	Morgan et al., 1986
Marine	Starfish	Asterias rubens	25,000	No mortality after 7-day exposure.	Hansen et al., 1995
Marine	Sea urchin	Anthocidaris crassisina	6,600	No effects on larval development.	Kobayashi, 1971

Notes:

μg/L Micrograms per liter.

Table 4-5a

Summary of AVS-SEM Results by Location Dundalk Marine Terminal, Baltimore, Maryland

		May 07			Aug 07	
Transect	Total AVS (μmoles/g)	Total SEMª (μmoles/g)	Excess AVS (AVS-SEM) (µmoles/g)	Total AVS (μmoles/g)	Total SEMª (μmoles/g)	Excess AVS (AVS-SEM) (µmoles/g)
A1	0.44	2.81	-2.37	12.1	2.12	9.98
A2 ^b	0.39	0.66	-0.27	0.57	0.772	No excess AVS
A3	0.52	0.37	0.15	0.99	0.987	0.003
A4 ^b	0.39	0.49	-0.10	1.4	0.36	1.04
B1	0.44	2.35	-1.91	10.4	1.88	8.52
B2	0.53	1.82	-1.29	3.2	1.19	2.01
B3	7.7	2.18	5.52	11.6	2.78	8.82
B4 ^c	4.3	2.46	1.84	3.8	2.94	0.86
C1	12.6	2.25	10.4	14.3	2.93	11.4
C2	13.1	2.30	10.8	16	2.21	13.8
C3	9.8	2.62	7.18	6.5	2.49	4.01
C4	4.9	2.58	2.32	7.1	2.62	4.48
D1	28.8	1.46	27.3	18.7	1.39	17.3
D2	16.6	1.38	15.2	32.7	1.19	31.5
D3	15.3	1.32	14.0	11.4	1.82	9.58
D4	13.2	1.82	11.4	10.3	2.86	7.44
E1	22.9	1.09	21.8	19	1.13	17.9
E2	6.8	0.99	5.81	20.1	1.4	18.7
E3	27.5	1.79	25.7	25.1	1.5	23.6
E4	0.93	0.79	0.137	7.6	1.29	6.31
F1	12.9	0.87	12.0	19.9	2.18	17.7
F2	9.5	0.89	8.61	4.2	0.837	3.36
F3	22	1.84	20.2	41.5	1.57	39.9
F4	20.6	1.64	19.0	8.4	1.08	7.32
G1	6.8	0.52	6.28	21.2	1.38	19.8
G2	29.1	1.06	28.0	17.1	1.29	15.8
G3	23.9	1.35	22.6	25.6	1.65	24
G4	22.2	1.53	20.7	10.2	1.13	9.07
H1	51.2	3.01	48.2	16.9	0.935	16
H2	20.8	1.36	19.4	32.2	1.34	30.9
H3	36.5	1.25	35.3	16.4	1.14	15.3
H4	24.5	1.46	23.0	38.3	2.01	36.3
11	3.2	6.55	-3.35	26.5	3.97	22.5
12	10.6	4.74	5.86	23.8	4.08	19.7
13	24.4	4.93	19.5	21.5	6.26	15.2
4	42.7	6.44	36.3	11.9	3.86	8.04
Reference L		1 40	00.7	00.0	0.040	
37	29.8	1.10	28.7	20.3	0.846	19.5
37A 37B	<u>24.9</u> 9.7	1.10 1.53	23.8 8.17	14.7 22	1.00 0.863	13.7 21.1
31B	y.1	1.53	0.17	22	0.003	Z1.1

Notes:

Where duplicate samples were present, they were counted as one sample, and the greatest value for each analyte was used to calculate range and average.

a Total SEM refers to the sum of all divalent metals simultaneously extracted (cadmium, copper, lead, mercury, nickel, zinc). The max Hg concentration was used for rejected Hg data (0.000029 µmol/g).

b AVS was ND (0.39 µmol/g)

c Used the higher of the duplicate values for sample B4 for AVS and SEM.

µmoles/g Micromoles per gram.

AVS Acid Volatile Sulfide.

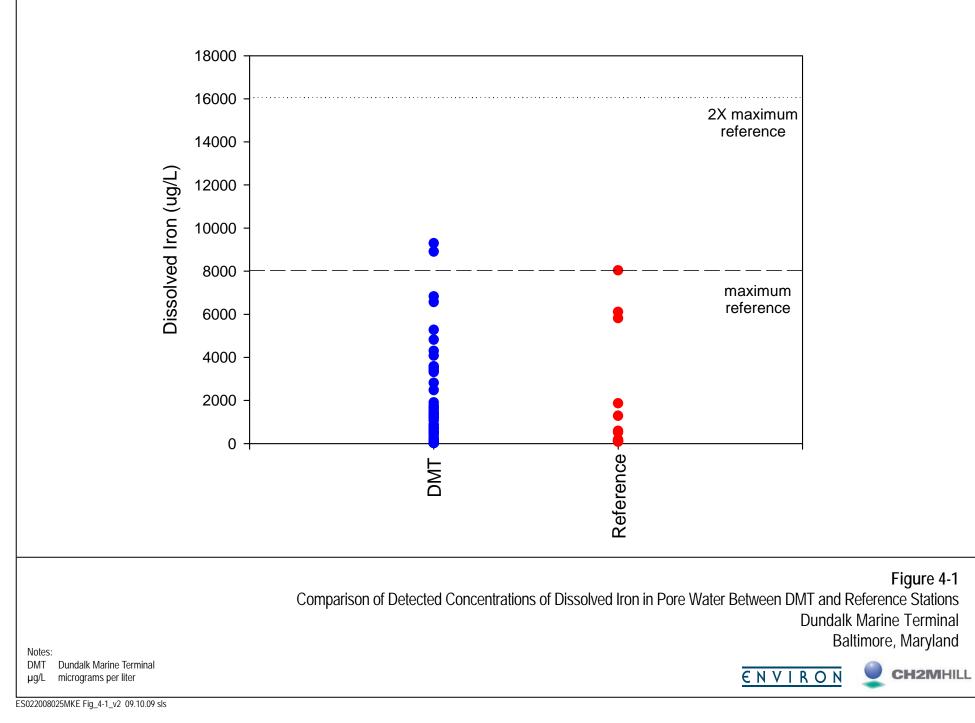
SEM Simultaneously Extracted Metals.

Table 4-5b Summary of AVS-SEM Results by Transect Dundalk Marine Terminal, Baltimore, Maryland

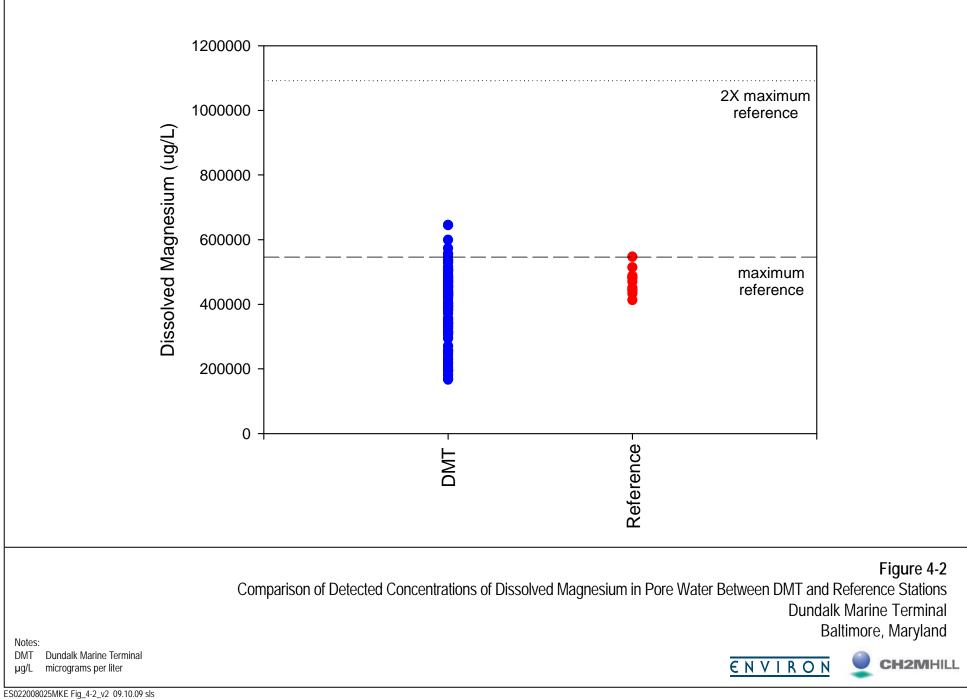
	Acid Volatile							SEM	Excess AVS		Excess Fe
	Sulfide (AVS)	Cadmium	Copper	Lead	Nickel	Mercury	Zinc	(sum of metals)	(AVS-SEM)	Iron	(Iron-Excess AVS)
	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g
Averages											
Overall	13.5	0.0145	0.181	0.121	0.279	0.00000649	1.4	2	11.5	80.2	68.7
Sediment < 0.5' Deep	14.8	0.016	0.178	0.121	0.293	0.00000649	1.4	2.01	12.8	81.9	69.1
Sediment > 0.5' Deep	3.57	0.00354	0.205	0.126	0.166	NA	1.41	1.91	1.66	67.3	65.6
Transect A	2.05	0.00104	0.0864	0.0397	0.224	0.0000154	0.721	1.07	0.98	36.8	35.8
Transect B	3.97	0.00196	0.219	0.0772	0.33	0.0000215	1.09	1.72	2.25	77	74.8
Transect C	10.5	0.00451	0.237	0.145	0.313	0.00000381	1.8	2.5	8	107	99
Transect D	18.4	0.00213	0.164	0.0953	0.238	0.00000378	1.16	1.66	16.7	106	89.3
Transect E	16.2	0.00231	0.125	0.0744	0.26	0.00000538	0.8	1.26	14.9	85.5	70.6
Transect F	17.4	0.00217	0.178	0.0808	0.249	0.00000385	0.855	1.36	16	102	86
Transect G	19.5	0.00202	0.121	0.0677	0.263	0.00000388	0.785	1.24	18.3	74.4	56.1
Transect H	29.6	0.0155	0.145	0.105	0.226	0.0000383	1.07	1.56	28	59.6	31.6
Transect I	20.6	0.119	0.298	0.398	0.445	0.00000381	3.92	5.18	15.4	57.8	42.4
Transect J	4.97	0.00486	0.23	0.137	0.239	NA	1.76	2.37	2.6	91.8	89.2
Near Bulkhead (1)	15.3	0.0149	0.227	0.139	0.35	0.00000764	1.53	2.26	13	85	72
Mid Near (2)	13.5	0.0119	0.164	0.103	0.257	0.00000912	1.27	1.81	11.7	75.7	64
Mid Far (3)	16	0.0169	0.153	0.126	0.275	0.00000382	1.38	1.95	14.1	75.7	61.6
Away From Bulkhead (4)	9.89	0.0144	0.181	0.117	0.239	0.00000457	1.42	1.97	7.92	83.9	76

Notes:

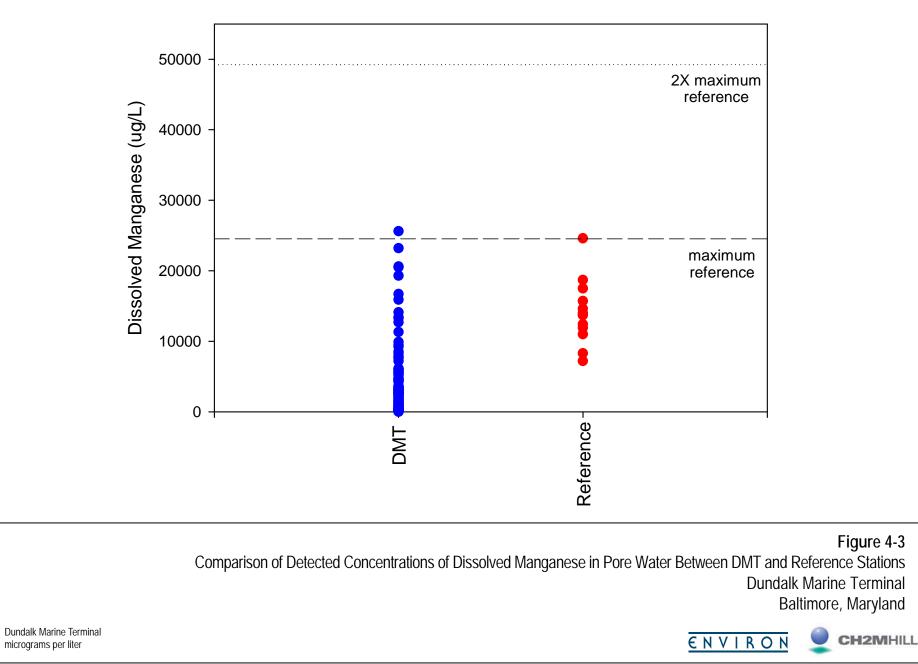
Where duplicate samples were present, the maximum value of each constituent is used. Analytes that were not detected are presented here as present at 1/2 of the detection limit.


Acid volatile sulfides.

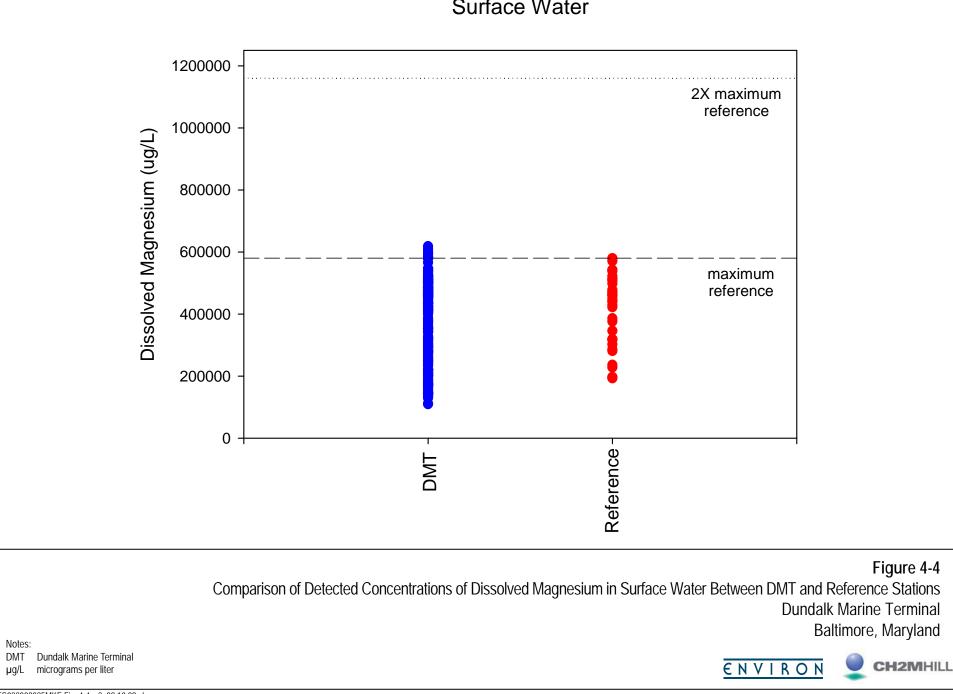
AVS NA Not analyzed.

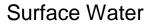

SEM

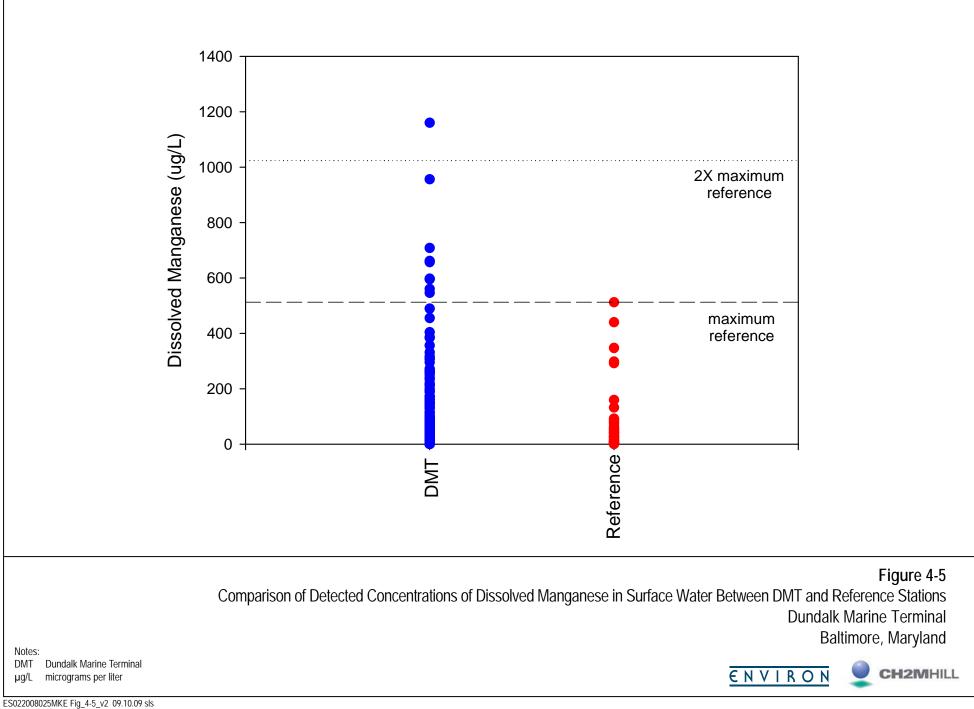
Simultaneously extracted metals. µmoles/g Micromoles per gram.


Pore Water

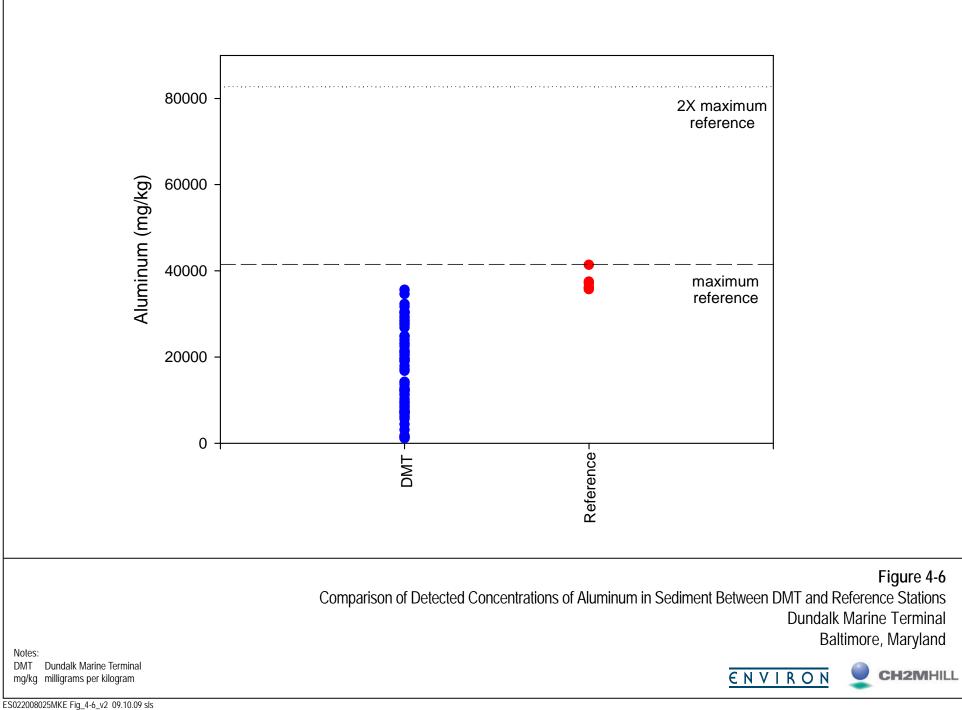
Pore Water

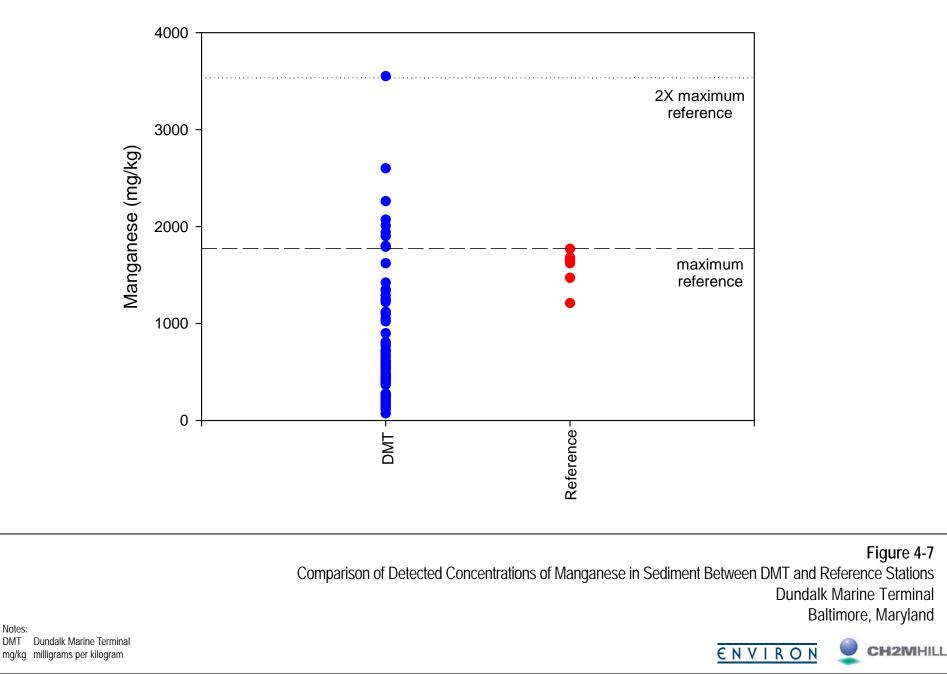

Pore Water



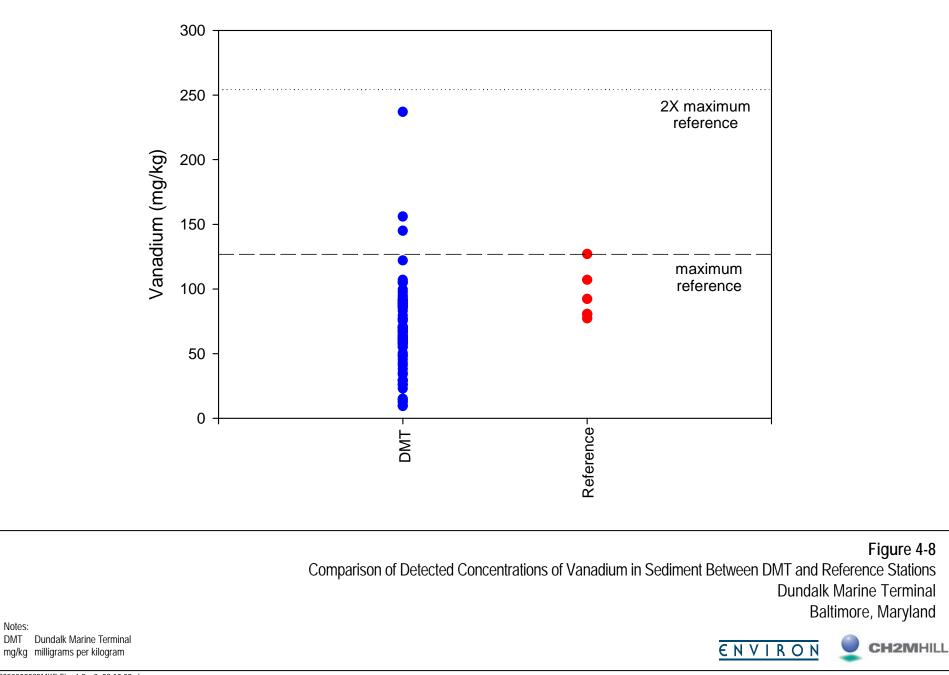

Notes: DMT

µg/L


Surface Water



Surface Sediment


Surface Sediment

ES022008025MKE Fig_4-7_v2 09.10.09 sls

Notes:

Surface Sediment

ES022008025MKE Fig_4-8_v2 09.10.09 sls

Notes:

Summary and Conclusions

The basic approach for the ERA presented in this report is consistent with USEPA guidance (1997, 1998, 2000, 2001, 2005a), which provides an eight-step process with built-in critical management and decision points. Steps 1 and 2 are the SLERA, while Step 3 is the initial step of the BERA. Step 1 consisted of the screening level problem formulation and effects evaluation. Step 2 comprised a screening level exposure estimate and risk calculation. In Step 2 of the ERA, chemical concentration data for pore water, surface water, and sediment for four quarterly sampling events conducted at DMT were compared to conservative ESVs. All measured concentrations of Cr(III) and Cr(VI) in pore water and surface water were below ESVs. Thus, in accordance with the USEPA's approach, chromium was not retained for further evaluation.

Based on the results of Step 2, the following COIs and media were evaluated in Step 3a: iron, magnesium, and manganese in pore water; magnesium and manganese in surface water; and aluminum, manganese, and vanadium in surface sediment. In Step 3a, concentrations of these COIs measured within the study area were compared to those concentrations measured at reference locations. Concentrations of COIs within the study area were similar to those from reference locations for all of the COIs except manganese in surface water and sediment. A refined risk analysis considered the spatial extent and magnitude of exposure, a more detailed review of the ESVs for manganese, and a qualitative review of biological data from the study area with respect to manganese. These lines of evidence illustrate that the manganese concentrations in surface water and bulk sediment do not pose an unacceptable ecological risk to receptors adjacent to DMT. In summary, the Step 3a evaluation did not identify any refined COIs. Ancillary sampling conducted in May 2009 was addressed as an uncertainty of the ERA and this evaluation showed that the single detection of Cr(VI) in pore water was most likely related to transient storm water discharge in an isolated area bounded by other locations where Cr(VI) was not detected over space and time.

5.1 Scientific Management Decision Point

The ERA data are sufficient to establish that chromium and other COPR constituents do not pose unacceptable risk to ecological receptors near DMT. The data and conclusions presented in the ERA meet the requirements stipulated in the Consent Decree. No further action is required to assess the environmental impacts of COPR constituents from the Site.

References

Agency of Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological profile for aluminum. Available at http://www.atsdr.cdc.gov/toxprofiles/tp22.html.

Batley, G.E., Stahl, R.G., Babut, M.P., Bott, T.L., Clark, J.R., Field, L.J., Ho, K., Mount, D.R., Swartz, R.C., and Tessier, A.. 2005. The scientific underpinnings of sediment quality guidelines. In: Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. R. Wenning, G. Batley, C. Ingersoll and D. Moore (editors), SETAC Press, Pensacola FL USA.

Becker DS, Ginn TC. Critical evaluation of the sediment effect concentrations for polychlorinated biphenyls. Integrated Environ Assess Manage 2008; 4(2):156–170.

Berry, W. J., W.S. Boothman. J.R. Serbst, P.A. Edwards. 2002. Effects of Chromium in Sediment: 1. Toxicity Tests with Saltwater Field Sediments. USEPA, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division: Narragansett, RI. Presented at the SETAC 23rd Annual Meeting, Salt Lake City, UT. Nov. 16–20, 2002.

Berry, W.J., W.S. Boothman, J.R. Serbest, and P.A. Edwards. 2004. Predicting the Toxicity of Chromium in Sediments. *Environ. Toxicol. Chem.* 23, 2981–2992.

Besser, J.M., W.G. Brumbaugh, N.E. Kemble, T.W. May, and C.G. Ingersoll. 2004. Effects of Sediment Characteristics on the Toxicity of Chromium(III) and Chromium(VI) to the Amphipod, *Hyalella azteca*. *Environ. Sci. Technol. 38*, 6210–6216.

Buchman, M. F. 2008. NOAA Screening Quick Reference Tables. *NOAA HAZMAT Report 08-*1. Seattle, Washington, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.

Calabrese, A., R.S. Collier, D.A. Nelson, and J.R. MacInnes. 1973. The Toxicity of Heavy Metals to Embryos of the American Oyster *Crassostrea virginica*. *Marine Biol*. *18*, 162–166.

Chesapeake Bay Program (CBP). 2008. Chemical Make Up of Chesapeake Bay: http://www.chesapeakebay.net/chemicalmakeup.aspx?menuitem=14606 Accessed June 2008.

CH2M HILL , 2006. Draft Ecological Risk Assessment Work Plan, Dundalk Marine Terminal, Baltimore, Maryland. September.

CH2M HILL. 2007a. The Relative Contribution of Vanadium and Hexavalent Chromium for Risk-Based Decisions for Environmental Media for Dundalk Marine Terminal, Baltimore, Maryland. July.

CH2M HILL. 2007b. Phase I COPR Investigation Data Report. Dundalk Marine Terminal, Baltimore, Maryland. July.

CH2M HILL. 2009. Chromium Transport Study Report, Dundalk Marine Terminal, Baltimore, Maryland. August

CH2M HILL and ENVIRON. 2007. Sediment and Surface Water Study Work Plan, Dundalk Marine Terminal, Baltimore, Maryland. August.

CH2M HILL and ENVIRON. 2009. Draft Surface Water and Sediment Study Report, Dundalk Marine Terminal, Baltimore, Maryland. May.

Chapman, P.M., F. Wang, W.J., Adams, and A. Green. 1999. Appropriate applications of sediment quality values for metals and metalloids. Environ. Sci. Tchnol. 33: 3937-3941.

Conder, J.M, Sorensen, M.T., Leitman, P., Martello, L.B., and Wenning, R.J. 2009. Avian Ecological Risk Potential in an Urbanized Estuary: Lower Hackensack River, new Jersey, U.S.A. Sci. Tot. Environ. 407: 1035-1047.

Dauer, D.M., S.B. Weisberg, and J.A. Ranasinghe. 2000. Relationships Between Benthic Community Condition, Water Quality, Sediment Quality, Nutrient Loads and Land Use Patterns in Chesapeake Bay. Estuaries. Volume 23. Pages 80-96.

Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas, and P.A. Paquin. 1991. Technical Basis for Establishing Sediment Quality Criteria for Nonionic Organic Chemicals Using Equilibrium Partitioning. *Environ. Toxicol. Chem.* 10, 1541–1583.

EA Engineering, Science, and Technology, Inc. (EA). 2005. Feasibility Studies of Masonville as a Containment Site for Placement of Harbor Dredged Material: Environmental Conditions, Summer 2004. Prepared for the Maryland Port Administration. Sparks, MD. March.

EA Engineering, Science, and Technology, Inc. (EA) 1987. Dundalk Marine Terminal Site Contamination Assessment.

Eisler, R. 1986. Chromium Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. *U.S. Fish Wildlife Serv. Biol. Rep.* 85(1.6). 60 pp.

ENVIRON. 2008. Relationship between the Presence of Chromium Toxicity in Baltimore Harbor: New Scientific Evidence. Proceedings from the August 2007 Johns Hopkins University's Center for Contaminant Transport, Fate and Remediation (CTFR) Symposium: "Initiative to Determine Contaminants Responsible for Toxicity in Baltimore Harbor Sediments." Submitted to Maryland Department of the Environment. March 10.

Exponent. 1998. Baseline Ecological Risk Assessment, Firestone Synthetic Rubber and Tire Hall, W.S., and G.W. Pulliam. 1995. An Assessment of Metals in an Estuarine Wetlands Ecosystem. *Arch. Environ. Contam. Toxicol.* 29, 164–173.

Fendorf, S.E. 1995. Surface Reactions of Chromium in Soils and Waters. Geoderma 57: 65-71.

Fendorf, S.E., and R.J. Zasoski. 1992. Chromium (III) Oxidation by ∂-MnO₂. 1. Characterization. *Environ. Sci. Technol.* 26: 79–85.

GEOL 2008. Seawater Chemistry. http://www.usask.ca/geology/classes/geol206/geol206rr2.html.

Graham, A. and Wadhawan, A. 2007. Kinetics of Cr(VI) Reduction and Cr(III) Oxidation in Baltimore Harbor Sediments. Presented at the Johns Hopkins University Center for Contaminant Transport, Fate, and Remediation Sediment Toxicity Workshop (August 2007) and the Battelle In Situ Sediment Remediation Conference (June 2007).

Graham, A. and Wadhawan, A. 2009. Summary of the Kinetics of Cr(VI) Reduction and Cr(III) Oxidation in Baltimore Harbor Sediments. Presented at the Johns Hopkins University Center for Contaminant Transport, Fate, and Remediation Sediment Toxicity Workshop (March 2009).

Hansel, C.M., B.W. Wielinga, S. Fendorf. 2003. Fate and stability of Cr following reduction by microbially generated Fe(II). In: Science Highlight. Department of Geological and Environmental Sciences, Stanford University and 2MFG, Inc., Fort Collins, CO. May.

Hansen, S.N., and P. Bjerregaard. 1995. Manganese Kinetics in the Sea Star Asterias rubens (L.) Exposed via Food or Water. Mar.Pollut.Bull. 31(1-3):127-132.

Integrated Risk Information System (IRIS). 2003. Toxicological Review for Chromium (VI). [online]. Available at http://www.epa.gov/iris/subst/0144.htm. Accessed: October 31, 2003.

James, B.R., and R.J. Bartlett. 1983. Behavior of Chromium in Soils: VII. Adsorption and Reduction of Hexavalent Forms. *J Environ. Qual.* 12(2): 177–181.

James, B.R. 2002. Chemical Transformations of Chromium in Soils: Relevance to Mobility, Bioavailability and Remediation. In *The Chromium File*, No. 8. The International Chromium Development Association. Available at http://www.icdachromium.com/pdf/publications/crfile8feb02.htm

Kimball, G. 1978. The effects of lesser known metals and one organic to fathead minnows (*Pimephales promelas*) and *Daphnia magna*. Manuscript, Dep.of Entomology, Fisheries and Wildlife, University of Minnesota, Minneapolis, MN :88p..

Klosterhaus, S., J. Baker, G. Zeigler, and D. Fisher. 2007. Toxicity Identification and Evaluation and Long-Term Contaminant Trends in the Baltimore Harbor. February 2007.

Kobayashi, N 1971. Fertilized Sea Urchin Eggs as an Indicatory Material for Marine Pollution Bioassay, Preliminary Experiments. Mar.Biol.Lab 18(6):379-406.

Lin, C.-J. 2002. The Chemical Transformations of Chromium in Natural Waters – A Model Study. *Water Air Soil Pollut*. 139: 137–158.

Long, E.R. 2005. A Reassessment of Chromium Sediment Quality Values. Eighth International Battelle In Situ and On-Site Bioremediation Symposium. Baltimore, MD. June 2005.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environ. Manage*. 19(1), 81–97.

Maa, J.P.-Y., L. Sanford, and J. Halka. 1998. Sediment Resuspension Characteristics in Baltimore. Harbor, Maryland. *Marine Geology*, 146: 137–145.

Magar, V, L Martello, B Southworth, P Fuchsman, M Sorensen, and RJ Wenning. 2008 Geochemical Stability of Chromium in Sediments from the Lower Hackensack River, New Jersey. Sci Tot Environ. 394(1):103-111.

Maryland Department of Natural Resources (MDNR). 2005a. Maryland Tributary Strategy Patapsco/Back Basin Summary Report for 1985-2003 Data. Prepared by the Chesapeake Bay Program Tidal Monitoring and Analysis Workgroup.

Maryland Department of Natural Resources (MDNR). 2005b. *Bay Monitoring Phytoplankton Data*. Available: http://www.dnr.state.md.us/bay/monitoring/phyto/data/algae.html. Accessed 7 October.

Maryland Department of Natural Resources (MDNR). 2007. Maryland Tributary Strategy Patapsco/Back Basin Summary Report for 1985-2005 Data. Prepared by the Chesapeake Bay Program Tidal Monitoring and Analysis Workgroup.

Maryland Department of the Environment (MDE). 2004. Water Quality Analyses of Chromium in the Inner Harbor/Northwest Branch and Bear Creek Portions of Baltimore Harbor in Baltimore City and Baltimore County, Maryland.

Maryland Department of the Environment (MDE). 2005. Title 26 Department of the Environment, Subtitle 08 Water Pollution, Chapter 2 – Water Quality. Code of Maryland Regulations. 2009 Standards in Review.

Maryland Department of the Environment (MDE). 2008. The 2008 Integrated Report of Surface Water Quality in Maryland.

Martello, L., P. Fuschman, M. Sorensen, V. Magar, and R. Wenning. 2007. Chromium Geochemistry and Bioaccumulation in Sediments from the Lower Hackensack River, New Jersey, U.S.A. *Archives of Environmental Contamination and Toxicology*. 53(3): 337-350.

McGee, B.L., D.J. Fisher, L.T. Yonkos, G.P. Ziegler, and S. Turley. 1999. Assessment of sediment contamination, acute toxicity, and population viability of the estuarine amphipod *Leptocheirus plumulosus* in Baltimore Harbor, Maryland, USA. *Environ. Toxicol. Chem.* 18, 2151–2160.

McGeer, J., Henningsen, G., Lanno, R., Fisher, N., Sappington, K., Drexler, J., 2004. Issue Paper on the Bioavailability and Bioaccumulation of Metals. Available online at http://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=86119

Meador, J.P., R.C. Clark, P. Robisch, D. Ernest, J. Landahl, U. Varanasi, S.-L. Chan, and B. McCain. 1994. Analysis of Elements in Sediment and Tissue Cycles I to V (1984–88). National Benthic Surveillance Project: Pacific Coast. *NOAA Tech. Memo. NMFS-NWFSC-16*, 206 pp.

Milacic, R., and J. Stupar. 1995. Fractionation and Oxidation of Chromium in Tannery Waste and Sewage Sludge-Amended Soils. *Environ. Sci. Technol.* 29: 486–493.

Morgan, J.D., D.G. Mitchell, and P.M. Chapman. 1986. Individual and Combined Toxicity of Manganese and Molybdenum to Mussel, Mytilus edulis, Larvae. Bull.Environ.Contam.Toxicol. 37(2):303-307.

Newman, M., 1998. Fundamentals of Ecotoxicology. Ann Arbor Press, Mich.

National Oceanic and Atmospheric Administration (NOAA). 2003/2005. Environmental Monitoring and Assessment Program/Regional Environmental Monitoring and Assessment Program. National Oceanic and Atmospheric Administration. http://www.noaa.gov.

NOAA (National Oceanic Atmospheric Administration). 2007. Magnitude and Extent of Contaminated Sediment and Toxicity in Chesapeake Bay. NOAA Technical Memorandum NOS NCCOS 47 Available at: http://ccma.nos.noaa.gov/publications/NCCOSTM47.pdf

NOAA (National Oceanic Atmospheric Administration) 2008. Habitat Restoration Projects. Available at http://noaa.chesapeakebay.net/habitatrestorationprojectsoysters.aspx. Accessed June 9.

National Park Service (NPS). 1997. Chromium. In *Environmental Contaminants Encyclopedia*. Water Resources Divisions, Water Operations Branch, Fort Collins, Colo.

Oweson, C.A.M., S.P. Baden, and B.E. Hernroth. 2006. Manganese Induced Apoptosis in Haematopoietic Cells of Nephrops norvegicus (L.). Aquat.Toxicol. 77(3):322-328.

Paul, J.F., R.L. Comeleo, and J. Copeland. 2002. Landscape Metrics and Estuarine Sediment Contamination in the Mid-Atlantic and Southern New England Regions. *J. Environ. Qual.* 31: 836–45.

Rice, K.C. 1999. Trace element concentrations in streambed sediment across the continuous United States. Environ. Sci. Technol v. 33, (15), p. 2499-2504.

Richard, F.C., and A.C.M. Bourg. 1991. Aqueous Geochemistry of Cr: A Review. *Water Res.* 25(7): 807–816.

Rifkin, E., P. Gwinn, and E. Bouwer. 2004. Chromium and Sediment Toxicity. *Environ. Sci. Technol.*, July 15, 267a–271a.

Sass, B.M., and D. Rai. 1987. Solubility of Amorphous Chromium (III)-Iron(III) Solid Solution. *Inorg. Chem.* 26: 2228–2232.

Schmieman, E.A., D.R. Yonge, M.A. Rege, J.N. Petersen, C.E. Turick, D.L. Johnstone, and W.A. Apel. 1998. Comparative Kinetics of Bacterial Reduction of Chromium. *J. Environ. Eng.* 124: 449–455.

Schroeder, D.C., and G.F. Lee. 1975. Potential Transformations of Chromium in Natural Waters. *Water Air Soil Pollut*. 4: 355–365.

Sorensen M.T., Conder, J.M., Fuchsman, P.C., Martello, L.B., Wenning, R.J. 2007. Using a sediment quality triad approach to evaluate benthic toxicity in the Lower Hackensack River, New Jersey. *Arch. Environ. Contam. Toxicol.* 53, 36–49.

Stollenwerk, K.G., and D.B. Grove. 1985. Adsorption and Desorption of Hexavalent Chromium in an Alluvial Aquifer. *J Environ. Qual.* 14: 150–155.

Suter, G.W. II, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening of Potential Contaminants of Concern for Effects on Aquatic Biota on Oak Ridge Reservation: 1996 Revision. *ES/ER/TM-96/R2*. Oak Ridge National Laboratory, Oak Ridge, TN. 104 pp.

Texas Commission on Environmental Quality (TCEQ). 2003. Aquatic Life Surface Water Risk-Based Exposure Limits from the Texas Surface Water Quality Standards.

Texas Commission on Environmental Quality (TCEQ). 2006. Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas. RG-263 (revised, January 2006).

U.S. Army Corps of Engineers (USACE) Baltimore District. 2001. Baltimore Harbor Anchorages and Channels, Maryland and Virginia. Final Supplemental Environmental Assessment and Finding of No Significant Impact.

U.S. Army Corps of Engineers (USACE). 2006. Tiered Draft Environmental Impact State for the Proposed Masonville Dredged Material Containment Facility. Prepared by the United States Army Corps of Engineers, Baltimore District. May.

U.S. Fish and Wildlife Service (USFWS). 2005. USFWS Sturgeon Reward Program data.

U.S. Fish and Wildlife Service (USFWS). 2008. Threatened & Endangered Species System. Available at http://ecos.fws.gov/tess_public//pub/stateListing.jsp?state=MD& status=listed. June.

U.S. Army Corps of Engineers (USACE) and Maryland Port Administration (MPA). 1997. Baltimore Harbor Anchorages and Channels, Maryland and Virginia – Integrated Feasibility Study Report and Environmental Impact Statement. March.

United States Environmental Protection Agency (USEPA). 1985. Ambient Water Quality Criteria for Chromium – 1984. USEPA 440/5-84-029.

United States Environmental Protection Agency (USEPA). 1989. Ambient Water Quality Criteria for Ammonia (Saltwater) - 1989. EPA-440/5-88-004. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

United States Environmental Protection Agency (USEPA). 1994. The Recalculation Procedure. Appendix B in "Interim Guidance on Determination and Use of Water-Effect Ratios for Metals." EPA-823-B-94-001. http://epa.gov/region7/water/sprt.htm

United States Environmental Protection Agency (USEPA). 1996. The Metals Translator: A Guidance for Calculating a Total Recoverable Permit Limit from a Dissolved Criterion. Office Of Water. EPA 823-B-96-007. June, 1996.

United States Environmental Protection Agency (USEPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. USEPA 540-R-97-006.

United States Environmental Protection Agency (USEPA). Guidelines for Ecological Risk Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC, EPA/630/R095/002F, 1998.

United States Environmental Protection Agency (USEPA). 2000. Amended Guidance on Ecological Risk Assessment at Military Bases: Process Considerations, Timing of Activities, and Inclusion of Stakeholders. Memorandum from Simon, Ted. W., Ph.D., Office of Technical Services. Available at http://risk.lsd.ornl.gov/ homepage/ecoproc2.pdf

United States Environmental Protection Agency (USEPA). 2001. The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments. Office of Solid Waste and Emergency Response. EPA 540/F-01/014. June 2001. Available at: http://www.epa.gov/oswer/riskassessment/ecoup/pdf/slera0601.pdf

United States Environmental Protection Agency (USEPA). 2002. *National Recommended Water Quality Criteria*: 2002. EPA-822-R-02-047. November.

United States Environmental Protection Agency (USEPA). 2003. Generic Ecological Assessment Endpoints (GEAEs) for Ecological Risk Assessment. EPA/630/P-02/004F. October 2003.

United States Environmental Protection Agency (USEPA). 2004. Sewer Sediment and Control. Urban Watershed Management Branch, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Office of Research and Development, Edison, N.J. Available at http://www.epa.gov/ORD/NRMRL/pubs/600r04059/600r04059.pdf

United States Environmental Protection Agency (USEPA). 2005a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Appendix D: Chromium. *EPA-600-R-02-011*. Available at: http://www.epa.gov/nheerl/publications/files/metalsESB_022405.pdf

United States Environmental Protection Agency (USEPA). 2006a. EIS No. 20060184, Draft EIS, COE, MD, Masonville Dredge Material Containment Facility (DMCF), Construction from Baltimore Harbor Channel North of Point-Rock Point Line, U.S. Army COE Section 10 and 404 Permits.

United States Environmental Protection Agency (USEPA). 2006b. Office of Water, National Recommended Water Quality Criteria. 2006. http://www.epa.gov/waterscience/criteria/wqcriteria.html.

United States Environmental Protection Agency (USEPA). 2007. Framework for Metals Risk Assessment. Office of the Science Advisor. Risk Assessment Forum. USEPA 120/R-07/001 | March.

United States Environmental Protection Agency (USEPA), 2009. ECOTOXicology database (ECOTOX). http://cfpub.epa.gov/ecotox/quick_query.htm.

Weaver, R.M., and M.F. Hochella. 2003. The reactivity of seven Mn-oxides with Cr3+aq : A comparative analysis of a complex, environmentally important redox reaction. *Amer. Mineralogist* 88:2016-2027.

Wenning RJ, Batley GE, Ingersoll CG, Moore DW (eds) (2005) Use of sediment quality guidelines and related tools for the assessment of contaminated sediments (SQG). SETAC Press.

Word, J. Q., B. B. Albrecht, M. L. Anghera, R. Baudo, S. M. May, D. M. Di Toro, J. L. Hyland, C. G. Ingersoll, P. F. Landrum, E. R. Long, J. P. Meador, D. W. Moore, T. P. O'Connor, and J. Shine. 2005. Predictive ability of sediment quality guidelines. In: RJ. Wenning, GE. Batley, CG. Ingersoll, DW. Moore, editors. Use of sediment-quality guidelines and related tools for the assessment of contaminated sediments. Pensacola (FL): Society of Environmental Toxicology and Chemistry. p. 121–161.

Appendix A Chemical-Specific Fate, Transport, and Ecotoxicological Data Profiles

1. Chemical Fate and Transport of COPR Constituents

This section describes the chemical processes that influence the fate, transport, and stability of chromium and other chromite ore processing residue (COPR) constituents in the estuarine environment. Site-specific data from DMT are also provided as applicable.

Aluminum

Aluminum Geochemistry

Aluminum is the most abundant metal and the third most abundant element in the earth's crust and occurs ubiquitously in natural waters as a result of the weathering of aluminumcontaining rocks and minerals. Anthropogenic releases are in the form of air emissions, waste water effluents, and solid waste primarily associated with industrial processes, such as aluminum production. The behavior of aluminum in the environment depends upon its coordination chemistry and the characteristics of the local environment, especially pH. The major features of the biogeochemical cycle of aluminum include leaching of aluminum from geochemical formations and soil particulates to aqueous environments, adsorption onto soil or sediment particulates, and wet and dry deposition from the air to land and surface water. Dissolved aluminum concentrations in surface and groundwater vary with pH and the humic acid content of the water. High aluminum concentrations in natural water occur only when the pH is <5; therefore, concentrations in most surface water are very low. Due to toxicity to many aquatic organisms, including fish, aluminum does not bioconcentrate in aquatic organisms to any significant degree; however, some plants have been shown to accumulate high concentrations of aluminum (ATSDR, 2008).

Aluminum partitions between solid and liquid phases by reacting and complexing with water molecules and anions such as chloride, fluoride, sulfate, nitrate, phosphate, and negatively charged functional groups on humic materials and clay. The transport and partitioning of aluminum in the environment is determined by its chemical properties, as well as the characteristics of the environmental matrix that affect its solubility. At a pH >5.5, naturally occurring aluminum compounds exist predominantly in an undissolved form such as gibbsite, Al(OH)₃, or as aluminosilicates except in the presence of high amounts of dissolved organic material or fulvic acid, which binds with aluminum and can cause increased dissolved aluminum concentrations in streams and lakes. In general, decreasing pH (acidification) results in increased mobility for monomeric forms of aluminum (ATSDR, 2008).

Fate and Transport of Aluminum at DMT

Dissolved aluminum was not detected in any of the pore water samples collected during the Sediment and Surface Water Study, and was only infrequently detected in surface water

samples at levels just above the detection limit of $80.2 \,\mu g/L$. The low and non-detected dissolved aluminum concentrations are not unexpected given the pH values measured during the field collections. Measured pH values in the water column ranged from 6.9 to 9.1, and in this range aluminum is expected to be in the form of a relatively insoluble hydroxide or bound to particulates such as clay minerals or organic matter.

Aluminum concentrations in bulk surface sediment ranged from 1,140 to 35,600 mg/kg; sediments with lowest aluminum concentrations were from the A, B, and J transects, which are relatively sandy locations. The highest aluminum concentrations in surface sediment were from the D, E, and F transects, where the sediment contains appreciable amounts of clays.

Calcium and Magnesium

Geochemistry of Calcium and Magnesium

Calcium and magnesium are both prevalent in seawater as they are each one of the six major dissolved salts that comprise salinity. Calcium has an average concentration in seawater of approximately 400 ppm and the average concentration of magnesium in seawater is 1,350 ppm. The two elements make up 1.2 percent and 3.7 percent of the salinity in average seawater (CBP, 2008; Turekian, 1968). Further, the western side of the Chesapeake Bay watershed consists of sandstones, shales, and siltstones, underlain by limestone. The limestone bedrock contributes calcium and magnesium to groundwater and surface water flowing over and through it (NOAA, 2007). Since both elements are highly soluble, are considered macronutrients, and are critical components to the exoskeletons formed by shellfish, a detailed discussion of the fate and transport and nutrient cycling characteristics was not been included at this juncture;. The cycling and fate and transport of these two elements was deferred to Step 3a, with the intention of developing the discussion only if the Site-specific data indicates that these constituents are present in concentrations adjacent to DMT that are significantly greater than at the reference locations.

Fate and Transport of Calcium and Magnesium at DMT

Dissolve calcium concentrations in surface water collected adjacent to DMT ranged from 47,300 to 333,000 μ g/L (or 47.3 to 333 ppm). This range of concentrations is lower than that of average seawater (400 ppm Ca) and is not unexpected since the environment surrounding DMT is estuarine and is influenced by the influx of freshwater from the Patapsco River and other creeks surrounding the area. The highest Ca concentration observed in surface water at the reference location in the Patapsco River was 199,000 μ g/L. The reason for these measurements is uncertain but could be due to increased flow and influence of freshwater in the central channel of the river. The maximum dissolved calcium concentrations in pore water adjacent to DMT ranged from 19,700 to 233,000 μ g/L; the local reference concentration observed was 186,000 μ g/L. Concentrations of dissolved calcium in seawater and pore water were generally uniform.

Measured calcium concentrations in bulk sediment ranged from 198 to 139,000 mg/kg; sediments exhibiting the lowest calcium concentrations were those collected at Stations A2, A3, and A4. These three stations are located in the shallow area near the southeast corner of the terminal and the sediment is dominantly sandy. Sediment Ca concentrations along the

shoreline adjacent to the 1501/1602 area were generally high, ranging from 12,900 to 63,500 mg/kg. The highest observed Ca concentration in sediment was at Station H1, which is located in the shipping berth on the northern side of the terminal. This high value was observed during the August 2007 sampling event, the value measured during the May event from the same location was 3,000 mg/kg. The sediment calcium concentrations at Stations H2 and H4 were also greater during the August 2007 sampling.

All pore water and surface water samples analyzed contained measurable concentrations of dissolved magnesium, ranging from 195,000 μ g/L to 645,000 μ g/L and 301,000 to 618,000 μ g/L, respectively. The magnesium concentrations in the surface water are within the range that would be expected for water characterized as brackish or marine (seawater has an average concentration of approximately 1,350 ppm or ~1,350,000 μ g/L). This conclusion is further supported when data from the reference locations are considered; the measured magnesium concentrations in both surface water and pore water adjacent to the Site are similar or lower than those observed at the reference location.

In surface sediments, magnesium concentrations ranged from 378 to 30,200 mg/kg; the highest concentrations of magnesium in bulk sediment were measured in sediments collected along the shoreline of the 1501/1602 areas (Stations C1, C2, J1, J2, and J4) and immediately adjacent to the terminal on Transects D and E (Stations D1 and E1, respectively). The magnesium concentrations in surface sediment at these seven stations were higher than those measured at the reference location.

There is no apparent relationship between the pore water concentrations and the total magnesium concentrations in bulk sediment, which indicates that the magnesium measured in the pore water is likely largely influenced by the composition of the overlying surface waters.

Iron

Iron Geochemistry

Iron (Fe) is the fourth most abundant element in the earth's crust and concentrations in surface waters commonly range between 0.01 and 1.4 ppm (Jorgensen et al., 1991; as cited in Gerhardt, 1994), with occurrence increasing in the presence of humic acids (Gerhardt, 1993). In pure form, iron is highly reactive and corrodes (e.g., oxidizes to rust) in moist air and warm temperatures. Historically, iron has been alloyed with other metals to make it stronger, but malleable, and it is used to produce steel. Therefore, its widespread industrial use has increased levels of environmental contamination. Thus the steel mills once found at Sparrow's Point represent a likely source of iron in the Patapsco River.

Dissolved concentrations in water are dependent upon redox conditions and pH. Iron occurs as elemental iron, iron (II) or iron (III) with speciation from iron (II) to iron (III) tending to occur between pH 4.5 and 7. However, photoreduction from iron (III) to iron (II), and the destabilization of weaker iron complexes may increase toxicity of iron in acidic conditions (Gerhardt, 1994). The most common dissolved inorganic form of iron is iron hydroxide (Fe(OH)₂⁺) (Dave, 1984). Iron is ubiquitous in the environment, and as an essential nutrient, it is generally not considered a concern.

Fate and Transport of Iron at DMT

Dissolved iron in pore water collected from the transects adjacent to DMT ranged from nondetected to 9,300 μ g/L (at location F2); and was generally lowest in shoreline stations around the 1501/1602 area in the southeast corner of the Site, as well as in the stations located along Transect I within Colgate Creek. The highest dissolved Fe concentrations in pore water were measured at sampling locations within the shipping berths adjacent to the terminal, where the surface sediment was generally reducing, regardless of season. The concentrations of dissolved Fe in pore water adjacent to the terminal were similar to, or below those measured at the reference locations in the Patapsco River.

Surface water concentrations of dissolved iron were generally below the analytical detection limits. Dissolved iron was detected in only 15 surface water samples collected during the duration of the of Sediment and Surface Water study, with most of the detected concentrations occurring during the February 2008 sampling event (eleven samples from nine locations). During the May and December sampling events there were two samples from each event which contained detectable levels of dissolved iron; dissolved iron was not detected in the water column adjacent to DMT during the August 2007 event. None of the surface water samples collected from the reference locations contained detectable concentrations of dissolved iron.

Iron concentrations in bulk surface sediment range from 6240 to 57,600 mg/kg; with the lower concentrations generally occurring in the sandier, shallower areas and the highest concentrations typically being measured in samples collected from within the berths adjacent to the terminal. All surface sediment samples collected adjacent to the terminal exhibited lower total iron concentrations than sediment collected from the reference location.

Manganese

Manganese Geochemistry

Manganese makes up about 0.1 percent of the earth's crust and occurs naturally in virtually all soils: concentrations of dissolved manganese in natural waters that are essentially free of anthropogenic sources can range from 10 to >10,000 μ g/L. Manganese in its reduced form, Mn(II), is bioavailable and can be readily taken up by benthic fauna and manganese in water may be significantly bioconcentrated at lower trophic levels. The available data indicate that lower organisms such as algae have larger BCFs than higher organisms. Transport and partitioning of manganese in water is controlled by the solubility of the specific chemical form present, which is dominated by the pH, Eh (oxidation-reduction potential), and the characteristics of the available anions. Mn can exist in aqueous solutions in one of four oxidation states. Manganese(II) predominates in most waters (pH 4-7) but may become oxidized at a pH >8 or 9. The principal anion associated with Mn(II) in water is usually carbonate (CO₃₋₂), and the concentration of manganese is limited by the relatively low solubility (65 mg/L) of MnCO₃. In relatively oxidized water, the solubility of Mn(II) may be controlled by manganese oxide equilibria, with manganese being converted to the Mn(II) or Mn(IV) oxidation states. In reducing environments, manganese tends to be controlled by formation of a poorly soluble sulfide. The oxidation state of Mn in surface water and sediment may also be influenced by microbial activity (ATSDR, 2000a).

The tendency of soluble manganese compounds to adsorb to soils and sediments depends mainly on the cation exchange capacity and the organic composition of the soil content and the ion exchange capacity of the soil; thus, adsorption may be highly variable. In some cases, adsorption of manganese to soils may not be a readily reversible process. It is generally thought that there are two primary mechanisms that explain the retention of Mn by sediments and soils: cation exchange reactions and adsorption to other oxides via ligand exchange reactions (ATSDR, 2000a).

Fate and Transport of Manganese at DMT

The station-specific maximum manganese concentrations in surface water ranged from 31 to 1,160 μ g/L. Dissolved Mn concentrations were lowest along the shoreline of the 1501/1602 area (Transects A, B, C, and J) as well as along Transect I, which is situated within the confluence of Colgate Creek and the Patapsco River. The highest concentrations of Mn in surface water were observed along the berthing areas on the north and south sides of the terminal, with the highest concentrations typically having been observed in deeper portions of the water column. On the southern side of the terminal, the Mn concentrations exhibit a trend of decreasing concentration with increasing distance from the terminal; on both Transects D and E, observed Mn concentrations were comparable to or below the reference concentration of 347 μ g/L at the furthest sampling location from DMT.

Measured concentrations of Mn in pore water exhibited a similar trend to that seen in the surface water, however, the range of observed concentrations was much greater, ranging from 43 to 25,600 μ g/L. The lowest concentrations of Mn in pore water were observed in the sandy, shoreline area around the 1501/1602 area of DMT. The highest pore water concentrations were observed on the D transect at stations that were positioned within the berthing area. Pore water collected from the reference location contained 24,600 μ g/L Mn.

Maximum measured manganese concentrations in surface sediment ranged from 134 to 3,550 mg/kg, with the highest concentrations observed within the berthing area on the southern side of the terminal (station D2). The concentrations in the sandier, shallow areas on the south side of the terminal and along the northern edge of the terminal are generally lower than those measured in the reference area (1,770 mg/kg).

Vanadium

Vanadium Geochemistry

Vanadium and chromium are chemically similar; they are adjacent to each other in the periodic table, and chemists historically referred to vanadium as "pan-chromium." It is likely that vanadium and chromium behavior in the environment will not be significantly different. Historically, vanadium has been used in steel mills as vanadium pentoxide and in cleaning boilers fired by oil containing vanadium (HSDB, 2009).

Transport and partitioning of vanadium in water and soil is influenced by pH, redox potential, and the presence of particulates. If released into water, vanadium is expected to exist primarily in the tetravalent and pentavalent forms. Both species are known to bind strongly to mineral or biogenic surfaces by adsorption or complexing. Although vanadium forms complexes with organic matter, it is generally not incorporated into organic compounds. In fresh water, vanadium generally exists in solution as the vanadyl ion (V⁴⁺)

under reducing conditions and the vanadate ion (V⁵⁺) under oxidizing conditions, or as an integral part of, or adsorbed onto, particulate matter. Both V⁴⁺ and V⁵⁺ species bind strongly to mineral including manganese oxide and ferric hydroxide or biogenic surfaces by adsorption or complexing. Sorption and biochemical processes are thought to contribute to the removal of vanadium from sea water. Upon entering the ocean, almost all vanadium is deposited on the sea floor, and only about 0.001 percent of vanadium persists in soluble form (ATSDR, 1992).

Fate and Transport of Vanadium at DMT

Concentrations of dissolved vanadium in pore water ranged from below the detection limits to 11.9 μ g/L and those in surface water ranged from below the detection limit to 4.4 μ g/L. In both media, the maximum concentrations measured adjacent to DMT were similar to those observed at the reference location.

Vanadium concentrations in surface sediment were generally uniform around DMT, and ranged from 9.7 to 231 mg/kg. The highest concentration was measured at location I3, and Stations A2, A3, and A4 exhibited the lowest concentrations. With the exception of two locations on the I transect (I3 and I4), vanadium concentrations in surface sediment were comparable to, or lower than, the measured reference concentrations.

2. Mechanisms of Toxicity

Chromium

As previously discussed, chromium is most commonly found in either the trivalent or hexavalent oxidation state (HSDB, 2006). Chromium speciation is dependent on geochemical conditions (USEPA, 2005; Rifkin et al., 2004). Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and considerably more toxic (USEPA, 1985; ATSDR, 2000b). Cr(VI) is highly reactive and thermodynamically unstable, and is readily reduced to Cr(III) in anaerobic conditions typical of the estuarine environment. Cr(III) has very low solubility at estuarine midrange pH values (6–8) due to the formation of chromium hydroxide Cr(OH)₃. The oxidation of Cr(III) to Cr(VI) does not readily occur in natural environments (Barnhart, 1997; NPS, 1997). As such, Cr(III) is very stable and is the dominant form present in the sediments of estuarine environments.

As shown in the species sensitivity distributions shown in Figure A-1, Cr(VI) is more toxic than Cr(III) in aquatic systems. These distributions were derived using data from USEPA's ambient water quality criteria (USEPA, 1985). These graphics indicate that polychaetes and crustaceans are the most sensitive saltwater species, whereas fish and some mollusks are much less sensitive to Cr(VI) (ENVIRON, 2005). In addition, these graphics show that certain freshwater species are much more sensitive to Cr(VI) than are saltwater species. Ambient water quality criteria are available for Cr(VI) in saltwater and both Cr(VI) and Cr(III) in freshwater. Cr(III) is generally nontoxic to aquatic organisms in seawater owing to the limited solubility. Indeed, USEPA has not derived an ambient water quality criterion for Cr(III) in saltwater because of the low solubility. Studies that have attempted to dissolve sufficient Cr(III) in salt water, and even fresh water, were often at pH levels that lacked ecological relevance, and when pH was increased to relevant levels, Cr(III) precipitated out

of solution (Pickering and Henderson, 1966; Rehwoldt et al., 1973; Calabrese et al., 1973; Negilski, 1976; Stevens and Chapman, 1984; Martin and Holdich, 1986).

Cr(VI) is also more toxic than Cr(III) in sediment, and often this is characterized by geochemical conditions or the presence of Cr(VI) in pore water or both. As described by USEPA (2005), the speciation of chromium in sediment can be inferred from the presence or absence of AVS. Cr(VI) converts rapidly to Cr(III) under reducing (or even mildly oxidizing) conditions. Because AVS occurs only under reducing conditions, the presence of AVS indicates a greatly reduced load of Cr(VI) (Ankley, 1996; USEPA, 2005). Further, because Cr(III) is essentially nontoxic in saltwater exposures, the presence of AVS indicates that toxicity due to chromium is unlikely. Indeed, polychaetes (*Neanthes arenaceodentata*) that constructed tubes from and ingested pure chromium hydroxide precipitate exhibited no adverse effects on reproduction, feeding behavior, or survival during a 293-day exposure (Oshida et al., 1976, 1981). This result is particularly notable because the polychaete *Neanthes spp.* is among the most sensitive taxa to Cr(VI) in aqueous saltwater environments, as shown in species sensitivity distributions shown in Figure A-1. Similarly, amphipods that lived in and ingested chromium hydroxide precipitate also showed no adverse effects (Berry et al., 2004).

Similarly, Becker et al. (2006) found no toxicity to amphipods at total chromium sediment concentrations as high as 1,310 mg/kg. Sediment chromium was found to be associated with phases in which chromium has limited bioavailability (i.e., chromite and iron oxide). This observation is consistent with USEPA's (2005) position on chromium, that chromium in sediments is nontoxic where there are measurable amounts of AVS because AVS forms only in anoxic sediments, and Cr(VI) is thermodynamically unstable in these conditions.

USEPA has advocated using geochemical measures and measures of chromium in pore water for an evaluation of potential chromium sediment toxicity because total chromium sediment quality goals (SQGs) do not accurately predict chromium toxicity (USEPA, 2005). Pore water represents the potential worst case of chemical concentrations in overlying water due to limited dilution and flow; as such, the use of pore water compared to water quality criteria is protective of sediment-dwelling organisms and organisms in the water column.

MDE presented an approach consistent with the USEPA in the 2004 study of Baltimore Harbor, where sediment geochemistry, pore water sampling, and sediment toxicity testing results were used to evaluate potential chromium toxicity. The data, according to MDE (2004), indicated that "... in situ environmental conditions (i.e., low dissolved oxygen, high biological oxygen demand (BOD) produced sulfide concentrations within the sediments at levels well in excess of what would be needed to convert the Cr present in the Northwest Branch/Inner Harbor and Bear Creek sediments from Cr VI to Cr III and render it unavailable.... As a result, the sediment chemistry present in the Northwest Branch/Inner Harbor and Bear Creek creates an environment where chromium cannot be determined as the specific cause of the observed toxicity."

Calcium

There is no readily available information regarding the mechanism of toxicity for calcium. Calcium is an essential macronutrient to many organisms. Calcium is not considered toxic in any of the media evaluated as part of this risk assessment. Furthermore, calcium is one of the major elements comprising salinity in seawater and is expected to be present in the media evaluated.

Iron

Studies have shown that acute toxicity values for freshwater fish and invertebrates following iron exposure range from 0.3 to 2.0 mg/L (Dave, 1984). Survival of brown trout alevin (swim-up fry) and eyed-eggs was reduced at an average iron concentration of 5.170 mg/L (Geertz-Hansen and Mortensen, 1983). Common carp (*Cyprinus carpio*) and guppy exposed to iron (as iron ammonium alum) resulted in LC₅₀ values of 1,200 and 1,125 mg/L, respectively (Yarzhombek et al., 1991).

Mullick and Konar (1991) found the 48 hour LC_{50} value of copepod (*Diaptomus forbesi*) to be 86.5 mg/L iron (as iron sulfate). After 30 days of exposure to 10, 20 or 50 mg/L iron (as FeSO₄ at pH 4.5), mayfly (Leptophlebia marginata) exhibited decreased activity and food consumption at all concentrations (pH 4.5) (Gerhardt, 1992). Uptake of and survival to iron was dose-dependent in mayflys (Leptophlebia marginata L.) when exposed to 10-500 mg/L iron. The pH had little effect on the rate of uptake, but played an important role in survivability of the mayfly to iron exposure. The 96-hour LC₅₀ values obtained during this study were 106.3 and 89.5 mg/L at pH 7 and 4.5, respectively. The EC₅₀ values (escape behavior) were 70 and 63.9 mg/L at pH 7 and 4.5, respectively (Gerhardt, 1994). Reproduction of Daphnia magna was stimulated at concentrations up to 0.001 mg/L, and reproduction and survival were inhibited by iron at 0.158 mg/L and 0.256 mg/L, respectively (Dave, 1984). This is considerably lower than the 4.380 mg/L concentration causing 16 percent reproductive decrement in a 3-week test with Daphnia magna (Biesinger and Christensen, 1972). Dave argued that his result was more applicable to a situation in which "an acidic iron-containing waste water is discharged into a lake or a river" where it is neutralized, but Biesinger and Christensen's (1972) result "is probably more close to the steady-state situation in natural freshwater without any point source of iron."

The National Oceanic and Atmospheric Administration (NOAA) identifies a "severe" effects level for iron of 4 percent for freshwater sediment (Buchman, 2008). In addition, the screening ecological benchmark for iron in sediments is the lowest effects level, or LEL of 20,000 mg/kg (Persaud et al., 1993) and that for surface water is the national recommended ambient water quality criteria of 1 mg/L.

Magnesium

It is normally found in seawater and few published studies exist concerning the ecotoxicity of magnesium in aquatic environments. As essential nutrients, calcium and magnesium are generally not considered to be toxic to aquatic life. However, concentrations of these metals in the water can affect water quality parameters that may increase or decrease the toxicity of other metals. For example, increased calcium hardness reduced the toxicity of copper to channel catfish (Perschbacher and Wurts, 1999).

Manganese

Acute exposure to manganese is not considered to be a severe threat to fish, and the range of 96-hour LC_{50} values is much higher than concentrations typically found in surface waters. Some acute toxicity values range from a 96-hour LC_{50} value of 3,230.0 mg/L for the tropical perch (*Colisa fasciatus*) (Nath and Kumar, 1987) to a 48-hour EC₅₀ value of 9.8 mg/L for *D. magna* (Biesinger and Christensen, 1972).

Acute toxicity tests using fathead minnows and *Daphnia magna* were conducted in relatively hard water. Acute toxicity values for manganese ranged from 19.4 mg/L for *D. magna* to 33.80 mg/L for fathead minnow (Kimball, 1978). Manganese toxicity was increased by the presence of food during the *D. magna* acute toxicity tests. Biesinger and Christensen (1972) reported an LC_{50} value of 9.80 mg/L for *D. magna* without food added. In addition, there was an EC_{50} value for *D. magna* (reproductive impairment) of 5.2 mg/L and a 3-week LC_{50} value of 5.7 mg/L. The chronic toxicity value (3 weeks) of 4.10 mg/L resulted in 16 percent reproductive impairment for *D. magna*.

After a 30-day exposure to 0.36 and 1.08 mg/L manganese, brown trout showed a decreased body calcium concentration and impaired development (Reader et al., 1988). The chronic toxicity value resulting from this study was 0.21 mg/L manganese. The ecological screening benchmarks for manganese in surface waters and sediments (lowest effects level, or LEL) are 0.120 mg/L (EPA Region 3 recommended value) and 460 mg/kg (Persaud et al., 1993), respectively. Furthermore, body residues of manganese in benchic macroinvertebrates are correlated to the concentration of the metal in the surficial sediments (Bendell-Young and Harvey, 1986).

Vanadium

Following 96 hours, goldfish (*Carassius auratus*) retained 0.05 percent of a 0.05 mg/L vanadium (as NH₄VO₃) exposure concentration in their intestines (Edel and Sabbioni, 1993). The significant presence of vanadium in the intestine suggests that it might be secreted with urine. Furthermore, the liver, gill, heart and kidney also retained significant amounts of vanadium. Ray et al. (1990) found similar accumulation target organs in the catfish (*Clarias batrachus*). However, after a 96-hour exposure to 5 to 15 mg/L vanadium, retention was highest in the kidney, followed by the liver, gill, and intestine. Acute toxicity endpoints range from 16.5 mg/L (LC₅₀ value) for the Chinook salmon (*Oncorhynchus tshawytscha*) to 1.52 (48-hour EC₅₀ value) for *Daphnia magna* (Suter and Tsao, 1996). Knudtson (1979) compared the acute toxicity of four vanadium compounds to guppies (*Lebistes reticulatus*) and goldfish (*Carassius auratus*). The guppy was most tolerant to vanadium as NH₄VO₃, yielding a 144-hour LC₅₀ value of 1.49 mg/L. *L. reticulatus* was most sensitive to vanadium as VOSO₄ with a 144 hour LC₅₀ value of 8.08 mg/L, and most sensitive to vanadium as NaVO₃ with a 144-hour LC₅₀ value of 2.45 mg/L.

Daphnia magna yielded a lethal chronic toxicity value of 1.9 mg/L vanadium as sodium metavanadate following a 23-day exposure (Beusen and Neven, 1987).

The screening ecological benchmark for vanadium in surface water is the Tier 2 Secondary Chronic Value of 0.020 mg/L from Suter and Tsao (1996).

3. Food Chain Exposure and Bioaccumulation Potential

Chromium

Cr(III) is an essential nutrient for biological organisms; however, chromium does not biomagnify in the food web. Flora and fauna have natural mechanisms to regulate uptake and elimination of Cr(III). Specifically, Cr(III) plays a role in sugar and protein metabolism (Eisler, 1986; Newman, 1998; NPS, 1997). As a result of bioregulation, the extent to which Cr(III) is accumulated is expected to be concentration dependent. That is, the ratio of chromium in tissue to bioavailable chromium in environmental media will be highest when bioavailable chromium is scarce and lowest when bioavailable chromium is relatively abundant.

Like many other metals, chromium exhibits biodiminution (decreasing concentration at higher trophic levels) through the food web. Eisler (1986) indicated the following:

....Although chromium is abundant in primary producers, there is little evidence of biomagnification through marine food chains consisting of herbivores and carnivores. [Previous researchers] followed the transfer of assimilated and unassimilated radiochromium through an experimental food chain that included phytoplankton, brine shrimp, post larval fish, and adult fish. When chromium was successively transferred through each of the four trophic levels, concentrations declined after each transfer.

A study more directly related to DMT is of chromium bioaccumulation from sediment assessed for a wetland site along the Hackensack River surrounded by COPR (Hall and Pulliam, 1995). Researchers found that metals (including chromium) were detected at concentrations nine times greater in the COPR-influenced wetland study site than in a reference site. They also found no statistically significant differences between sample concentrations of total chromium collected from the area of interest and reference sites for blue crab (Callinectes sapidus) muscle tissue, whole-body killifish (Fundulus sp.), or giant reed tissue (Phragmites spp.). Although there was a statistically significant difference seen in chromium in blue crab hepatopancreas organ tissues between the investigation area and the reference site (Hall and Pulliam, 1995), researchers indicated that this was likely due to foraging strategies of crabs and the role of their hepatopancreas. Crabs ingest sediments while gleaning food and the hepatopancreas's function is to filter foreign materials from the blood. Researchers concluded that the lack of statistically significant differences in total chromium concentrations in the muscle tissue samples provides evidence of total chromium's tight binding to the study site sediments and low bioavailability (Hall and Pulliam, 1995). These results are also consistent with the bioregulation of chromium as an essential nutrient.

As has been discussed, Cr exists as Cr(III) and Cr(VI). There is abundant evidence that unlike Cr(III), Cr(VI) does not persist in biological tissues (IRIS, 2003; ATSDR, 2000b; NPS, 1997). Cr(VI) is rapidly taken up by cells through the sulfate transport system and is quickly reduced to Cr(III) in all tissues (IRIS, 2003, NPS, 1997; ATSDR, 2000b). There is no evidence that Cr(III) is converted to Cr(VI) in biological systems (IRIS, 2003). Thus, Cr(VI) exerts toxicity through direct contact mechanisms rather than bioaccumulation to a critical concentration in tissue.

These studies (IRIS, 2003, NPS, 1997; ATSDR, 2000b) and general information from scientific literature indicate that prey consumption by aquatic-feeding wildlife is not a major exposure pathway for either Cr(III) or Cr(VI).

Aluminum

Aluminum is not bioaccumulated to a large degree (BCF < 300) in most fish and shellfish. Brook trout have been shown to accumulate slightly more aluminum (measured as wholebody residues) at pH 5.6-5.7 than at pH 6.5-6.6 (Cleveland et al., 1989). The estimated steady-state BCF values for aluminum in brook trout, (which were inversely related to pH), were 215 at pH 5.3, 123 at pH 6.1, and 36 at pH 7.2 (Cleveland et al., 1989). The maximum BCFs were 232 at pH 5.3, 153 at pH 6.1, and 46 at pH 7.2 (Cleveland et al., 1989). When transferred to water of the same pH without added aluminum, brook trout eliminated aluminum from tissues more rapidly at pH 5.3 than at pH 6.1 and 7.2 (Cleveland et al., 1989). In tissues of smallmouth bass, aluminum concentrations were higher and more variable in gill tissue than in other tissues (Brumbaugh and Kane, 1985). Aluminum concentrations in rainbow trout from an alum treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle (Buergel and Soltero, 1983). Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles (Cleveland et al., 1989). These result simply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues (Cleveland et al., 1989). Concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from $3 \mu g/g$ (for fish exposed to $33 \mu g/L$) to $96 \mu g/g$ (for fish exposed to 264 μ g/L) at pH 5.5 (Buckler et al., 1995). After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentrations (Buckler et al., 1995).

Bioconcentration of aluminum has also been reported for aquatic insects. Aluminum accumulation in mayfly nymphs (*Heptagenia sulphureu*) was reported at pH 4.5 (Frick and Herrmann, 1990). The nymphs were exposed at two concentrations (0.2 and 2 mg inorganic aluminum per liter) and for two exposure times (2 and 4 weeks), the longer time period including a molting phase (Frick and Herrmann, 1990). When nymphs were exposed to the higher concentration of aluminum for two instar periods, with a molt in between, the aluminum content (2.34 mg Al/g dry weight) nearly doubled compared with that of a one-instar treatment (1.24 mg Al/g dry weight) (Frick and Herrmann, 1990). The major part of the aluminum was deposited in the exuviae of the nymphs, as the aluminum determination in the nymphs showed a 70 percent decrease in aluminum content after molting (Frick and Herrmann, 1990).

As previously indicated, the behavior of aluminum in the environment depends upon its coordination chemistry and the characteristics of the local environment, especially pH. Specifically, high aluminum concentrations in natural water occur only when the pH is <5; therefore, concentrations in most surface water are very low. The bioconcentration of aluminum in fish is dependent on pH, as well as total organic carbon (ATSDR, 2008).

Several studies reported in ATSDR (2008) have shown an inverse relationship with pH and bioconcentration factors (i.e., bioconcentration increases with decreasing pH). This is not surprising given that higher concentrations of dissolved (and therefore more bioavailable) aluminum are expected as waters become more acidic. Because aluminum is toxic to many aquatic organisms, including fish, aluminum does not tend to bioconcentrate in aquatic organisms to any significant degree. However, some plants and aquatic invertebrates have been shown to accumulate high concentrations of aluminum (ATSDR, 2008). One study in Sweden reported impaired breeding of pied flycatchers (*Ficedula hypoleuca*) related to levels of aluminum in the bone marrow of the birds. The author suggests that aluminum accumulation in stoneflies provided the food chain link between aluminum in a lake and this terrestrial bird species. This information suggests that aluminum may bioaccumulate in to some degree, though this bioaccumulation is most likely at low pH values (less than 5). Since pH values in surface water, sediment, and pore water surrounding DMT are not at these low levels, indicate that prey consumption by aquatic-feeding wildlife is not a major exposure pathway for aluminum.

Calcium and Magnesium

Calcium is an essential element and is present in living organisms as a constituent of bones, teeth, shell and coral (Peterson, 1992). Calcium accounts for approximately 2 percent of body weight with the mineral in bones and teeth being mostly hydroxyapatite (Peterson, 1992). The bioaccumulation of calcium in organisms is highly dependent on its availability for uptake by the organisms (Janssen et al., 1997). Chemical properties which would affect the availability of calcium uptake include pH, ionic strength and concentration of other solutes in the aqueous media. Sulfates and phosphates in solution will tend to precipitate calcium from solution (Lide, 1998) and make it less available for bioaccumulation. Magnesium is an essential element and widespread in living cells (Aikawa, 1991) and does not bioconcentrate in aquatic organisms.

Calcium and magnesium are both prevalent in seawater. Additionally, both elements are highly soluble, are considered macronutrients, and are critical components to the exoskeletons formed by shellfish. Unlike other metals that may bioaccumulate in marine invertebrates via passive processes, cellular mechanisms that regulate the uptake and elimination of calcium and magnesium exist in marine invertebrates, as well as other marine plants and animals (Rainbow, 1990). Therefore, these constituents generally do not accumulate to toxic levels, and are unlikely to be a concern for food chain exposures.

Iron, Manganese, and Vanadium

Iron, manganese, and vanadium are among several naturally occurring metals that are considered essential nutrients for marine biota. As such, aquatic organisms have developed mechanisms for the sequestration, transport, and utilization of these metals, and have a general capacity for metal tolerance (Langston, 1990). However, there is a threshold at which these systems are overloaded and toxic effects can occur.

Manganese in its reduced form, Mn(II), is bioavailable and can be readily taken up by benthic fauna and manganese in water may be significantly bioconcentrated at lower trophic levels. The available data indicate that lower organisms such as algae have larger BCFs than higher organisms. In contrast to water, manganese may adsorb to sediments, but this is dependent on the cation exchange capacity and the organic composition of the sediments. Some have found that low concentrations of manganese may be "fixed" by clays and are not readily released into solution. However, at high concentrations, manganese may be desorbed by ion exchange mechanisms with other ions and in solution. Therefore, uptake of manganese into the food chain either from water or sediment (at high concentrations) is a complete exposure pathway.

Bioconcentration data for all of these inorganics is uncertain. Bioconcentration factors found in the EPA's ECOTOX database range from less than 10 to several thousand for all three inorganics for a few categories of organisms including moss and algae, crustaceans, fish, and worms. However, there is not a substantial amount of published data available for any compound within these categories. The studies that have been completed may not necessarily be for species found near the DMT or for similar environmental conditions (e.g., TOC, pH, salinity, redox, AVS). Thus the ability to use this information to determine potential uptake and the need to complete a quantitative assessment of exposure to wildlife is uncertain. Although, marine plants and invertebrates contain higher levels of vanadium than terrestrial plants and animals, no data are available regarding biomagnification of vanadium within the food chain. However, vanadium in terrestrial vertebrates is very low and human studies suggest that biomagnification is unlikely (ATSDR, 1992). Thus the general information from scientific literature indicates that prey consumption by aquaticfeeding wildlife is not a major exposure pathway for vanadium. Similar conclusions can be drawn for iron and manganese. Given the uncertainty of biomagnifications and the fact that most if not all upper trophic level wildlife likely foraging near DMT receives only a small portion of their diet from the Site, exposure dose modeling will not be completed.

4. References

Aikawa JK. 1991. Metals and Their Compounds in the Environment. Merian E, ed. Weinheim, Germany: VCH. 1025-1034.

Ankley, G. T. 1996. Evaluation of Metal:Acid Volatile Sulfide Relationships in the Prediction of Metal Bioaccumulation by Benthic Macroinvertebrates. *Environ. Toxicol. Chem.* 15, 2138–2146.

Agency of Toxic Substances and Disease Registry (ATSDR). 2008. Toxicological profile for aluminum. Available at http://www.atsdr.cdc.gov/toxprofiles/tp22.html.

Agency of Toxic Substances and Disease Registry (ATSDR). 2000a. Toxicological profile for manganese. Available at http://www.atsdr.cdc.gov/toxprofiles/tp151.html.

Agency of Toxic Substances and Disease Registry (ATSDR). 2000b. Toxicological profile for chromium. Available at http://www.atsdr.cdc.gov/toxprofiles/tp7.html.

Agency of Toxic Substances and Disease Registry (ATSDR). 1992. Toxicological profile for vanadium. Available at http://www.atsdr.cdc.gov/toxprofiles/tp58.html.

Barnhart, J. 1997. Chromium Chemistry and Implications for Environmental Fate and Toxicity. J. Soil Contam. 6(6), 561–568.

Becker D.S., Long, E.R., Proctor, D.M., Ginn, T.C. 2006. Evaluation of potential toxicity and bioavailability of chromium in sediments associated with chromite ore processing residue. *Environ. Toxicol. Chem.* 25:2576-2583.

Bendell-Young, L. and H. Harvey. 1986. Uptake and tissue distribution of manganese in the white sucker (*Castostomus commersoni*) under conditions of low pH. Hydrobiologia. 133: 117-125.

Berry, W.J., W.S. Boothman, J.R. Serbest, and P.A. Edwards. 2004. Predicting the Toxicity of Chromium in Sediments. *Environ. Toxicol. Chem.* 23, 2981–2992.

Beusen, J., and B. Neven. 1987. Toxicity of vanadium to different freshwater organisms. Bull. Environ. Contam. Toxicol. 39: 194-201.

Biesinger, K. E. and G. M. Christensen. 1972. Effects of various metals on survival, growth, reproduction and metabolism of the *Daphnia magna*. J. Fish. Res. Bd. Canada. 29:1691-1700.

Brumbaugh, W.G., and D.A. Kane. 1985. Environ Sci Technol. 19: 828-83.

Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.

Buckler, D.R., L. Cleveland, E.E. Little, and W.G. Brumbaugh. 1995. Aquat Toxico1. 31: 203-16.

Buergel PM, Soltero RA. 1983. J Freshwater Ecol. 2: 37-44.

Calabrese, A., R.S. Collier, D.A. Nelson, and J.R. MacInnes. 1973. The Toxicity of Heavy Metals to Embryos of the American Oyster *Crassostrea virginica*. *Marine Biol*. 18, 162–166.

Chesapeake Bay Program (CPB). 2008. Chemical Make Up of Chesapeake Bay: http://www.chesapeakebay.net/chemicalmakeup.aspx?menuitem=14606 Accessed June 2008.

Cleveland L., E.E. Little, R.H. Wiedmeyer, and D.R. Buckler. 1989. Environmental Chemistry and Toxicology of Aluminum. Lewis TE, ed. Chelsea, MI: Lewis Publ, Inc. 229-46.

Dave, G. 1984. Effects of waterborne iron on growth, reproduction, survival and haemoglobin in Daphnia magna. Comp. Biochem. Physiol. 78C:433-438.

Edel, J., and E. Sabbioni. 1993. Accumulation, distribution and form of vanadate in the tissues and organelles of the mussel *Mytilus edulis* and the goldfish *Carassius auratus*. Sci. Tot. Env. 133: 139-151.

Eisler, R. 1986. Chromium Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. *U.S. Fish Wildlife Serv. Biol. Rep.* 85(1.6). 60 pp.

ENVIRON. 2005. Summary of Chromium Ecotoxicity and Bioaccumulation Potential in Aquatic Environments. Arlington, Va. April.

Frick, K.G., and J. Herrmann. 1990. Ecotoxicol Environ Saf. 19: 81-8.

Geertz-Hansen, P., and E. Mortensen. 1983. The effect of dissolved and precipitated iron on the reproduction of brown trout (*Salmo trutta*). Vatten 39:55-62.

Gerhardt, A. 1992. Effects of subacute doses of iron on L. marginata (Insecta:Ephemeroptera). *Freshwat. Biol.* 27: 79-84.

Gerhardt, A. 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. *Water Air Soil Pollut*. 66:289-314.

Gerhardt, A. 1994. Short-term toxicity of iron (Fe) and lead (Pb) to the mayfly Leptophlebia marginata (L.) (Insecta) in relation to freshwater acidification. Hydrobiologia. 284: 157-168.

Hall, W.S., and G.W. Pulliam. 1995. An Assessment of Metals in an Estuarine Wetlands Ecosystem. *Arch. Environ. Contamin. Toxicol.* 29:164-173.

HSDB (Hazardous Substance Data Bank). 2006. Profile for chromium compounds. Available at http://toxnet.nlm.nih.gov/. Accessed September 15, 2006.

HSDB (Hazardous Substance Data Bank). 2009. Profile for vanadium compounds. Available at http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~KRfQvg:2. Accessed August 14, 2009.

Integrated Risk Information System (IRIS). 2003. Toxicological Review for Chromium (VI). Available at http://www.epa.gov/iris/subst/0144.htm. Accessed October 31.

Janssen, R.P.T., L. Posthuma, R. Baerselman, H.A. Den Hollander, R.P.M. Van Veen, and J.G.M. Peunenburg. 1997. *Environ Toxicol Chem* 16: 2470-8.

Jorgensen, S., S. Nielsen, and L. Jorgensen. 1991. Handbook of ecological parameters and ecotoxicology. Elsevier, Amsterdam.

Kimball, G. 1978. The effects of lesser known metals and one organic to fathead minnows (*Pimephales promelas*) and *Daphnia magna*. Manuscript, Dep.of Entomology, Fisheries and Wildlife, University of Minnesota, Minneapolis, MN :88p.

Knudtson, B. 1979. Acute toxicity of vanadium to two species of freshwater fish. Bull. Environ. Contam. Tox. 23: 95-9.

Langston, W.J. 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. Pages 101-122 in Furness, R.W., and P.S. Rainbow (eds). *Heavy Metals in the Marine Environment*. CRC Press, Boca Raton, FL.

Lide DR, ed. 1998. CRC Handbook of Chemistry and Physics. 79th ed. Boca Raton, FL: CRC Press Inc., 4-47 to 4-49.

Martin, T.R., and D.M. Holdich. 1986. Water Res. 20(9), 1137-1147.

Maryland Department of the Environment (MDE). 2004. Water Quality Analyses of Chromium in the Inner Harbor/Northwest Branch and Bear Creek Portions of Baltimore Harbor in Baltimore City and Baltimore County, Maryland.

Mullick, S., and S. Konar. 1991. Combined effects of zinc, copper, iron, and lead on plankton. *Environ. Ecol.* 9(1): 187-198.

Nath, K., and N. Kumar. 1987. Toxicity of manganese and its impact on some aspects of carbohydrate metabolism of a freshwater fish teleost, *Colisa fasciatus*. *Sci. Tot. Environ*. 67:257-262.

National Park Service (NPS). 1997. Chromium. In *Environmental Contaminants Encyclopedia*. Water Resources Divisions, Water Operations Branch, Fort Collins, Colo.

Newman, M., 1998. Fundamentals of Ecotoxicology. Ann Arbor Press, Mich.

Negilski, D.S. 1976. Aust. J. Mar. Freshwater Res. Vol. 27, pp. 137-149.

NOAA (National Oceanic Atmospheric Administration). 2007. Magnitude and Extent of Contaminated Sediment and Toxicity in Chesapeake Bay. NOAA Technical Memorandum NOS NCCOS 47 Available at: http://ccma.nos.noaa.gov/publications/NCCOSTM47.pdf

Oshida, P.S.; A.J. Mearns, D.J. Reish, C.S. Word. 1976. The Effects of hexavalent and trivalent chromium on Neanthes arenaceodetata (Polychaeta). *TM* 225. Southern California Coastal Water Research Project, El Segundo, California. February.

Oshida, P.S., L.S. Word, and A.J. Mearns. 1981. Effects of hexavalent and trivalent chromium on the reproduction of Neanthes arenaceodentata (Polychaeta). *Mar. Environ. Res.* 5, 41–49.

Persaud, D.R., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Water Resource Branch, Ontario Ministry of Environment and Energy.

Perschbacker, P.W., and W.A. Wurts. 1999. Effects of calcium and magnesium hardness on acute copper toxicity to juvenile channel catfish Ictalurus punctatus. Aquaculture 172:275-280.

Pickering, Q.H. and C. Henderson. 1966. Air Water Pollut. Int. J. 10, 453-463.

Rainbow, P.S. 1990. Heavy metal levels in marine invertebrates. Pages 68-79 in Furness, R.W., and P.S. Rainbow (eds). *Heavy Metals in the Marine Environment*. CRC Press, Boca Raton, FL.

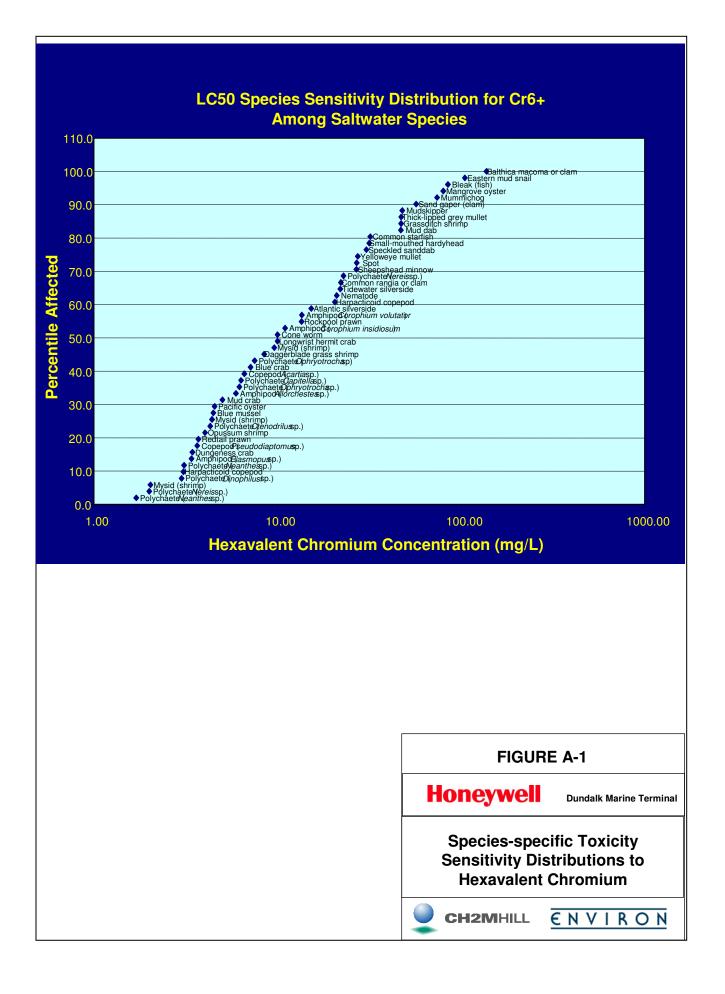
Ray, D., S. Banerjee, and M. Chatterjee. 1990. Bioaccmumlation of nickel and vanadium in tissues of the catfish (*Clarias batrachus*). *J. Inorgan. Biochem.* 38: 169-173.

Reader, J., T. Dalziel, and R. Morris. 1988. Growth, mineral uptake and skeletal calcium deposition in brown trout, *Salmo trutta*, L., yolk sac fry exposed to aluminum and manganese in soft acid water. J. Fish. Biol. 32: 607-624.

Rehwoldt, R. L. Lasko, C. Shaw, and E. Wirhowski. 1973. Bull. Environ. Contam. Toxicol. 10(5), 291–294.

Rifkin, E., P. Gwinn, and E. Bouwer. 2004. Chromium and Sediment Toxicity. *Environ. Sci. Technol.*, July 15, 267a–271a.

Stevens, D.G., and G.A. Chapman. 1984. Environ. Toxicol. Chem. 3, 125-133.


Suter, G.W. II, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening of Potential Contaminants of Concern for Effects on Aquatic Biota on Oak Ridge Reservation: 1996 Revision. *ES/ER/TM-96/R2*. Oak Ridge National Laboratory, Oak Ridge, TN. 104 pp.

Turekian K. 1968 Oceans. Prentice-Hall. 120 p.

United States Environmental Protection Agency (USEPA). 1985. Ambient Water Quality Criteria for Chromium – 1984. USEPA 440/5-84-029.

United States Environmental Protection Agency (USEPA). 2005a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Appendix D: Chromium. *EPA-600-R-02-011*. Available at:

Yarzhombek, A., A. Mikulin, and A. Zhdanova. 1991. Toxicity of substances in relation to form of exposure. *J. Ichthy*. 31(7): 99-106.

Appendix B Qualitative Benthos Analysis

Executive Summary

An informal, qualitative analysis of the benthos in the Patapsco River and Colgate Creek adjacent to the Dundalk Marine Terminal (hereafter referred to as DMT, or the Site) was performed during the May 2007 field effort, and again in June 2008, to observe the organisms present and determine whether the organisms observed represented a freshwater or saltwater community. A detailed description and photographs of biological assemblages observed at DMT are provided below.

Polychaetes, amphipods, clams, and arthropods were observed in sediments from DMT in May 2007, with differences in community composition dependent upon the sediment habitat. The dominant organisms found in June 2008 were amphipods and small crabs; however, sampling also yielded isopods, barnacles, mussels, pipefish, mysid shrimp, and worms (polychaetes and oligochaetes). Although many of the organisms observed can tolerate freshwater, they are more typical of estuarine species assemblages. Additionally, the salinity data for the area indicates that the salinity regime is polyhaline/mesohaline, which would exclude the vast majority of freshwater organisms.

1. Introduction

An informal, qualitative analysis of the benthos at the Site was performed in order to observe the organisms present. The purpose of this analysis was twofold:

- To help decide if marine or freshwater regulatory criteria are more appropriate for DMT
- To evaluate what benthos are present in the area to guide potential future benthic community assessment

2. Methods

During the May 2007 sampling effort, a certified ecologist and Ph.D. in Marine Biology with a technical and academic background in marine science and benthic ecology assisted with sediment sampling. During this time she recorded observations of the benthic organisms from the H and I transects on the northwest side of DMT. As a grab sample of sediment was brought onto the boat, a few readily observable organisms were removed by hand (if possible), stored live in water from the Site, and then photographed.

Additionally, approximately 2 L of sediment from location B-4 on the southeast side of DMT was inspected for benthic organisms. The sediment was frozen on-Site, shipped on ice, and slowly defrosted. Organisms were retrieved by gently sieving the sediment through a 500- μ m net using Instant Ocean artificial seawater at approximately 10 parts per thousand (ppt) salinity. Organisms were photographed, and stored in 70 percent ethyl alcohol at 4°C.

In June of 2008, a qualitative biological analysis was conducted at DMT to provide descriptions of biological assemblages at the southeast side of the site. This type of analysis had not previously been conducted on transect J. Analysis was specifically conducted at location J4 because this location had the highest detected concentration of total chromium in surficial sediment (0–1.0 foot) at DMT. Total chromium was detected at a concentration of 2,360 mg/kg in the sediment at a depth of 0–0.5 foot, and was detected at a concentration of 8,140 mg/kg in the sediment at a depth of 0.5–1.0 foot.

Samples were collected using a D-frame net with a 500-µm mesh to observe the benthic organisms present at location J4. Upon collection of the samples, organisms were sorted, identified, and counted in order to make a qualitative assessment of diversity and abundance.

3. Results

Sediments from the H and I transects were visually similar, and indicative of a low-energy depositional environment. These sediments consisted of soft clay and silt mud, with a trace of sand, and perhaps 2–10 percent shell marl and gravel. Based on visual observations of the sediment, the sediment was generally anoxic below 2 cm in depth. Sediment from the B transect was typical of a higher-energy environment than the H and I transect, and is apparently not a depositional environment. Sediment from the B transect consisted of medium sand, with perhaps 5–15 percent shell marl.

Measured salinity ranged from 5 to 13 ppt and indicates that both areas are mesohaline. This is in agreement with the Maryland Department of Natural Resources (MDNR) monthly monitoring data that indicates that salinity in the area generally ranges from 5 to 18 ppt (MDNR, 2007).

The most abundant organisms observed in the sediment from the H and I transects were large polychaetes. The polychaetes observed were typically large 2- to 7-cm predatory polychaetes that were visually similar to nereid polychaetes typical in this type of clayey sediment. A few small amphipods were also noted. Also, small polychaetes (1 millimeter or less in width) were visible in the sediment, particularly within 2 cm of the sediment surface, but were not recovered. These small polychaetes were occasionally locally abundant, but were not visible in every sample, and may have a patchy distribution in the area.

There were a variety of organisms observed in the sediment from the B transect, but no one type of organism dominated the observed community. Clams, polychaetes, amphipods, and a few other arthropods were recovered from the samples. The clams recovered were small — the largest was no more than 2 cm in its largest dimension. The few polychaetes observed were much smaller than the ones observed in the H and I transects, and were generally less than 2 cm long. Amphipods observed were generally 3 to 5 mm long. A small variety of other arthropods were also observed, but were not identified. They were generally vermiform, armored taxa that may have been cumaceans or small stomatopods.

In June of 2008, a qualitative biological analysis was conducted at DMT to provide descriptions of biological assemblages at the southeast side of the site, specifically location J4. Sediment at location J4 consisted of medium sand and some shell marl, which are typical of a higher-energy environment. The dominant organisms found within the first few inches

of the sediment were amphipods and small crabs (approximately 1–2 cm long). Other organisms found at J4 were isopods, barnacles, mussels, pipefish, mysid shrimp, and worms (polychaetes and oligochaetes).

4. Conclusions

Organisms observed in the sediments near DMT are more typical of estuarine or marine organisms than they were of freshwater organisms. Although many of these organisms can tolerate freshwater, they are more typical of estuarine species assemblages. Additionally, the salinity data for the area indicates that the salinity regime is polyhaline/mesohaline and would exclude many freshwater organisms.

This qualitative analysis indicates that there are at least two types of benthic communities in the area, which is likely predicated by the two very different types of bottom sediment. The clayey mud on the northwest side of DMT most likely supports a community of soft-bodied polychaetes that are probably a mix of deposit feeders, suspension feeders, detritivores, and large carnivores. Nearly all polychaetes (in terms of the number of species) are marine organisms, but some are polyhaline or freshwater (Brusca and Brusca, 1990). There are probably various smaller crustaceans, including amphipods, associated with this community, as well as other worms (including oligochaetes).

The sandy bottom on the southeast side of DMT most likely supports a community of armored organisms that burrow within the sand as a refuge from fish predation and wave energy. Clams and other suspension feeders may survive well here as the increase in water velocity renews the supply of labile allochthonous detritus in the water column. Other organisms in this community are likely types that specialize in burrowing in the sandy sediment. This may include amphipods, isopods, copepods, and other armored arthropods that either deposit feeders or predators.

A qualitative biological analysis was conducted in June 2008 at DMT to provide descriptions of biological assemblages at location J4. Analysis was specifically conducted at this location because the highest detected total chromium concentration in surficial sediment occurred at J4. Sediment type and benthic community found at location J4 in June 2008 are consistent with the findings across the DMT site (CH2M HILL and ENVIRON, 2009). The types of organisms at the site are indicative of the health of the biological community. As mentioned in Section 3, amphipods and polychaetes were among the organisms found at J4. Amphipods are commonly used test organisms in laboratory toxicity assays due to their sensitivity to several chemicals and polychaetes have been shown to be particularly sensitive to hexavalent chromium [Cr(VI)].

An evaluation of the data used by USEPA to derive the NRWQC show that species are not equally sensitive to chemicals, particularly chromium (USEPA, 1985). The acute sensitivity of saltwater species to Cr(VI) spans two orders of magnitude. Polychaetes and crustaceans (like the ones described at the site) are the most sensitive species, while fish and certain mollusks are relatively insensitive to Cr(VI) (USEPA, 1985).

5. References

Brusca, R.C., and G.J. Brusca. 1990. Invertebrates. Sinauer Associates, Inc. Sunderland, Mass.

CH2M HILL and ENVIRON. 2009. Draft Surface Water and Sediment Study Report, Dundalk Marine Terminal, Baltimore, Maryland. May.

MDNR (Maryland Department of Natural Resources). 2007. Chesapeake Bay, Bay Conditions, Patapsco/Back Rivers, Station WT5.1. http://www.dnr.state.md.us/bay/ conditions/wt51.html.

USEPA (U.S. Environmental Protection Agency). 1985. Ambient Water Quality Criteria for Chromium – 1984. USEPA 440/5-84-029.

Appendix C Pore Water, Surface Water, and Sediment Sampling Results

Transect	Sample	Quarter	Chromiu dissolve		Hexavale Chromiu		Aluminum, dissolved	l	Calcium, dissolved	,	Iron, issolved	Magnesium, dissolved	,	Manganese, dissolved	Vanadium dissolved	'	Chromiur	n	Aluminum		Calcium	Iron
			μg/L		μg/L		µg/L	_	mg/L		µg/L	mg/L		µg/L	µg/L		µg/L	_	µg/L		mg/L	μg/L
		Q1	2.3	U		U	80.2 L	U	76		52.2 U			1420		J	162		162		81.3	9460
	A1	Q2	2.3	U	-	U	80.2 L	U	159		69.5 J			1090	5.2		77.6		1420	_	155	4100
		Q3	2.3	U	÷	U	80.2 L	U	158		52.2 U			728	1.9	J	207	L	4490	_	170	10500
		Q4	2.3	U	-	U		U	121		52.2 U			735	2.6	J	68		2,540		119	5,190
		Q1	2.3	U	•	U	00.2	U	81.4		52.2 U	•		498	-	U	-		19	_	88.2	827
∢	A2	Q2	NV		NV		NV		NV		NV	NV		NV	NV		NV		NV	_	NV	NV
		Q3	4.3	J	5	U	80.2 l	U	120		52.2 U			21.9	-	U	1		61900		131	169000
sec		Q4	2.3	U		U	80.2 L	U	139		52.2 U			513		U		J	80.2	U	136	245
Transect		Q1	2.3	U	5	U	80.2 L	U	82.3		52.2 U		_	239		U			33.3		89.9	3680
L L	A3	Q2	NV		NV		NV		NV		NV	NV		NV	NV		NV		NV		NV	NV
	_	Q3	3.1	J	5	U	80.2 L	U	123		52.2 U			20.8		U		U	80.2	U	119	52.2 U
		Q4	2.9	J	5	U	80.2 L	U	138		54.4 J	324		55.2	1.7	J	32	L	1,480		135	5,590
		Q1	NV		NV		NV		NV		NV	NV		NV	NV		NV		NV	_	NV	NV
	A4	Q2	NV		NV		NV		NV		NV	NV		NV	NV		NV		NV	_	NV	NV
		Q3	3.2	J	•	U	••••	U	122		52.2 U	-		449		U			19500	_	128	47700
		Q4	2.3	U	-	U		U	132		52.2 U			44.8		U		L	2,360	_	136	5,710
		Q1	2.3	U	-	U		U	94		52.2 U			2860		J	9.1	J	9.1	J	94.1	671
	B1	Q2	3.5	J	5	U	80.2 L	U	156		508	457		1900	3.4	J	44.7		1040	_	154	4690
		Q3	2.3	U	-	U	80.2 L	U	182		75.4 J	488		2420		U			2750	_	151	4410
		Q4	2.3	U	-	U	80.2 l	U	91.3		52.2 U			1,120		J	42.9		3,420		93.6	3,500
		Q1	2.3	U	-	U	80.2 L	U	87.8		52.2 U			1070		U		J	13.2	J	91.4	1120
	B2	Q2	2.3	U	-	U	00.2	U	144		52.2 U		_	2540	8.5		8.7	J	1020		150	2080
~		Q3	2.3	U	-	U	80.2 L	U	192		135 J	511		3440		U			4700	_	166	7020
8 5		Q4	2.3	U		U	80.2 L	U	105		65.1 J	256	+	974	-	U	-		3,640		107	4,670
Transect		Q1	2.3	U	•	U	80.2 l	U	83.8		637	196		2460	-	U		J	5.6	J	88.3	2810
an	B3	Q2	2.3	U	•	U	80.2 L	U	150		715	421	_	3330	2.8	J	4.5	J	104	J	149	4080
L L		Q3	2.3	J		U	00.2	U	171		507	496	_	3350	-	U	-		651		134	4130
		Q4	2.3	U	-	U		U	141		3,320	341		3,060		J	11.6	J	233		139	4,540
		Q1	2.3*	U		U	80.2 l	U	81.8	\square	692	194	+	2150	1.8	J	6.2	J	6.2	J	87.6	4120
		Q1-Dup	5	J	-	U	86.8	J	86.1	\square	549	204	+	2230	2.9	J	5.8*	J	5.8	J	85.6	3340
	B4	Q2	2.3	U	-	U	80.2 L	U	141		1330	406		2530		J	10.9	J	284		149	6600
		Q3	2.3	U		U	80.2 L	U	168		874	467		2630		U		J	725		159	4200
		Q4	2.3	U	-	U	80.2 L	U	138		3,430	383		2,590	1.8	J	17.9		1,230		139	6,070
	B5	Q4	2.3	U	5	U	80.2 l	U	128		52.2 U	334		492	2.3	J	46.8		4,330		136	6,230

Transect	Sample	Quarter	Chromiur dissolve		Hexavale Chromiu		Aluminum, dissolved	,	Calcium, dissolved	dissolved	Magnesium, dissolved	Manganese, dissolved	Vanadium dissolved	'	Chromiun	n	Aluminum	Calcium	Iron
			µg/L	1	µg/L		µg/L		mg/L	µg/L	mg/L	µg/L	µg/L	_	µg/L		µg/L	mg/L	µg/L
		Q1	2.3	U	÷	U	80.2	U	80.7	52.2 L		110	6.3		21.6		21.6	80.6	345
	C1	Q2	2.3	U	-	U	80.2	U	134	52.2 L	÷	557	2.8	J	38.6		404	128	995
	_	Q3	2.3	U	÷	U	80.2	U	165	84.3 J		743	3.4	J	222		3240	174	6700
		Q4	2.3	U	5	U	80.2	U	122	52.2 L	271	509	1.5	U	149		970	123	2,340
		Q1	2.3	U	5	U	80.2	U	82.1	52.2 L		1150	4.8	J	26.7		26.7	82.5	886
	C2	Q2	2.3	U	5	U	80.2	U	146	52.2 L		1320	4.8	J	331		3620	147	8900
U	•-	Q3	2.3	U	5	U	80.2	U	172	109 J	469	1620	1.5	U	520		11400	165	18500
ect		Q4	2.4	J	5	U	80.2	U	113	52.2 L	233	291	3.8	J	632		13,300	119	27,600
Transect		Q1	2.3	U	÷	U		U	91.4	538	181	2550	2.2	J	17.2		17.2	93.1	2630
rar	C3	Q2	2.3	U	÷	U	80.2	U	149	742	402	3130	3.1	J	22		519	146	2750
-		Q3	3.4	J	5	U	80.2	U	166	86.9 J	465	2770	1.6	J	53.5		1120	167	4240
		Q4	2.3	U	-	U	80.2	U	131	533	316	1,950	2	J	37.5		728	128	3,180
		Q1	2.3	U	-	U	80.2	U	89.7	230	183	2490	4	J	5.3	J	5.3 J	93.2	2260
		Q2	2.3	U	5	U	80.2	U	162	1620	435	4400	3.3	J	9.5	J	596	153	4710
	C4	Q2-Dup	2.3*	U	5*	U	80.2	U	155	902	417	3510	3	J	2.3*	U	177 J	154	2590
		Q3	3.8	J	5	U	00.2	U	170	1410	488	3590	1.5	U	11.5	J	278	159	4800
		Q4	2.3	U	5	U	80.2	U	143	1,150	351	3,600	1.7	J	6.7	J	498	150	3,100
		Q1	3.3	J	5	U	80.2	U	124	76.2 J	476	3320	8.4		6.1	J	6.1 J	128	770
		Q2	11	J	5	U	80.2	U	153	191 J	645	7210	9		13	J	318	143	1850
	D1	Q3	11.7	J	5	U	80.2	U	143	161 J	645	6030	6		13.6	J	271	147	1750
		Q4	4.3	J	5	U	80.2	U	76	62.4 J	478*	763	3.2*	J	8.2*	J	672*	76.9*	692*
		Q4-Dup	2.3*	U	5*	U	80.2*	U	75.9*	52.2* L	527	665*	3.6	J	8.7	J	739	78.8	857
		Q1	3.3	J	5	U	80.2	U	170	89.6 J	452	9430	6.5		11.1	J	11.1 J	154	6550
	D2	Q2	16.2	J	5	U	80.2	U	208	6830	528	25600	4.4	J	13.4	J	245	197	19800
Ō	02	Q3	9	J	5	U	80.2	U	175	4080	507	20500	1.5	U	23.7		342	184	12200
Transect		Q4	4.4	J	5	U	80.2	U	191	2,480	506	8,520	5		10.7	J	835	193	7,380
su		Q1	8.5	J	5	U	80.2	U	142	417	438	8310	4.1	J	11.4	J	11.4 J	163	3890
Tra	D3	Q2	12.4	J	5	U	80.2	U	168	4300	436	16700	4.4	J	16.2		162 J	168	12200
•	03	Q3	6.6	J	5	U	80.2	U	199	6570	538	20600	3.4	J	13.5	J	95.6 J	111	9490
		Q4	3.7	J	5	U	80.2	U	183	8,910	547	23,200	4.1	J	12.9	J	945	184	15,100
		Q1	2.3	U	5	U	80.2	U	81.2	875	202	1650	1.5	U	42.4		42.4	84.7	5760
		Q2	3.1	J	5	U	80.2	U	156	1680	390	2280	1.5	U	9.6	J	350	147	5410
	D4	Q3	2.3	U	5	U	80.2	U	173	1760	507	1910	1.5	U	24.2		NV	174	5800
		Q3-Dup	2.3*	U	5*	U	80.2	U	171	348	503	1730	1.5	U	13.7*	J	NV	177	4070
		Q4	2.3	U	5	U	80.2	U	130	1,350	351	1,600	1.5	Ū	21.2		1,270	140	5,060

Transect	Sample	Quarter	Chromiur dissolve	'	Hexavaler Chromiur		Aluminum, dissolved	,	Calcium, dissolved		Iron, issolve	d	Magnesium, dissolved	,	Manganese, dissolved	Vanadiur dissolve	'	Chromiu	m	Aluminun	n	Calcium	Iron
			µg/L		μg/L		µg/L		mg/L		µg/L		mg/L	_	µg/L	µg/L		µg/L		µg/L		mg/L	µg/L
		Q1	4.8	J	5	U		U	113		56.5	J	573	_	3100	5.9		3.4*	J	3.4	J	116	469
	-	Q1-Dup	4.8*	J	5*	U	80.2 l	U	103		73.8	J	595	_	2230	4.9	J	7.1	J	7.1	J	106	496
	E1	Q2	6.5	J	5	U	80.2 l	U	66.7		107	J	503	_	1020	5.8		7.5	J	236		61.2	410
		Q3	4	J	5	U	00.2	U	19.7		52.2	U	479	_	106	1.7	J	118	L	624		20.7	517
		Q4	2.3	U	5	U	80.2 l	U	29.6		52.2	U	599	_	253	1.5	U	91.1		984		30.3	1,030
ш		Q1	2.3	U	5	U	80.2 l	U	159		3580		481	_	281	1.5	U	5.9	J	5.9	J	174	9830
Transect	E2	Q2	12.2	J	5	U		U	187		76.1	J	446	_	9250	11.1		10.2	J	200	J	164	1380
su		Q3	8.1	J	5	U		U	233		3580		557	_	13400	1.5	U	10.1	J	NV		233	6060
La		Q4	5.7	В	5	U	80.2 l	U	224		3,350		537	_	7,700	2.2	J	8.5	В	441	<u> </u>	227	5,150
	E3	Q1	3.2	J	5	U		U	177		699		429	_	5540	6.2		5.8	J	5.8	J	185	3420
	-	Q2	13.5	J	5	U	80.2 l	U	152		301		427		14100	5.6		17.6		264		156	4400
		Q1	2.3	U	5	U	00.2	U	104		52.2	U	258		2310	1.5	U	35.1		35.1		105	6320
	E4	Q2	2.3	U	5	U	40100 l	U	144		26100	U	391		3330	750	U	4.4	J	223		149	2820
		Q3	2.3	U	5	U	80.2 l	U	177		52.2	U	514		5090	1.5	U	6.5	J	NV		182	1570
		Q4	2.3	U	5	U	80.2 l	U	141		1,230		358		2,790	1.5	U	2.3	U	785		141	2,260
	F1	Q1	3	J	5	U	80.2 l	U	154		128	J	472		3070	3.6	J	3	J	3	J	152	3260
		Q2	7.4	J	5	U	80.2 l	U	143		52.2	U	402		4440	5.5		8.8	J	119	J	161	2180
		Q1	2.3	U	5	U	80.2 l	U	161		3510		460		4360	1.5	J	3.8	J	3.8	J	162	8230
	F2	Q2	3.2	J	5	U	80.2 l	U	191		9300		428		5550	1.5	U	5.6	J	408		194	19800
ш	12	Q3	3.5	J	5	U	80.2 l	U	188		1910		532		5790	1.5	U	7.4	J	1440		190	5240
t		Q4	6.2	J	5	U	80.2 l	U	187		1,210		533		19,300	4.9	J	10.7	J	518		182	7,040
Transect		Q1	4.7	J	5	U	80.2 l	U	119		109	J	383		2750	6.4		11.5	J	11.5	J	126	2690
rar	F3	Q2	10.1	J	5	U	80.2 l	U	130		106	J	339		2780	10.3		14.5	J	215		132	2640
F		Q2-Dup	9.1*	J	5*	U	80.2 l	U	145		526		376		3590	7.6		10.4*	J	217		135	2770
		Q1	3.2	J	5	U	80.2 l	U	102		52.2	U	326		5580	3.6	J	4.6	J	4.6	J	109	1820
	F4	Q2	8.2	J	5	U	80.2 l	U	136		1060		371		5440	7.2		8	J	311		123	3610
	F4	Q3	2.3	U	5	U	80.2 l	U	159		52.2	U	439		4690	5.8		9.3	J	343		164	1670
		Q4	5.7	J	5	U	80.2 l	U	152		93.2	J	450		4,710	6.3		9.4	J	638		156	1,240
	01	Q1	2.3	U	5	U	80.2 l	U	157		56.5	J	405		13300	9.7		5	J	5	J	146	349
	G1	Q2	2.3	U	5	U	80.2 l	U	140		85.1	J	424		2870	6.1		8.2	J	427		151	4740
		Q1	2.3	U	5	U	80.2 U	Ū	154		52.2	U	401		3010	6.8	T	6.3	J	6.3	J	157	1200
		Q2	11.7	J	5	U	80.2 l	Ū	157		73.8	J	435		1770	10		14.9	J	374	-	148	647
U	G2	Q3	10.2	J	5	U		Ŭ	155		85.6	J	470		2140	8	1	14.5	J	619		161	901
Transect		Q4	5	B	5	U	80.2 1	Ú	89.6	_	90.3	J	256		1,420	4.3	J	7.6	B	337		90.5	651
nse		Q1	2.6	J	5	U	80.2 1	Ū	144		1410	-	458	+	4230	2.2	J	6.2	J	6.2	J	154	5900
ra	G3	Q2	10.1	J	5	U	80.2 1	Ú	150		97	J	432	+	2890	10.4	Ť	15.3	Ť	355	Ť	144	1090
		Q1	4.2	J	5	U	80.2 0	Ú	128		103	J	394	+	6030	3.9	IJ	7.9	J	7.9	1	133	3460
		Q2	13.4	J	5	U	80.2	Ŭ	136		159	J	381		6130	8.4	Ť	15.1		297	Ŭ	145	1530
	G4	Q3	8.1	J	5	U	80.2 U	ŭ	153		112	.1	482	+	5700	6.4	+	9.8	J	209	\square	156	1280
		Q4	3.2	B		U	80.2 0	ŭ	90.5		52.2	U	270	+	3,130	3.3	IJ	8	B	203	\square	93.2	818
		Q4	3.2	D	່ວ	U	00.2	U	90.5		JZ.Z	U	210		3,130	3.3	J	0	D	200		93.Z	010

Transect	Sample	Quarter	Chromiu dissolve	'	Hexavale Chromiu		Aluminum, dissolved		Calcium, dissolved	, ,	Iron, dissolved	Magnesium dissolved	,	Manganese, dissolved	Vanadium dissolved	'	Chromiun	n	Aluminum		cium		Iron
			μg/L		μg/L		µg/L		mg/L		µg/L	mg/L		μg/L	μg/L		μg/L		µg/L	m	ıg/L		µg/L
		Q1	2.8	J	5	U	80.2 U		164		98.5 J	396		4680	7		12.5	J	12.5 J	15	53	24	440
		Q2	4.4	J	5	U	80.2 U		159		517	432		6090	6.1		19.2		737	16	65	57	750
	H1	Q3	11	J	-	U	80.2 U		190		114 J	505		7950	6.9		17.4		384	18		-	610
		Q3-Dup	11*	J	•	U	80.2 U		182		107 J	488		7770	6.2		16.8*		489	18			230
_		Q4	5.1	J	-	U	80.2 U		187	J	59.5 J	504	J	9,890	6.5		14.4	J	1,420	18		,	600
Transect H	H2	Q1	4.3	J		U	80.2 U	_	136		52.2 U			7640	4.8	J	9.1	J	9.1 J	14	-	_	910
sec	112	Q2	3.5	J	-	U	80.2 U		152		52.2 U			2650	8.6		12	J	330	14	-		582
ans	H3	Q1	5.5	J	-	U	80.2 U	_	133		60.3 J	432		3600	5.4		10.2	J	10.2 J	13	-		280
Тu		Q2	3.2	J	5	U	80.2 U		179		5280	440		5300		J	13.2	J	376	18			3700
		Q1	3.1	J	5	U	80.2 U	_	134		71.7 J	427		4450	4	J	6.3	J	6.3 J	13		_	470
		Q2	4.8	J	5	U	80.2 U		156		58.4 J	439		11300	6.8		16.2		347	15	-		960
	H4	Q3	12.2	J	-	U	80.2 U		192		4820	517		12700	5.5		14.6	J	184 J	19	-		5400
		Q4	6.5*	В	-	U	80.2* U		192		1510*	556		15900*		J	16.9		988	19			400*
		Q4-Dup	10.2	В	-	U	80.2 U	_	187*		3,780	526*		16,700	7.1		15.7*		630*	184			470
		Q1	2.3	U	-	U	80.2 U		86.9		72.7 J	194		174		J	23.9		23.9	90			590
	11	Q2	2.3	U	5	U	80.2 U	_	139		52.2 U	-		281	4.3	J	10.2	J	204	14			384
		Q3	3.1	J		U	80.2 U		166		52.2 U			742	5.1		52.2	L	1840	16	-	_	050
		Q4	2.3	U	-	U	80.2 U		111		52.2 U	-		1,420		U	12.5	J	624	11	-	,	170
		Q1	2.6	J	5	U	80.2 U		100		52.2 U	-		136	3.2	J	11.2	J	11.2 J	10			49
_	12	Q2	2.3	U	5	U	80.2 U		132		52.2 U	• • •		201	3.2	J	14.1	J	459	13			81
Transect I		Q3	3.1	J		U	80.2 U		170		68.6 J	-		662	-	J	12.2	J	248	17	-		754
Ise		Q4	2.3	U	-	U	80.2 U		126		52.2 U		_	521	5.3		49.8		4,180	13			830
ran		Q1	2.3	U	5	U	80.2 U	_	101		52.2 U			189		J	21.3		21.3	10	-	_	/37
F	13	Q2	2.7	J		U	80.2 U	_	128		77.1 J	341	_	224		J	13.5	J	338	13			535
		Q3 Q4	4.7	J	5 5	U	80.2 U 80.2 U		171 147	-	60.9 J 52.2 U	472 397		430	3.1 3.7	J	15.6		509	18	-	-	326 937
		Q4 Q1	2.3	J	5	U	••••	_	147 105	J			J	354 133	3.7	J	16.3		954 27	14		-	520
		Q1 Q2	2.7	J	5	U	80.2 U 80.2 U	_	105 118		63.7 J 64.2 J	243 307		204	3.5 5.5	J	27 25		349	10 11			64
	14	Q2 Q3	5.8	J	-	U	80.2 U 80.2 U	_	118		64.2 J 52.2 U		_	372	5.5 4.8	J	25 24.3		349 1030	11	-		980
		Q3 Q4	6.7 2.3	J	-	U	80.2 U 80.2 U		178		52.2 U 52.2 U			215	-	J	24.3	L	1,470	18		-	230
	14	-	-	_	-	-		_	-				_	-		-	-	\square		-	-	<i>.</i>	
сtЛ	J1	Q4	2.3	U	v	U	80.2 U	-	134		61.7 J	327		162	4	J	96.5		1,580	14			590
set	J2	Q4	2.3	U	v	U	80.2 U	-	127		52.2 U			1,140	3.9	J	112		4,930	12	-		720
Transect	J3	Q4	2.3	U	5	U	80.2 U	_	132		62.3 J	317		1,530	3	J	61.4		2,870	13	34	,	770
μ	J4	Q4	2.3	U	5	U	80.2 U		110		52.2 U	195		42.9	11.9		1,880		2,340	10)9	З,	730

Appendix C-1a Data from Pore Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

							Acidity As	Ammonia-	Ferrous	Hardness,	Organic	Oxidation		
-							CaCO3,	Nitrogen,	Iron,	total	Carbon,	Reduction		
Transect	Sample	Quarter	Magnesium		Vanadium	n	Dissolved	dissolved	dissolved	dissolved	dissolved	Potential	pH	Sulfide
			mg/L	µg/L	µg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mv	SU	mg/L
		Q1	178	1770	26.8		NV	NV	0.053 J		NV	NV	NV	NV
	A1	Q2	471	1150	14		NV	NV	0.2 U	2,560	16.1	NV	NV	NV
		Q3	476	1040	31		2,500	NV	1.3	NV	29.6	556	7.8	NV
		Q4	292	859	16.6		NV	NV	0.04 J	1,620	8.2	593	9	NV
		Q1	231	638	3.1	J	NV	NV	NV	NV	23.8	NV	8	NV
	A2	Q2	NV	NV	NV		NV	NV	NV	NV	NV	NV	NV	NV
t A	7.2	Q3	331	7350	350		NV	NV	0.012 J	NV	11.2	610	7.8	NV
Sec.		Q4	322	506	2.6	J	NV	NV	0.013 J	NV	4.3	668	7.6	NV
Transect		Q1	233	578	8.7		NV	NV	NV	NV	23.6	NV	NV	NV
Ĕ	A3	Q2	NV	NV	NV		NV	NV	NV	NV	NV	NV	NV	NV
		Q3	305	18.4	1.5	U	NV	NV	0.016 U		12.1	609	7.8	NV
		Q4	316	126	9.2		NV	NV	0.08 U		5	684	7.8	NV
		Q1	NV	NV	NV		NV	NV	NV	NV	NV	NV	NV	NV
	A4	Q2	NV	NV	NV		NV	NV	NV	NV	NV	NV	NV	NV
	A4	Q3	325	2340	108		NV	NV	0.019 J	NV	7.3	605	7.7	NV
		Q4	322	233	15.1		NV	NV	0.008 U	NV	17.3	698	7.8	NV
		Q1	207	2890	3.5	J	NV	NV	0.019 J	NV	NV	NV	NV	NV
	B1	Q2	475	1960	9		NV	2.6	0.5	2,470	8.4	640	7.9	0.054 U
	БІ	Q3	435	1900	11.6		2,810	NV	0.079 J	NV	18.6	521	7.7	NV
		Q4	236	1,210	11.1		NV	NV	0.047 J	1,320	5.8	591	7.9	NV
		Q1	227	1150	3.4	J	NV	0.54	0.011 J	NV	13.5	NV	7.9	NV
	B2	Q2	418	2730	11.4		NV	2.9	0.019 J	NV	13.1	557	8	0.054 U
	D2	Q3	469	2800	15.9		NV	NV	0.12	NV	12.7	524	7.7	NV
<u>n</u>		Q4	260	1,070	12.8		NV	NV	0.11	NV	5.6	587	7.9	NV
Transect		Q1	188	2680	2.1	J	NV	1.1	0.55	NV	19.6	NV	8.1	54 U
su	B3	Q2	430	3390	3.3	J	NV	2.1	0.44	NV	16.5	634	7.8	0.054 U
La	БЗ	Q3	412	2420	4.3	J	NV	NV	0.48	NV	13.2	521	7.7	NV
		Q4	335	3,040	4.1	J	NV	NV	3.6	NV	6.1	571	7.8	NV
		Q1	187	2340	3.9	J	NV	2.3*	0.095 J	NV	25.3*	NV	8	54 U
		Q1-Dup	184	2250	3.8	J	NV	2.4	0.31	NV	33.6	NV	8*	54* U
	B4	Q2	435	2720	4.8	J	NV	3.1	1.2	NV	17	617	7.9	0.054 U
		Q3	466	2280	4.1	J	NV	NV	0.74	NV	14.7	518	7.6	NV
		Q4	386	2,650	6.4		NV	NV	3.6	NV	7.3	619	7.8	NV
	B5	Q4	355	731	17.3		NV	NV	0.0095 J	NV	14.3	601	7.9	NV

Transect	Sample	Quarter	Magnesium	Manganese	Vanadiur	n	Acidity As CaCO3, Dissolved	Ammonia Nitrogen dissolvee	,	Ferrous Iron, dissolved		Hardness, total dissolved	Organic Carbon, dissolved		Oxidation Reduction Potential	рН	Sulfide
			mg/L	μg/L	μg/L		mg/L	mg/L		mg/L		mg/L	mg/L		mv	SU	mg/L
		Q1	170	116	8		NV	11.7		0.12		NV	19.8		NV	8.4	54 U
	C1	Q2	344	594	4.8	J	NV	8.6		0.078	J	1,820	8.7		624	8.4	0.054 U
	01	Q3	467	1260	20.6		2,560	NV			J	NV	15.3		557	8.1	NV
		Q4	268	586	9.7		NV	NV		0.082	J	1,660	9.5		623	8.1	NV
		Q1	171	1190	8.7		NV	2.7		0.043	J	NV	21		NV	8.3	54 U
	C2	Q2	412	1600	31.2		NV	NV		0.18		NV	11.1		NV	8.2	0.054 U
U	02	Q3	463	1880	51.5		NV	NV		2.3		NV	11.3		595	7.9	NV
		Q4	239	1,240	63.9		NV	NV		NV		NV	NV		644	7.8	NV
Transect		Q1	183	2630	8.9		NV	1		0.4		NV	22.9		NV	7.8	54 U
ran	C3	Q2	415	3170	4.9	J	NV	3.8		0.91		NV	8.9		646	8	0.054 U
F	03	Q3	467	2850	7.4		NV	NV		0.13		NV	16.2		642	7.9	NV
		Q4	304	1,950	5.7		NV	NV		0.64		NV	8.8		574	8	NV
		Q1	190	2620	6.4		NV	1		0.14		NV	42		NV	7.9	54 U
		Q2	434	4330	4.8	J	NV	2.9		1.2		NV	11.2		646*	7.8	0.054 U
	C4	Q2-Dup	435	3590	3.6	J	NV	2.5*		0.99*		NV	10.3*		648	7.8*	0.054* U
		Q3	457	3410	2.7	J	NV	NV		1.3		NV	14.1		636	7.7	NV
		Q4	358	3,800	3.3	J	NV	NV		1.3		NV	9		558	7.9	NV
		Q1	408	3570	9.5		NV	21.2		0.12		NV	22.1		NV	8.4	54 U
		Q2	598	7080	12.3		NV	48.4		0.13	J	2,890	36.6		557	8.1	0.054 U
	D1	Q3	626	6390	6.2		3,230	NV		0.19	J	NV	38.5		551	8.1	NV
		Q4	484*	812	5.9*		NV	NV		0.13		2210*	20.5		643	8.4*	NV
		Q4-Dup	545	737*	6.2		NV	NV		0.13*		2,450	18.1*		628*	8.5	NV
		Q1	465	9540	8		NV	26.4	J	0.0092	J	NV	23.1	J	NV	8	54 U
	D2	Q2	562	28400	8.3		NV	68.8		4.7	J	NV	25.8		544	7.8	0.054 U
<u> </u>	02	Q3	593	23600	4.9	J	NV	NV		4.7		NV	24.1		439	8	NV
Transect		Q4	511	8,890	7.3		NV	NV		3		NV	14.2		636	7.8	NV
su		Q1	415	9860	7.1		NV	27.7		0.44		NV	20.5		NV	8	54 U
La	D3	Q2	432	16900	5.5		NV	39.5		2.8		NV	24.6		394	7.7	0.054 U
	03	Q3	304	16700	2.5	J	NV	NV		10.5		NV	21		618	7.7	NV
		Q4	546	24,200	7.5		NV	NV		10.3		NV	16.9		634	7.7	NV
		Q1	206	1790	9.7		NV	0.91		0.78		NV	32.1		NV	7.9	54 U
		Q2	367	2180	3.7	J	NV	1.5		1.4		NV	19.1		603	7.8	0.054 U
	D4	Q3	489	2020	3.6	J	NV	NV		0.39		NV	20.1		548	7.8*	NV
		Q3-Dup	494	1870	2.9	J	NV	NV		0.36*		NV	16.8*		462*	7.9	NV
		Q4	378	1,750	6.3		NV	NV		1.4		NV	8.1		630	7.7	NV

Appendix C-1a Data from Pore Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Magnesium	Manganese	Vanadium	Acidity As CaCO3, Dissolved	Ammonia- Nitrogen, dissolved	Ferrous Iron, dissolved	Hardness, total dissolved	Organic Carbon, dissolved	Oxidation Reduction Potential	рН	Sulfide
			mg/L	μg/L	µg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mv	SU	mg/L
		Q1	577	3100	9.2	NV	47.4*	0.09 J	NV	35*	NV	8.4	54 U
		Q1-Dup	613	2320	5.3	NV	67.8	0.09 J	NV	35.5	NV	8.3*	54* U
	E1	Q2	534	995	7.5	NV	74.3	0.087 J	2,290	42	531	8.8	0.054 U
		Q3	509	212	7.4	2,010	NV	0.091 J	NV	36.8	382	9.5	NV
		Q4	677	355	10	NV	NV	0.085 J	2,750	25.2	395	9.3	NV
ш		Q1	434	14200	5.	J NV	3.8	0.041 J	NV	16.1	NV	7.7	54 U
sc	E2	Q2	446	8530	12.5	NV	16.8	0.1 J	NV	23.4	548	7.9	0.054 U
Transect		Q3	560	13600	4.8	J NV	NV	3.9	NV	12.9	590	7.8	NV
rar		Q4	544	7,850	4.4	J NV	NV	3.4	NV	4.9	557	7.5	NV
	E3	Q1	445	5900	7	NV	16.8	0.6	NV	12.2	NV	7.9	54 U
	20	Q2	415	12400	8.6	NV	31.5	0.28	NV	24.6	448	7.8	0.054 U
		Q1	259	2460	13.1	NV	1.3	0.029 J	NV	29.8	NV	8	54 U
	E4	Q2	408	3230	4.2	J NV	3.6	0.28	NV	23.7	638	7.9	0.054 U
	27	Q3	510	5310	0.0	J NV	NV	0.08 J	NV	13.9	593	8	NV
		Q4	358	2,810	0.0	J NV	NV	1.2	NV	17.3	626	7.7	NV
	F1	Q1	383	3110		J NV	16.4	0.26	NV	18.5	NV	7.9	54 U
		Q2	407	4570	7.1	NV	23.9	0.11	2,420	21.3	603	8	0.054 U
		Q1	381	4460	3.8	J NV	6.1	3.8	NV	14.8	NV	7.7	54 U
	F2	Q2	435	5660	2.3	J NV	NV	7.4	NV	NV	NV	NV	0.054 U
ш	12	Q3	537	5920	4.3	J NV	NV	1.9	NV	14.8	593	7.6	NV
st		Q4	517	3,850	7.8	NV	NV	1.3	2,890	13.8	570	7.9	NV
Transect		Q1	348	2990	9.8	NV	13.4	0.18	NV	17.4	NV	8	74 J
rar	F3	Q2	342	2900	11.4	NV	15.6	0.065* J	NV	23.5	596	8	0.054 U
-		Q2-Dup	350	3410	8.3	NV	13.1*	0.46	NV	22.5*	595*	8*	0.054* U
		Q1	348	6050	4.6	J NV	11.6	0.081 J	NV	10.6	NV	8.1	54 U
	F4	Q2	377	5160	10.2	NV	12.6	0.84	NV	20.4	539	7.9	0.054 U
	14	Q3	465	5160	5.1	NV	NV	0.076 J	NV	15.6	625	8	NV
		Q4	459	4,840	6.7	NV	NV	0.15	NV	10	565	8	NV
	G1	Q1	384	12400	9.5	NV	19.4 J	0.10	NV	20 J	NV	8.2	54 U
	0.	Q2	438	3030	9.5	NV	33.4	0.13	2,230	21.9	363	8.2	0.054 U
		Q1	405	3210	7.7	NV	10.3 J	0.14	NV	16.4 J	NV	8	54 U
	G2	Q2	407	1680	11.4	NV	10.8	0.067 J	NV	16.2	423	8.1	0.061 J
ţG	02	Q3	486	2250	10.3	NV	NV	0.083 J	NV	20.1	607	8.1	NV
Transect		Q4	258	1,440	4.1	J NV	NV	0.16	2,650	9.1	601	8	NV
ans	G3	Q1	481	4590	4.3	J NV	4.4	1.4	NV	26.4	NV	7.8	54 U
Tra	55	Q2	412	2790	12	NV	13.8	0.069 J	NV	21.2	439	8	0.054 U
		Q1	402	6380	5.6	NV	12.5	0.19	NV	29.1	NV	7.8	54 U
	G4	Q2	406	6630	10.2	NV	14.3	0.14	NV	20.5	404	7.9	0.054 U
	07	Q3	487	5830	7.1	NV	NV	0.094 J	NV	14.6	603	7.8	NV
		Q4	279	3,350	4.7	J NV	NV	0.15	NV	8.8	609	7.9	NV

Appendix C-1a Data from Pore Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

	Sample	Quarter	Magnesium	Manganese	Vanadium	Acidity As CaCO3, Dissolved	Ammonia- Nitrogen, dissolved	Ferrous Iron, dissolved	Hardness, total dissolved	Organic Carbon, dissolved	Oxidation Reduction Potential	рН	Sulfide
			mg/L	μg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mv	SU	mg/L
		Q1	372	4670	9.7	NV	21.1	0.2 K	NV	31.6	NV	7.8	54 U
		Q2	450	6490	9.7	NV	51.8	0.45	2,580	29.2	414	8	0.054 U
	H1	Q3	488	7900	8.1	2580*	NV	0.1*	NV	23.6	567	7.9	NV
		Q3-Dup	481	7830	8.5	2,640	NV	0.12	NV	22.8*	567*	7.7*	NV
		Q4	489 、	J 10,900	9.8	NV	NV	0.19	2,800	26.3	675	7.8	NV
Transect H	H2	Q1	488	8240	7.1	NV	34.3	0.1	NV	31.3	NV	8.1	54 U
ec ec	ΠZ	Q2	406	2580	10.1	NV	28.6	0.12	NV	18.9	406	8.1	0.054 U
ans	H3	Q1	441	3770	7.5	NV	22.2	0.16	NV	34.1	NV	7.9	300
Tra	115	Q2	459	5620	9.8	NV	42.8	4.3	NV	24.8	410	7.8	0.054 U
		Q1	423	4640	6.1	NV	8.5	0.18	NV	21	NV	7.9	54 U
		Q2	423	11000	9.2	NV	36.5	0.098 J	NV	23.8	411	8	0.054 U
	H4	Q3	513	12900	7.8	2,790	NV	5.2	NV	24.1	566	7.5	NV
		Q4	549	15600*	11.3	NV	NV	1.5	NV	12.9*	665	7.5*	NV
		Q4-Dup	514*	16,800	9.1*	NV	NV	4.2	NV	15.1	645*	7.5	NV
		Q1	199	204	8.5	NV	2	0.1 K	NV	20.6	NV	8.1	54 U
	11	Q2	349	288	7.1	NV	6.8	0.079 J	1,880	12	427	8.2	0.077 J
		Q3	455	821	19.2	2,480	NV	0.069 J	NV	10	555	8.1	NV
		Q4	302	1,520	5.2	NV	NV	0.074 J	1,670	15.2	676	7.9	NV
		Q1	246	145	6.8	NV	12.5	0.11 K	NV	49.4	NV	8.1	160
	12	Q2	364	217	8.9	NV	19.4	0.062 J	NV	14.9	361	8.1	0.76
Ŧ	12	Q3	489	696	4.9 J	NV	NV	0.12	NV	13.2	563	7.9	NV
Transect		Q4	335	607	22.4	NV	NV	0.1	NV	15	681	8	NV
ans		Q1	254	210	9.2	NV	16.7	0.11 K	NV	35.9	NV	8.1	54 U
Ě	13	Q2	324	228	7.2	NV	14.7	0.093 J	NV	19.1	342	8.1	0.42
	15	Q3	490	460	7.2	NV	NV	0.063 J	NV	18.4	567	7.6	NV
		Q4	393 、	J 363	9.8	NV	NV	0.13	NV	19.4	681	8	NV
		Q1	233	140	11.5	NV	13.3	0.073 J	NV	42.3	NV	8.1	63 J
	14	Q2	294	229	7.8	NV	27	0.081 J	NV	10.1	351	8.1	0.47
		Q3	447	395	9.4	2,380	NV	0.071 J	NV	20.4	554	8	NV
		Q4	361	235	18	NV	NV	0.18	NV	18.6	677	8	NV
t.)	J1	Q4	347	652	8.6	NV	NV	0.008 U	1,910	5.5	569	8	NV
ect	J2	Q4	310	1,440	21.3	NV	NV	0.011 J	NV	10.9	551	8	NV
Transect	J3	Q4	323	1,650	13.9	NV	NV	0.027 J	NV	18.5	594	7.8	NV
Tra	J4	Q4	195	451	23.6	NV	NV	0.055 J	NV	14.7	603	8.8	NV

Laboratory ORP data are suspect because they are inconsistent with field measurements of ORP * = datum not used (because it is the lower pair of a duplicate, or the datum was rejected

B = Bottom sample CaCO₃ = Calcium carbonate

Qualifiers:

U = Not detected

L = Off-scale high. Actual value is known to be greater than value given

J = Estimated value

- mg/L = Milligram per Liter
- mv = Millivolt
- NV = No Value, no analysis performed
- SU = Standard Units
- µg/L = Microgram per Liter

Appendix C-1b

Data from Pore Water Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Chromium dissolved µg/L	<i>'</i>	Hexavalen Chromium µg/L		Aluminum dissolvec µg/L	<i>'</i>	Calcium, dissolved mg/L	lron, dissolved μg/L		Magnesium, dissolved mg/L	,	Manganese, dissolved µg/L	Vanadium dissolvec µg/L	·	Chromium µg/L		Aluminun µg/L	n	Calcium mg/L
		Q1	5	J	5	U	80.2	U	148	523		451		12400	9.7		6.2 J	J	149	J	153
	37	Q2	9.7	J	5	U	80.2	U	167	91.9	J	470		11900	8.7		7.9 J	J	215		152
	31	Q3	2.3	U	5	U	80.2	U	179	590		483		14000	3.8	J	14.7 J	J	229		192
		Q4	9.6	В	5	U	80.2	U	178	122 、	J	514		15,700	9.8		14.3 J	J	1,260		175
37		Q1	4.1	J	5	U	80.2	U	143	6110		413		11000	8.5		2.9 J	J	123	J	146
ect	37A	Q2	11.4	J	5	U	80.2	U	160	138 、	J	433		17500	11.3		10.8 J	J	370		151
usi	3/A	Q3	4.8	J	5	U	80.2	U	161	1290		488		7210	5.7		8.9 J	J	338		167
La		Q4	6.1	J	5	U	80.2	U	166	187 、	J	484		14,600	5.4		10.2 J	J	852		167
		Q1	8.4	J	5	U	80.2	U	152	8040		446		24600	10.9		8.1 J	J	80.2	U	155
	37B	Q2	11.6	J	5	U	80.2	U	162	5820		442		18700	6.9		8 J	J	195	J	154
	3/15	Q3	2.3	U	5	U	80.2	U	176	89 、	J	481		13700	5.5		13.7 J	J	483		196
		Q4	5	J	5	U	80.2	U	186	1,870		547		8,300	5.6		12.6 J	J	1,380		184

Appendix C-1b

Data from Pore Water Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	lron µg/L	Magnesium mg/L	Manganese µg/L	Vanadium µg/L	Acidity As CaCO3, Dissolved mg/L	Ammonia- Nitrogen, dissolved mg/L	Ferrous Iron, dissolved mg/L	Hardness, total dissolved mg/L	Organic Carbon, dissolved mg/L	Oxidation Reduction Potential mv	pH SU	Sulfide mg/L	,
		Q1	4680	462	17,000	10.7	NV	19.1	0.46	NV	17.2	NV	8	54	U
	37	Q2	2100	487	12,465	10.7	NV	20.6	0.088 J	2,350	23.4	548	8	0.054	U
	31	Q3	12300	531	23,000	7.1	2,810	NV	4.1	NV	19.9	615	7.8	NV	_
		Q4	4,360	504	16,400	13.6	NV	NV	0.21	2,700	13.2	599	7.9	NV	
37		Q1	11800	418	15,000	8.9	NV	7.9	6.2	NV	12.1	NV	7.7	54	U
ect	37A	Q2	2860	465	18,216	15.1	NV	17.3	0.12	2,150	23.8	557	7.9	0.054	U
nse	3/A	Q3	4550	506	7,640	7.3	NV	NV	1.4	NV	15.7	642	7.9	NV	
Гrа		Q4	6,650	483	15,100	8	NV	NV	0.24	NV	12.8	558	7.9	NV	
		Q1	15800	455	26,000	12.1	NV	13.7	7.6	NV	18.7	NV	7.9	54	U
	37B	Q2	12600	478	20,561	10.6	NV	20.6	4.2	2,270	25	553	7.8	0.054	U
	3/15	Q3	4740	551	15,700	7.8	NV	NV	0.16	NV	19.1	627	8	NV	_
		Q4	6,490	538	8,320	9.7	NV	NV	2	NV	10.8	578	7.8	NV	
			B = Bottom	sample		Qualifiers:									

CaCO₃ = Calcium carbonate

J = Estimated value U = Not detected

mg/L = Milligram per Liter mv = Millivolt

SU = Standard Units

µg/L = Microgram per Liter

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Chromiu dissolv µg/L		Hexavale Chromiu µg/L		Aluminu dissolve µg/L		Calcium, dissolved mg/L	lron dissolv µg/L	/ed	Magnesium, dissolved mg/L	Manganese, dissolved µg/L		Vanadiu dissolve µg/L		Chromiu µg/L	ım	Aluminum µg/L
		Q1	2	2.3	U	5	U	80.2	U	71.3	52.2	U	188	18.2	+	1.5	U	6.8	J	347
		Q2	2	2.3	Ŭ	5	U	80.2	Ŭ		52.2	Ŭ	469	38.6		1.5	U	2.3	Ŭ	80.2 U
		Q2	4	2.3	Ū	5	Ū	80.2	Ū	154	52.2	Ū	464	56.4	t	3	J	2.8	J	97.5 J
	A1	Q3	1.5	5.6	J	5	U	80.2	U	165	52.2	U	462	8.5		1.5	U	9.8	J	231
		Q4	1.5	2.3	U	5	U	80.2	U	103	52.2	U	286	28.7		1.5	U	2.3	U	129 J
		Q4	4	2.3	U	5	U	80.2	U	106	62.4	J	295	30		1.5	U	2.3	U	171 J
		Q1	2	2.3*	U	5	U	80.2	U	70.4	52.2	U	185	21.6		1.5	U	3.4*	J	144 J
		Q1-Dup	2	2.5	В	5*	U	80.2	U	73.2	52.2	U	185	25.1		1.5	U	4.2	J	134 J
	A2	Q2	1.5	2.3	U	5	U	80.2	U	156	52.2	U	473	44		2.9	J	2.3	U	80.2 U
t A	~2	Q2	3.5	2.3	U	5	U	80.2	U	154	52.2	U	467	45.4		2.4	J	2.3	U	82.4 J
Transect		Q3	2	2.3	U	5	U	80.2	U	106	52.2	U	277	3.8 .	J	1.5	U	2.3	U	88.7 J
ans		Q4	2.4	2.4	J	5	U	80.2	U	-	52.2	U	321	40.9		1.5	U	2.3	U	84.8 J
μ		Q1	2	2.3	U	5	U	80.2	U	74.3	52.2	U	201	30.1		1.5	U	3.5	J	203
		Q2	2.5	2.3	U	5	U	80.2	U	153	52.2	U	463	29.4		2.2	J	2.3	U	80.2 U
	A3	Q3	2	2.3	U	5	U	80.2	U		52.2	U	291	4.1 .	J	1.5	U	2.3	U	130 J
		Q4	2.3	2.3	U	5	U	80.2	U	117	52.2	U	328	41.6*		1.5	U	2.3	U	80.2* U
		Q4-Dup	2.3	2.3*	U	5*	U	80.2*	U	117*	52.2*	U	328*	41.7		1.5*	U	2.3*	U	99.2 J
		Q1	2	2.3	U	5	U	80.2	U	74	55.7	J	196	47.3	_	1.5	U	3	J	98.9 J
		Q2	2.2	2.3	U	5	U	80.2	U	155	52.2	U	471	47.5		2.6	J	2.3	U	80.2 U
	A4	Q2 - Dup	2.2	2.3*	U	5*	U	80.2	U	155	52.2	U	470	47.6		2.8	J	2.3*	U	80.2 U
		Q3	2	2.3	U	5	U	80.2	U	109	52.2	U	296	4.4	J	1.5	U	2.3	U	127 J
		Q4	2.5	2.3	U	5	U	80.2	U	111	52.2	U	312	38.6	_	1.5	U	2.3	U	83.5 J
		Q1	2.5	2.3	U	5	U	80.2	U	-	52.2	U	-	25.6	_	1.5	U	2.3	U	89.5 J
		Q2	2	3.8	J	5	U	80.2	U	157	52.2	U	458	35.7	+	2.3	J	5.8	J	80.2 U
		Q2	5	5.2	J	5	U	80.2	UU	158	52.2	U	463	65.8	+	1.6	J	11.1	J	439 102 J
	B1	Q3 Q3		2.3 NV	U	5 NV	U	80.2 NV	U	152 NV	52.2 NV	0	452 NV	10.9 NV	+	1.5 NV	U	2.3 NV	U	NV J
	ы	Q3-Dup	6.5 6.5	NV		NV	-	NV	-	NV	NV	_	NV	NV	+	NV	_	NV	+ +	NV
		Q3	0.5 7	2.3	U	5	U	80.2	U	153	52.2	U	461	11.8	+	1.5	U	2.3	U	101 J
		Q4	3	2.3	U	5	U	80.2	U	65.7	52.2	U	163	17	+	1.5	U	2.3	U	101 J
		Q4	7	4.2	J	5	U	80.2	U		52.2	U	261	33.7	+	1.5	U	4	J	153 J
		Q1	3	2.3	U	5	U	80.2	U		261	U	201	56.7	+	1.5	U	2.6	J	111 J
		Q1	7	2.3	U	5	U	80.2	U	86.3	261	U	219	61.4	+	1.6	J	2.6	J	101 J
~		Q2	3	5.7	J	5	U	80.2	U	157	52.2	U		24	+	1.8	J	7.4	J	80.2 U
н В		Q2	6	7.3	J	5	Ū	80.2	Ū	157	52.2	Ū	460	30.5	t	1.7	J	10.2	J	106 J
Transect	B2	Q3	2	2.3	Ū	5	Ū	80.2	Ū		52.2	Ū		9.7		1.5	Ū	2.3	Ū	103 J
an		Q3	8	NV		NV	-	NV		NV	NV		NV	NV	T	NV		NV		NV
μ,		Q3	9	3.3	J	5	U	80.2	U	151	52.2	U	453	11.5	T	1.5	U	3.3	J	81.1 J
		Q4	3	2.3	U	5	U	80.2	U	72	52.2	U	155	18.9		1.6	J	2.3	U	257
		Q4	9	2.3	U	5	U	89.6	J	115	52.2	U	294	43.2	T	2.5	J	5.5	J	467
		Q1	3	2.3	U	5	U	80.2	U	73.9	52.2	U	183	18.6	T	1.5	U	6.2	J	135 J
		Q1	7	2.3	U	5	U	80.2	U	74.9	52.2	U	186	21.2		1.5	U	4	J	234
		Q2	3	6.1	J	6	J	80.2	U	163	52.2	U	469	13.6		2.7	J	9.4	J	88.4 J
		Q2	7	6	J	5	U	80.2	U	167	52.2	U	478	11		1.5	U	7.3	J	87.6 J
	B3	Q3	1.5	2.3	U	5	U	80.2	U	168	52.2	U	483	10.7		1.5	U	2.3	U	80.2 U
		Q3	10	2.3	U	5	U	80.2	U	179	52.2	U	506	15.2	T	1.5	U	3.2	J	80.2 U
		Q3	5.5	2.3	U	5	U	80.2	U	176	52.2	U	500	14.9		1.5	U	2.3	U	80.2 U
		Q4	3	2.3	U	5	U	80.2	U	71.1	52.2	U	150	18.8		1.5	U	2.3	U	296
		Q4	9.5	2.3	U	5	U	80.2	U	122	52.2	U	301	54.5		2.2	J	2.3	U	213

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Chromiu dissolve µg/L		Hexavale Chromiu µg/L		Aluminur dissolve µg/L		Calcium, dissolved mg/L	lror dissol µg/	ved	Magnesium, dissolved mg/L	Manganese, dissolved µg/L		Vanadiur dissolve µg/L		Chromiu µg/L	ım	Aluminu µg/L	m
		Q1	3	2.3	U	5	U	80.2	U	77.1	52.2	U	191	23.6		1.5	U	2.3	U	80.2	U
		Q1	6	2.3	U	5	U	80.2	U	72.5	52.2	U		19		1.5	U	2.3	U	162	J
		Q1-Dup	6	2.3*	U	5*	U	80.2	U	77.1	52.2	U	192	22.6		1.5	U	2.3*	U	198	J
		Q2	3	29.7		34.9		80.2	U	159	52.2	U	471	10.9		4.4	J	35.1		80.2	U
		Q2	5.5	26*	J	32.9		80.2	U	159	52.2	U	472	13.1		3.6	J	31.3		94.1	J
m		Q2-Dup	5.5	30.8	J	30.7*		80.2	U	160	52.2	U	471	12.8		3.1	J	29.8*		80.2	U
ţ	B4	Q2	8.5	29		32		80.2	U	162	52.2	U	486	8.6		3	J	32.9		90.7	J
Ise		Q3	1.5	2.3	U	5	U	80.2	U	174	52.2	U		12.7		1.5	U	2.3	U	80.2	U
Transect B		Q3	10.4	3.1	J	5	U	80.2	U	180	52.2	U	504	16.2		1.5	U	5	J	92.2	J
⊢		Q3	5.5	2.3	U	5	U	80.2	U	181	52.2	U	509	17.7		1.5	U	4.2	J	80.2	U
		Q4	1.5	2.3	U	5	U	80.2	U	81	52.2	U		23.1		1.5	U	2.3	U	106	J
		Q4	5.5	2.3	U	5	U	80.2	U	89.6	52.2	U		28.4		1.5	U	3.7	J	152	J
		Q4	10	2.3	U	5	U	80.2	U	112	52.2	U		43.1		1.5	U	2.7	J	102	J
	B5	Q4	2.5	2.3	U	5	U	80.2	U	125	52.2	U		41.3		1.5	U	2.3	U	174	J
	50	Q4	7	2.3	U	5	U	80.2	U	124	52.2	U		40.6		1.5	U	2.3	U	235	
		Q1	2	2.3	U	5	U	80.2	U	72.9	52.2	U		5.3		1.5	U	3.2	J	236	
		Q2	2	7.6	J	5	U	80.2	U	172	52.2	U		55.6		2	J	12.2	J	294	
		Q2	4	8.4	J	5	U	80.2	U	168	52.2	U	-	54.8		2.1	J	14.1	J	322	
	C1	Q2-Dup	4	7.9*	J	5*	U	80.2	U	172	52.2	U	-	56.9		1.9	J	12.5*	J	148	J
		Q3	2	6.6*	J	7	J	80.2	U	182	52.2	U		15.2		1.5	U	8.6	J	80.2	U
		Q3-Dup	2	9.4	J	6.9*	J	80.2	U	179	52.2	U		15.2		1.5	U	7.9*	J	80.2	U
		Q4	2.2	2.3	U	5	U	80.2	U	64.1	52.2	U		19.6		1.5	U	2.3	U	251	
		Q1	2	2.3	U	5	U	80.2	U	71.9	52.2	U		5.4		1.5	U	2.3	U	80.2	U
		Q1	4	2.3	U	5	U	80.2	U	72.2	52.2	U		5.8	_	1.5	U	2.3	U	93	J
		Q2	2	4.2	J	5	U	80.2	U	175	52.2	U		44.3	_	1.5	J .	8.9	J	112	J
	C2	Q2	5	5.6	J	5	U	80.2	U	175	52.2	U	-	47	_	1.5	J	9.3	J	205	H
		Q3	2	2.3	U	5	U	80.2	U	152	52.2	U		10.7	_	1.5	U	2.3	U	122	J
		Q3	5.5	NV		NV		NV		NV 150	NV 50.0	- I	NV 470	NV 11.0	_	NV		NV		NV	H
		Q3 Q4	6 3	2.3	U	5 5	U	80.2 118	U J	159	52.2	U		11.8 19.1	+	1.5 1.7	U	2.3	U	88.6 354	J
с		Q4 Q1	3	2.3 2.3	U	5	U	80.2	J	62.9 71.1	52.2 52.2	U		6.8	+	1.7	J	2.3 2.3	U	354 105	H
Transect C		Q1	6	2.3	U	5	U	80.2	U	73.5	52.2	U		9.1	+	1.5	U	2.3	U	92.5	J
Ise		Q2	2	5.6	J	5	U	80.2	U	165	52.2	U		18.2	+	1.5	U	5.7	J	114	
rar		Q2 Q2	5	4.5	J	5	U	80.2	U	168	52.2	U		16.9	+	1.6	J	5.2	J	91.7	J
⊢	C3	Q2	8	5.8	J	5	U	80.2	U	166	52.2	U		16.6	+	2.2	J	7.5	J	129	- U
		Q3	2	2.9	J	5	U	80.2	U	110	52.2	U		4.4	1	1.5	U	2.3	U	120	- U
		Q3	8	2.3	U	5	U	80.2	U	122	52.2	U		5.8	1	1.5	U	2.3	U	143	- U
		Q4	2	2.3	U	5	U	117	J	61.3	52.2	Ŭ	÷ · =	19.1	+	1.9	J	2.3	U	331	Ť
		Q4	8.5	2.3	U	5	U	102	J	105	52.2	Ŭ		44.6	+	1.5	Ŭ	2.3	U	353	
		Q1	3	2.3	U	5	U	80.2	U	74	52.2	Ŭ		5.8	+	1.5	U	2.3	U	80.2	U
		Q1	7	2.3	U	5	U	80.2	Ŭ	71.8	52.2	Ŭ		6.2	+	1.5	J	2.3	U	80.2	U
		Q2	2	5.5	J	5	U	80.2	U	164	52.2	Ŭ		9.7		2	J	5	J	80.2	Ū
		Q2	5.5	6.2	J	5	Ū	80.2	Ū	176	52.2	Ū		9.7	T	1.5	Ū	5.1	J	80.6	J
		Q2	9	2.6		5	Ū	80.2	Ū	179	52.2	Ū		17	T	1.6	J	2.3	Ū	96.7	J
	C4	Q3	2	2.3	U	5	Ū	80.2	Ū	109	52.2	Ū		4.2 J	J	1.5	Ū	2.3*	Ū	80.2	Ū
		Q3-Dup	2	2.3*	U	5*	Ū	80.2	Ū	110	52.2	Ŭ		4.5	_	1.5	Ū	3.1	J	107	J
		Q3	8	2.3	J	5	U	80.2	U	121	52.2	U		5.2	T	1.5	U	2.3	U	113	J
		Q4	3	2.3	U	5	U	101	J	65.6	52.2	U	147	20	T	1.5	U	2.3	U	649	Π
		Q4	9	2.3	U	5	U	94	J	112	52.2	U	275	55.9		1.5	U	2.3	U	297	П

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Chromiu dissolve µg/L		Hexavale Chromiu µg/L		Aluminur dissolve µg/L		Calcium, dissolved mg/L		lron, dissolve µg/L	ed	Magnesium, dissolved mg/L	Manganese, dissolved µg/L		Vanadiu dissolve µg/L		Chromiu µg/L	m	Aluminum µg/L	
									1	Ū	_			U U		+		1			1.2	
		Q1	3	2.3	U	5	U	80.2	U U	-	_	52.2	U U	204	14.9	_	1.5	U	3.1	J U	140 J	4
		Q1	18	2.3	-	5	U	80.2	-		_	52.2	-	372	171	+	1.5	-	2.3	-	150 J	4
		Q1	34	2.3	U	5	-	80.2	U	-	_	52.2	U	477	268	+	1.5	U	2.3	U	151 J	4
		Q2	0.3	2.3	U	5	U	80.2	U		_	52.2	U	481	10.2	+	2.2	J	2.3	U	80.2 U	4
		Q2	20	2.3	U	5	U	80.2	U		_	52.2	U	528	258	_	1.5	U	2.3	U	80.2 U	4
	D1	Q2	40	2.3	U	5	U	80.2	U		_	52.2	U	579	560	+	1.5	U	2.3	U	80.2 U	4
		Q3	1.5	6.5	J	5	U	80.2	U	-	_	52.2	U	486	15.1	+	1.5	U	7.9	J	80.2 U	4
		Q3	19	4.8	J	5	U	80.2	U	-	_	52.2	U	486	14	+	1.5	U	4.4	J	80.2 U	4
		Q3	37.5	2.5	J	5	U	80.2	U		_	52.2	U	523	9.2	_	1.5	U	4.2	J	181 J	4
		Q4	2.5	17.3	J	10.5		80.2	U		_	52.2	U	219	25	_	1.5	U	16.6	J	153 J	4
		Q4	20	2.3	U	5	U	80.2	U	-	_	52.2	U	419	117	_	1.5	U	2.3	U	98.6 J	4
		Q4	40.5	2.7	J	5	U	80.2	U	-	_	71.2	J	501	263		2	J	2.3	U	240	-
		Q1	3	2.3	U	5	U	80.2	U		4	52.2	U	133	1.1 J	J	1.6	J	2.3	U	80.2 U	4
		Q1	22	2.3	U	5	U	80.2	U		4	52.2	U	278	96	+	2.1	J	2.3	U	80.2 U	4
		Q1	42	2.3	U	5	U	80.2	U	-	_	52.2	U	547	331	1	2.3	J	2.3	U	80.2 U	4
		Q2	22	2.3	U	5	U	80.2	U			52.2	U	499	4.8 J	J	1.6	J	2.3	U	112 J	1
		Q2	3	2.3	U	5	U	80.2	U	-		52.2	U	486	26.2		2.6	J	6	J	310	_
	D2	Q2	42	2.3	U	5	U	80.2	U			52.2	U	518	956		2.2	J	2.3	U	80.2 U	J
		Q3	2	2.3	U	5	U	80.2	U			52.2	U	352	3.6 J	J	1.5	U	2.3	U	198 J	1
		Q3	22	2.3	U	5	U	80.2	U			52.2	U	524	16.9		1.5	U	2.3	U	181 J	1
		Q3	42	2.5	J	5	U	80.2	U			52.2	U	598	46.7		1.5	U	2.3	U	301	_
		Q4	2.5	2.8	J	5	U	80.2	U			52.2	U	305	59.2		1.5	U	3.8	J	187 J	1
-		Q4	21	2.3	U	5	U	80.2	U			52.2	U	432	133		1.5	U	2.3	U	117 J	1
Transect D		Q4	43.5	2.3	U	5	U	80.2	U	-		52.2	U	520	356		1.5	U	2.3	U	275	
Sec		Q1	3	2.3	U	5	U	80.2	U			52.2	U	173	9.2		1.5	U	6.2	J	107 J	1
sue		Q1	23	2.3	U	5	U	80.2	U			52.2	U	314	105		1.5	U	2.3	U	145 J	1
Tra		Q1	40	2.3	U	5	U	80.2	U			52.2	U	511	455		1.5	U	2.3	U	127 J	1
		Q2	25	2.3	U	5	U	80.2	U	172		52.2	U	507	1 J	J	2.1	J	2.5	J	80.2 U	J
		Q2	3	3.2	J	5	U	80.2	U	156		52.2	U	454	1.1 J	J	1.9	J	3.9	J	80.2 U	J
		Q2	39	2.3	U	5	U	80.2	U	195		52.2	U	581	489		1.5	U	2.3	U	80.2 U	J
	D3	Q3	2	2.3	U	5	U	80.2	U	105		52.2	U	289	4.1 J	J	1.7	J	2.9	J	80.2 U	J
		Q3	22	2.3	U	5	U	80.2	U	165		52.2	U	510	21.3		1.5	U	2.3	U	80.2 U	J
		Q3	40	2.3	U	5	U	80.2	U	211		52.2	U	588	17.5		2.1	J	3.7	J	80.2 U	J
		Q4	2.5	9.4	J	6.3*	J	145	J	82.7		235		217	35.7		1.5	U	9.7*	J	80.2* U	J
		Q4-Dup	2.5	8.9*	J	6.7	J	80.2*	U	78.7*		52.2*	U	207*	22.1*		1.5*	U	10.7	J	126 J	ī
		Q4	21	2.3	U	5	U	80.2	U	145		52.2	U	425	129		1.5	U	2.3	U	88.1 J	1
		Q4	42.5	2.3	U	5	U	80.2	U	171		52.2	U	512	251		1.5	U	2.3	U	151 J	Ī
		Q1	3	2.3	U	5	U	80.2	U			261	U	202	35	Ι	2.2	J	2.3	U	80.2 U	J
		Q1	5	2.3	U	5	U	80.2	U	78.1		261	U	200	34.6	Τ	2.2	J	2.3	U	81.8 J	I.
		Q1-Dup	5	2.3*	U	5*	U	80.2	U			261	U	202	34.6	Ι	1.8	J	2.3*	U	82.3 J	I
		Q1	8	2.3	U	5	U	80.2	U	80.6		261	U	204	43.1		2.1	J	2.3	U	80.2 U	J
		Q2	3	2.3	U	5	U	80.2	U	131		52.2	U	407	10.9		1.6	J	3.6	J	144 J	ī
		Q2	5	2.3	U	5	U	80.2	U	126		52.2	U	415	10.4		1.9	J	5.9	J	276]
	D4	Q2	8.5	2.3	U	5	U	80.2	U	128		52.2	U	399	14.4		2.1	J	4.1	J	124 J	ī
		Q3	2	2.7	J	5	U	80.2	U	121		52.2	U	359	3.1 J	J	1.5	U	2.3	U	80.2 U	J
		Q3	9	4.5	J	5	U	80.2	U	171	T	52.2	U	491	17.3	1	1.5	U	2.3	U	178 J	ī
		Q3-Dup	9	2.9*	J	5*	U	80.2	U	170	T	52.2	U	480	16.7	T	1.5	U	2.3*	U	260	1
		Q4	1.5	2.3	U	5	U	80.2	U		T	52.2	U	211	23.1	1	1.5	U	2.3	U	155 J	ī
		Q4	5	2.3	U	5	U	80.2	U		Ţ	52.2	U	222	24.3	Ť	1.5	U	2.6	J	115 J	ī
	1	Q4	10	2.3	U	5	U	80.2	U	121		52.2	U	342	55.5	1	1.5	U	3.2	J	128 J	ī.

Transect	Sample	Quarter	Depth feet	Chromiur dissolve µg/L		Hexavaler Chromiur µg/L		Aluminun dissolveo µg/L		Calcium, dissolved mg/L	lron, dissolve µg/L	ed	Magnesium, dissolved mg/L		Manganese dissolved µg/L		Vanadium, dissolved µg/L		Chromiu µg/L	m	Aluminum µg/L
		01		2.3						-			-	-		-		1			
	-	Q1 Q1	21.5 41	2.3	U U	5 5	U U		U U	90.8 166	52.2 52.2	U	•	_	49.8 272	-		J	2.3 2.3	U U	80.2 L 80.2 L
	-	Q1 Q1	3	2.3	U		U		U	49.5	52.2	U		_	1.9		-	J	2.3	U	80.2 U 80.2 U
	-	Q1-Dup	3	2.3*	U	5 5*	U		U	49.5	52.2	U		_	2.3	J	-	J		U	80.2 L
	-	Q2	22	2.3	U	5	U		U	153	52.2	U		_	8.4	J		J	2.3	U	136
	-	Q2 Q2	3	2.3	0	25.7	U		U	155	52.2	U		_	4.2	U		J	2.3	U	197
	E1	Q2 Q2	42	21.3	U	<u>25.7</u> 5	U		U	140	52.2	U		-	1,160	0		J	2.3	U	80.2 1
		Q2 Q3	42	37.6	0	30.4	0		U	197	52.2	U		-	13.9	_		J	44.4	0	80.2 U
	ŀ	Q3	1.5	5.5	J	5	U		U	170	52.2	U		-	12.5	_		J	5.4	J	80.2 U
	ŀ	Q3	37	2.7	J	5	U		U	197	52.2	U		-	6.4	_		J	3	J	80.2 l
	-	Q4	2.5	6.1	J	8.1	J	80.2	U	103	52.2	U		-	26.7	-		J	11.8	J	80.2 L
	-	Q4 Q4	19	2.4	J	5	U		U	137	127	J	÷	-	99.3	-	-	J	3.1	J	130
	-	Q4 Q4	43.5	2.4	U	5	U		U	167	52.2	U		-	234	-		J	2.3	U	186
		Q1	43.5 3	2.3	U	5	U		U	68.1	52.2	U		-	5.1	-		J	2.3	U	80.2 L
	-	Q1	22	2.3	U	5	U		U	123	52.2	Ŭ			193		-	J		U	80.2 l
	-	Q1	42	2.3	U	5	U		U	158	52.2	U			546			J		U	80.2 1
	-	Q2	22	2.3	U	5	U		U	162	52.2	U			8.4	U		J	2.3	U	120
	-	Q2	3	2.3	U	5	U		U	153	52.2	U			6.4	ľ		J	4.4	J	279
		Q2	42	2.3	U	5	U		U	184	52.2	U			708	1		J		Ŭ	80.2
	E2	Q3	2	10.2	J	11	J		Ŭ	126	52.2	Ŭ			3.8	J.		J	5.2	J	80.2 1
ш		Q3	22	3	Ĵ	5	Ŭ		Ŭ	184	52.2	Ŭ			18.9	Ŭ		J	3.7	J	80.2
Transect		Q3	42	2.3	Ū	5	Ū		Ū	201	52.2	Ū			41.5			J		Ū	102
nse		Q4	2.5	2.3	U	5	Ū		Ū	102	72.6	J			31.4			J		U	126
Ira		Q4-Dup	2.5	2.3*	U	5*	U	80.2*	U	98.6*	52.2*	U	271*		26.8*		1.5* l	J		U	122*
-		Q4	19	2.7	В	5	U		U	130	97.7	J			78.7			J	2.3	U	146 ,
		Q4	41	2.3	U	5	U	80.2	U	164	98.5	J	487		199		1.5 l	J	2.3	U	154 .
		Q1	3	2.3	U	5	U	80.2	U	72.4	52.2	U	177		4.3	J	1.5 l	J	2.3	U	80.2 l
		Q1	25	2.3	U	5	U	80.2	U	120	52.2	U	343		211		1.5 l	J	2.3	U	80.2 l
	E3	Q1	39	2.3	U	5	U	80.2	U	155	52.2	U	470		404		1.5 l	J	2.3	U	80.2 l
	E3	Q2	28	2.3	U	5	U	80.2	U	174	52.2	U	517		1.4	J	1.5 l	J	2.4	J	80.2
		Q2	3	3.1	J	5	U	80.2	U	155	52.2	U	453		9.7		2 .	J	3.8	J	80.2 I
		Q2	40	2.3	U	5	U	80.2	U	194	52.2	U	579		595		1.5 l	J	2.3	U	80.2 l
		Q1	3	3.3	J	5	U	80.2	U	83.6	261	U	208		28.9		1.9 、	J	2.3	U	80.2 I
		Q1	6	3.2	J	5	U	80.2	U	87.7	261	U			36.7		1.5 l	J	2.6	J	91.8
		Q1	11	2.3	U	5	U	80.2	U	96.5	261	U		Τ	96.5		-	J	3.9	J	151 .
		Q2	12	2.3	U	5	U		U	165	52.2	U		Τ	23.2			J	5.6	J	390
		Q2	3	2.4	J	5	U		U	162	52.2	U	101	Τ	6			J	3.3	J	210
	E4	Q2	7	2.3	U	5	U		U	165	52.2	U	475	T	24.6			J	NV		99.9
	L.4	Q3	13	2.3	U	5	U		U	169	52.2	U			22.8		-	J	3.1	J	80.2 l
		Q3	2	3.6	J	5	U		U	123	52.2	U			3.7	J		J	3.4	J	80.2 I
		Q3	9	2.3	U	5	U		U	152	52.2	U		Τ	10.1		-	J	2.5	J	80.2
		Q4	2	2.3	U	5	U		U	79.3	52.2	U		T	22.5		-	J	2.3	U	177
		Q4	9	2.3	U	5	U		U	94.9	52.2	U			37.6		-	J	2.3	U	169
		Q4	15.5	2.8	J	5	U	80.2	U	131	52.2	U	379	Τ	81	Ľ	1.5 l	J	5.6	J	174

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	Chromiu dissolv		Hexavale Chromiu		Aluminu dissolve		Calcium, dissolved	Iron, dissolve	ed	Magnesium, dissolved		ganese solved		Vanadiur dissolve		Chromiu	ım	Aluminu	m
			feet	μg/L		μg/L		µg/L		mg/L	µg/L		mg/L		µg/L		μg/L		µg/L		µg/L	
		Q1	3	2.3	U	5	U	80.2	U	75.4	52.2	U	175	1	4.8		1.5	U	2.3	U	80.2	U
		Q1	18	2.3	U	5	U	80.2	U	-	52.2	U	328		43		1.5	U	2.3	U	80.2	U
		Q1	34	2.3	U	5	U	80.2	U	147	52.2	U	426	-	07		1.5	U	2.3	U	187	J
	F1	Q2	25	2.3	U	5	U	80.2	U	164	52.2	U	494	-	7.1		3.3	J	2.3	U	80.2	U
		Q2	3	2.3	U	5	U	80.2	U	148	52.2	U	435		1.1	J	3.1	J	2.3	U	80.2	U
		Q2	35	2.3	U	5	U	80.2	U	166	52.2	U	496		53		2.7	J	2.3	U	80.2	U
		Q2-Dup	35	2.3	U	5	U	80.2	U	171	52.2	U	511		3.9		2.7	J	NV	++	80.2	U
		Q1	3	2.3	U	5	U	80.2	U	69.4	52.2	U	176		8		2	J	2.3	U	80.2	U
		Q1	15	2.3	U	5	U	80.2	U	103	52.2	U	264		8.3		1.5	U	2.3	U	94.1	J
		Q1	42	2.3	U	5	U	80.2	U	182	52.2	U	522		84		1.5	U	2.3	U	299	
		Q2	25	2.3	U	5	U	80.2	U	168	52.2	U	504		1.9 I.7	J	1.8	J	2.3	-	80.2	U
		Q2	3	2.3	U	5	U	80.2	U	147	52.2	U	433			J	2.6	J	2.3	U	80.2	U
	F2	Q2	43 2	2.3	U	5	U	80.2	U	185	52.2	U	566	-	59		2.4	J	2.3	-	80.2	
		Q3 Q3	2	2.3 2.3	U	5 5	U	80.2 80.2	U	182 166	52.2 52.2	U	509 508		1.5 3.6	+	1.5 1.5	UU	2.3 2.3	U U	80.2 80.2	
		Q3	40	2.3	U	5	U	80.2	U	198	52.2	U	608		3.0 1.9	J	1.5	U	2.3	U	80.2	
		Q4	2.5	2.3	U	5	U	80.2	U	198	52.2	U	348		+.9 8.7	J	1.5	U	2.3	U	152	1
ш		Q4 Q4	2.5	2.3	U	5	U	80.2	U	123	52.2	J	469		5.3	+	1.5	U	3.8	J	357	5
Transect		Q4 Q4	43	2.3	U	5	U	80.2	U	170	52.2	U	509		1.8	$^{++}$	1.5	U	2.3	U	395	\square
ust		Q1	3	2.3	U	5	U	80.2	U	-	52.2	U	167		3.9	Ħ	1.5	U	2.3	U	80.2	U
_a		Q1	16	2.3	U	5	U	80.2	U	109	52.2	U	305		58		1.5	U	2.3	U	88.2	J
F		Q1	30	2.3	U	5	U	80.2	U	156	52.2	U	459		17		1.5	U	2.3	U	117	J
	F3	Q2	20	2.3	U	5	U	80.2	Ŭ	163	52.2	U	485		2.3	J	2.3	J	2.3	U	80.2	Ŭ
		Q2	3	2.3	Ū	5	Ū	80.2	Ū	146	52.2	Ū	427		1.1	J	3	J	2.3	Ū	80.2	Ū
		Q2	35	2.3	Ū	5	Ū	80.2	Ū	169	52.2	Ū	512		3.1	J	2.4	J	2.3	Ū	80.2	Ū
		Q1	3	2.3	U	5	U	80.2	U	74.1	52.2	U	201	2	3.3		1.5	U	2.3	U	88.3	J
		Q1	15	2.3	U	5	U	80.2	U	78.1	52.2	U	221		8.2		1.5	U	2.3	U	135	J
		Q1-Dup	15	2.3*	U	5*	U	80.2	U	76.7	52.2	U	212	4	2.7		1.5	U	2.3*	U	153	J
		Q1	24	2.3	U	5	U	80.2	U	91.8	68.5	J	277	1	48		1.5	U	3.8	J	291	
		Q2	10	2.3	U	5	U	80.2	U	150	52.2	U	465	4	1.4	J	3.4	J	2.3	U	103	J
		Q2	24	2.3	U	5	U	80.2	U		52.2	U	544		0.3		2.1	J	2.3	U	164	J
	F4	Q2	3	2.3	U	5	U	80.2	U	147	52.2	U	456		2.3	J	2.7	J	2.3	U	80.2	U
		Q3	15	2.3	U	5	U	80.2	U	173	52.2	U	459		3.1		1.5	U	2.3	U	131	J
		Q3	2	2.3	U	5	U	80.2	U	113	52.2	U	279		3.7	J	1.5	U	2.3	U	122	J
		Q3	25	2.3	U	5	U	80.2	U	192	52.2	U	516		35		1.5	U	2.3	U	157	J
		Q4	2.5	2.3	U	5	U	80.2	U	119	81.1	J	354		1.2	Ш	1.7	J	2.3	U	99.9	J
		Q4	15	2.3	U	5	U	80.2	U	133	52.2	U	412		5.7	Ц	1.5	U	2.3	U	111	J
┣────┤		Q4	26	2.3	U	5	U	80.2	U		52.2	U	512		0.8	Н	1.5	U	2.3	U	240	H
		Q1	17	2.3	U	5	U	80.2	U	83.8	52.2	U	222		6.3	H	2.1	J	2.3	U	80.2	U
		Q1	3	2.3	U	5	U U	80.2	U		52.2	U	136		.76	J	1.9	J	2.3	U	80.2	U
	G1	Q1	32 20	2.3	U	5	U	80.2	U	141	52.2	U	419		88	\mathbb{H}	2.1	J	2.3	U	80.2	
		Q2 Q2	3	2.3 2.3	U	5 5	U	80.2 80.2	U	159 134	52.2 52.2	U	501 412		7.7 3.6	J	2.1	J	2.3 3	-	80.2 80.2	
		Q2 Q2	3	2.3	U	5	U	80.2	U	134	52.2	U	536		3.6 73	J	1.9	J	3.3	J	80.2	
		Q2 Q1	35 19.5	2.3	U	5	U	80.2	U	97.6	52.2	U	272		4.3	H	3	J	2.3	U	80.2	
U		Q1	19.5	2.3	U	5	U	80.2	U	97.8 64.9	52.2	U	160		4.3 1.4	J	1.5	J	2.3	U	80.2	
್ಧರ		Q1	37	2.3	U	5	U	80.2	U		52.2	U	498		1.4	5	1.5	U	2.3	U	80.2	1 1
Transect G		Q2	20	2.3	U	5	U	80.2	U	136	52.2	U	498		.84	U	1.6	J	2.3	U	80.2	U
_a		Q2	3	2.3	U	5	U	80.2	U	130	52.2	U	410		.84	U	1.6	J	2.3	U	80.2	Ú
		Q2	37	2.3	U	5	U	80.2	U	153	52.2	U	521		86	É	1.5	Ŭ	2.3	U	80.2	Ú
	G2	Q3	18	2.3	U	5	U	80.2	U	231	52.2	U	411		7.5	Ħ	1.5	U	2.3	U	80.2	Ú
		Q3	2	2.3	U	5	U	80.2	Ŭ	138	52.2	U	384		0.7	Ħ	1.5	U	3.5	J	80.2	U
		Q3	38	2.3	Ū	5	Ū	80.2	Ū	273	52.2	U	472		7.5	Ħ	1.5	Ū	4.6	J	678	ГÌ
		Q4	2.5	2.3	U	5	Ū	80.2	Ū	102	52.2	U	281		8.4	П	1.5	U	2.3	U	132	J
	1	Q4	20	2.3	U	5	U	80.2	U	140	52.2	U	404		4.7	П	1.5	U	2.3	U	120	J
		44																U				

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	Chromiu dissolv		Hexavale Chromiu		Aluminu		Calcium, dissolved	di	Iron, issolve	he	Magnesium, dissolved		Manganese, dissolved	,	Vanadiur dissolve		Chromiu	m	Aluminum
Transcot	Gampie	quarter	feet	µg/L	u	µg/L		µg/L	<u> </u>	mg/L		µg/L		mg/L		µg/L		µg/L	u	µg/L		µg/L
		Q1	22	2.3	U	5	U	80.2	U				U	249		113		1.5	U	2.3	U	140 J
		Q1	2	2.3	U	5	U	80.2	U		_		U	110			J	1.5	Ŭ		U	80.2 U
		Q1	41.5	2.3	Ŭ		U		U				U	516		240	Ť	2.3	J	-	Ŭ	131 J
	G3	Q2	25	2.3	U	5	U	80.2	U	145		52.2	U	466		17.5		1.5	U		U	80.2 U
		Q2	3	2.3	U	5	U	80.2	U	131		52.2	U	414		0.84 l	U	1.5	U	2.3	U	80.2 U
		Q2	40	2.3	U	5	U	80.2	U	156		52.2	U	512		661		1.5	U	2.3	U	80.2 U
		Q1	14.5	2.3	U	5	U	80.2	U			52.2	U	206		30.7		1.5	U	2.3	U	80.2 U
Transect G		Q1	27	2.3	U	5	U	80.2	U		_	52.2	U	355		143		1.5	U	2.3	U	114 J
sec		Q1	3	2.3	U	5	U	80.2	U			52.2	U	129			J	1.5	U		U	80.2 U
an;		Q2	13	2.3	U	5	U	80.2	U			52.2	U	463			U	2.7	J	2.3	U	80.2 U
L L		Q2	24	2.3	U	5	U	80.2	U			52.2	U	525	_	50.1		2.9	J		L L	382
	G4	Q2	3 17	2.3	U	5	U	80.2	U			52.2	U U	435	_	0.84	U	3	J		U U	80.2 U 80.2 U
		Q3	2	2.3	U	5	U	80.2	U			52.2	U	594	_	31.6	+	1.5	U	-	-	
		Q3 Q3	34	2.3 2.3	U	5 5	U	80.2 80.2	U			52.2 52.2	U	304 417	+	6.7 21.6	+	1.5 1.5	U	3.8 2.3	J U	80.2 U 80.2 U
		Q3 Q4	2.5	2.3	U	5	U		U				U	294	+	31.6	+	1.5	U		U	80.2 U 131 J
		Q4 Q4	2.5	2.3	U	5	U		U			52.2 52.2	U	376	+	63.2	+	1.5	U	2.3	U	107 J
		Q4	35	2.3	U		U		U				U	457	-	132	-	1.5	U		U	156 J
		Q1	15	2.3	U	5	U	80.2	U			52.2	U	221	+	50	+	1.5	U	2.3	U	80.2 U
		Q1	28	2.3	U	5	U	80.2	U			52.2	U	409		220		1.5	Ŭ	2.3	U	80.2 U
		Q1	3	2.3	U	5	U		U			52.2	U	141		2 .	J	1.9	J	2.3	U	80.2 U
		Q2	22	2.3	U	5	U		U				U	453			Ĵ	2.8	J		U	86 J
		Q2	3	2.3	U	5	U	80.2	U				U	439		5.6	Ť	3.3	J	2.3	U	80.2 U
		Q2	35	2.3	U	5	Ū		Ū				Ū	518		309		3.5	J	2.3	Ū	80.2 U
	H1	Q3	1.5	3.6	J	5	U		U			52.2	U	498		33.6	T	1.5	U		J	80.2 U
		Q3	16.5	2.7	J	5	U	80.2	U			52.2	U	510		25.5		1.5	U		U	80.2 U
		Q3-Dup	16.5	2.6*	J	5*	U	80.2	U	181		52.2	U	499		25		1.5	U	2.3*	U	80.2 U
		Q3	32.5	2.3	U	5	U	80.2	U	180		52.2	U	524		34.7		1.5	U	2.3	U	80.2 U
		Q4	2.5	2.3	J	5	U	80.2	U	94.5 J	J	75.9	J	253 .	J	35.8		1.8	В	4.2	J	109 J
		Q4	18	2.3	U	5	U	80.2	U			52.2	U	368 .	-	49.4		1.5	U		U	147 J
		Q4	34.5	2.3	U	5	U	80.2	U				U	530 .	J	93.5		1.5	U	2.3	U	255
		Q1	16	2.3	U	5	U	80.2	U			52.2	U	234		45.1		1.5	U		U	80.2 U
		Q1	3	2.3	U	5	U	80.2	U			52.2	U	144		1.0	J	1.5	U	2.3	U	80.2 U
	H2	Q1	30	2.3	U	5	U	80.2	U			52.2	U	457		171		1.5	U	-	U	80.2 U
т		Q2	25	2.3	U	5	U	80.2	U	-		52.2	U	479		10.5	_	2.2	J	2.3	U	80.2 U
ect		Q2	3	2.3	U	5	U	80.2	U	-		52.2	U	425	_		J	2.9	J	2.3	U	80.2 U
Transect H	├ ──┤	Q2	35	2.3	U	5	U	80.2	U	-		52.2	U	546	+	597	+	2.7	J	2.3	U U	80.2 U 80.2 U
Tra		<u>Q1</u> Q1	16 3	2.3 2.3	U	5 5	U	80.2 80.2	U	-	_	52.2 52.2	U	240 157	+	35.5 2.7		1.5 1.5	U	-	U	80.2 U 80.2 U
		Q1 Q1	3	2.3	U	5	U	80.2	U		_	52.2 52.2	U	157 419	+	163	J	1.5	U	2.3	U	80.2 U 80.2 U
	H3	Q1 Q2	30 22	2.3	U	5	U	80.2	U				U	419	+	163	+	1.5	J	2.3	U	80.2 U 80.2 U
		Q2 Q2	3	2.3	U		U		U				U	474 425	+	6.1	+	3.1	J	2.3	U	80.2 U 80.2 U
		Q2 Q2	36	2.3	U	-	U		U		_		U	540	+	295	+	3.5	J		U	80.2 U
		Q1	18	2.3	U		U	80.2	U	-	_		U	247	+	81.7	+	1.5	U	-	U	80.2 U
		Q1	3	2.3	U	5	U	80.2	U		_		U	143	+	-	J	1.5	U	-	U	80.2 U
		Q1	34	2.3	U	5	U		U				U	479	+	151	1	1.5	U		J	80.2 U
		Q2	20	2.3	U	5	U		U	-			U	484	+		J	1.8	J	-	Ŭ	255
		Q2	3	2.3	U	5	U		U				U	436	t		Ĵ	2	J	2.3	U	80.2 U
		Q2	38	2.3	U	5	U	80.2	U	-	_	52.2	U	583	t	657	1	1.5	Ŭ		U	178 J
	H4	Q3	19	2.3	U	5	U	80.2	U			52.2	U	499	+	26.1	+	1.5	Ŭ	-	U	80.2 U
		Q3	2	2.3	U	5	U	80.2	U		_	52.2	U	497	T	24.5	T	1.5	U		U	80.2 U
		Q3	38	2.3	U	5	U	80.2	U			52.2	U	537	T	24.5	T	1.5	U	2.7	J	85.8 J
		Q4	2.5	2.3	U	5	U	80.2	U	111		52.2	U	302	T	30.8		1.5	U	2.3	U	80.2 U
		Q4	19	2.3	U	5	U	80.2	U	125		52.2	U	353		45.1		1.5	U	2.3	U	80.2 U
		Q4	40	2.3	U	5	U	80.2	U	154		66.7	J	448	1	84.5		3.1	J	2.3	U	80.2 U

Transect	Sample	Quarter	Depth feet	Chromiu dissolv µg/L	'	Hexavale Chromiu µg/L		Aluminu dissolve µg/L		Calcium dissolve mg/L	·	lron, dissolve µg/L	ed	Magnesium dissolved mg/L	١,	Manganese dissolved µg/L		Vanadium dissolved µg/L	'	Chromiu µg/L	m	Aluminum µg/L
		Q1	2.1	2.3	U	5	U	80.2	U	59.8		52.2	U			3.5	J	1.5	U	21.3		460
		Q2	2	2.3	Ŭ	5	U	80.2	U	147		52.2	U		-	4.5	J	1.6	J	2.3	U	80.2 U
		Q2	4	2.3	Ū	5	Ū	80.2	Ū	145		52.2	Ū	434		5.3	-	1.8	J	2.3	Ū	80.2 U
	11	Q3	1.5	2.3	J	5	Ū	80.2	Ū	171		52.2	Ū	484		20.2		1.5	Ŭ	3	J	80.2 U
		Q4	2.1	2.3	Ŭ	5	Ū	80.2	Ū	92*	J	52.2	Ū	234*	J	-		1.5	Ū	2.8	J	202*
		Q4-Dup	2.1	2.3*	Ū	5*	Ū	80.2*	Ū	97.5	J	52.2*	Ū	246	J	46		1.5*	Ū	2.7*	J	218
		Q1	3	2.3	U	5	U	80.2	U	60.1	-	52.2	U			2.2	J	1.5	U	2.3	U	125 J
		Q1	7	2.3	U	5	Ū	80.2	U	61.4		52.2	Ū	148		3.5	J	1.5	U	2.3	Ū	145 J
		Q2	3	2.3	U	5	Ū	80.2	U	147		52.2	Ū	441		3.7	J	2.1	J	2.3	Ū	80.2 U
		Q2	5.5	2.3	U	5	U	80.2	U	145		52.2	U	438		4.4	J	1.7	J	2.3	U	80.2 U
	12	Q2	9	2.3	U	5	U	80.2	U	146		52.2	U	436		5.1		1.8	J	2.3	U	80.2 U
		Q3	2	2.9	J	5	U	80.2	U	181		52.2	U	506		28.6		1.5	U	2.3	U	80.2 U
		Q3	6	2.3	U	5	U	80.2	U	181		52.2	U	502		27.2		1.9	J	2.3	J	80.2 U
		Q4	2.5	2.3	U	5	U	80.2	U	99.2	J	52.2	U	254	J	42.5		1.5	U	2.3	U	201
		Q4	7	2.3	U	5	U	87.7	J	105		52.2	U	281	J	33.2		1.5	U	2.3	U	170 J
		Q1	3	2.3	U	5	U	80.2	U	59.7		52.2	U	143		2.8	J	1.5	U	2.3	U	159 J
Sec.		Q1	5.3	2.3	U	5	U	80.2	U	60.2		52.2	U	145		4.3	J	1.5	U	2.3	U	135 J
Transect		Q1	8.5	2.3	U	5	U	80.2	U	68.2		52.2	U	168		27.8		1.5	U	3.7	J	289
Ê		Q2	3	2.3	U	5	U	80.2	U	140		52.2	U	422		19		2.3	J	3.3	J	80.2 U
	13	Q2	5.5	2.3	U	5	U	80.2	U	137		52.2	U			20.4		2.3	J	2.3	U	80.2 U
	15	Q2	9	2.3	U	5	U	80.2	U	139		52.2	U	423		4.4	J	2.3	J	2.3	U	80.2 U
		Q3	2	2.3	U	5	U	80.2	U	182		52.9	J	504		28		1.5	U	2.3	U	80.2 U
		Q3	6.5	2.3	U	5	U	80.2	U	182		52.2	U	504		24.9		1.5	U	2.3	U	80.2 U
		Q4	2.5	2.3	U	5	U	80.2	U	÷.	J	52.2	U	249		32.2		1.5	U	2.3	U	211
		Q4	7.5	2.3	U	5	U	80.2	U		J	52.2	U		J	34.9		1.5	U	2.3	U	187 J
		Q1	3	2.3	U	5	U	80.2	U	60.7		52.2	U	145		1.8	J	1.5	U	2.3	U	103 J
		Q1	6	2.3	U	5	U	80.2	U	60.8		52.2	U	147		1.6	J	1.5	U	2.3	U	97 J
		Q2	3	2.3	U	5	U	80.2	U	134		52.2	U	404		19.5		1.7	J	2.3	U	90.8 J
		Q2	5.5	2.3	U	5	U	80.2	U	134		52.2	U	405		20		2.6	J	3	J	109 J
	14	Q2	9	2.3	U	5	U	80.2	U	138		52.2	U			27.4		1.5	U	4.1	J	165 J
		Q3	1.5	2.3	U	5	U	80.2	U	175		54.4	J	489		26.9		1.5	U	2.8	J	80.2 U
		Q3	6.5	2.3	U	5	U	80.2	U	174		52.2	U	485		27.9		1.5	U	4	J	97.4 J
		Q4	2.5	2.3	U	5	U	80.2	U	95.1	J	52.2	U	238	J	41.5		1.5	U	2.3	U	189 J
		Q4	7.5	2.3	U	5	U	80.2	U	99.3		52.2	U	267		29.1		1.5	U	2.3	U	187 J
2	J1	Q4	0.8	2.3	U	5	U	80.2	U	127		52.2	U	320		31.2		1.8	J	22.8		805
ect	J2	Q4	2	2.3	U	5	U	80.2	U	129	I	52.2	U	325		45.3		1.5	U	2.7	J	216
Transect	J3	Q4	2.2	2.3	U	5	U	80.2	U	129		52.2	U	324		43.3		1.5	U	2.8	J	274
Ĕ	J4	Q4	1	2.3	U	5	U	80.2	U	120		52.2	U	301	Γ	32.2		2.4	J	16.9		299

Transect	Sample	Quarter	Depth feet	Calcium mg/L	lron µg/L		Magnesium mg/L	Manganes µg/L	se	Vanadiu µg/L	m	Acidity As CaCO3 mg/L	Ferrous Irc	on	Hardness, total mg/L	Organic Carbon, dissolvec mg/L	ł	Organio Carbon total mg/L	
		Q1	2	71.1	556		192	66.4	1	1.7	J	NV	0.023	J	NV	1.7	J	2.1	Т
		Q2	2	160	174	J	488	NV		4.5	J	NV	NV	-	NV	3.8	Ē	2.6	
		Q2	4	159	254	-	485	525	U		Ĵ	NV	0.011	J	2,620	3.7		2.7	
	A1	Q3	1.5	165	490		471	54.8	-	1.5	U	2,530	0.026	J	2,530	1.7	J	2.6	
		Q4	1.5	112	52.2	U	277	40.1		1.5	U	NV	NV		NV	1.4	J	1.8	J
		Q4	4	104	52.2	U	289	36.7		1.6	J	NV	0.014	J	1,660	1.2	J	1.8	J
		Q1	2	70.6	263	-	191	57.8		1.5	U	NV	0.008	U	NV	1.9	J	2.1*	
		Q1-Dup	2	71.9	236		178	51.4		1.5	U	NV	.008*	U	NV	1.6*	J	2.4	
		Q2	1.5	164	207		506	NV		3.9	J	NV	NV		NV	3.6		2.5	1
<	A2	Q2	3.5	161	222		493	525	U	3.6	J	NV	0.0089	J	NV	3.5		2.8	
Transect A		Q3	2	108	52.2	U	267	11.9	-	1.5	Ū	NV	0.008	Ū	NV	2	J	2.8	
use		Q4	2.4	116	52.2	Ū	311	50.9		1.5	J	NV	0.015	J	NV	1.4	J	1.7	J
rai		Q1	2	74.1	362	Ŭ	197	73.5		1.6	J	NV	0.01	J	NV	1.8	J	2.3	Ť
F		Q2	2.5	157	202	-+	482	525	U	2.5	J	NV	0.008	U	NV	3.4	Ľ	2.6	+
	A3	Q3	2.0	120	52.2	U	299	13.4	-	1.5	Ŭ	NV	0.0095	J	NV	1.6	J	2.9	+
		Q4	2.3	115*	52.2	U	304	52.4*	-	1.5*	U	NV	0.012	J	NV	1.5	J	1.7	1
		Q4-Dup	2.3	117	52.2*	U	301*	53		2.8	J	NV	0.0095*	J	NV	1.2*	J	1.7*	, i
		Q1	2.5	73	229	0	194	86	-	1.5	U	NV	0.0000	U	NV	1.8	J	2.3	
		Q2	2.2	162	213	-	500	525	U	3.4	J	NV	0.008*	U	NV	3.7	J	2.9	+
	A4	Q2 - Dup	2.2	160	213	-	490	525*	U		J	NV	0.0089	J	NV	3.3*		2.3*	
	~~	Q3	2	119	52.2	U	300	13	0	1.5	U	NV	0.023	J	NV	1.8	J	2.8	
	-	Q4	2.5	115	52.2	U	314	50.9	-	1.5	U	NV	0.0025	J	NV	1.3	J	1.7	+
		Q1	2.5	75.4	167	J	199	63	-	1.5	U	NV	0.008	U	NV	1.8	J	2.2	-
	-	Q2		157	218	J	460	NV	-	2.7	_	NV	0.008 NV	U	NV		_		
	-	Q2 Q2	2	157	790	_	460	525	U		J J	NV	0.02	J	2,480	1.7 1.7	J	3.2 2.7	+
	-		5 2	159	86.8	-	464 457	17.7	U	3.2 1.5	U	NV	0.02 NV	J	2,460 NV	1.7	J	2.7	
	B1	Q3 Q3				J			-	NV	0	2700*	0.008	U		1*	U		+
	ы	Q3-Dup	6.5	NV NV	NV NV	_	NV NV	NV NV	_	NV	_			U	2,700	1	U	2.3 2.2*	+
	-		6.5	152	NV 83.2	J	459	18.3	_	1.5	U	2,700 NV	0.008* NV	U	2,700 NV	NV	U	2.2" NV	+
	-	Q3 Q4	7		302	J	171	30.9	-		U	NV	NV	-	NV				
	-		3	69		_			_	1.5	_					1.5	J	2	.
		Q4		90.9	270	-	244	40.3	-	1.5	U	NV	0.014	J	1,260	1.1	J	1.9	J
	-	Q1	3	79.2	163	J	210	90.8	-	1.5	U	NV	NV 0.000		NV	1.9	J	1.9	J
		Q1	7	82.2	173	J	224	105 NV	+	1.5	U	NV NV	0.008 NV	U	NV NV	1.6	J	2	+
â		Q2 Q2	3	156 161	232 343	-+	456 473	525	U	3 2.2	J	NV	0.008	U	NV	1.6 1.6	J	2.7 2.7	+
Transect	B2	Q2 Q3				-+	473 459	525	U	2.2	J U		0.008 NV	U	NV		J		+
sui	62	Q3 Q3	2	155 NV	84.1 NV	J	459 NV	17 NV	+	1.5 NV	10	NV NV	0.008	U	NV	1	U	2.2	+
Tra			8	154	80.3	J	463	19.4	+	1.5	U	NV	0.008 NV		NV	NV	U	2.3 NV	+
·		Q3 Q4	3	71.9	170	J	155	31.4	+	1.5	U	NV	NV	\vdash	NV	1.8	\mathbf{H}	2.1	+
						J			+		_		0.027		NV	-	J		+
		Q4 Q1	9	119 76.3	436 247		268 184	69.4 63.3	+	3.9 1.5	J U	NV NV	0.027 NV	J	NV	1.3 1.9	J	1.7 2	J
			-			_			+		-			\vdash			-		+
		Q1	7	70.8	460	_	196	71.5	+	1.5	U	NV	0.52	\vdash	NV	1	U	1.9	J
		Q2	3	159	253	_	457	NV	<u> </u>	3.6	J	NV	NV 0.000	$\left \cdot \right $	NV	1.7	J	2.9	+
		Q2	7	168	251	_	479	525	U	÷	J	NV	0.008	U	NV	1.7	J	3	+
	B3	Q3	1.5	168	157	J	485	22.1	\vdash	1.5	U	NV	NV	\square	NV	1.5	J	2.5	+
		Q3	10	179	135	J	508	25.4	\vdash	1.5	U	NV	NV 0.001	—	NV	1.4	J	2.4	+
		Q3	5.5	174	124	J	497	24	\vdash	1.5	U	NV	0.021	J	NV	1.6	J	2.3	+
		Q4	3	72.9	181	J	157	34.2	\vdash	2.2	J	NV	NV	L.	NV	1.4	J	2	J
		Q4	9.5	120	124	J	297	64.7		1.8	J	NV	0.014	J	NV	1.3	J	1.7	J

Transect	Sample	Quarter	Depth feet	Calcium mg/L	lron μg/L		Magnesium mg/L	Manganes µg/L	se	Vanadiu µg/L	m	Acidity As CaCO3 mg/L	Ferrous Irc mg/L	on	Hardness, total mg/L	Organic Carbon, dissolved mg/L	1	Organic Carbon total mg/L	
		Q1	3	75.5	52.2	U	179	22.9		1.5	U	NV	NV		NV	1.7	J	1.6	J
		Q1	6	73.6	284		180	70.9		1.5	U	NV	0.041	J	NV	2.7		2.4	
		Q1-Dup	6	74	363		181	74.1		1.5	U	NV	.035*	J	NV	2.4*		2.1*	
		Q2	3	157	180	J	468	NV		3.2	J	NV	NV		NV	1.8	J	3.3	
		Q2	5.5	159	211		472	525	U	4.7	J	NV	0.008*	U	NV	1.9	J	4.1	
m		Q2-Dup	5.5	158	204		465	525*	U	4.2	J	NV	0.014	J	NV	1.7*	J	2.9*	
Transect B	B4	Q2	8.5	159	249		476	NV		4.4	J	NV	NV		NV	1.5	J	3.4	
se		Q3	1.5	174	125	J	490	21.5		1.5	U	NV	NV		NV	1.2	J	2.3	
an		Q3	10.4	184	344		519	42.1		1.5	U	NV	NV		NV	1.4	J	2.3	
F		Q3	5.5	177	151	J	503	30.1		1.5	U	NV	0.019	J	NV	1.2	J	2.3	
		Q4	1.5	80.3	224		211	34.1		1.5	U	NV	NV		NV	1.7	J	2.1	
		Q4	5.5	97.7	277		264	43.1		2	J	NV	0.008	U	NV	1.2	J	1.8	J
		Q4	10	118	226		332	56.9	1	1.5	U	NV	NV		NV	1.2	J	1.8	J
		Q4	2.5	123	203		325	49.7	1	1.5	U	NV	NV		NV	1.2	J	1.7	J
	B5	Q4	7	121	108	J	326	50.4		1.8	J	NV	0.008	U	NV	1.2	J	1.6	J
		Q1	2	71.8	269	+	173	43.3	Г	1.5	U		0.027	J	NV	2.7		3.1	Ħ
		Q2	2	149	572		480	NV		4.2	J	NV	NV		NV	1.7	J	2.2	
		Q2	4	158	652		499	525	U	4.9	J	NV	0.017	J	2,580	1.6	J	2.1	1
	C1	Q2-Dup	4	156	344		502	525*	U	3.6	J	NV	0.017*	J	2570*	1.5*	J	2*	J
		Q3	2	179		J	492	26	Ŭ	1.5	Ŭ	2,760	0.008	Ŭ	2,760	1.5	Ĵ	2.1*	Ŭ
		Q3-Dup	2	178		Ĵ	490	25.8		1.5	U	2760*	0.008*	U	2,760	1.3*	J	2.3	
		Q4	2.2	65.2		J	142	32.2	1	1.5	U	NV	0.0095	J	802	1.5	J	1.9	.1
		Q1	2	73		J	175	42	1	1.5	U	NV	NV		NV	2.3	Ŭ	3.4	Ť
		Q1	4	71.5		J	170	41.3		1.5	U		0.019	J	NV	2.4		3.4	
		Q2	2	155	251	Ŭ	495	NV		3.6	J	NV	NV		NV	1.4	J	2.2	
		Q2	5	154	466	-	494	525	υ	3.5	J	NV	0.008	U	NV	1.4	J	2.5	
	C2	Q3	2	156	101	1	475	18.3	0	1.5	U	NV	NV	0	NV	1	U	2.4	+
		Q3	∠ 5.5	NV	NV	5	NV	NV	+	NV		NV	0.008	U	NV	1	U	2.4	+
		Q3	6	155		J	466	18.4		1.5	U	NV	NV		NV	NV	0	NV	+
		Q4	3	61		J	143	32.9		2.5	J	NV	0.008	U	NV	1.5	J	1.9	
с		Q1	3	71		J	143	41.3	+	1.5	U	NV	0.000 NV	0	NV	2.9	J	3.2	5
t		Q1	6	71.5		J	170	41.3	-	1.5	U		0.049	J	NV	3.3		3.2	+
Ise		Q2	2	156	250	J	500	42.2 NV	-	2.8	J	NV	0.049 NV	J	NV	1.3	J	1.9	
Transect C		Q2 Q2	5	156		J	494	525	U	3.5	J	NV	0.008	U	NV	1.5	J	2.3	
F	C3	Q2 Q2	8	154	283	5	494	NV NV		3.5	J	NV	0.008 NV		NV	1.5	J	2.3	+
		Q2 Q3	2	104		U	263	11.1	\vdash	1.5	U		NV	\vdash	NV	1.8	J	2.5	+
		Q3	8	138	-	J	357	16.9	\vdash	1.5	U	NV	0.0085		NV	1.3	J	2.3	+
		Q4	2	64.4		J	141	33.2	\square	1.5	J	NV	0.0003 NV		NV	1.5	J	1.9	
		Q4	∠ 8.5	97.6		J	249	55.8	\square	1.5	U	NV	0.017	J	NV	1.2	J	1.8	.1
		Q1	3	73.5		J	174	40.7	\vdash	1.5	U		0.017 NV	5	NV	2.2	5	3.5	5
		Q1	7	73.5		J	174	40.7	\vdash	1.5	U	NV	0.051	J	NV	2.2	\vdash	3.4	+
		Q2	2	155		J	498	40.4 NV	\vdash	3.4	J	NV	0.031 NV	5	NV	1.4	J	2.3	+
		Q2 Q2	∠ 5.5	152	153	1	498	525	U	3.4	J	NV	0.008	U	NV	1.4	J	2.3	+
		Q2	9	163	223	5	529	NV		3.6	J	NV	0.008 NV		NV	1.9	J	2.6	+
	C4	Q2 Q3	9	103		U	270	11.7	\vdash	1.5	U	NV	NV	\vdash	NV	2	J	2.8	+
		Q3-Dup	2	109		U	284	12.3	\vdash	2.1	J	NV	NV	\vdash	NV	1.7*	J	2.0	\vdash
		Q3-Dup	2	130		U	336	12.3	\vdash	1.5	U	NV	0.008	U	NV	1.7	J	2.7	+
		Q3 Q4	8	71.1		J	160	34.8	\vdash	4.5	J	NV	0.008 NV		NV	1.4	J	2.4	+
		Q4 Q4	3 9	112		J	277	34.8 67.8	\vdash	4.5	J	NV	0.022	J	NV	1.4	J	 1.8	\vdash
		Q4	9	112	144	J	211	07.Ö	1	3.3	J	INV	0.022	J	INV	1.3	J	1.ö	J

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Calcium mg/L	lron µg/L		Magnesium mg/L		Manganes µg/L	ie	Vanadiur µg/L	m	Acidity As CaCO3 mg/L	F	Ferrous Irc mg/L	on	Hardness, total mg/L	'	Organic Carbon, dissolved mg/L		Organic Carbon total mg/L	
		Q1	3	87.7	179	.1	211	t	52.3		1.5	U	NV	1	NV	1	NV		2.5		1.7	Ы
		Q1	18	154	229	Ŭ	422	+	218		1.5	Ŭ	NV	1	0.032	J	NV		1	J	1.8	J
		Q1	34	218	250		347	+	362		1.5	U	NV	1	NV	Ť	NV		1	Ŭ	1.7	Ĵ
		Q2	0.3	182	128	J	542	T	NV		3	J	NV		NV		NV		2.2	-	4.3	Ť
		Q2	20	176	134	J	533	+	525	U	2.5	J	NV		0.019	J	NV	t	1.5	J	3.5	+
		Q2	40	194	74.3	J	616	+	NV		1.7	J	NV	1	NV	Ŭ	2,790	+	1	Ŭ	2.6	++
	D1	Q3	1.5	178	149	J	495	T	30.7		1.5	Ŭ	NV		NV		NV		1.4	J	2.3	
		Q3	19	175	204	Ŭ	486	+	36.3		1.5	U	NV		0.008	U	NV	t	1.2	J	2.1	+
		Q3	37.5	194	362		541	+	42.8		1.5	Ŭ	2.830	1	NV	Ŭ	2,830		1.1	J	2.1	+
		Q4	2.5	82.5	251		218	+	36.2		1.5	Ŭ	NV	1	NV		NV	+	1.5	J	2	IJ
		Q4	20	144	180	.1	420	+	115		1.5	U	NV	1	0.008	U	NV	+	1	Ŭ	1.5	J
		Q4	40.5	178	379	Ŭ	533	+	327		1.5	U	NV	1	NV	Ŭ	2,870	+	1	U	1.4	Ŭ
		Q1	3	52.9	80	1	129	+	25.1		1.5	U	NV	+	NV	-	2,070 NV	+	1	U	2.2	-
		Q1	22	102	217	J	273	+	129		1.5	U	NV	+	0.041	J	NV	+	1	U	2.2	+
		Q1	42	168	178	J	516	+	316		1.5	U	NV	+	NV	J	NV	+	1	U	2.6	+
		Q2	22	167	196	1	510	+	525	U	2.6	J	NV	+	0.019	J	NV	+	1.2	J	3.3	+
		Q2	3	154	443	J	463	+	NV	U	5.2	J	NV	+	NV	J	NV	+	1.2	J	4.3	+
		Q2 Q2	42	207	60.2	J	539	+	NV		1.6	J	NV	+	NV	-	NV	-	1.7	J	4.3 3.7	+
	D2		42	118	61.9	J	314	+	12.2			U	NV	+	NV	-	NV	-		J		+
		Q3				J		+			1.5	-		-				-	1.1	J	2.6	+
		Q3	22	184	92	J	525	_	32.6		1.7	J	NV	+	0.008	U	NV	-	1	U	2	J
		Q3	42	200 79.6	243 293		573	+	69		1.8	J U	NV NV	-	NV NV		NV NV	_	1	-	1.9	J
		Q4	2.5				208	_	35.7		1.5	-		+				-	1.5	J	2	+.
0		Q4	21	145	225		422	_	109		1.5	U	NV	+	0.0095	J	NV	-	1	J	1.7	J
Transect D		Q4	43.5	176	458		529	+	361		2	J	NV	-	NV		NV	_	1	U	1.4	J
Se		Q1	3	77.4	199	J	172	_	53.9		1.5	U	NV	_	NV		NV	_	2.3		1.9	J
an		Q1	23	114	232		303	+	142		1.5	U	NV	-	0.054	J	NV	_	1.5	J	1.5	J
Ē		Q1	40	169	273		477	+	410		1.5	U	NV	_	NV		NV	-	1	U	2	J
		Q2	25	174	109	J	512	_	525	U	2.1	J	NV	_	0.008	U	NV	_	1.6	J	2.1	_
		Q2	3	155	153	J	453	_	NV		1.8	J	NV		NV		NV	_	1.8	J	2.5	∔.
		Q2	39	198	138	J	592		NV		1.5	U	NV		NV		NV		1	J	1.7	J
	D3	Q3	2	116	106	J	308		13.9		1.5	U	NV	_	NV		NV		1.1	J	2.7	_
		Q3	22	177	158	J	528		32.5		1.5	U	NV		0.016	J	NV		1	U	1.8	J
		Q3	40	187	137	J	564		28.4		1.5	U	NV		NV		NV		1	U	2.2	
		Q4	2.5	78.9*	52.2*	U	206*		22.3*		1.5	U	NV		NV		NV		2	J	2.1*	
		Q4-Dup	2.5	90.6	237		241		39		1.5*	U	NV		NV		NV		1.7*	J	2.2	
		Q4	21	140	201		404		98.9		1.8	J	NV		0.024	J	NV		1.1	J	1.7	J
		Q4	42.5	176	287		529		315		1.5	U	NV		NV		NV		1	U	1.5	J
		Q1	3	80	111	J	207		79		1.5	U	NV		NV		NV		1.6	J	2.2	
		Q1	5	77.6	115	J	203		76.5		1.5	U	NV		0.008	U	NV		2.1		2.2	
		Q1-Dup	5	79	112	J	206		78.3		1.5	U	NV		.008*	U	NV		1.4*	J	2.1*	
		Q1	8	79.9	87.1	J	212		81.3		1.5	U	NV		NV		NV		1.8	J	2.1	
		Q2	3	131	279		410		NV		2.8	J	NV		NV		NV		2.5		3.3	
		Q2	5	127	510		423	Ι	525	U	3.1	J	NV		0.084	J	NV		1.5	J	2.5	
	D4	Q2	8.5	128	280		407	Ι	NV		3.2	J	NV		NV		NV	Ι	1.6	J	2.6	
		Q3	2	122	77.9	J	360		11.3		1.5	U	NV		NV		NV		1.2	J	2.5	Γ
		Q3	9	160	134	J	482	Τ	27.4		1.5	U	NV		0.011*	J	NV		1	U	2.1*	Т
		Q3-Dup	9	166	143	J	471	Τ	27.1		1.5	U	NV		0.015	J	NV		1*	U	2.2	T
		Q4	1.5	81	278		214	1	35.3		2.3	J	NV	1	NV	1	NV		1.7	J	2	T
		Q4	5	89.3	227		240	Ť	38.7		1.5	U	NV	T	0.008	U	NV	T	1.5	J	1.9	J
		Q4	10	128	255		364	T	77.7		2.1	J	NV	1	NV	1	NV	Ť	1.4	J	1.7	J

Appendix C-2a
Data from Surface Water Sampling Events
Dundalk Marine Terminal, Baltimore, Maryland

E1	ole Quarte		epth eet	Calcium mg/L	lror µg/l	_	Magnesium mg/L		Manganes µg/L	e	Vanadiur µg/L	n	Acidity As CaCO3 mg/L	Ferrous I mg/L	ron	Hardness, total mg/L	Organic Carbon dissolve mg/L	,	Organi Carbor total mg/L	n,
E1	Q1	21 2	1.5	93	173	J	252	T	96		1.5	U	NV	0.008	U	NV	1	J	1.8	J
E1	Q1	21 4	41	168	140	J	503	Т	283		1.5	U	NV	NV		NV	1	U	2	
E1	Q1	21	3	48.7	52.2	U		Ι	19.8		1.5	U	NV	NV		NV	2.1		1.9	J
E2 E3	Q1-Dup		3	49.5	52.2	U	111	Ι	20		1.5	U	NV	NV		NV	2*	J	1.7*	J
E2 E3	Q2		22	155	253		468	Т	525	U		J	NV	0.033	J	NV	1.5	J	3.2	
E2 E3	Q2		3	183	316		551	Ι	NV		3.6	J	NV	NV		NV	1.8	J	3.9	
E3	Q2		42	199	103	J		\bot	NV		1.5	U	NV	NV		2,950	1	J	2.7	
E3	Q3		1.5	175	141	J	483	\bot	29.9		1.5	U	NV	NV		NV	1.4	J	2.3	
E3	Q3		17	178	157	J	494	Ι	29.4		1.5	U	NV	0.008	U		1.4	J	2	
E3	Q3		37	193	182	J	537	Ι	35.6		1.5	U	2,870	NV		2,870	1.4	J	2.1	
E3	Q4		2.5	103	242		279	\bot	37.1		2	J	NV	NV		NV	1.1	J	1.7	J
E3	Q4		19	140	408		396,000	T	108		2	J	NV	0.053	J	NV	1	U	1.7	J
ш розсири E1 E2 E3	Q4		3.5	166	451		485	1	242		2.8	J	NV	NV		2,520	1	U	1.5	J
ш розсия E1 E2 E3	Q1		3	65.9	69.9	J	164	_	34.8	Щ	1.5	U	NV	NV		NV	2.6	В	2.5	В
E3	Q1		22	121	156	J	348	_	203	Щ	1.5	U	NV	0.032	J	NV	1	U	1.5	В
E3	Q1		42	165	139	J	493	1	498	Ш	1.5	U	NV	NV		NV	1	U	1.7	В
E3	Q2		22	163	167	J	504	1	525	U	3.2	J	NV	0.021	J	NV	1.6	J	3.4	
E3	Q2		3	151	404		450	_	NV	Ц	4.5	J	NV	NV		NV	1	J	4.7	
E3	Q2		42	197	54.8	J	567	1	NV	Цļ	2.4	J	NV	NV		NV	1	U	2.3	
E3	Q3		2	150	144	J	433	_	19.7	Ц	1.5	U	NV	NV	4	NV	1.1	J	2.7	
E3	Q3		22	185	139	J	545	4	32.1	Ц	1.5	U	NV	0.015	J	NV	1	U	1.9	J
E3	Q3		42	203	250		580	4	61.9	Ц	1.5	U	NV	NV		NV	1	U	1.8	J
E3	Q4		2.5	98.6*	207		272*	4	37.1*	Ц	1.5	U	NV	NV	+	NV	1.1	J	1.8*	J
	Q4-Dup		2.5	102	195*	J	282	4	38.1	Ц	1.5*	U	NV	NV	-	NV	1.1*	J	1.9	J
	Q4		19	130	249	\square	379	+	87.8	Ц	1.5	U	NV	0.02	J		1	U	1.7	J
	Q4		41	161	262		479	+	190	Ц	1.5	U	NV	NV	+	NV	1	U	1.5	J
	Q1		3	71.7	231		175	+	44.7	Ц	1.6	J	NV	NV	- I	NV	2.2	+	3.3	<u> </u>
	Q1		25	116	192	J	334	+	233	Ц	1.5	U	NV	0.008	U		1	U	1.3	J
E4	Q1		39	156	204		477	+	418	Ц	1.5	U	NV	NV	<u> </u>	NV	1	U	1.7	J
E4	Q2		28	172	124	J	510	+	525 NV	U	1.5	U	NV	0.008	U	NV NV	1.2	J	1.9	J
E4	Q2	-	3	155	199	J		+		Ц	2.5	J	NV	NV			1.9	J	2.6	+ ,
E4	Q2	-	40	196 76.8	147 58.9	J	587 205	+	NV 69.4	Ц	1.5 1.5	U U	NV NV	NV NV		NV NV	1.2	J	1.7 2.1	J
E4	Q1	-	3			J		+		Ц	-	U			U		-	-		-
E4	Q1 Q1		6 11	76.2	102 288	J	216 251	+	71.9 132	Щ	1.5 1.5	U	NV NV	0.008 NV	- 0	NV NV	1.4	J	2	J
E4	Q1 Q2			87.8		\square		+		Щ	-	U			+		1.1	-		J
E4	Q2 Q2		12 3	164 155	740 415	\square	473 460	+	NV NV	Щ	5.3 4.3	J	NV NV	NV NV	+	NV NV	1.5 1.7	J	2.8	+
E4	Q2 Q2		3 7	155	314	\square	460 479	+	525	U	4.3	J	NV	0.0099	J	NV	1.7	J	2.7	+
	Q2 Q3		7 13	166	314	\vdash	554	+	525 44.7	U	3.2	J	NV	0.0099 NV	J	NV	1.7	J	2.8	-
	Q3		2	180	340 116		357	+	44.7	H	1.5	U	NV	NV		NV	1.1	J	2.6	J
	Q3		2 9	124	191	J	462	+	12.6	H	1.5	U	NV	0.011	J	NV	1.1	J	2.6	
	Q3 Q4		9 2	79.3	276	J	209	+	35.8	H	1.5	U	NV	NV	J	NV	1.1	J	1.9	+
	Q4 Q4	-	2 9	79.3	276	\vdash	209	┽	35.8	H	1.5	U	NV	0.008	U		1.5	J	1.9	J
	Q4 Q4	-	9 5.5	82.9	272	\vdash	360	+	37.2 79.8	Ц	1.5	U	NV	0.008 NV		NV	1.5	J	1.9	J

Transect	Sample	Quarter	Depth		Iron	Magnesium		e	Vanadiur	n	Acidity As CaCO3	Ferrous Iron	n	Hardness, total	Organic Carbon, dissolved		Organi Carbon total	
			feet	mg/L	µg/L	mg/L	µg/L		μg/L		mg/L	mg/L		mg/L	mg/L		mg/L	
		Q1	3	69.2	98.5 J		45.2		1.5	U	NV	NV		NV	2.4		1.9	J
		Q1	18	119	186 J		168		1.5	U	NV	0.019	J	NV	1.3	J	1.6	J
		Q1	34	195	333	545	408		1.5	U	NV	NV		NV	1	U	1.6	J
	F1	Q2	25	165	159 J			U	1.5	J	NV	0.034	J	NV	1.3	J	1.8	J
		Q2	3	150	58.2 J		NV		1.5	J	NV	NV		NV	1.6	J	2.3	
		Q2	35	171	217	535	NV		2.5	J	NV	NV		2,850	1.2	J	2	J
		Q2-Dup	35	172	238	544	NV		1.9	J	NV	NV		NV	NV		NV	
		Q1	3	79.6	59.1 J	-	44.9		1.5	U	NV	NV		NV	2.4		1.9	J
		Q1	15	104	146 J		124		1.5	U	NV	0.028	J	NV	1.6	J	1.4	J
		Q1	42	181	343	517	407		1.5	U	NV	NV		NV	1	U	1.6	J
		Q2	25	163	141 J			U	1.7	J	NV	0.027	J	NV	1.5	J	2	_
		Q2	3	147	52.2 L	-	NV		1.8	J	NV	NV		NV	1.9	J	2.4	
	F2	Q2	43	180	113 J		NV		1.5	U	NV	NV		NV	1.1	J	1.9	J
		Q3	2	105	60.1 J		13.5		1.5	U	NV	NV		NV	1.8	J	3	<u> </u>
		Q3	20	167	136 J		32	_	1.5	U	NV	0.02	J	NV	1	U	2	J
		Q3	40	193	170 J		23.8	_	1.9	J	1,560	NV		1,560	1.2	J	2.6	<u>+</u>
U		Q4	2.5	123	260	346	60	_	1.5	U	NV	NV		NV	1.4	J	1.9	J
T T		Q4	22	151	498	445	92.7		2.4	J	NV		U	NV	1.1	J	1.7	J
Transect F		Q4	43	167	510	500	113	_	1.5	U	NV	NV		2,750	1	U	1.5	J
an		Q1	3	68	84.3 J	-	39.8		1.5	U	NV	NV		NV	2.4	В	2.6	В
μ, μ		Q1	16	105	310	291	174		1.5	U	NV	0.068	J	NV	1.3	В	1.6	В
	F3	Q1	30	157	274	462	344		1.5	U	NV	NV		NV	1	U	1.5	J
		Q2	20	157	136 J			U	2	J	NV	0.024	J	NV	1.6	J	2.1	_
		Q2	3	150	75.1 J		NV		1.8	J	NV	NV		NV	1.9	J	2.4	
		Q2	35	172	135 J		NV		1.5	J	NV	NV		NV	1.7	J	1.9	J
		Q1	3	73.4	169 J		70.4		1.5	U	NV	NV		NV	1.7	J	2	J
		Q1	15	79.2	261	227	105		1.5	U	NV		U	NV	1.3*	J	1.9	J
		Q1-Dup	15	80.8	273	230	111		1.5	U	NV	0.012	J	NV	1.8	J	1.9*	J
		Q1	24	91.8	520	276	167		1.5	U	NV	NV		NV	1.2	J	1.7	J
		Q2	10	158	127 J			U	3.4	J	NV		J	NV	2	J	2.6	
		Q2	24	166	255	522	NV		2.4	J	NV	NV		NV	1.1	J	1.9	J
	F4	Q2	3	146	52.2 L	-	NV		2.6	J	NV	NV		NV	1.8	J	2.4	
		Q3	15	183	135 J		36.9		1.5	U	NV		U	NV	1	U	2.3	
		Q3	2	112	72.3 J		12.3		1.5	U	NV	NV		NV	1.4	J	3	
		Q3	25	186	140 J		42.2	_	1.5	U	NV	NV		NV	1	U	2.2	<u> </u>
		Q4	2.5	130	276	358	63		1.5	U	NV	NV		NV	1.4	J	2	J
		Q4	15	140	264	392	75.2		1.5	U	NV		U	NV	1.1	J	1.8	J
		Q4	26	174	498	505	99.5	_	1.5	U	NV	NV 0.012	-	NV	1	U	1.4	J
		Q1	17	79.4	118 J		69.3	_	1.5	U U	NV		J	NV	1	U	2	+
		Q1	3	54.3	71.8 J		22.5	_	1.5	U U	NV	NV NV		NV	1.1	J U	2.2	+
	G1	Q1	32 20	133 197	142 J		182	U	1.5	J	NV NV	NV 0.02		NV NV	1	J	2.4	+
		Q2	-		222 99.2	586	525 NV	U	2.9		NV NV	0.02 NV	J	NV NV	1.3	-	2.7	+
		Q2	3	180	00.1	524	NV NV	_	1.6	J	NV	NV NV	_		1.8	J	4	+
		Q2	35	265	214	492	104	_	1.7	J U	NV	0.021	-	2,910	1	J U	2.8	
U		Q1 Q1	19.5	92.7	98.2 J 85.4 J	-		_	1.5	U	NV		J	NV NV	1	U	1.7 2	J
ซี			3	58.4			30.1 217	_	1.5 1.5	U	NV NV	NV NV	_	NV	1	U		J
se		Q1 Q2	37 20	155 133	183 J			U	1.5	J	NV		U	NV	1.2	J	2.3 2.2	+
Transect G		-		133			525 NV	U		J	NV	0.008 NV	υ	NV		_		+
F		Q2	3		90.3 J		NV NV	_	1.7	J	NV	NV NV	_	NV	1.5	J	2.2	+ -
	G2	Q2	37	150	96.7 J	-		_	1.5	U			-		1	-	1.7	J
		Q3	18	161	176 J		38.8	_	1.5	-	NV	0.028	J	NV	1	J	2.2	+
		Q3	2	104	107 J		13.2	_	1.5	U	NV	NV	_	NV	1.6	J	2.8	+.
		Q3	38	195	1,460	585	146		5.2		1,540	NV		1,540	1	U	2	J
		Q4	2.5	101	208	281	38.4	_	1.5	U	NV	NV 0.0005		NV	1.1	J	1.8	J
		Q4	20	133	249	388	89.4	_	1.6	J	NV	0.0085	J	NV 0.000	1	U	1.6	J
		Q4	39	161	164 J	479	158		1.5	U	NV	NV		2,620	1	U	1.6	J

Transact	Comula	Overster	Denth	Calaium				Manaakin				Vanadiu		Acidity As	Former la		Hardness,	Organic Carbon,		Organic Carbon	
Transect	Sample	Quarter	Depth feet	Calciun mg/L		Iron µg/L	_	Magnesiun mg/L	n	Manganes µg/L	se	Vanadiu µg/L	n	CaCO3 mg/L	Ferrous Ire mg/L	on	total mg/L	dissolved mg/L	ג	total mg/L	
		Q1	22	92.9		243		249	Т	153	Γ	1.5	U	NV	0.02	J	NV	1.4	J	1.8	Ы
		Q1	2	49.5		7.2	J	110	t	21.7		1.5	U	NV	NV	Ŭ	NV	2.8	Ŭ	1.8	J
		Q1	41.5	174		208	-	516	t	245		1.5	Ū	NV	NV		NV	1	U	1.9	J
	G3	Q2	25	145		94	J	467		525	U	1.6	J	NV	0.008	U	NV	1	J	1.8	J
		Q2	3	128		'3.1	J	407		NV		1.6	J	NV	NV		NV	1.7	J	2.4	
		Q2	40	157			J	525		NV		1.5	U	NV	NV		NV	1	U	1.7	J
		Q1	14.5	76.6		169	J	196		72.7		1.5	U	NV	0.027	J	NV	2.4		1.6	J
		Q1	27	124		243		356		173		1.5	U	NV	NV		NV	1	U	1.7	J
Transect G		Q1	3	53		52.2	U	122	_	25.1		1.5	U	NV	NV		NV	2.1		1.6	J
an		Q2	13	159		57	J	443 547	_	525	U	3.7	J	NV NV	0.012	J	NV	1.4	J	2.2	
Ē		Q2 Q2	24 3	191 154		356 52.2	U	433	+	NV NV		5.5 3.4	J	NV	NV NV	-	NV NV	1.2 2	J	1.9 2.9	J
	G4	Q2 Q3	17	154		172	J	433	+	35.7		1.5	U	NV	0.024	J	NV	1	U	2.9	+
		Q3	2	104		104	J	290	+	13.4		1.5	U	NV	0.024 NV	5	NV	1.5	J	2.8	+
		Q3	34	192		-	J	572		31.4		1.5	U	NV	NV		NV	1	U	1.9	J
		Q4	2.5	103		217	-	288	t	40		1.5	Ū	NV	NV		NV	1.3	J	2	J
		Q4	17	126		233		364		68.2		1.9	J	NV	0.011	J	NV	1	U	1.6	J
		Q4	35	150	2	265		446	T	144		2	J	NV	NV		NV	1	U	1.6	J
		Q1	15	86.7	1	171	J	229		91		1.5	U	NV	0.014	Κ	NV	2.5	J	1.9	J
		Q1	28	136	1	160	J	398		225		1.5	U	NV	NV		NV	2.6	J	1.5	J
		Q1	3	59.1			J	141		23.9		1.5	U	NV	NV		NV	2.9	J	2.3	J
		Q2	22	146		123	J	442		525	U	2.3	J	NV	0.012	J	NV	1.3	J	3.2	
		Q2	3	142			J	426		NV		2.3	J	NV	NV		NV	2.1		3.8	
		Q2	35	170		6.3	J	520		NV		2	J	NV	NV		2,640	5.1		8.9	
	H1	Q3	1.5	174		189	J	478	_	43		1.5	U	NV	NV 0.0000		NV	1.4	J	2.2	+
		Q3 Q3-Dup	16.5	182 179		157 148	J	507 496	-	36.7 35.3		1.5 1.5	U U	NV NV	0.0092 0.008*	J U	NV NV	1 1*	UU	2.1 2.1*	-
		Q3-Dup Q3	16.5 32.5	179		148 150	J	496 525	-	46.9		1.5	U	2,890	0.008" NV	U	2,890	1	J	2.1	+
		Q4	2.5	91.8		219	J	246	J			2.1	B	2,890 NV	NV	+	2,890 NV	1.9	J	2	+
		Q4 Q4	18	127		52.2	U	354	J			1.5	U	NV	0.0095	J	NV	1.3	J	1.6	.1
		Q4	34.5	177		140	J	520	J			1.5	U	NV	NV	Ŭ	3,020	1	Ŭ	1.5	J
		Q1	16	87.8		164	J	237	Ť	88.9		1.5	U	NV	0.04	ĸ	NV	2.6	J	1.7	J
		Q1	3	66.1			J	157	t	26.3		1.5	Ū	NV	NV	1	NV	3.2	J	1.7	J
	H2	Q1	30	138	1	114	J	410		160		1.5	U	NV	NV		NV	2.5	J	1.7	J
т	пг	Q2	25	160		92.1	J	487		525	U	1.8	J	NV	0.008	U	NV	1.5	J	3.8	
çt		Q2	3	153		9.8	J	454		NV		2.7	J	NV	NV		3.6	1.7	J	NV	
Ise		Q2	35	181		67.8	J	552		NV		1.7	J	NV	NV		NV	1.6	J	5.1	
Transect H		Q1	16	87.4		204		233	1	79.6		1.5	U	NV	0.022	Κ	NV	2.5	J	1.7	J
-		Q1	3	66.2		3.6	J	157	L	20.9		1.5	U	NV	NV	1	NV	2.5	J	1.7	J
	H3	Q1	30	137		245	_	408	1	167		1.5	U	NV	NV 0.000		NV	2.4	J	1.7	J
		Q2	22 3	163 143		118 57	J	495 424	╀	525 NV	U	2 2.1	J	NV NV	0.008 NV	U	NV NV	1.1 1.8	J	3 3.4	+
		Q2 Q2	3	143		57 119	J	424 548	┢	NV NV	\vdash	2.1	J	NV	NV	+	NV NV	1.8	J	3.4 2.6	+
		Q2 Q1	18	88.9		135	J	236	╀	99.8	\vdash	1.5	J U	NV	0.023	J	NV	1.2	J	2.6	+
		Q1	3	57			J	141	+	22.5	\vdash	1.5	U	NV	0.023 NV	5	NV	2.5	5	1.0	J
		Q1	34	156		200	-	488	$^{+}$	168	\square	1.5	U	NV	NV	1	NV	2.2		1.6	Ĵ
		Q2	20	154		326		471	t	525	U	2.8	J	NV	0.008	U	NV	1.5	J	3.1	Ť
		Q2	3	141		96.9	J	424	1	NV		1.9	J	NV	NV	É	NV	1.5	J	3.3	\square
	ц.	Q2	38	184		350		574	T	NV		1.9	J	NV	NV	1	NV	1.5	J	4.7	\square
	H4	Q3	19	184	1	143	J	508	Ĺ	38		1.8	J	NV	0.0092	J	NV	1.2	J	2	\Box
		Q3	2	179	1	139	J	495		34.2		2	J	NV	NV		NV	1.2	J	2.3	
		Q3	38	192		234		533		39.7		1.5	U	NV	NV		NV	1.1	J	2	J
		Q4	2.5	107		209		292		39.1		1.5	U	NV	NV		NV	1	J	1.8	J
		Q4	19	127		177	J	358	Ē	52.9		1.9	J	NV	0.018	J	NV	1	U	1.6	J
		Q4	40	160	1	198	J	470	1	98.9		1.5	J	NV	NV		NV	1	U	1.5	J

Appendix C-2a Data from Surface Water Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Calciun mg/L	n	lron µg/L		Magnesiur mg/L	n	Manganes µg/L	e	Vanadiur µg/L	n	Acidity As CaCO3 mg/L	Ferrous Iro mg/L	on	Hardness, total mg/L	Organic Carbon, dissolved mg/L	ł	Organic Carbon, total mg/L	
		Q1	2.1	60.4		989		147		46.8		4	J	NV	0.098	J	NV	2.8		1.9	J
	[Q2	2	146		77.3	J	436		NV		1.8	J	NV	NV		NV	2.1		5.2	
	11	Q2	4	142		76.3	J	427		525	U	2.6	J	NV	0.016	J	2,300	1.8	J	3.7	
		Q3	1.5	177		146	J	496		31.2		1.5	U	2,680	0.0082	J	2,680	1.5	J	2.9	
		Q4	2.1	90.5*	J	103*	J	228*	J	51.8*		1.5	U	NV	0.029	J	1,330	2.3*		2.2*	
		Q4-Dup	2.1	94.5	J	134	J	233	J	54.7		1.5*	U	NV	0.015*	J	1330*	2.4		2.3	
		Q1	3	60.2		148	J	146		25.4		1.5	U	NV	NV		NV	2.6		1.8	J
		Q1	7	61.6		181	J	152		28.2		1.5	U	NV	0.035	J	NV	2.7		1.7	J
		Q2	3	146		74.3	J	438		NV		2.6	J	NV	NV		NV	2		3.6	
		Q2	5.5	146		55.6	J	436		525	U	2	J	NV	0.019	J	NV	1.7	J	3.2	
	12	Q2	9	148		79.4	J	442		NV		2.3	J	NV	NV		NV	1.8	J	4.9	
		Q3	2	178		180	J	499		36.5		1.5	U	NV	NV		NV	1	J	2.5	
		Q3	6	179		172	J	501		35.6		1.7	J	NV	0.011	J	NV	1.1	J	2.3	
		Q4	2.5	94.4	J	81.8	J	240	J	46.7		1.5	U	NV	NV		NV	1.7	J	2.1	
		Q4	7	105		52.2	U	280	J	38.6		1.5	U	NV	0.024	J	NV	1.3	J	1.6	J
1 - T		Q1	3	61.3		219		148		27.6		1.5	U	NV	NV		NV	2.7		1.9	J
Transect		Q1	5.3	61.2		166	J	147		26.3		1.5	U	NV	0.041	J	NV	2.7		2	J
ans		Q1	8.5	62.4		429		153		39.2		2.3	J	NV	NV		NV	2.5		2	
Цu Ц		Q2	3	198		175	J	573		NV		2.3	J	NV	NV		NV	1.5	J	3.8	
	13	Q2	5.5	176		147	J	512		525	U	2.1	J	NV	0.03	J	NV	1.7	J	3.2	
	13	Q2	9	156		82	J	452		NV		1.5	U	NV	NV		NV	1.7	J	3.8	
		Q3	2	177		147	J	498		36.4		1.5	U	NV	NV		NV	1.2	J	2.3	
		Q3	6.5	177		165	J	494		34.2		1.5	U	NV	0.011	J	NV	1	U	2.1	
		Q4	2.5	95.7	J	84.7	J	253		35.9		1.5	U	NV	NV		NV	1.5	J	1.9	J
		Q4	7.5	101	J	74.4	J	272	J	40.2		1.5	U	NV	0.016	J	NV	1.4	J	1.8	J
		Q1	3	60.9		110	J	145		23.4		1.5	U	NV	NV		NV	2.4		1.8	J
	[Q1	6	60.9		112	J	146		23.2		1.5	U	NV	0.014	J	NV	3		1.9	J
		Q2	3	197		232		569		NV		2.7	J	NV	NV		NV	1.8	J	3.1	
		Q2	5.5	197		228		567		525	U	2.2	J	NV	0.031	J	NV	1.7	J	4.6	
	14	Q2	9	184		422		532		NV		3.5	J	NV	NV		NV	1.7	J	3.3	
		Q3	1.5	172		229		484		33.1		1.5	U	NV	NV		NV	1.6	J	2.4	
	[Q3	6.5	174		439		487		51.4		1.7	J	NV	0.11		NV	1.3	J	2.4	
	[Q4	2.5	89.9	J	55.7	J	226	J	46.2		1.5	U	NV	NV		NV	1.8	J	2	J
		Q4	7.5	106		52.2	U	284		39.7		1.5	U	NV	0.012	J	NV	1.6	J	1.8	J
ťЈ	J1	Q4	0.8	128		834		320		118		3.8	J	NV	0.008	U	2,030	1.1	J	1.9	J
Sec	J2	Q4	2	132		101	J	334		54.2		1.5	U	NV	0.008	U	NV	1	U	1.7	J
Transect	J3	Q4	2.2	122		143	J	324		53		1.5	U	NV	0.008	U	NV	1.1	J	1.8	J
Ē	J4	Q4	1	121		292		304	1	57		3.6	J	NV	0.013	J	NV	1.2	J	2.1	11

* = datum not used (because it is the lower pair of a duplicate, or the datum was rejected)

B = Bottom sample CaCO₃ = Calcium carbonate Qualifiers:

J = Estimated value U = Not detected

mg/L = Milligram per Liter NV = No Value, no analysis performed µg/L = Microgram per Liter

14 of 14

Appendix C-2b Data from Surface Water Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	Chromiu dissolv	,	Hexavaler Chromiur	-	Aluminur dissolve		Calcium, dissolved	Iron, dissolv		Magnesium, dissolved	Manganese dissolved		Vanadiun dissolve	'	Chromiu	m	Aluminum
			feet	µg/L		μg/L		μg/L		mg/L	μg/L		mg/L	µg/L		μg/L		μg/L		µg/L
		Q1	22	2.3	U	5	U	80.2	U		52.2	U	-	132		1.5	U		U	82.4
		Q1	3	2.3	U	5	U	80.2	U	-	52.2	U		15.1		1.5	U	-	U	80.2 l
		Q1	37	2.3	U	5	U	80.2	U		52.2	U		347		1.5	U	2.3	U	91.7
		Q2	14	2.3	U	5	U	80.2	U		52.2	U		4.3	J	2.5	J	2.3	U	80.2 l
		Q2	3	2.3	U	5	U	80.2	U		52.2	U		1.2	J	3	J	2.3	U	80.2 l
	37	Q2	37	2.3	U	5	U	80.2	U		52.2	U		440		3.3	J	2.3	U	80.2 l
	57	Q3	17	2.3	U	5	U	80.2	U		52.2	U	-	29.8		1.5	U		J	99.8
		Q3	2	2.3	U	5	U	80.2	U		52.2	U	286	4.2	J	1.8	J	2.9	J	80.2 l
		Q3	37	2.3	U	5	U	80.2	U	181	52.2	U	571	40		2.5	J	3	J	178 、
		Q4	2.5	2.3	U	5	U	80.2	U	113	52.2	U	317	54.7		1.5	U	2.3	U	80.2 l
		Q4	19	2.3	U	5	U	80.2	U	134	52.2	U	386	75.7		1.5	U	2.3	U	133 、
		Q4	38	2.3	U	5	U	80.2	U	172	52.2	U	515	86.7		1.5	U	2.3	U	227
		Q1	20	2.3	U	5	U	80.2	U	91.5	52.2	U	236	80.5		1.5	U	2.3	U	91.8
		Q1	3	2.3	U	5	U	80.2	U	79.4	52.2	U	195	10.1		1.5	U	2.3	U	80.2 l
		Q1	35	2.3	U	5	U	80.2	U		52.2	U	422	298		1.5	U	2.3	U	113 、
		Q2	19	2.3	U	5	U	80.2	U	164	52.2	U	472	2	J	3.9	J	2.3	U	113 J 80.2 l
		Q2	3	2.3	U	5	U	80.2	U	157	52.2	U	449	0.84	U	3.1	J	2.3	U	80.2 l
37		Q2	35	2.3	U	5	U	80.2	U	199	52.2	U	542	512	-	2.9	J	2.3	Ū	107
st	37A	Q3	18	2.7	J	5	U	80.2	U		52.2	U		23.7		1.5	U		Ū	200
Transect		Q3	2	3.4	J	5	Ū	80.2	Ū		52.2	U		8.6		1.5	Ū	2.3	Ū	154
rar		Q3	36	2.3	Ū	5	Ū	80.2	Ū		52.2	Ū		24.9		1.5	Ū	-	Ū	307
		Q4	2.5	3.3	J	5	Ū	80.2	U	-	52.2	Ū		50.4		1.5	U	-	J	104
		Q4	18	2.3	Ŭ	5	U	80.2	U		52.2	U		41.1	-	1.5	U		Ŭ	387
		Q4	36	2.3	Ŭ	5	Ŭ	80.2	U		52.2	U		37.8	-	1.5	U		J	327
		Q1	20	2.3	U	5	U	80.2	U		52.2	U	-	66.3	-	1.5	U		Ŭ	80.2 L
		Q1	3	2.3	Ū	5	U	80.2	U		52.2	U		15.8	-	1.5	U	-	Ŭ	80.2 L
		Q1	34	2.3	Ŭ	5	Ŭ	80.2	U		52.2	U	-	292	-	1.5	U		Ŭ	80.2 L
		Q2	19	2.3	U	5	U	80.2	U		52.2	U	-	159	-	1.5	U	-	Ŭ	80.2 L
		Q2	3	2.3	U	5	U	80.2	U		52.2	U			U	-	U	-	Ŭ	80.2 L
		Q2	35	2.3	U	5	U	80.2	U		52.2	U		91.8	Ŭ	1.5	U	-	U	98.1
		Q3	17	2.3	U	5	U	80.2	U		52.2	U	-	25.2	-	1.5	U		1	135
	37B	Q3	2	2.3*	U	5	U	80.2	U		52.2	U		8.1	-	1.5	U		U	80.2 L
		Q3-Dup	2	2.6	J	5*	U	80.2	U		52.2	U		8.6	-	2.8	J	2.6	ī	80.2 l
		Q3	35	2.0	U	5	U	80.2	U		52.2	U		29.8	-	1.5	U		1	95.5
		Q3 Q4	2.5	2.3*	U	5	U	80.2	U		52.2	U	-	46.3*	-	1.5	U		1	80.2* L
		Q4-Dup	2.5	3.1	J	5*	U	80.2*	U		52.2*	U		46.5	-	1.5*	U	-	U	85.4
		Q4-Dup Q4	2.5 19	2.3	U	5 5	U	80.2	U		52.2	U	-	46.5 59.6	-	1.5	U	2.3	U	179
		Q4 Q4	37	2.3	U	5 5	U	80.2	U		52.2	U		59.6 55.2	-	1.5	U		4	205
		Q4	31	2.3	U	5	U	80.2	U	163	52.2	U	511	55.Z		1.5	U	3.4	J	205

Data from Surface Water Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Calcium mg/L	Iron	Magnesium mg/L		e	Vanadiur	n	Acidity As CaCO3	Ferrous Iron		Hardness total mg/L	disso	oon olve	,	Organi carbon total mg/L	١,
		Q1	22	98.8	μ g/L 149 J		μ g/L 200	-	μ g/L 2.3		mg/L NV	mg/L	J	NV	mg				
		Q1	3	98.8 73.9	149 J 74.7 J		200 NV	J	2.3	J U		0.013 NV	J	NV	1.3		J	1.9 2.4	J
		Q1	37	151	-	452	NV	_	2.7	-	NV	NV	_	NV					┽┦
		Q1 Q2	37 14	151	196 J 52.2 U				3.2	J	NV		U	NV	1.4		U	2.4	┿┩
		Q2 Q2	3	154	52.2 U 52.2 U		525 NV	U	3.2	J	NV	0.008 NV	U	NV	1.4		J	2.3	┿┩
		Q2 Q2	37	205		586	NV	_	2.1	J		NV	_		-		J U	2.3	+-1
	37	Q2 Q3	37 17	179	60.8 J 205	499	41.4	_	1.5		NV NV	0.012		2,990 NV	1		U	2.3	J
		Q3	2	119	205 80.4 J	289	41.4	_	1.5	U U	NV	0.012 NV	J	NV	1.4		J	2.3	+
		Q3	37	191	248	545	59	_	1.5	U		NV	_	2,990	1.4		J	2.7	┿┩
		Q3 Q4	2.5	191	52.2 U	312	70	_	1.5	J	2,990 NV	NV	_	2,990 NV	1.9		J	2.2	+
			2.5 19	-		-	97	_		_				NV			_		J
		Q4 Q4	38	139 175	98.7 J	385 510	97	_	2.3 1.5	J U		0.025 NV	J		1.3		J U	1.6	J
		Q4 Q1	20	95	252 146 J	259		U	1.5	U		0.011		2,830 NV	1.1		J	<u>1.4</u> 2	J
		-	-				,	U	1.5	U			J				J		+
		Q1 Q1	3 35	74.6 140	76.8 J	192 415	NV NV	_	1.5	_		NV NV	_	NV NV	2.1		U	2.8 2.3	┿┩
		Q2	35 19	140	53.2 J	415		U	3.5	J	NV	0.018		NV	1.2		J	2.3	+
		Q2 Q2	3	157	53.2 J		525 NV	U	3.5	J		0.018 NV	J	NV	1.2		-	2.1	┿┩
37		Q2 Q2	35	154	146 J	572	NV	_	3.5		NV	NV	_	2,860			J U	2.3	+
ж ж	37A	Q2 Q3	35 18	175	146 J	484	37.1	_	3.5 1.5	J U			U	2,860 NV	1.2		J	2.2	J
Transect		Q3	2	175	52.2 U	352	22.3	_	1.5	U		0.008 NV	U	NV	1.2		_	2.2	+
an		Q3	2 36	132	305	555	54.3	_	1.5	J	NV	NV	_	NV	1.5		J U	2.7	+
F		Q3 Q4	2.5	199			54.3 61.5	_	1.6	J		NV	_	NV	1.2		-	2.4	+
		Q4 Q4	2.5 18	123	268 427	349 444	66.5	_	1.5	U			U	NV	1.2		J U	1.7	J
		Q4 Q4	36	168	427	502	67.7	_	1.5	U		0.008 NV	U	NV	1		U	1.4	J
		Q4 Q1	20	88.6	466 93.7 J		-	U	-	J			U	NV	-		-		J
		Q1	20	75.2	93.7 J 74.4 J	241 197	1,000 NV	U	2.2	J	NV NV	0.008 NV	U	NV	1.9		J	2	+
		Q1	34	140	183 J	414	NV	-	2.8	J	NV	NV	_	NV	2.1		U	1.7	+
		Q2	19	140	58.9 J	376		U	1.8	J			U		1.3		J	2	
		Q2 Q2	3	124	52.2 U		NV NV	0	2	J	NV	0.008 NV	U	NV	1.3		J	2.5	┿┩
		Q2 Q2	35	140	164 J		NV	-	2	J		NV	_	2,830	1.1		J	1.7	+
		Q2 Q3	17	167	175 J		33.7	-	1.5	U		0.0095	1	2,830 NV	1.1		U	2.4	
	37B	Q3	2	112	98.5 J	293	13	-	1.5	U		0.0095 NV	J	NV	1		J	2.4	+
		Q3-Dup	2	112	88.5 J	303	12.9	-	1.5	U		NV	_	NV	1*		U	2.8	+
		Q3	∠ 35	214	141 J	542	43.1	-	1.5	U		NV		NV	1		U	2.1	+
		Q4	2.5	124*	259	338*	58.7*	+	1.5	U		NV	-	NV	1.3	ł	J	1.9	+
		Q4-Dup	2.5	124	249*	342	59.4	+	1.5*	U		NV		NV	1.4		J	1.8*	+
		Q4-Dup Q4	2.5	125	249	477	68.4	+	1.5	U		0.008		NV	1.4		U	1.6	1
			-					-					5		1			-	+
		Q4	37	171	424	501	94.7 air of a duplicato		1.5	U		NV		NV	1		J	1.4	

* = datum not used (because it is the lower pair of a duplicate, or the datum was rejected

CaCO₃ = Calcium carbonate mg/L = Milligram per Liter

NV = No Value, no analysis performed $<math>\mu g/L = Microgram per Liter$ Qualifiers:

J = Estimated value U = Not detected

U =

Transect	Sample	Quarter	Depth feet	Chromiu mg/kg	m	Calcium mg/kg	Ferrous Iron mg/kg	lro mg		TOC mg/kg	Aluminu mg/kg	 Magnesium mg/kg	Manganese mg/kg	Mangane Divaler mg/kg	nt	Vanadium mg/kg	Sulfide mg/kg	-	Acid Volatil Sulfide µmoles	le e
		Q1	0.0-0.5	698	T	12,900	600	30,8	_	17,000	4,390	4,830	406	0.5	U	42.7	33.2		0.44	J.
		Q2	0.0-0.5	1,200		5,500	5,140	36.8		480 U	7,410	5,550	438	2.237	Ŭ	69.7	328	Ŭ	12.1	Ť
	A1	Q2	0.9-1.4	1,200	к	1,280	4.130	35.7		4,900	6.450	1,930	145	1.464	U	75	603		NV	+
		Q2	2.5-3.0	17	K	10.3	85.8	1,57		260 U	227	24.1	1.89	1.478	U	1.42	23.4	U	NV	-
		Q1	0.0-0.5	363		317	85.1	7,41		390 J	1,470	372	134	0.5	Ū	15	25.6	Ū	0.39	U
		Q2	0.0-0.5	347		275	500	6.95		270 U	1.420	422	70.9	2.181	U	14.8	45.3		0.57	J
A	A2	Q2	0.9-1.4	315	Κ	374	NV	33,6	00	NV	11,400	1,470	83.1	NV		32	NV		NV	
Transect		Q2	2.5-3.0	78.3	Κ	10.5	NV	316	;	NV	272	16.2	1.69	NV		2.02	NV		NV	
su		Q1	0.0-0.5	96.6		341	334	6,24	0	710 J	1,140	269	177	0.5	U	9.4	41.3		0.52	J
Tra	A3	Q2	0.0-0.5	110		198	250	6,18	0	270 U	1,200	378	120	2.144	U	9.71	200		0.99	J
	A3	Q2	1.0-1.5	2.91	Κ	89.3	NV	20,40	00	NV	1,200	233	15.1	NV		2.98	NV		NV	
		Q2	2.5-3.0	3.94	Κ	51.2	NV	5,11	0	NV	1,530	200	2.96	NV		3.28	NV		NV	
		Q1	0.0-0.5	89.6		416	103	37,6	00	200 U	1,770	305	185	0.5	U	13.4	25.7	U	0.39	U
	A4	Q2	0.0-0.5	97.4		294	129	25,6	00	260 U	1,520	423	116	2.194	U	12.3	386		1.4	J
	A4	Q2	1.0-1.5	12.8	Κ	88.1	NV	8,24	0	NV	3,250	344	8.08	NV		12.5	NV		NV	
		Q2	2.5-3.0	34.1	Κ	150	NV	6,03	0	NV	12,700	953	25.3	NV		32.3	NV		NV	
		Q1	0.0-0.5	640		3,280	NA	25,9	00	15,000	6,930	3,880	618	0.5	U	50.3	33.8	U	0.44	J
	B1	Q2	0.0-0.5	595		5,310	4,280	25,20	00	11,000	5,650	3,830	275	2.252	U	48.6	77.3		10.4	
	ы	Q2	0.8-1.3	80.9		3,380	1,990	19,10	00	6,800	12,200	2,610	221	1.612	U	33.8	67.3		NV	
		Q2	2.5-3.0	29.4		341	655	15,5	00	490 J	18,500	2,920	76.4	4.793		40.8	24.9		NV	
		Q1	0.0-0.5	369		13,100	802	24,30	00	12,000	7,310	2,540	383	0.5	U	38	401		0.53	J
	B2	Q2	0.0-0.5	236		1,990	2,220	20,6		6,600	6,260	1,940	254	2.224	U	29.5	92		3.2	
	52	Q2	0.6-1.1	22.7		299	NV	12,70		NV	18,100	2,620	61.3	NV		31.4	NV		NV	
		Q2	1.9-2.4	1.97		59.2	NV	1,60		NV	889	177	3.86	NV		2.3	NV		NV	
B		Q1	0.0-0.5	683		3,110	731	39,30		18,000 J	19,700	5,030	559	2.55	U	86.2	65		7.7	J
sct	B3	Q2	0.0-0.5	637	Κ	2,240	2,030	48,40		24,000	28,400	6,710	807	2.211	U	90.2	1,420		11.6	
Transect	20	Q2	1.0-1.5	94		1,470	NV	14,10		NV	9,440	2,420	203	NV		22.5	NV		NV	
rai		Q2	2.5-3.0	1.15	J	41.5	NV	274		NV	227	98.3	3.01	NV		1.26	NV		NV	
-		Q1	0.0-0.5	424		2,210	29.2* L	J 36,5		14,000 J	17,200	4,050	462	0.5*	U	90	142*		3.4*	J
		Q1-Dup	0.0-0.5	355*		3,770	657	31,3		10000* J	16,500	3,660	457	0.823		78.9	145		4.3	J
	B4	Q2	0.0-0.5	404	Κ	2,510	1,850	34,6		11,000	16,800	4,070	463	2.345	U	88.2	528		3.8	
		Q2	1.0-1.5	2,290		2,570	NV	129,0		NV	27,400	4,900	357	NV	1	367	NV		NV	\square
		Q2	2.5-3.0	690		1,650	NV	50,40		NV	31,900	7,110	516	NV	1	78.1	NV		NV	\square
		Q4	0.0 - 0.5	54.3*		5,510	410	1080	-	838	3110*	863*	156	NV	U	22.9*	NV		0.63*	
	B5		0.0 - 0.5	58.2		3340*	238*	11,10		614*	3,190	951	125*	NV	1	23.5	NV		0.74	
		Q4	0.5-1.0	43.6	J	920	589	12,9		672 U	3,840	794	78	NV	1	24.7 J	NV		0.63	UJ
		Q4	2.3-2.9	37.9	J	229	221	14,7	00	670 U	4,690	939	84.8	NV		24.9	NV		0.63	U

Transect	Sample	Quarter	Depth	Chromium	Calcium	Ferrous Iron	Iron	тос	Aluminum	Magnesium	Manganese	Manganes Divalent	Vanadium	Sulfide	Acid Volatile Sulfide
			feet	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µmoles/g
		Q1	0.0-0.5	1,160	49,100	5,840	25,100	17,000	10,300	21,500	1,100	0.5	U 61.8	1,090	12.6
		Q2	0.0-0.5	1,310	45,100	10,600	29,800	25,000	11,200	22,500	1,120	2.298	U 67.9	1,780	14.3
	C1	Q2	0.8-1.3	2,090	23,300	24,400	47,800	24,000	19,000	NV	546	1.544	U 112	1,300	NV
		Q2	0.8-1.3	NV	NV	21300*	NV	NV	NV	15,300	NV	NV	NV	NV	NV
		Q2	2.3-2.8	1440*	29,500	21,300	46,200	9,800	8,560	15,500	249	1.485	U 86.5	1,910	NV
		Q2-Dup	2.3-2.8	1,800	29,200	NV	23,300	2500*	9,740	19,000	566	NV	107	NV	NV
		Q1	0.0-0.5	1,080	23,000	4,670	24,300	25,000	9,230	11,700	717	0.5	U 62.4	73.5	13.1
с	C2	Q2	0.0-0.5	1,070	24,000	5,570	22,900	20,000	8,200	12,500	652	2.267	U 62.6	509	16
sct	01	Q2	1.0-1.5	91.5	137	NV	2,390	NV	955	270	19.7	NV	6.77	NV	NV
ISE		Q2	2.0-2.5	3.62	90.6	NV	1,390	NV	440	171	9.02	NV	1.65	NV	NV
Transect		Q1	0.0-0.5	582	4,640	3,430	27,500	9,500	11,400	4,440	420	0.5	U 57.9	96.4	9.8
F	C3	Q2	0.0-0.5	618	2,900	6,470	29,500	18,000	12,800	4,830	465	2.272	U 58.4	313	6.5
	00	Q2	1.0-1.5	250	1,740	NV	30,300	NV	24,300	5,200	533	NV	48.1	NV	NV
		Q2	2.4-2.9	78.3	1,200	NV	23,400	NV	18,700	3,710	305	NV	38.2	NV	NV
		Q1	0.0-0.5	357	3,210	3,150	31,400	9,700	13,700	3,730	477	0.5	U 61.3	33.8	4.9
		Q2	0.0-0.5	315*	2,810	6,500	31,200	14,000	14,200	4,290	600	2.346	U 57.6	54.4*	3.3*
	C4	Q2-Dup	0.0-0.5	328	2,060	6370*	36,300	14000*	16,500	5,280	738	2.313*	U 66.6	158	7.1
		Q2	1.0-1.5	57	1,930	NV	48,800	NV	37,600	10,500	2,010	NV	74.6	NV	NV
		Q2	2.5-3.0	2.32	56.4	NV	865	NV	1,120	201	7.94	NV	2.05	NV	NV
		Q1	0.0-0.5	304	18,500	9,770	44,100	25,000	27,600	17,800	2,010	5.924	89	1,880	28.8
	D1	Q2	0.0-0.5	310	9,750	14,400	46,100	29,000	27,500	10,700	1,800	19.578	85.6	2,040	18.7
	DI	Q2	1.0-1.5	372	21,200	16,400	36,400	51,000	23,700	55,000	2,760	10.285	85.6	2,330	NV
		Q2	2.5-3.0	251	79,700	10,500	36,800	32,000	23,400	10,200	1,540	2.496	U 71.3	418	NV
		Q1	0.0-0.5	239 J	4,030	13,000	42,200	29,000	24,900	7,390	1,900	7.75	76.4	2,020	16.6
	D2	Q2	0.0-0.5	258	4,910	8,830	49,300	34,000	28,000	7,940	3,550	10.47	91.6	2,760	32.7
Q	02	Q2	1.0-1.5	237	4,030	NV	45,000	NV	28,400	6,950	1,420	NV	86.9	NV	NV
ect		Q2	2.5-3.0	66.1	2,850	NV	50,600	NV	28,500	5,950	770	NV	65.8	NV	NV
su		Q1	0.0-0.5	306	3,680	1,290	48,600	25,000 J	29,400	7,890	1,940	2.678	91	476	15.3 J
Transect	52	Q2	0.0-0.5	253	3,730	5,870	52,900	28,000	30,500	8,010	2,260	34.002	93.5	2,090	11.4
•	D3	Q2	1.0-1.5	218	3,510	NV	44,600	ŇV	28,400	7,180	1,360	NV	85	NV	NV
		Q2	2.5-3.0	95.8	2,870	NV	52,400	NV	31,100	6,760	1,200	NV	60.6	NV	NV
		Q1	0.0-0.5	198	7,690	5,120	28,700	13,000	12,000	3,110	428	0.5	U 48	36.5 L	13.2
		Q2	0.0-0.5	214	1,470	3,060	36,300	15,000	19,600	4,310	415	2.318	59.5	261	10.3
	D4	Q2	0.8-1.3	78.1	2,060	NV	47,500	NV	42,600	7,790	675	NV	82.5	NV	NV
		Q2	2.5-3.0	60.2	2,010	NV	51,000	NV	39,200	10,600	2,280	NV	79.3	NV	NV

Transect	Sample	Quarter	Depth	Chromiu	m	Calcium	Ferrous Iron	Iron	TOC	Aluminum	Magnesium	Manganese	Manganes Divalen		Vanadium	Sulfide		Acid Volatile Sulfide
		Q1	feet	mg/kg 223		mg/kg	mg/kg 82.6	mg/kg	mg/kg	mg/kg 20.600	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg		µmoles/g
			0.0-0.5	223	ĸ	25,600		37,100	30,000	- /	11,300	2,600	2.785		67.2	658	-	22.9
	E1	Q1-Dup	0.0-0.5		ĸ	10,500	41.1*	36,300	20000*	19,800	12,300	2,150	0.5*	U U	63.5	305*		12.1*
	EI	Q2 Q2	0.0-0.5	253 217	$\left \right $	22,800 9,650	10,700	48,400 42,600	23,000 41.000	28,500 27,500	25,900 12,100	1,620 1,780	2.449 2.494	U	86.6 80.8	1,680 1,210	_	19 NV
		Q2 Q2	2.5-3.0	68.2	$\left \right $	9,650	4.700	42,600	30,000	27,500	7.180	911	2.494	U	59.9	1,210	_	NV
		Q2 Q1	2.5-3.0	66.9		2,500	5,320	48,800	19,000	30,200	7,180	1,250	4.848	0	59.9 57.9	708	+	6.8
		Q2	0.0-0.5	64.9		1,550	5,320	56,700	25,000	30,200	7,550	1,050	7.304		61.3	1,900		20.1
Ш	E2	Q2 Q2	1.0-1.5	61.4		2,880	5,910 NV	55,900	25,000 NV	30,200	6,800	879	7.304 NV		60.3	1,900 NV	+	20.1 NV
i i i i i i i i i i i i i i i i i i i		Q2 Q2	2.5-3.0	62.1	+	2,880	NV	56,500	NV	30,800	6,350	839	NV		61.2	NV		NV
Transect		Q1	0.0-0.5	238		3,770	13,600	47,300	18,000	29,100	7,500	1,020	8.539	-	97.3	1,320		27.5
² L		Q2	0.0-0.5	197		3,100	11.200	45.900	21,000	26,800	7,210	1,020	10.258		83.1	2.120		25.1
	E3	Q2	1.0-1.5	262		3,260	NV	45,300	NV	25,400	6,680	2,050	NV		90.2	NV		NV NV
		Q2	2.5-3.0	259		3,550	NV	46,400	NV	28,200	7,290	1,850	NV		106	NV	t	NV
		Q1	0.0-0.5	61.2		1,770	1,010	14,800	7,300	6.890	1.840	253	0.5	U	26	28.5	U	0.93 J
		Q2	0.0-0.5	114	к	3,290	1,150	23,400	16,000	12,300	3,850	374	2.18	U	40.9	361	Ŭ	7.6
	E4	Q2	1.0-1.5	52.1		2,200	NV	31,900	NV	27,800	4,920	532	NV	-	55.3	NV		NV
		Q2	2.5-3.0	125		1,750	NV	37,500	NV	30,100	5,290	325	NV		65.7	NV		NV
		Q1	0.0-0.5	97.9		10,300	5,810	39,500	15,000	19,200	4,640	591	3.225		64.1	570		12.9
		Q2	0.0-0.5	117		4,220	4,840	38,100	20,000	19,200	5,130	725	2.372	U	66.2	1.160		19.9
	F1	Q2	1.0-1.5	76.7		82,400	8.810	20,400	15.000	13,100	3.740	524	2.807	U	40.6	1.050	ľ	NV
		Q2	2.5-3.0	159		10,800	15,200	40,900	30,000	25,300	6,090	1,210	1.651	U	94.9	2,380	ľ	NV
		Q1	0.0-0.5	65.8		1,190	3,640	54,800	20,000	30,400	6,170	803	1.483		68.5	38.2	U	9.5
	F2	Q2	0.0-0.5	33.1		515	808	30,000	3,000	12,600	2,080	471	2.219	U	33.9	224		4.2
	F2	Q2	1.0-1.5	49.3	Κ	794	NV	28,300	NV	17,600	1,920	41.5	NV		61.1	NV		NV
ш		Q2	2.5-3.0	36.9	Κ	782	NV	18,300	NV	15,100	1,590	36.1	NV		41.8	NV		NV
ŭ		Q1	0.0-0.5	152		2,410	13,400	52,000	25,000	35,600	8,890	1,350	0.5	U	94.9	1,720		22
Transect		Q2	0.0-0.5	211*		2,510	8890*	55,900	24000*	31,700	8,340	1,240	2.418	U	107	1050*		41.5
rar	F3	Q2-Dup	0.0-0.5	261		2,530	11,500	61,900	25,000	34,600	8,520	1,280	4.005		118	2,350		21.5*
⊢		Q2	1.2-1.7	56		2,020	NV	46,800	NV	36,500	10,700	1,960	NV		70.3	NV		NV
		Q2	2.5-3.0	56.2		1,980	NV	45,700	NV	36,800	10,700	1,640	NV		67.7	NV		NV
		Q1	0.0-0.5	211		3,090	7,580	54,200	26,000	32,300	8,180	1,790	0.778		105	555		20.6
		Q2	0.0-0.5	190		3,950	11,300	55,100	20,000	34,600	8,570	1,420	2.431	U	105	2,000		8.4
	F4	Q2	1.0-1.5	120*		1,890	NV	47,100	NV	38,500	8,260	1,260	NV		85.7	NV		NV
		Q2-Dup	1.0-1.5	159		2,650	NV	64,500	NV	50,500	11,700	1,860	NV		115	NV		NV
		Q2	2.5-3.0	55.1	Ш	1,830	NV	44,600	NV	33,700	9,230	1,390	NV		65.5	NV		NV
		Q2-Dup	2.5-3.0	54*		1,880	NV	45,000	NV J	34,600	9,280	1,410	NV		66.9	NV		NV

Transect	Sample	Quarter	Depth	Chromiu		Calcium	Ferrous Iron	Iron	TOC	Aluminum	Magnesium	Manganese	Manganes Divalent		Vanadium	Sulfide		Acid Volatile Sulfide
			feet	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	ł	µmoles/g
		Q1	0.0-0.5	67	J	1,910	1,250	16,700	5,900	7,240	2,250	236	0.5	U	26	152		6.8
	G1	Q2	0.0-0.5	67.1		3,260	4,340	24,000	7,200	8,680	2,700	255	1.521	U	34.9	1,170	J	21.2
		Q2	1.1-1.6	33.1		7,650	3,700	28,500	22,000	14,300	3,190	131	1.526	U	41.7	102		NV
		Q2	2.5-3.0	28.8		2,070	5,170	28,600	9,700	12,300	2,760	183	1.505	U	34.9	128		NV
		Q1	0.0-0.5	123	J	2,540	6,210	32,700	14,000	19,000	5,410	614	1.525		61.4	896		29.1
	G2	Q2	0.0-0.5	153		2,270	6,410	40,700	28,000	23,000	6,300	770	2.458	U	79.4	1,500		17.1
U U		Q2	0.8-1.3	144	Κ	2,260	NV	32,900	NV	19,400	4,640	466	NV		61.8	NV		NV
Transect		Q2	2.5-3.0	50	Κ	1,310	NV	24,800	NV	13,300	3,550	148	NV		48.1	NV		NV
ans		Q1	0.0-0.5	148	K	13,700	28 J	38,000	17,000	22,500	5,740	698	4.083		75.4	449		23.9
Ĕ	G3	Q2	0.0-0.5	164	_	3,010	8,510	43,700	13,000	24,800	6,620	899	2.421	U	86.5	1,900		25.6
		Q2	1.0-1.5	29.8	Κ	1,210	NV	20,300	NV	12,700	2,750	133	NV		39.3	NV		NV
		Q2	2.5-3.0	29.6	K	2,290	NV	32,100	NV	13,400	3,240	200	NV		40.2	NV		NV
		Q1	0.0-0.5	121	K	3,890	14.7 J	39,300	17,000	21,500	5,720	1,100	13.992		66.5	1,430		22.2
	G4	Q2	0.0-0.5	140		2,390	4,170	36,700	9,100	21,100	5,470	1,340	2.371	U	70.8	1,650		10.2
	04	Q2	1.0-1.5	182		2,740	NV	45,100	NV	27,600	6,650	1,200	NV		91.2	NV		NV
		Q2	2.5-3.0	197		2,490	NV	42,200	NV	25,700	6,120	1,570	NV		94.3	NV		NV
		Q1	0.0-0.5	114	K	139,000	11,100	23,100	25,000	14,200	6,220	544	10.439		55.3	2,630		51.2
	H1	Q2	0.0-0.5	89.5		3,000	7,410	28,900	21,000	19,600	5,040	545	2.404	U	55	2,690	J	16.9
		Q2	1.0-1.5	182		6,110	9,980	30,500	35,000	18,800	6,450	653	2.342	U	87.6	2,400		NV
		Q2	2.5-3.0	29.2		2,050	493	3,460	860	5,420	803	61.4	1.441	U	20	35.1		NV
		Q1	0.0-0.5	47.1	K	14,900	1,900	12,100	8,700	7,290	2,080	171	0.5	U	29.3	203		20.8
	H2	Q2	0.0-0.5	134		4,690	2,180	32,100	29,000	24,000	6,440	521	2.403	U	77	1,040	J	32.2
Ŧ	112	Q2	1.0-1.5	43.2		49,900	NV	8,490	NV	5,710	2,180	119	NV		24.2	NV		NV
Transect		Q2	2.5-3.0	88.4		1,500	NV	14,500	NV	5,660	1,780	215	NV		99	NV		NV
sui		Q1	0.0-0.5	49.3	Κ	4,820	8,330	11,900	12,000	8,550	2,700	240	0.785		28.7	1,480		36.5
Tra	H3	Q2	0.0-0.5	71.8		2,780	6,100	14,800	9,800	9,860	2,840	242	9.836		45.4	1,870	J	16.4
-	пэ	Q2	1.0-1.5	71.7		4,560	NV	17,200	NV	11,300	3,710	318	NV		44.2	NV		NV
		Q2	2.5-3.0	101		3,460	NV	20,800	NV	14,300	3,670	370	NV		57.6	NV		NV
		Q1	0.0-0.5	107	Κ	2,570	12,800	31,900	20,000	21,300	5,570	573	3.842		60.8	732		24.5
	114	Q2	0.0-0.5	207		17,400	13,200	37,500	48,000	23,200	9,340	795	13.377		99.6	3,470	J	38.3
	H4	Q2	1.0-1.5	80.7		1,210	NV	22,500	NV	18,000	3,020	295	NV		48.4	NV		NV
		Q2	2.5-3.0	27.9		514	NV	5,910	NV	12,300	1,260	63	NV		25.5	NV		NV

Appendix C-3a Data from Sediment Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth feet	Chromiu mg/kg		Calcium mg/kg	Ferrous Iron mg/kg	Iron mg/kg	TOC mg/kg	Aluminum mg/kg	Magnesium mg/kg	Manganese mg/kg	Manganese Divalent mg/kg	e, Vanadium mg/kg	Sulfide mg/kg	Acid Volatile Sulfide µmoles/g
		Q1	0.0-0.5	316	K	7,110	6,660	19,200	20,000	9,320	5,690	218	0.5	U 59.1	311	3.2
	11	Q2	0.0-0.5	700		9,370	4,490	18,100	14,000	7,350	8,320	207	1.508	U 70.8	1,240 J	26.5
		Q2	1.0-1.5	16.7		371	5,270	7,550	3,100	6,250	1,330	168	1.453	U 17.2	815	NV
		Q2	2.5-3.0	22		588	6,100	12,700	11,000	9,190	2,130	296	1.498	U 22.1	1,060	NV
		Q1	0.0-0.5	254	K	6,360	2,410	23,500	40,000	12,300	5,830	274	0.5	U 85.5	292	10.6
	12	Q2	0.0-0.5	315		9,030	5,580	24,800	34,000	12,200	7,600	260		U 91.5	1,600 J	23.8
H I	12	Q2	1.0-1.5	308		8,710	NV	29,600	NV	15,600	7,490	332	NV	95.7	NV	NV
Transect		Q2	2.5-3.0	575		5,320	NV	39,600	NV	19,700	5,890	345	NV	170	NV	NV
ans		Q1	0.0-0.5	357	K	7,560	3,630	34,400	36,000	17,900	7,530	425	0.582	122	1,140	24.4
L I	13	Q2	0.0-0.5	425		6,280	5,960	34,200	39,000	20,400	6,830	411	5.431	U 237	2,070 J	21.5
	15	Q2	1.0-1.5	327		5,160	NV	32,700	NV	19,900	6,470	393	NV	153	NV	NV
		Q2	2.5-3.0	332		5,760	NV	27,300	NV	15,700	5,460	284	NV	134	NV	NV
		Q1	0.0-0.5	374	K	35,900	8,210	32,700	33,000	12,400	5,980	368	0.5	U 156	1,000	42.7
	14	Q2	0.0-0.5	542		10,400	4,570	42,500	39,000	21,100	7,830	447	1.836	U 145	1,690 J	11.9
	14	Q2	0.8-1.3	1,390		7,020	NV	50,300	NV	19,900	6,190	323	NV	229	NV	NV
		Q2	2.1-2.6	508		2,880	NV	28,700	NV	12,600	3,240	131	NV	287	NV	NV
		Q4	0.0 - 0.5	1,830		63,500	2,690	24,300	21,500	7,740	22,000	1,290	NV	67.2	NV	5
	J1	Q4	0.8-1.3	1,620		46,500	6,340	53,000	10,900	9,860	12,200	233	NV	95	NV	7.1
		Q4	2.5-3.0	2,730		21,800	11,900	36,800	18,000	15,500	17,000	567	NV	134	NV	10
		Q4	0.0 - 0.5	1,840		41,600	2,050	26,700	9,640	7,010	13,400	670	NV	88.5	NV	16.8
ţĴ	J2	Q4	1.0-1.5	605		1,270	1,060	21,500	10,900	10,100	2,240	207	NV	52.5	NV	4.8
ec c		Q4	2.5-3.0	303		420	701	6,450	679	2,560	752	65.5	NV	13.5	NV	5
Transect		Q4	0.0 - 0.5	1,260		17,800	4,910	23,700	13,600	6,090	6,430	492	NV	64.1	NV	0.63
μ	J3	Q4	0.6-1.0	28.2		190	144	10,400	769	1,200	138	23.7	NV	20.8	NV	6.6
		Q4	2.5-3.0	567		1,430	176	29,400	9,590	10,400	2,150	214	NV	89.2	NV	0.63
		Q4	0.0 - 0.5	2,360		13,300	818	28,400	9,670	9,540	30,200	2,070	NV	70	NV	2.4
	J4	Q4	0.5-1.0	8,140	J	12,500	1,550	37,200	762 U	12,000	17,600	919	NV	146	NV	0.63 U
		Q4	2.5-3.0	114	J	32.6	22	1,180	572 U	846	116	5.77	NV	2.36	NV	0.63 U

			_			_						Total				
Transect	Sample	Quarter	Depth feet	Cadmium umoles/c		Iron µmoles/q	Lead umoles/g	Nickel µmoles/g	Mercury µmoles/g	Zinc umoles/a	Moisture %	Solids %	0.001 mm	0.002 mm	0.005 mm % passing	0.02 mm
		Q1	0.0-0.5	0.00446	0.27	92.8	0.0865	0.585	0.000028 J	1.86	NV NV	70 NV	2 2	2 2	3 yassing	4.5
		Q2	0.0-0.5	0.00446	0.0632	92.0 71.9	0.0805	0.385	NV	1.79	38.5	51.9	1	1	3	4.5
	A1	Q2	0.0-0.3	NV	NV	NV	NV	NV NV	NV	NV	22	73.3	0.5	4	14	23
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	23.4	85.3	0.5	0.5	0.5	3
		Q1	0.0-0.5	0.000661	J 0.0546	20	0.0287	0.112	0.000026 J	0.468	NV NV	NV	0.5	0.5	0.5	0.5
		Q2	0.0-0.5	0.000142		25.4	0.0207	0.133	NV	0.545	20.9	76.6	0.5	0.5	0.5	1.5
۲	A2	Q2	0.9-1.4	NV	NV	NV	NV	NV	NV	0.040 NV	19.4	NV	NV	NV	NV	NV
st		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	22.1	NV	NV	NV	NV	NV
JSG		Q1		0.000468	J 0.0389	17.5	0.0199	0.0265	0.0000077 L	J 0.288	NV	NV	1	1	1	1
Transect		Q2	0.0-0.5	0.000142		20.1	0.0163	0.633	NV	0.219	24.6	79.9	0.5	0.5	0.5	2
–	A3	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	22.7	NV	NV	NV	NV	 NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	17.2	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.000652	J 0.0529	29.2	0.0216	0.106	0.0000076 L	J 0.313	NV	NV	1	1	1	1.5
		Q2	0.0-0.5	0.000143		17.2	0.0221	0.0214	NV	0.283	24.9	79.2	0.5	0.5	0.5	2
	A4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	23.5	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	23	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00164	0.301	82	0.0826	0.569	0.000014 J	1.4	NV	NV	2.5	2.5	4	6.5
	54	Q2	0.0-0.5	0.00265	0.11	73.7	0.0655	0.483	NV	1.22	37	59.6	1.5	2	4	8
	B1	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	31.1	66.7	4	7	10	19
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	20.7	80.3	20	28	41	64
		Q1	0.0-0.5	0.00145	0.28	74.4	0.0609	0.5	0.000029 J	0.974	NV	NV	2.5	2.5	4	8
	B2	Q2	0.0-0.5	0.00164	0.163	52.1	0.0606	0.0629	NV	0.906	30.6	64.6	1.5	1.5	2.5	11
	D2	Q2	0.6-1.1	NV	NV	NV	NV	NV	NV	NV	17.8	NV	NV	NV	NV	NV
		Q2	1.9-2.4	NV	NV	NV	NV	NV	NV	NV	17.3	NV	NV	NV	NV	NV
B		Q1	0.0-0.5	0.00369	0.159 J	102	0.115 J	0.429 J	0.0000077* F	R 1.47 J	NV	NV	10	21	35.5	59
	B3	Q2	0.0-0.5	0.00388	0.342	107	0.128	0.685	NV	1.62	59.3	45.2	18	29	46	69
Transect	5	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	32.1	NV	NV	NV	NV	NV
rar		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	17.6	NV	NV	NV	NV	NV
⊢		Q1		0.000648	J 0.395* J	125	0.136		0.0000075* F		NV	NV	8	14	23*	41*
		Q1-Dup		0.000364*	J 0.403 J	122*	0.122*	0.397 K	0.0000078* F		NV	NV	8*	14*	26.5	45
	B4	Q2	0.0-0.5	0.00455	0.463	121	0.145	0.4	NV	1.93	53.2	49.4	13	19	28.5	48
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	69.4	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	65.5	NV	NV	NV	NV	NV
		Q4		0.000926	0.1	39.4	0.0282	0.0393	NV	0.508	28*	NV	0.5	0.5	0.5	2
	B5	Q4-Dup		0.000799*	0.0914*	35.7*	0.0275*	0.0363*	NV	0.484*	28.5	NV	0.5*	0.5*	0.5*	1*
	20	Q4	0.5-1.0	0.00038	J 0.0724 L	45.2 J	0.0239 J	0.0411 J	NV	0.209 J	14.7	NV	1	1	1.5	2.5
		Q4	2.3-2.9	0.000143	U 0.0177	25.3	0.0038	0.0272	NV	0.0318	14.7	NV	0.5	0.5	0.5	0.5

Transect	Sample	Quarter	Depth	Cadmium	Copper	Iron	Lead	Nickel	Mercury	Zinc	Moisture	Total Solids	0.001 mm	0.002 mm		0.02 mm
			feet	µmoles/g	µmoles/g		µmoles/g	µmoles/g	µmoles/g	µmoles/g	%	%		% passing	, i v	
		Q1	0.0-0.5	0.00174	0.143	136	0.13	0.372	0.000075 L	-	NV	NV	0.5	2	5.5	11
		Q2	0.0-0.5	0.00573	0.218	109	0.18	0.679	NV	1.85	43.4	51.1	3	4	7	12
	C1	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	46.6	47.8	5.5	9	17	34.5
		Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	41.2*	NV	NV	NV	NV	NV
		Q2	2.3-2.8	NV	NV	NV	NV	NV	NV	NV	17.8*	47.2	4	7	11	21
		Q2-Dup	2.3-2.8	NV	NV	NV	NV	NV	NV	NV	28.8	NV	3*	5*	9*	15*
		Q1	0.0-0.5	0.00529	0.136	92.6	0.171	0.247	0.000078 L		NV	NV	1.5	3	6.5	12
U	C2	Q2	0.0-0.5	0.00432	0.152	98.6	0.167	0.208	NV	1.68	34.7	61.7	2	5	8	12
sct	01	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	21.3	NV	NV	NV	NV	NV
ISE		Q2	2.0-2.5	NV	NV	NV	NV	NV	NV	NV	20.8	NV	NV	NV	NV	NV
Transect		Q1	0.0-0.5	0.00483	0.185	101	0.127	0.428	0.0000077 L		NV	NV	2	8	16.5	28
⊢	C3	Q2	0.0-0.5	0.00467	0.294	84	0.123	0.108	NV	1.96	43.2	56.3	7	9	16	31
	00	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	55.6	NV	NV	NV	NV	NV
		Q2	2.4-2.9	NV	NV	NV	NV	NV	NV	NV	46.3	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00511	0.401	125	0.132	0.184	0.0000075 L		NV	NV	5	12.5	21	35
		Q2	0.0-0.5	0.0044*	0.352*	107	0.132	0.279	NV	1.81*	42.3*	54.6*	9	15	23	38.5
	C4	Q2-Dup	0.0-0.5	0.0044	0.364	92*	0.132*	0.0838*	NV	1.84	46.8	56.4	4*	8*	16*	24*
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	59.2	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	19.2	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.000951 J	0.0469	103	0.0889	0.155	0.0000075 L	J 1.17	NV	NV	4	10.5	18	29.5
	D1	Q2	0.0-0.5	0.00242	0.126	74.7	0.0784	0.163	NV	1.02	72.1	25.4	2	9	18.5	31
	DI	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	76.3	28.6	3	8	13	24
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	61.5	38.3	6	18	31	49
		Q1	0.0-0.5	0.000972 J	0.195	82.5	0.0875	0.058	0.0000076 L	J 1.04	NV	NV	11	15.5	31	48
	D2	Q2	0.0-0.5	0.00272	0.029	87.9	0.0815	0.0915	NV	0.989	72.4	28.3	5	10.5	18	35
<u> </u>	02	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	69.1	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	41.1	NV	NV	NV	NV	NV
su		Q1	0.0-0.5	0.000964 J	0.129 J	80.4	0.0869	0.115 K	0.0000076* F	R 0.991	NV	NV	15	22	33	57
Tra	D3	Q2	0.0-0.5	0.00322	0.154	86.7	0.101	0.36	NV	1.2	69.2	30.6	7	15	28	43
· ·	03	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	74	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	50.1	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00175	0.254	170	0.0912	0.372	0.0000076 L	J 1.1	NV	NV	4	10	18	26
	54	Q2	0.0-0.5	0.00405	0.382	162	0.147	0.586	NV	1.74	48.6	46.8	9.5	15	22	34.5
	D4	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	61.1	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	59.3	NV	NV	NV	NV	NV

Transect	Sample	Quarter	Depth	Cadmium	Copper	Iron	Lead	Nickel	Mercurv	Zinc	Moisture	Total Solids	0.001 mm	0.002 mm	0.005 mm	0.02 mm
	•••••		feet	µmoles/g		µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	%	%		% passing		
		Q1	0.0-0.5	0.000831	J 0.0604*	75.1	0.0769	0.0574*	0.0000078 L	J 0.893	NV	NV	13	18	21*	32*
		Q1-Dup	0.0-0.5	0.000801*	J 0.0992	47.9*	0.0445*	0.132	0.0000076* L	J 0.801*	NV	NV	9*	17*	25	39
	E1	Q2	0.0-0.5	0.00248	0.0465	68.5	0.0745	0.0557	NV	0.947	73.4	32	8	14.5	22	36
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	66.8	30.1	9	14	24	45
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	44.1	55.2	30	39	55	79
		Q1	0.0-0.5	0.00199	J 0.135	139	0.0415	0.254	0.0000078 L	J 0.562	NV	NV	28	41	68	83
ш	E2	Q2	0.0-0.5	0.00391	0.0947	77.6	0.0597	0.558	NV	0.684	49.2	29	19	36	53	73.5
	EZ	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	41.5	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	40.9	NV	NV	NV	NV	NV
ran		Q1	0.0-0.5	0.00351	0.196	105	0.0833	0.43	0.0000076 L	J 1.08	NV	NV	11	19.5	32	54
Ē	E3	Q2	0.0-0.5	0.00293	0.0469	97.4	0.087	0.335	NV	1.03	72.1	29.2	5	14	23	36
	E3	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	69.6	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	70.8	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00107	J 0.178	60.4	0.0867	0.0421	0.0000099 J	J 0.485	NV	NV	3.5	4	9	16
	E4	Q2	0.0-0.5	0.00178	0.206	61	0.0855	0.277	NV	0.72	41.7	60.6	3	7	11	19.5
	L4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	31	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	50.4	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.000484	J 0.127	69.4	0.0526	0.0468	0.000078 L		NV	NV	4.5	11	19	29
	F1	Q2	0.0-0.5	0.00251	0.192	91.6	0.0692	1	NV	0.917	60.8	42.4	8	10.5	17	33
	••	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	55.3	49.9	0.5	24	33	40.5
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	60.7	37.8	8	17	26	41
		Q1	0.0-0.5	0.000518	J 0.168	80.6	0.0526	0.0498	0.0000078 L	J 0.615	NV	NV	31	40.5	60	82.5
	F2	Q2	0.0-0.5	0.000825	J 0.151	109	0.0255	0.499	NV	0.161	26	77.1	17	22.5	31	42
	•-	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	37.9	NV	NV	NV	NV	NV
ш		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	38.3	NV	NV	NV	NV	NV
Transect		Q1	0.0-0.5	0.0038	J 0.288	172	0.15	0.0715	0.0000076 L	J 1.33	NV	NV	19	26	37.5	54.5
US		Q2	0.0-0.5	0.00369	0.165	110	0.111	0.0784*	NV	1.13	71.4	26.3*	14	21	33	51
a.	F3	Q2-Dup	0.0-0.5	0.00278*	0.105*	94.2*	0.0759*	0.163	NV	0.85*	71.2*	28.3	12*	19.5*	29.5*	45*
F		Q2	1.2-1.7	NV	NV	NV	NV	NV	NV	NV	61.4	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	61.6	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00293	0.273	107	0.103	0.115	0.000076 L	J 1.15	NV	NV	10	24	35	50
		Q2	0.0-0.5	0.00257	0.0602	75.1	0.0823	0.0434	NV	0.895	72.2	26.8	8	15	25	41
	F4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	63.7*	NV	NV	NV	NV	NV
		Q2-Dup	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	64.5	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	61.1*	NV	NV	NV	NV	NV
		Q2-Dup	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	61.2	NV	NV	NV	NV	NV

												Total				
Transect	Sample	Quarter	Depth	Cadmium	Copper	Iron	Lead	Nickel	Mercurv	Zinc	Moisture	Solids	0.001 mm	0.002 mm	0.005 mm	0.02 mm
Transect	Jampie	Quarter	feet	µmoles/g		-		µmoles/g	µmoles/g	µmoles/g		%			% passing	
		Q1	0.0-0.5	0.000141	U 0.0698	48.7	0.0213	0.17	0.0000076 L	J 0.262	NV	NV	8	9.5	11.5	16
	G1	Q2	0.0-0.5	0.00239	J 0.0995 J	68.7 J	0.053 J	0.648 J	NV	0.574 J	32.5	61.5	1	4	6.5	12
	G1	Q2	1.1-1.6	NV	NV	NV	NV	NV	NV	NV	41.7	60.1	11	13	22	39
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	34.6	61.6	10	15	24	44
		Q1	0.0-0.5	0.00115	0.0881	80.7	0.0737	0.0571	0.0000078 L	J 0.844	NV	NV	6.5	9	15.5	26
	G2	Q2	0.0-0.5	0.00294	0.2	68.4	0.0712	0.157	NV	0.858	68.8	31.5	7	11	18.5	35
t G	62	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	56.7	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	34.5	NV	NV	NV	NV	NV
ans		Q1	0.0-0.5	0.00155	0.137	74.3	0.0753	0.288	0.000078 L	J 0.846	NV	NV	8	15	23	43.5
T _{rs}	G3	Q2	0.0-0.5	0.00357	0.151	81.9	0.0821	0.443	NV	0.968	70.6	30.4	3	12	20	31
	00	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	30.9	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	29.9	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.0015	0.131	100	0.0892	0.285	0.0000078 L	J 1.02	NV	NV	8	12	20	36
	G4	Q2	0.0-0.5	0.00297	0.0892	72.2	0.076	0.0556	NV	0.907	64.6	39.3	5	11	18	30
	04	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	71.2	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	66.9	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.0363	0.427	71	0.182	0.501	0.0000078 L		NV	NV	2	8	17	29
	H1	Q2	0.0-0.5		J 0.00789 J	61 J	0.0749 J	0.0444 J	NV	0.801 J	61.7	28.5	6	12	19	37
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	66.6	44.6	9	14	21	38
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	21.8	83.8	4	7	11	23
		Q1	0.0-0.5	0.0149	0.23	48.7	0.0951	0.0391	0.0000077 L	J 0.976	NV	NV	4	4	5.5	13.5
L _	H2	Q2	0.0-0.5		J 0.0214 J	57.9 J	0.0958 J	0.269 J	NV	0.947 J	68.8	54.2	3	4	7	12
Ŧ		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	29.5	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	34.8	NV	NV	NV	NV	NV
ans		Q1	0.0-0.5	0.00948	0.141	60.7	0.0928	0.0511	0.0000076 L	J 0.951	NV	NV	2	7	10	20
μ	H3	Q2	0.0-0.5	0.0114	J 0.0181 J	36.2 J	0.0765 J	0.31 J	NV	0.721 J	49.4	29	8	17	26	39
	110	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	54.4	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	50	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.00437	0.225	82.6	0.0685	0.34	0.0000075 L	J 0.822	NV	NV	3	7.5	15	32
	H4	Q2	0.0-0.5	0.0294	J 0.0916 J	58.9 J	0.151 J	0.252 J	NV	1.49 J	77.6	22.6	4.5	7	11.5	45
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	41.6	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	15.8	NV	NV	NV	NV	NV

Transect	Sample	Quarter	Depth feet	Cadmiun µmoles/g	j µmoles/g	lron µmoles/g	Lead µmoles/g	Nickel µmoles/g		Zinc µmoles/g		Total Solids %		0.002 mm % passing		
		Q1	0.0-0.5	0.142	1.02	63.4	0.387	0.306	0.0000076 U	4.69	NV	NV	0.5	2	6	17.5
	11	Q2	0.0-0.5	0.0746	J 0.000765 ¹ R	78.1 J	0.23 J	0.476 J	NV	3.19 J	32.5	72.1	0.5	2.5	8	15
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	25.7	59.3	3	4	7	13
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	34.2	48.4	5	7	10	14
		Q1	0.0-0.5	0.088	0.533	59.9	0.349	0.626	0.0000077 U	3.14	NV	NV	3	6	9.5	20
	12	Q2	0.0-0.5	0.0856	J 0.0147 J	57.8 J	0.233 J	0.74 J	NV	3.01 J	53.1	51.2	3.5	5	7	15.5
Ŧ	12	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	56.8	NV	NV	NV	NV	NV
sec		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	59.6	NV	NV	NV	NV	NV
Transect		Q1	0.0-0.5	0.121	0.122	55.5	0.537	0.545	0.0000075 U	3.6	NV	NV	12	12	15.5	39
Tra	13	Q2	0.0-0.5	0.169	J 0.000776 ¹ R	32.7 J	0.493 J	0.0415 J	NV	5.56 J	68.8	27.9	6	16	29	47
	15	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	65.2	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	60.6	NV	NV	NV	NV	NV
		Q1	0.0-0.5	0.192	0.0928	74.4	0.631	0.536	0.0000077 U	4.99	NV	NV	4	15	27	45
	14	Q2	0.0-0.5	0.0759	J 0.00458 J	40.8 J	0.324 J	0.293 J	NV	3.16 J	60.2	43.6	10	15	31	50.5
	14	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	69.5	NV	NV	NV	NV	NV
		Q2	2.1-2.6	NV	NV	NV	NV	NV	NV	NV	62.2	NV	NV	NV	NV	NV
		Q4	0.0 - 0.5	0.00907	0.296	162	0.214	0.295	NV	2.53	33.8	NV	0.5	0.5	0.5	1
	J1	Q4	0.8-1.3	0.00848	0.657	104	0.559	0.307	NV	1.6	19.1	NV	6	8	13	26
		Q4	2.5-3.0	0.00478	0.226	79.8	0.121	0.175	NV	1.39	46.8	NV	11	20	34	60
		Q4	0.0 - 0.5	0.00571	0.154	127	0.0646	0.414	NV	1.2	32	NV	1	2	4	10
ť	J2	Q4	1.0-1.5	0.00545	0.352	104	0.131	0.156	NV	2.29	31.6	NV	5	10	17	30
Sec		Q4	2.5-3.0	0.0115	0.24	45.8	0.186	0.176	NV	3.12	18.9	NV	1	1	1	5
Transect		Q4	0.0 - 0.5	0.00138	0.151	89.4	0.0539	0.22	NV	0.946	35.6	NV	1	1	2	6
Tra	J3	Q4	0.6-1.0	0.00261	0.187	63.8	0.0736	0.0847	NV	1.16	20.9	NV	2	3	6	8
		Q4	2.5-3.0	0.000142	0.0335	12.1	0.0037	0.00362	NV	0.0122	31.2	NV	16	23	33	58
		Q4	0.0 - 0.5	0.00718	0.19	121	0.0814	0.345	NV	2.57	34	NV	0.5	0.5	0.5	1
	J4	Q4	0.5-1.0	0.00189	0.261	192	0.154	0.686	NV	4.24	23.3	NV	1	1	1	3
		Q4	2.5-3.0	0.00014	U 0.00699	1.11	0.0018	0.00429	NV	0.0092	15	NV	1	1	1	2

Transect	Sample	Quarter	Depth	0.05 mm			0.15 mm	0.3 mm	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm % passing
		04		-	g % passing		· · · · · · · · · · · · · · · · · · ·			· · · · · ·			% passing			1 0
		Q1	0.0-0.5	13 25	21.5	27.2 53.7	67.9	93.3 96.3	97.8	99.4	99.9	100	100	100	100 100	100 100
	A1	Q2 Q2	0.0-0.5	25 32	44 38	40.6	74.5 50.9	96.3 62.1	98.7 77.6	99.5 91.6	99.8 99.4	99.9 99.8	100 99.9	100	100	100
		Q2 Q2	2.5-3.0	32	2	2.2	2.4	55.9	99.4	91.6	99.4 99.9	99.8 100	99.9	100	100	100
		Q2 Q1	2.5-3.0	3	3.5	3.9	5.5	55.4	99.4 99.3	99.8 99.8	99.9	100	100	100	100	100
		Q2	0.0-0.5	2	2	2.2	3.6	60.1	99.3 99.4	99.8 99.9	100	100	100	100	100	100
<	A2	Q2 Q2	0.0-0.5	NV	NV	NV	NV	NV	99.4 NV	99.9 NV	NV	NV	NV	NV	NV	NV
ţ		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
ISE		Q1	0.0-0.5	2	2	2.1	3.4	56.1	97.8	99.9	100	100	100	100	100	100
Transect		Q2	0.0-0.5	2	2.5	2.7	3.6	50.7	95.4	98.8	100	100	100	100	100	100
-	A3	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	1.5	1.5	1.9	9	70.4	98.1	99.4	99.9	100	100	100	100	100
		Q2	0.0-0.5	2.5	2.5	2.9	9	64.2	98.2	99.8	99.8	100	100	100	100	100
	A4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	28	45.5	55.4	90	95.2	97.1	99	99.9	100	100	100	100	100
	B1	Q2	0.0-0.5	37.5	58	71.9	90.8	96.9	98.8	99.5	99.9	100	100	100	100	100
	ы	Q2	0.8-1.3	28	34	35.8	43.6	57.5	84.5	97.7	99.8	99.9	100	100	100	100
		Q2	2.5-3.0	94	96	96.7	98.4	98.8	99.3	99.4	99.4	99.9	100	100	100	100
		Q1	0.0-0.5	17.5	25	29.4	43.9	68.7	92.5	98.5	99.9	100	100	100	100	100
	B2	Q2	0.0-0.5	23	31	34.8	49.3	73.3	95.1	99.2	99.9	100	100	100	100	100
	DZ	Q2	0.6-1.1	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	1.9-2.4	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
B		Q1	0.0-0.5	75	80.5	85	93.8	96.5	98	98.9	99.2	99.8	99.9	100	100	100
g	B3	Q2	0.0-0.5	81	86	88.4	94.2	96.9	99.2	99.7	99.7	100	100	100	100	100
Transect	20	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
rai		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
F		Q1	0.0-0.5	60.5*	68.5*	76.4*	92.6	95.9	97.4	98.9	99.2	99.8	99.9	100	100	100
		Q1-Dup	0.0-0.5	62	69	76.5	92.2*	95.8*	97.2*	98.4*	99.2*	99.7*	99.9*	100*	100*	100*
	B4	Q2	0.0-0.5	65	71	76.6	93.1	96.1	97.8	99.2	99.8	100	100	100	100	100
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q4	0.0 - 0.5	3	3.5	4.5*	17.5*	57.1*	90.5*	99	100	100	100	100	100	100
	B5	Q4-Dup	0.0 - 0.5	2*	2.5*	4.7	19.8	58.7	90.7	99*	100*	99.9*	100*	100*	100*	100*
		Q4	0.5-1.0	6.5	8.5	9.4	17.9	46.1	80.8	95.7	100	100	100	100	100	100
		Q4	2.3-2.9	2	3.5	4.5	9.5	33.1	81	98.5	100	99.9	100	100	100	100

Transect	Sample	Quarter	Depth		0.064 mm	0.075 mm	0.15 mm	0.3 mm	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm
			feet		% passing							% passing	% passing	, i v		% passing
		Q1	0.0-0.5	23	34	38.9	58.9	77.4	94.6	98.5	99.3	99.9	99.9	100	100	100
		Q2	0.0-0.5	31	40.5	47.8	72.6	86	96.7	99.3	99.8	100	100	100	100	100
	C1	Q2	0.8-1.3	48	54.5	57.6	65.2	75.8	87.2	95	99.3	99.9	99.9	100	100	100
		Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.3-2.8	27	29	30.9	38	56.4*	80.4*	91.6*	99.7	99.9	99.9*	100	100	100
		Q2-Dup	2.3-2.8	20*	25*	25.8*	33.9*	57.4	89.3	97.2	99.7*	99.9*	100	100*	100*	100*
		Q1	0.0-0.5	23	30	35.1	64.8	86.8	97.8	99	99.7	99.9	99.9	100	100	100
U	C2	Q2	0.0-0.5	19.5	24	27.8	56.5	83.4	97.1	99.1	99.9	100	100	100	100	100
Transect		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
JSC		Q2	2.0-2.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
rai		Q1	0.0-0.5	41.5	50	54.2	69.4	80.3	97.4	98.9	99.3	99.9	100	100	100	100
-	C3	Q2	0.0-0.5	49.5	60	64.5	76.1	85.4	93.3	98.6	99.6	99.9	99.9	100	100	100
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.4-2.9	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	55	61	64.6	78.9	87.7	94.3	98.7	99.5	99.8	99.9	100	100	100
		Q2	0.0-0.5	56	61	65.2	78.7	87.2	94.2*	98.8*	99.9	100	100	100	100	100
	C4	Q2-Dup	0.0-0.5	38.5*	48*	52.3*	64.3*	73.6*	98	99.6	99.6*	99.9*	100*	100*	100*	100*
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	45.5	53	55.8	60.2	66.5	76.4	93.3	98.9	99.3	99.6	100	100	100
	D1	Q2	0.0-0.5	50	62	67.8	71.8	77.2	86	98	99.6	99.9	99.9	100	100	100
		Q2	1.0-1.5	38	46	48.3	54.3	62.2	74	92.3	99.7	99.8	99.9	100	100	100
		Q2	2.5-3.0	64	70	72.2	75.8	80.1	86.9	95.8	99.4	99.8	99.9	100	100	100
		Q1	0.0-0.5	68	70	82	84.5	87.4	92.3	98.7	99.5	99.8	99.9	100	100	100
-	D2	Q2	0.0-0.5	55	67	73	76.3	80.4	87.6	97.9	99.5	99.9	99.9	100	100	100
τ	DL	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
ans		Q1	0.0-0.5	76	85	89.5	91.1	92.6	95.2	98.5	99.5	99.8	99.9	100	100	100
μ	D3	Q2	0.0-0.5	67	80	88.5	91.2	93.6	96.8	99.2	99.4	99.8	99.9	100	100	100
	5	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	36.5	41.5	44.5	53.5	68	93.3	98.6	99.7	99.9	99.9	100	100	100
	D4	Q2	0.0-0.5	44	48	50	59	72.2	93.4	98.8	99.8	100	100	100	100	100
	D4	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV

Transect	Sample	Quarter	Depth	0.05 mm			0.15 mm	0.3 mm	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm
					g % passing	, i v			, v		, i v	% passing	i v	, i v		
		Q1	0.0-0.5	50*	62*	67.4*	72.6*	80.4*	88.6*	97.1*	99.6	99.8*	99.9	100	100	100
		Q1-Dup	0.0-0.5	56.5	67	71.3	76.6	83.3	89.9	97.7	99.5*	99.9	99.9*	100*	100*	100*
	E1	Q2	0.0-0.5	48	56	59	63.1	70.1	78.5	92.5	99.8	99.9	100	100	100	100
		Q2	1.0-1.5	58	65	68.7	73.4	79.5	85.7	90.9	91.8	92	92.1	92.2	92.2	100
		Q2	2.5-3.0	92	95	96.6	97.7	98.7	99.3	99.5	99.5	99.9	99.9	100	100	100
		Q1	0.0-0.5	92.5	94	95	96.7	98	98.7	99.2	99.5	99.9	99.9	100	100	100
ш	E2	Q2	0.0-0.5	86	91	93.1	95	97.4	99	99.3	99.4	99.9	99.9	100	100	100
şç		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
USC		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
Transect		Q1	0.0-0.5	65	67.5	68.5	74.1	81.5	88.9	97.1	99.8	100	100	100	100	100
	E3	Q2	0.0-0.5	58	72	81.2	85.9	90.9	95.4	99	99.5	99.9	99.9	100	100	100
		Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	21	22	25.2	39.3	63.8	87.4	97.4	99.9	100	100	100	100	100
	E4	Q2	0.0-0.5	28.5	32	35	46.2	66.2	88	97.8	99.9	100	100	100	100	100
	L 4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	39	42.5	44.1	49.1	61.1	86.3	97.9	99.6	99.9	99.9	100	100	100
	F1	Q2	0.0-0.5	40	43	44.9	51	65	89.4	98.1	99.9	100	100	100	100	100
	••	Q2	1.0-1.5	54	61	63.5	67.4	75.2	90.3	98.4	99.6	99.9	100	100	100	100
		Q2	2.5-3.0	54	59	61.1	65.1	73.3	86.8	96.9	99.5	99.9	100	100	100	100
		Q1	0.0-0.5	89	90	90.3	91.1	92	94.7	98	99.6	99.9	99.9	100	100	100
	F2	Q2	0.0-0.5	46	47	47.1	49.4	55	72.9	90.3	99.3	99.7	99.7	100	100	100
	12	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
ш		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
ថ្ង		Q1	0.0-0.5	73	83.5	88.2	90.3	93.1	96.5	99.2	99.5	99.8	99.9	100	100	100
Transect F		Q2	0.0-0.5	64	69	71.6	74.8	80.3	88.3	97.2	99.5*	100	100	100	100	100
rar	F3	Q2-Dup	0.0-0.5	57.5*	63*	66.8*	70*	75.4*	84*	94.1*	99.6	99.9*	100*	100*	100*	100*
⊢		Q2	1.2-1.7	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
[Q1	0.0-0.5	69	71	85.1	86.8	89.2	93	98.4	99.6	99.9	99.9	100	100	100
		Q2	0.0-0.5	65	75	82.1	84.6	88	93.1	98.6	99.5	99.9	99.9	100	100	100
	F4	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
	Г4	Q2-Dup	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2-Dup	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV

Appendix C-3a Data from Sediment Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	0.05 mm			0.15 mm	0.3 mm	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm
		-	feet		% passing		% passing	% passing	% passing		% passing	· •			% passing	% passing
		Q1	0.0-0.5	19.5	21	21.9	26.5	41.4	84.4	97.1	99.9	100	100	100	100	100
	G1	Q2	0.0-0.5	15	16	16.5	20.9	35.2	84.2	97.9	99.8	100	100	100	100	100
	0.	Q2	1.1-1.6	67	71	74.1	89.3	93	97.2	99.1	99.5	99.9	99.9	100	100	100
		Q2	2.5-3.0	61	71	76.5	93.8	96.2	97.2	98	98.3	98.8	98.8	98.9	100	100
		Q1	0.0-0.5	40	42	56	65	79.8	93.4	97.6	98.6	99.5	99.7	100	100	100
	G2	Q2	0.0-0.5	55	67	74.9	81.3	88.9	95.8	99.1	99.5	99.9	99.9	100	100	100
t G	02	Q2	0.8-1.3	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
ans		Q1	0.0-0.5	55	61.5	64.9	76.9	86.6	95.4	98.5	99.6	99.8	99.9	100	100	100
L ²²	G3	Q2	0.0-0.5	53	66	74	79.3	86.4	93.3	98.5	99.4	99.9	100	100	100	100
-	00	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	51.5	59	62.3	71.2	84.4	92.7	96.5	97.1	97.6	99.9	100	100	100
	G4	Q2	0.0-0.5	45	51	54.8	66.7	83.1	96.6	99.2	99.5	99.8	99.9	100	100	100
	64	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	50	62	70.5	78.1	87.2	93	97.7	99.4	99.9	99.9	100	100	100
	H1	Q2	0.0-0.5	53	61.5	66.5	74.2	81.7	89.1	97.6	99.6	99.9	100	100	100	100
		Q2	1.0-1.5	57	68	73.1	80.1	87.2	92.7	97.9	99.3	99.7	99.8	100	100	100
		Q2	2.5-3.0	32	39	41.2	55.2	75.5	94.9	98.7	99.4	99.9	99.9	100	100	100
		Q1	0.0-0.5	18	19.5	20.3	26.5	54.9	90.7	98.4	99.8	99.9	100	100	100	100
	H2	Q2	0.0-0.5	19	26	29.6	35.5	58.1	89.3	97.4	99.7	99.9	99.9	100	100	100
Ŧ	112	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
su		Q1	0.0-0.5	35	43	47.5	57.1	69	91.7	98.1	99.6	99.8	99.9	100	100	100
Tra	H3	Q2	0.0-0.5	57	64	68.6	76	87.2	94.5	98.8	99.5	99.9	100	100	100	100
-	пJ	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	44	49.5	52.3	57.2	70.4	88.5	99.6	99.6	99.9	99.9	100	100	100
	H4	Q2	0.0-0.5	55	58	59.5	64	72.2	83.6	95.5	99.6	99.9	99.9	100	100	100
	F14	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV

Appendix C-3a Data from Sediment Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	0.05 mm	0.064 mm	0.075 mm	0.15 mm	0.3 mm	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm
			feet	% passing												
		Q1	0.0-0.5	26	32.5	35.9	49.9	77.9	97.3	99.3	99.7	99.9	99.9	100	100	100
	11	Q2	0.0-0.5	26	31.5	35.9	54.3	82.8	97.8	99.1	99.2	99.9	99.9	100	100	100
		Q2	1.0-1.5	21	28	32.2	54.3	88.9	98.3	99.3	99.6	99.9	99.9	100	100	100
		Q2	2.5-3.0	20	25	27.4	43.6	79.7	98.5	99.5	99.7	100	100	100	100	100
		Q1	0.0-0.5	36.5	43.5	47.2	63.6	87	97.2	98.9	99.4	99.8	99.9	100	100	100
	12	Q2	0.0-0.5	33	46.5	52.1	72.6	89.9	97.3	99.3	99.7	99.9	99.9	100	100	100
Ŧ	12	Q2	1.0-1.5	NV												
Transect		Q2	2.5-3.0	NV												
än		Q1	0.0-0.5	48	50	51.4	57.9	66.3	75.4	88.4	99.3	99.8	99.9	100	100	100
Ë	13	Q2	0.0-0.5	65	73	77.7	82.8	90	95.9	99.4	99.8	100	100	100	100	100
	15	Q2	1.0-1.5	NV												
		Q2	2.5-3.0	NV												
		Q1	0.0-0.5	60	65.5	68.6	72.9	78.5	89.5	96.8	99.4	99.7	99.8	100	100	100
	14	Q2	0.0-0.5	68	76	79.7	85.3	89.7	94.4	99.2	99.4	99.9	100	100	100	100
	14	Q2	0.8-1.3	NV												
		Q2	2.1-2.6	NV												
		Q4	0.0 - 0.5	2	5	7.8	40.3	81.5	97.2	98.9	100	99.9	100	100	100	100
	J1	Q4	0.8-1.3	34	37	39.4	49.5	68.8	90.1	97.9	100	99.9	99.9	100	100	100
		Q4	2.5-3.0	72	76	78.1	91.1	96.2	98.6	99.6	100	99.7	99.9	100	100	100
		Q4	0.0 - 0.5	18	25	29.6	58.7	83.7	94	98	100	99.8	100	100	100	100
Ĵ	J2	Q4	1.0-1.5	38	40	41.6	48.7	68.7	98.3	99.6	100	99.9	99.9	100	100	100
Sec		Q4	2.5-3.0	7	8	8.5	10.2	33.4	98.1	99.7	100	100	100	100	100	100
Transect		Q4	0.0 - 0.5	23	33	38.1	62.7	82.3	94.2	98.3	100	99.8	99.9	100	100	100
μ	J3	Q4	0.6-1.0	15	23	26.9	73.4	98.5	99.5	99.7	100	99.8	100	100	100	100
		Q4	2.5-3.0	79	86	88.5	93.8	96.8	98.8	99.5	100	99.5	99.9	100	100	100
		Q4	0.0 - 0.5	3	4	6.8	36.5	91.2	98.7	99.6	100	99.9	100	100	100	100
	J4	Q4	0.5-1.0	4	5.5	7.1	33.2	90.5	98.7	99.8	100	99.9	100	100	100	100
		Q4	2.5-3.0	2	2	2.5	4.1	58.3	98.6	99.7	100	99.9	100	100	100	100

* = datum not used (because it is the lower pair of a duplicate, or the datum was rejected

mg/kg = Milligram/Kilogram mm = Millimeters NV = No Value, no analysis performed TOC = Total organic carbon µmoles/g = Micromoles per Gram Qualifiers: J = Estimated value K= Analyte is present but flagged as a high bias, usually associated with MS/MSD, LCS, LCSD spike recoveries. U = Not detected

Data from Sediment Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

								Divalent		Ferrous		
Transect	Sample	Quarter	Depth	Aluminum	Calcium	Magnesium	Iron	Manganese	Chromium	Iron	Manganese	Vanadium
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Q1	0.0-0.5	37,500	200	8,280	49,800	0.97	127	10,800	1,470	80.5
	37	Q2	0.0-0.5	41,400	7,570	10,000	72,600	6.704	161	10,800	1,770	127
	37	Q2	1.0-1.5	31,500	2,440	8,120	48,400	NV	147	NV	1,550	98
		Q2	2.5-3.0	34,700	1,940	9,750	46,300	NV	84.9	NV	1,470	74.8
37		Q1	0.0-0.5	36,200	2,660	7,990	47,800	3.773	95.6	7,950	1,210	80.5
ect	37A	Q2	0.0-0.5	37,100	2,520	9,430	54,900	2.445 U	124	11,000	1,650	92.2
us	3/A	Q2	1.0-1.5	36,200	1,930	9,100	46,700	NV	99.4	NV	1,290	76.8
lra		Q2	2.5-3.0	36,100	1,870	10,100	45,200	NV	55.3	NV	1,490	67.9
		Q1	0.0-0.5	35,700	1,900	8,370	47,200	0.658	89.2	9,170	1,620	77.2
	37B	Q2	0.0-0.5	36,100	2,530	8,850	56,200	2.44 U	166	2,230	1,680	107
	3/8	Q2	1.2-1.7	37,900	2,090	9,980	45,500	2.353 U	55.8	4,200	1,670	71
		Q2	2.5-3.0	37,600	1,860	9,460	45,800	2.32 U	75.4	4,710	1,560	75.2

Data from Sediment Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	Sulfide	тос	Acid Volatile Sulfide	Cadmium	Copper	Iron	Lead	Nickel	Mercury	Zinc	Moisture	Total Solids
				mg/kg	mg/kg	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	µmoles/g	%	%
		Q1	0.0-0.5	2,110	27,000	29.8	0.00273	0.109	103	0.069	0.14	7.7E-06 U	0.775	61.9	22.6
	37	Q2	0.0-0.5	2,490	22,000	20.3	0.0015	0.0374	66.4	0.0565	0.166	NV	0.585	74	20.8
	37	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	74.4	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	60.3	NV
37		Q1	0.0-0.5	2,960	27,000	24.9	0.00286	0.159	87.8	0.075	0.0663	7.8E-06 U	0.792	67.8	19.2
ect	37A	Q2	0.0-0.5	1,260	29,000	14.7	0.0019	0.0914	69.5	0.0681	0.161	NV	0.681	73.5	22
nsı	3/A	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	64.9	NV
La		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	59.4	NV
F		Q1	0.0-0.5	775	25,000	9.7	0.00312	0.262	115	0.0913	0.185	7.7E-06 U	0.992	62.5	27.6
	37B	Q2	0.0-0.5	1,540	23,000	22	0.00163	0.0676	75.9	0.0635	0.081	NV	0.649	71.4	24.6
	3/15	Q2	1.2-1.7	656	26,000	NV	NV	NV	NV	NV	NV	NV	NV	55.7	39.3
		Q2	2.5-3.0	692	26,000	NV	NV	NV	NV	NV	NV	NV	NV	52.9	46.8

Data from Sediment Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	0.001 mm		0.005 mm		0.05 mm				0.3 mm
							% passing	% passing				
		Q1	0.0-0.5	41	43	56	71	84	88.5	90.6	91.7	93.5
	37	Q2	0.0-0.5	9	17	28.5	43	65	76	82.6	84.2	87.2
	57	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV
37		Q1	0.0-0.5	23	36	50	78	81	88	89.8	90.6	91.8
ect	37A	Q2	0.0-0.5	13	26	41	49	69	79	85.2	86.6	89.1
us	3/A	Q2	1.0-1.5	NV	NV	NV	NV	NV	NV	NV	NV	NV
Transect		Q2	2.5-3.0	NV	NV	NV	NV	NV	NV	NV	NV	NV
		Q1	0.0-0.5	21	34	48	61	83	90	92.7	93.5	94.8
	37B	Q2	0.0-0.5	8	18	31.5	46	70	84	91.3	92.4	94.6
	3/8	Q2	1.2-1.7	36	48	62	85	94.5	98.5	99.2	99.3	99.4
		Q2	2.5-3.0	39	51.5	64.5	82.5	93.5	98	98.1	98.4	98.8

Data from Sediment Reference Location Sampling Events Dundalk Marine Terminal, Baltimore, Maryland

Transect	Sample	Quarter	Depth	0.6 mm	1.18 mm	2.36 mm	3.35 mm	4.75 mm	19 mm	37.5 mm	75 mm
				% passing							
		Q1	0.0-0.5	96.1	98.8	99.7	99.9	100	100	100	100
	37	Q2	0.0-0.5	92.7	98.5	99.4	99.7	99.8	100	100	100
	37	Q2	1.0-1.5	NV							
		Q2	2.5-3.0	NV							
37		Q1	0.0-0.5	94	97.2	99.6	99.9	99.9	100	100	100
act	37A	Q2	0.0-0.5	93.1	98.2	99.6	99.9	99.9	100	100	100
USI	3/A	Q2	1.0-1.5	NV							
Transect		Q2	2.5-3.0	NV							
		Q1	0.0-0.5	96.5	98.8	99.6	99.9	99.9	100	100	100
	37B	Q2	0.0-0.5	97.5	99.3	99.4	99.8	99.9	100	100	100
	3/8	Q2	1.2-1.7	99.5	99.6	99.7	99.9	99.9	100	100	100
		Q2	2.5-3.0	99.3	99.6	99.6	99.9	99.9	100	100	100

U = Not detected

mg/kg = Milligram/Kilogram mm = Millimeters NV = No Value, no analysis performed

TOC = Total organic carbon µmoles/g = Micromoles per Gram