Honeywell

101 Columbia Road Morristown, NJ 07962-1139 Tel: 973-455-4131 Fax: 973-455-3082

October 26, 2009

Mr. Harold Dye, Jr. Administrator, Hazardous Waste Program

Mr. James Carroll Administrator, Land Restoration Program Maryland Department of the Environment 1800 Washington Boulevard, Suite 645 Baltimore, MD 21230-1719

Re: Draft Human Health Risk Assessment, Dundalk Marine Terminal, Baltimore, Maryland

Dear Messrs. Dye and Carroll:

Honeywell International Inc. (Honeywell) and the Maryland Port Administration (MPA) are submitting the enclosed document titled draft "Human Health Risk Assessment, Dundalk Marine Terminal, Baltimore, Maryland." This document provides the results of the human health risk assessment that was conducted pursuant to the requirements of Section III.B.7 of the Consent Decree entered into by Maryland Department of the Environment (MDE), the Maryland Port Administration (MPA) and Honeywell. A full digital copy of the report is also attached on CD ROM.

If you have any questions or comments, please contact me at 973-455-4131.

Very truly yours,

HONEYWELL INTERNATIONAL INC.

topher M. French

Project Coordinator

Attachment (2 copies)

cc: Mr. Horacio Tablada/MDE (letter only) Mr. Matthew Zimmerman/MDE Mr. Robert Munroe/MPA Mr. Mark Kreafle/MPA Mr. Michael Daneker/Arnold & Porter

Human Health Risk Assessment, Dundalk Marine Terminal, Baltimore, Maryland

Prepared for

101 Columbia Rd. Morristown, N. J.

Maryland Port Administration

401 East Pratt St. Baltimore, Md.

October 2009

Prepared by

Summary

This Human Health Risk Assessment (HHRA) was prepared pursuant to the requirements of Section III.B.7 of the April 5, 2006, Consent Decree entered into by and among the Maryland Department of the Environment (MDE), Maryland Port Administration (MPA), and Honeywell International Inc. (Honeywell) for Dundalk Marine Terminal (DMT), located within Baltimore City and Baltimore County, Maryland. The HHRA has been prepared pursuant to the work plan submitted to MDE in July 2009.

Although the Consent Decree focuses exclusively on chromium, other constituents related to chromium ore processing residue (COPR) (aluminum, calcium, iron, magnesium, manganese, and vanadium) in various environmental media (groundwater, soil, air, stormwater, surface water, and sediment) were also assessed.

The HHRA results establish that chromium and other COPR constituents do not pose an unacceptable risk to DMT workers, construction workers, or utility workers; nor do they pose an unacceptable risk to recreational users of the cove adjacent to DMT. The scenarios that were evaluated include those most likely to represent ways that a community member could come in contact with COPR or chromium at the Port. The data and conclusions provided in the HHRA meet the requirements stipulated in the Consent Decree. No additional sampling or analysis is required to assess the environmental impacts of COPR constituents from the site.

Technical Approach

The scope of the HHRA is to evaluate potential current and future risks associated with chromium and other COPR constituents in accordance with the standard U.S. Environmental Protection Agency (EPA) Region 3 approach for conducting HHRAs. In general, the basic approach for the HHRA follows the EPA's four-step risk assessment process (EPA, 1989): (1) data evaluation, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization.

Step 1 consists of the data evaluation in which analytical data are used to identify risk based screening levels and select chemicals of potential concern (COPCs). In Step 2, the exposure assessment is conducted and potential current and future exposure points, receptors, exposure scenarios, and exposure point concentrations (EPCs) are identified. In Step 3, relevant toxicity values are selected in accordance with EPA's hierarchy for toxicity value sources. In Step 4, a risk characterization is performed and an uncertainty analysis of the results is conducted.

Analytical data used in the HHRA were collected from various environmental media at or from DMT. The following environmental media were evaluated in the HHRA:

• Shallow groundwater (0 to 10 feet below ground surface (bgs))

- Surface soil (less than 0.5 foot bgs)
- Total soil (0 to 10 feet bgs)
- Air (collected at the perimeter and near the center of the site)
- Stormwater
- Surface water/sediment (in the cove adjacent to the site)

The COPR-related constituents were screened to identify the COPCs using a conservative COPC selection process in accordance with EPA (1989) guidance. The COPCs in each exposure medium were identified by comparing the maximum detected concentrations to EPA regional screening levels (RSLs) (EPA, 2009a).

The following potential exposure populations are discussed in the HHRA:

<u>Onsite</u>

<u>Offsite</u>

- DMT workers
- Residents in homes at the adjacent cove
- DMT visitors

- Recreational users in the cove
- Utility workers
- Anglers in the Patapsco River and Colgate Creek
- Construction workers

To evaluate the potential health risks associated with exposure to COPCs, potentially complete exposure pathways were identified. The following exposure scenarios were quantified in the HHRA:

- **Groundwater.** Hypothetical future dermal contact with shallow groundwater in excavations by construction workers
- **Surface soil.** Hypothetical future ingestion, dermal contact, and inhalation by DMT workers
- **Total soil.** Hypothetical future ingestion, dermal contact, and inhalation by DMT workers and construction workers
- Stormwater. Hypothetical future dermal contact by utility workers
- **Surface water.** Current and future ingestion and dermal contact by offsite residents (adult, adolescent, and child)
- **Sediment:** Ingestion and dermal contact by offsite residents (adult, adolescent, and child); 0 to 1 foot bgs was used for the current scenario, whereas 0 to 3 feet bgs was used for the future scenario

The HHRA results under current exposure scenarios indicate acceptable risks (target-organspecific hazard indices (HIs) < 1.0) for recreational users (adult, adolescent, and child) exposed to surface water and sediment in the cove adjacent to DMT.

The evaluation of the air transport pathway found no significant difference between upwind and downwind concentrations of Cr(VI) in air. This finding is expected, given that COPR is contained beneath the surface cover present at DMT. The surface cover inspection and maintenance program includes a rigorous inspection and repair program for surface cover which ensures that COPR remains contained, thereby limiting the potential for chromium transport via air. The HHRA indicated acceptable risk levels (all target-organ-specific HIs < 1.0) for recreational users (adult, adolescent, child) exposed to sediment and surface water under a future scenario whereby the cove is dredged, allowing contact with sediments currently situated 0 to 3 feet bgs.

Using a conservative approach and assumptions, risk estimates were calculated for current and future potential exposures by recreational users in the cove adjacent to the site; risk estimates were within acceptable levels.

Contents

Exec	cutive	e Summary	iii	
Acro	onym	s and Abbreviations	ix	
1	Introduction			
_	1.1	Background		
	1.2	Purpose and Scope		
2	Data	2-1		
-	2.1	Approach		
	2.2	Identification of COPCs		
	2.2	2.2.1 Groundwater		
		2.2.2 Soil		
		2.2.3 Air		
		2.2.4 Stormwater		
		2.2.5 Surface Water		
		2.2.6 Sediment		
	2.3	Modifications to the HHRA Approach		
3	Exposure Assessment			
3	3.1	Conceptual Exposure Model		
	3.2	Exposure Setting		
	3.3	Potential Exposure Pathways		
	0.0	3.3.1 Groundwater		
		3.3.2 Soil		
		3.3.3 Air		
		3.3.4 Stormwater		
		3.3.5 Surface Water and Sediment		
		3.3.6 Biota		
	3.4	Quantification of Exposures		
	0.1	3.4.1 Exposure Point Concentrations		
		3.4.2 Exposure Estimates		
4	T	-		
4		icity Assessment Approach		
	4.1 4.2	11		
		Toxicity Values		
5		Characterization		
	5.1	Approach for Potential Excess Lifetime Cancer Risks		
	5.2	11 0		
	5.3	Results of Risk Estimates		
		5.3.1 Current Exposure Scenarios		
		5.3.2 Future Exposure Scenarios		
		5.3.3 Summary of Risk Estimates		
	5.4	Uncertainty Analyses	5-5	

		Uncertainty Associated with Data Evaluation		
	5.4.2	Uncertainty Associated with the Exposure Assessment	5-6	
	5.4.3	Uncertainty Associated with Toxicity Assessment	5-8	
	5.4.3	Uncertainty in Risk Characterization	5-9	
6	Summary and Conclusion			
7	References			

Appendices

- A HHRA Calculation Tables
- B ProUCL Output

Tables

- 1-1 COPR Constituents
- 3-1 Grain Size Distribution and Sediment Type
- 3-2 Bioaccumulation Factors for COPR Constituents in Freshwater
- 4-1 Toxicity Values Used in the HHRA
- 5-1 Summary of Risk Estimates and Risk Drivers
- 6-1 Recommended Cr(VI) Soil Levels for Allergic Contact Dermatitis

Figures

- 1-1 Site Map
- 2-1 Groundwater Sampling Locations
- 2-2 Surface Soil (< 0.5 feet) Sampling Locations
- 2-3 Total Soil (0–10 feet) Sampling Locations
- 2-4 Air-Monitoring Locations
- 2-5 Stormwater-Sampling Locations
- 2-6 Surface Water and Sediment Sampling Locations
- 3-1 Human Health Conceptual Exposure Model

Acronyms and Abbreviations

ABS _{GI}	gastrointestinal absorption factor
AF	adherence factor
ATSDR	Agency for Toxic Substances and Disease Registry
AVS	acid volatile sulfide
BAF	bioaccumulation factor
bgs	below ground surface
CEM CERCLA COPC COPR	conceptual exposure model Comprehensive Environmental Response, Compensation, and Liability Act constituent of potential concern chromium ore processing residue
Cr(III)	trivalent chromium
Cr(total)	nonspeciated chromium
Cr(VI)	hexavalent chromium
CSF	cancer slope factor
DMT	Dundalk Marine Terminal
DRI	Dietary Reference Intake
ELCR	excess lifetime cancer risk
EPA	U.S. Environmental Protection Agency
EPC	exposure point concentration
HASP	health and safety plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
HHRA	human health risk assessment
HI	hazard index
HQ	hazard quotient
IRIS IUR	Integrated Risk Information System inhalation unit risk
MDE	Maryland Department of the Environment
MDEP	Massachusetts Department of Environmental Protection
MPA	Maryland Port Administration
NAWQC	National Ambient Water Quality Criteria
NJDEP	New Jersey Department of Environmental Protection
PCB	polychlorinated biphenyl
PEF	particulate emission factor
PM	particulate matter
PPRTV	Provisional Peer-Reviewed Toxicity Value
RAGS RfC	Risk Assessment Guidance for Superfund reference concentration

RfD RME RSL	reference dose reasonable maximum exposure Regional Screening Level
SCMP SSHSP	surface cover inspection and maintenance plan site-specific health and safety plan
UCL	upper confidence limit

SECTION 1 Introduction

1.1 Background

This Human Health Risk Assessment (HHRA) was prepared pursuant to the requirements of Section III.B.7 of the April 5, 2006, Consent Decree entered into by and among the Maryland Department of the Environment (MDE), the Maryland Port Administration (MPA), and Honeywell International Inc. (Honeywell) for the Dundalk Marine Terminal (DMT), located within Baltimore City and Baltimore County, Maryland (Figure 1-1). The HHRA has been prepared pursuant to the work plan submitted to MDE in July 2009.

1.2 Purpose and Scope

Section III.B.7 of the Consent Decree requires that an HHRA be performed to assess the potential impacts on human health of chromium at or from the site. Potential risks associated with other chromium ore processing residue (COPR) constituents – aluminum, calcium, iron, magnesium, manganese, and vanadium – were also evaluated (CH2M HILL, 2007b, 2008a). The scope of the HHRA is to evaluate potential current and future risks associated with COPR constituents in the absence of institutional controls and other remedial measures in accordance with the standard U.S. Environmental Protection Agency (EPA) Region 3 approach for conducting HHRAs. Most COPR constituents (those 5 percent or more by mass) at DMT are refractory elements including aluminum, chromium, iron, magnesium, and silica, as shown in Table 1-1 (which presents results for four samples of COPR at DMT). Calcium and trace amounts of other chemicals (including manganese and vanadium) are also present in COPR.

The basic approach for the HHRA is in accordance with EPA (1989) risk assessment guidance. In general, this is a four-step process:

- Identifying existing analytical data for COPR-related constituents (as defined in prior submittals to MDE, e.g., the Phase 1 COPR Investigation Data Report (CH2M HILL, 2007c)) in environmental media with potentially complete exposure pathways and comparing detected concentrations with risk-based screening levels to select constituents of potential concern (COPCs) for the HHRA
- 2. Identifying potential current and future exposure points, receptors, exposure scenarios, and exposure point concentrations (EPCs) and refining the preliminary conceptual exposure model (CEM) as necessary
- 3. Identifying relevant toxicity values for COPCs in accordance with EPA's hierarchy for toxicity value sources
- 4. Estimating potential risks associated with exposures to COPCs, including an uncertainty analysis

		Percent by Mass				
Oxide Form	Element	1	2	3	4	Average
Fe ₂ O ₃	Iron	17.15	18.05	18.06	18	17.82
Al ₂ O ₃	Aluminum	11.22	12.34	12.32	12.34	12.06
MgO	Magnesium	11.65	11.27	11.33	11.3	11.4
SiO ₂	Silica	8.4	4.36	4.39	4.4	5.39
Cr ₂ O ₃	Chromium	4.31	4.81	4.75	4.78	4.66
Na ₂ O	Sodium	0.36	0.52	0.55	0.53	0.49
K₂O	Potassium	0.12	0.03	0.02	0.02	0.048
TiO ₂	Titanium	0.38	0.39	0.4	0.39	0.39
MnO ₂	Manganese	0.21	0.21	0.21	0.22	0.21
P_2O_5	Phosphorus	0.02	0.01	0.02	0.02	0.02
SrO	Strontium	0.01	0.01	0.01	0.01	0.01
ВаО	Barium	<0.01	0.01	<0.01	<0.01	0.01
Lost on ignition		12.8	11.3	11.3	11.15	11.64
Totals		99.19	99.36	99.31	99.08	99.24

TABLE 1-1COPR ConstituentsDundalk Marine Terminal, Baltimore, MD

\APHRODITE\PROJHONEYWELLINC\DUNDALKMARINETERMINAL\MAPFILES\WORKPLAN\FIGURE 1 - SITE MAP.MXD_BHATHAWA 4/16/2009 10:00:27

- --- City/County Boundary
- Areas
- COPR Extent
- DMT Boundary

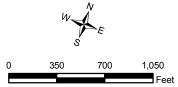


Figure 1-1 Site Map Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

2.1 Approach

The scope of the HHRA is to evaluate potential current and future risks associated with potentially complete exposure pathways to COPCs in COPR-impacted media at or from DMT. Analytical data are available from various environmental matrices: groundwater, soil, air, stormwater, surface water, and sediment.

2.2 Identification of COPCs

The COPR-related constituents were screened to select the COPCs in accordance with EPA (1989) guidance. The COPC selection process was conservative to ensure that potential risks are not inadvertently underestimated or discounted at an early step in the assessment. When data for duplicate samples are available, the higher of the parent sample and the duplicate result was used. Additionally, when both total chromium (Cr(total)) (nonspeciated) and hexavalent chromium (Cr(VI)) concentrations were available for a given sample, the trivalent chromium concentration (Cr(III)) was calculated by subtracting the Cr(VI) concentration from the Cr(total) concentration. When the Cr(VI) concentrations were greater than Cr(total), a concentration of zero was assigned to Cr(III) and the concentration was considered "nondetected"; otherwise, calculated Cr(III) concentrations were noted as detected concentrations. The calculated Cr(III) results were consolidated with measured Cr(III) results and were treated as if they were measured concentrations.

2.2.1 Groundwater

Groundwater samples collected from 2006 through 2009 at monitoring wells representing groundwater 0 to 10 feet below ground surface (bgs) (the depth of potential excavation activities) were screened in the HHRA. The list of groundwater samples used in the HHRA is provided in Table 1.1 of Appendix A, and sampling locations are shown in Figure 2-1. The COPCs in groundwater were identified by comparing the maximum detected concentrations to the EPA regional screening levels (RSLs) for tap water (EPA, 2009a). In this conservative screening step, the noncarcinogenic RSL values were reduced tenfold to account for the presence of multiple COPR-related constituents potentially affecting the same target organ or having the same critical effect.

RSLs are not available for calcium and magnesium. Although these constituents are considered essential nutrients and not typically treated as environmental pollutants, screening levels were calculated using the dietary reference intakes (DRIs) published by the National Academy of Sciences (2004) and EPA's (2009a) standard exposure assumptions used to derive RSLs.

Groundwater data are available for total vanadium at DMT. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate RSL could be identified.

Because of the high pH of groundwater in the COPR area, vanadium is not likely to be present as vanadium pentoxide, vanadium sulfate, or metallic vanadium; therefore, the "vanadium and compounds" RSL was used to screen vanadium groundwater data.

If the maximum detected concentration of a constituent in groundwater exceeded its respective screening value, the constituent was identified as a COPC in groundwater and retained for quantitative evaluation in the HHRA. Results of the COPC screening process are presented in Table 2.1 of Appendix A; the following eight COPCs were identified for groundwater: aluminum, calcium, Cr(III), Cr(VI), iron, magnesium, manganese, and vanadium.

2.2.2 Soil

Soil samples collected from the 0- to 10-feet-bgs interval from 2005 through 2009 were used in the HHRA. To estimate exposures at applicable exposure points, the available soil data were grouped into two datasets. The surface soil data grouping (i.e., samples collected from a starting depth of 0 feet) was used to evaluate hypothetical future exposures to soil and COPR (which are assumed to be consistently present at the site surface within and adjacent to the railroad ballast) by DMT workers. Total soil (0 to 10 feet bgs) was used to evaluate hypothetical future exposures by construction workers and DMT workers. The list of soil samples used in the HHRA is provided in Tables 1.2 and 1.3 of Appendix A, and sampling locations are shown in Figures 2-2 and 2-3. To characterize potential risks from exposure to future COPR blooms that are assumed to be consistently present on the site surface, the soil datasets used in the HHRA include soil samples collected from COPR blooms that have been removed from the site. No subsurface soil samples are available from Areas 1501 and 1602 since approximately 8 feet of fill is present atop these areas; however, surface soil samples are available from the side slopes of these areas.

The COPCs in each soil data group were identified by comparing the maximum detected concentrations with the RSLs for industrial soil (EPA, 2009a). In this conservative screening step, the noncarcinogenic RSL values were reduced tenfold to account for the presence of multiple COPR-related constituents potentially affecting the same target organ or having the same critical effect.

RSLs are not available for calcium, magnesium, potassium, and sodium. Although these constituents are considered essential nutrients and not typically treated as environmental pollutants, screening levels were calculated using the DRIs published by the National Academy of Sciences (2004) and EPA's standard exposure assumptions used to derive RSLs (EPA, 2009a). The calculated screening levels for these constituents exceed the theoretical ceiling limit (i.e., 10⁺⁵ mg/kg) discussed in the RSL user's guide (EPA, 2009a); therefore, the ceiling limit (rather than the calculated screening level) was used as the screening level.

At the DMT site, soil data are available for total vanadium. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate RSL could be identified. In dry soils (i.e., those at the soil-air interface and at a depth of 1 to 2 inches into the soil, away from the soil-air interface), vanadium pentoxide associated with iron oxyhydroxides could be present; in deeper soils, the form is more likely to be "vanadium and compounds." The vanadium pentoxide RSL was used to screen vanadium soil data.

If the maximum detected concentration of a constituent exceeds its screening level, the constituent was identified as a COPC and retained for quantitative evaluation in the HHRA. Results of the COPC screening process are presented for surface and total soil in Tables 2.2 and 2.3 of Appendix A, respectively. The following five COPCs were identified both for surface soil and total soil: calcium, Cr(VI), iron, manganese, and vanadium.

2.2.3 Air

Air samples collected at the perimeter and near the center of the site as part of the SCMP in 2007 through 2009 were screened in the HHRA. The list of air samples used in the HHRA is provided in Table 1.4 of Appendix A and sampling locations are shown in Figure 2-4.

Cr(VI) is the only chemical-specific analyte measured in the air-monitoring program. The maximum detected concentration was compared with the RSL for residential land use (EPA, 2009a) because most air-monitoring locations are at the site perimeter. Results of the COPC screening process are presented in Table 2.4 of Appendix A. Because the maximum detected concentration exceeds the RSL, Cr(VI) was identified as a COPC in outdoor air and retained for quantitative evaluation in the HHRA. Background (upwind) concentrations in outdoor air were not considered when identifying Cr(VI) as a COPC in outdoor air, which is consistent with direction provided by the MDE toxicologist (MDE, 2009).

2.2.4 Stormwater

Stormwater samples collected between 2004 and 2009 (depending on the stormwater outfall) were screened in the HHRA. Wet-weather stormwater samples collected by Maryland Environmental Services at National Pollution Discharge Elimination System monitoring points were included. The available stormwater data were grouped into two datasets: the "nonpriority drains" (9th Street to 11.5th Street Outfalls, which contribute de minimis mass flux) and the "priority drains" (12th Street to 15th Street outfalls). The list of stormwater samples used in the HHRA is provided in Table 1.5 (nonpriority drains) and Table 1.6 (priority drains) of Appendix A, and sampling locations are shown in Figure 2-5. Additional samples were collected from the 13th Street storm drain as part of an interim remedial measure pilot test in 2009 and were included in the stormwater dataset for the HHRA.

The COPCs in stormwater were identified by comparing the maximum detected concentrations against the RSLs for tap water (EPA, 2009a). In this conservative screening step, the noncarcinogenic RSL values were reduced tenfold to account for the presence of multiple COPR-related constituents potentially affecting the same target organ or having the same critical effect.

At the DMT site, stormwater data are available for total vanadium. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate RSL could be identified. The pH is high (up to 12) in some sewer lines (the "priority drains") as a result of groundwater infiltration and, therefore, vanadium is not likely to be present as vanadium pentoxide, vanadium sulfate, or metallic vanadium. Therefore, the RSL for "vanadium and compounds" was used to screen vanadium stormwater data.

If the maximum detected concentration of a constituent exceeded its respective screening value, the constituent was identified as a COPC and retained for quantitative evaluation in

the HHRA. Results of the COPC screening process are presented in Table 2.5 (nonpriority drains) and Table 2.6 (priority drains) of Appendix A. One COPC was identified for nonpriority drain stormwater – Cr(VI) – whereas the following four COPCs were identified for priority drain stormwater: calcium, Cr(III), Cr(VI), and vanadium.

2.2.5 Surface Water

Surface water samples collected at locations A1, A2, A3, A4, and J4 (Figure 2-6) are those closest to the residences along the cove adjacent to the site. The surface water samples collected at these locations in May, August, and December 2007 and February 2008 were screened in the HHRA. The list of surface water samples used in the HHRA is provided in Table 1.7 of Appendix A and sampling locations are shown in Figure 2-6.

The COPCs in surface water were identified by comparing the maximum detected concentrations at the five locations against the EPA RSLs for tap water (EPA, 2009a). In this conservative screening step, the noncarcinogenic RSL values were reduced tenfold to account for the presence of multiple COPR-related constituents potentially affecting the same target organ or having the same critical effect.

RSLs are not available for calcium and magnesium. Although these constituents are considered essential nutrients and not typically treated as environmental pollutants, screening levels were calculated using the DRIs published by the National Academy of Sciences (2004) and EPA's standard exposure assumptions used to derive RSLs (EPA, 2009a).

At the DMT site, surface water data are available for total vanadium. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate RSL could be identified. Because the pH of surface water is circumneutral, detected vanadium is likely to be present as vanadium pentoxide; therefore, the vanadium pentoxide RSL was used to screen vanadium surface water data.

If the maximum detected concentration of a constituent exceeds its respective screening value, the constituent was identified as a COPC and retained for quantitative evaluation in the HHRA. Results of the COPC screening process are presented in Table 2.7 of Appendix A, and the following three COPCs were identified for surface water: calcium, magnesium, and manganese. Cr(VI) was not detected in the surface water samples collected from the five locations in the cove.

2.2.6 Sediment

Sediment samples collected in the cove at locations A1, A2, A3, A4, and J4 (Figure 2-6) in May and August 2007 and February 2008 were screened in the HHRA. Two sediment data groups were evaluated in the HHRA. Surface sediments (0 to 1 foot bgs) were used to evaluate potential sediment exposures by nearby residents (recreators) for the current exposure scenario. However, sediments in the 0- to 3-foot-bgs interval were used to evaluate potential future exposures to sediments based on the assumption that dredging operations may be conducted in the future and bring deeper sediments to the surface, where contact may occur. The list of sediment samples used in the HHRA is provided in Table 1.8 (0 to 1 foot bgs) and Table 1.9 (0 to 3 feet bgs) of Appendix A and sampling locations are shown in Figure 2-6.

The COPCs in each sediment group were identified by comparing the maximum detected concentrations against the RSLs for residential soil (EPA, 2009a). In this conservative screening step, the noncarcinogenic RSL values were reduced tenfold to account for the presence of multiple COPR-related constituents potentially affecting the same target organ or having the same critical effect.

RSLs are not available for calcium and magnesium. Although these constituents are considered essential nutrients and not typically treated as environmental pollutants, screening levels were calculated using the DRIs published by the National Academy of Sciences (2004) and EPA's standard exposure assumptions used to derive RSLs (EPA, 2009a). The calculated screening concentration for calcium exceeds the theoretical ceiling limit (i.e., 10⁺⁵ mg/kg) discussed in the RSL user's guide (EPA, 2009a); therefore, the ceiling limit (instead of the calculated screening level) was used for calcium in the screening comparison.

Based on the results of the sediment and surface water study conducted by CH2M HILL and ENVIRON (2009) and other related studies with respect to chromium geochemistry, chromium in sediment is in the Cr(III) form.

The presence of Cr(III) was measured via total chromium measurements and the presence of Cr(VI) in the solid phase was determined based on the presence (and absence) of Cr(VI) in pore water, based on the following precedents and procedures:

- The evaluation of Cr(VI) in DMT sediments was undertaken through pore water extraction methods and analysis of the aqueous phase as recommended by EPA (2005a) and determined by MDE as the appropriate approach for the MDE Water Quality Analyses of Chromium in the Inner Harbor/Northwest Branch and Bear Creek Portions of Baltimore Harbor in Baltimore City and Baltimore County, Maryland (2004). The sediment and surface water investigation approach followed EPA's *Procedures for the Derivation of Equilibrium Partitioning (EqP) Sediment Benchmarks for the Protection of Benthic Organisms: Metal Mixtures* (EPA, 2005a), and incorporates concepts identified in the *Issue Paper on the Bioavailability and Bioaccumulation of Metals* submitted to EPA by the Eastern Research group (McGeer et al., 2004) and USEPA's *Framework for Metals Risk Assessment* (EPA, 2007). According to USEPA, geochemical processes govern the reduction of relatively toxic Cr(VI) to relatively non-toxic Cr(III) in estuarine sediments. Specifically, geochemical parameters such as sulfide and ferrous iron [Fe(II)] are lines of evidence that document the reducing conditions of the sediment wherein chromium exists thermodynamically as Cr(III) rather than Cr(VI).
- Direct measures of Cr(VI) in solid phase were not performed in sediment because Cr(VI) solid phase measures have a tendency to produce false positive measures, as has been documented by EPA where researchers refer to traces of Cr(VI) up to 4mg/kg as artifacts from separation techniques inherent in the laboratory analytical procedures. The Standard Operating Procedures for EPA Method 3060A (1986a; solid phase digestion prior to Cr(VI) analysis) provides language regarding the method interferences/uncertainties; see Section 3.3 (p. 2): "For waste materials or soils

containing soluble Cr(III) concentrations greater than four times the laboratory Cr(VI) reporting limit, Cr(VI) results obtained using this method may be biased high due to method-induced oxidation."

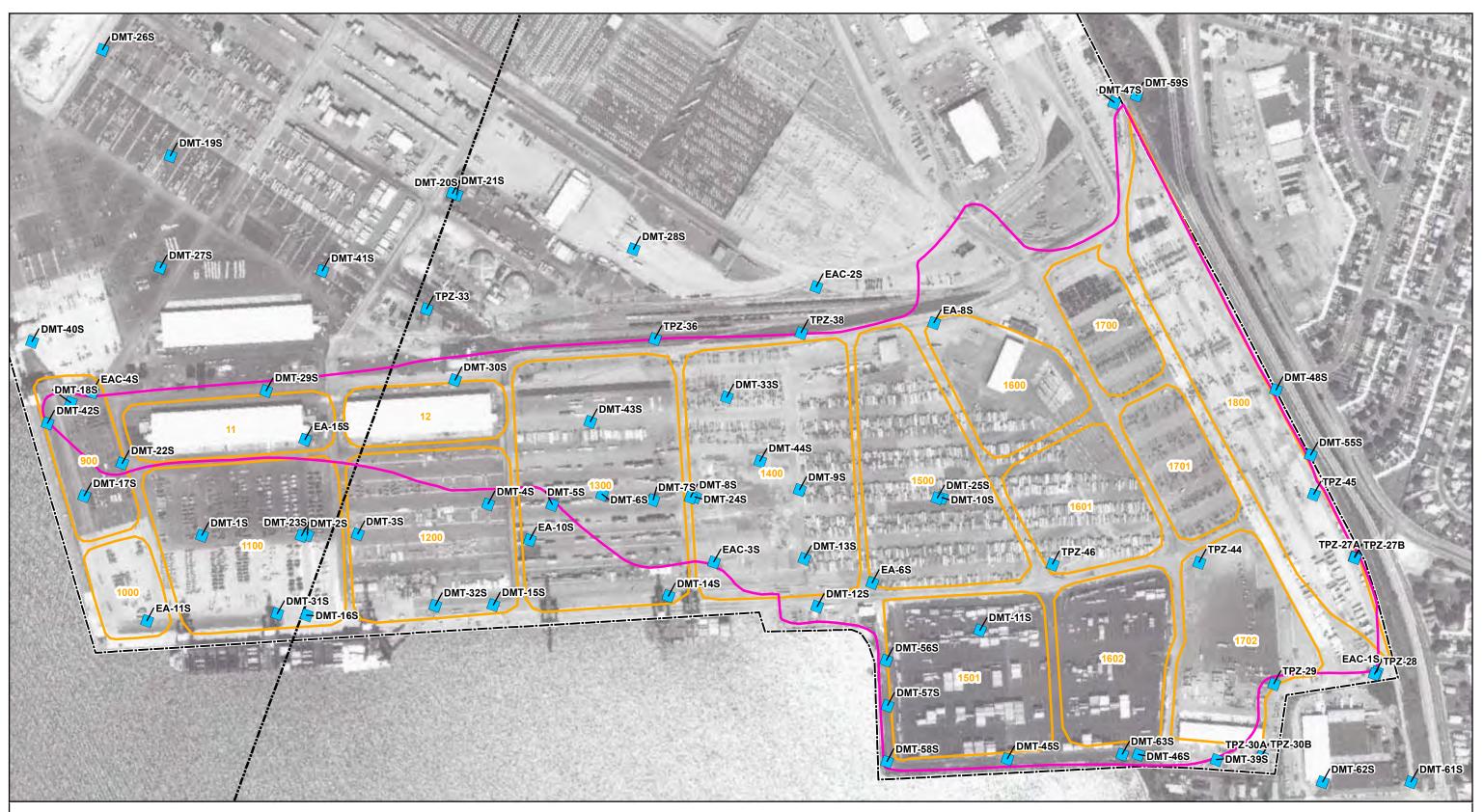
- Work by Zatka (1985), cited in Method 3060, initially identified that Cr(III) can be oxidized to Cr(VI) during a digestion using a hot alkaline solution of sodium hydroxide and sodium carbonate (a solution similar to that used in the EPA alkaline digestion performed in these studies). Zatka states that up to 4.5 µg Cr(VI) (as a false positive) can be found in samples where magnesium is not used to suppress this method induced oxidation. A quantity of 4.5 µg in a 2.5-g sample is 1.8 ppm (well above the method reporting limit of 0.4 ppm). So it is possible to obtain results above the laboratory reporting limit from method induced oxidation alone. While Mg2+ addition aids in suppressing oxidation the method makes no claim that the suppression is 100 percent effective. These findings of Zatka (1985) and EPA researchers (2005a) are confirmed by work from Pettine and Capris (2005).
- Additional studies have also been published that isolate this oxidation to that of "freshly precipitated" Cr(III) to Cr(VI) during this digestion creating a false positive Cr(VI) result. The "freshly precipitated" Cr(III) has been discussed by James et al. (1983) and is more reactive toward method induced oxidation because the Cr(III) is not stabilized by a more crystalline form favored with age. Given the proximity of the intertidal zone of DMT to the stormwater outfalls where Cr(VI) has been released in the past, it is reasonable to conclude that the Cr(III) present in these areas could reflect recently precipitated Cr(III) that has not yet been exposed to years or decades of weathering.

No Cr(VI) was detected in pore water samples collected during the four quarterly sampling events (May, August, and December 2007 and February 2008). The Cr(III) is unlikely to oxidize to Cr(VI) because the geochemical conditions necessary for this process do not naturally occur in the estuarine environment. Geochemical measures of acid volatile sulfide (AVS) and Fe(II) showed very strong evidence that there was adequate AVS and/or Fe(II) throughout the site study area and during all seasons to maintain the reducing conditions that would ensure the presence of chromium as Cr(III). Additionally, the study report concluded the following regarding the speciation of chromium in sediments (CH2M HILL and ENVIRON, 2009):

- Cr(III) is favored in Baltimore Harbor waters because reducing agents are ubiquitous and abundant, resulting in the reduction of Cr(VI) to Cr(III).
- The kinetics of Cr(VI) reduction to Cr(III) is much faster than the kinetics of Cr(III) oxidation to Cr(VI); therefore, reduction processes easily overwhelm the more limited oxidation processes in Baltimore Harbor sediments.
- Cr(III) was shown to be highly stable in reducing Baltimore Harbor sediments. Manipulated laboratory conditions would be required to catalyze the formation of Cr(VI) from Cr(III). In environmentally relevant conditions, oxidation of Cr(III) to Cr(VI) would be highly unlikely even in response to dredging to other episodic events that disrupt and suspend contaminated sediment.

These multiple lines of evidence suggest that chromium in sediments exists almost exclusively in the Cr(III) form. Therefore, chromium concentrations reported in sediment

samples were assessed as Cr(III) and were screened against the RSL for Cr(III). At the DMT site, sediment data are available for total vanadium. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate RSL could be identified. Reducing conditions are present, and the most likely form present is vanadate; therefore, the RSL for "vanadium and compounds" was used to screen vanadium sediment data.


If the maximum detected concentration of a constituent exceeds its respective screening value, the constituent was identified as a COPC and retained for quantitative evaluation in the HHRA. Results of the COPC screening process are presented in Tables 2.8 and 2.9 of Appendix A. The following four COPCs were identified for both surface sediment (0 to 1 foot bgs) and deeper sediment (0 to 3 feet bgs): aluminum, iron, manganese, and vanadium.

2.3 Modifications to the HHRA Approach

A few modifications were made to the HHRA approach presented in the work plan; major modifications are noted below:

- Current potential outdoor air exposures by DMT workers were evaluated based on results of the perimeter air-monitoring data.
- Additional soil samples historically collected within the COPR boundary were added to the soil data groupings. Although some of these samples were collected at locations that were subsequently excavated, the COPR material has a fairly consistent composition, and therefore these samples are expected to represent COPR areas not sampled.
- Total soil (0–10 feet) exposures by future DMT workers were evaluated in addition to the proposed exposures to surface soil.

Additionally, potential "surface soil" exposures by DMT workers to small deposits of evaporated chromium salts ("chromium blooms" or "COPR blooms") derived from underlying areas of COPR were reclassified from "current DMT workers" (as presented in the work plan) to "future DMT workers." This change was made because of the high exposure frequency (250 days/year) and duration (25 years) assumed in this HHRA, which does not reflect current exposures due to the existing surface cover typically atop COPR-impacted areas; the current program, in which surficial COPR blooms are removed as soon as they are observed (in accordance with the surface cover inspection and maintenance plan, or SCMP (CH2M HILL, 2007a); and current site health and safety requirements

Legend

- Groundwater Sampling Locations COPR Extent Areas

- DMT Boundary ---- City/County Boundary

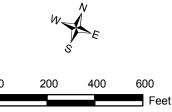
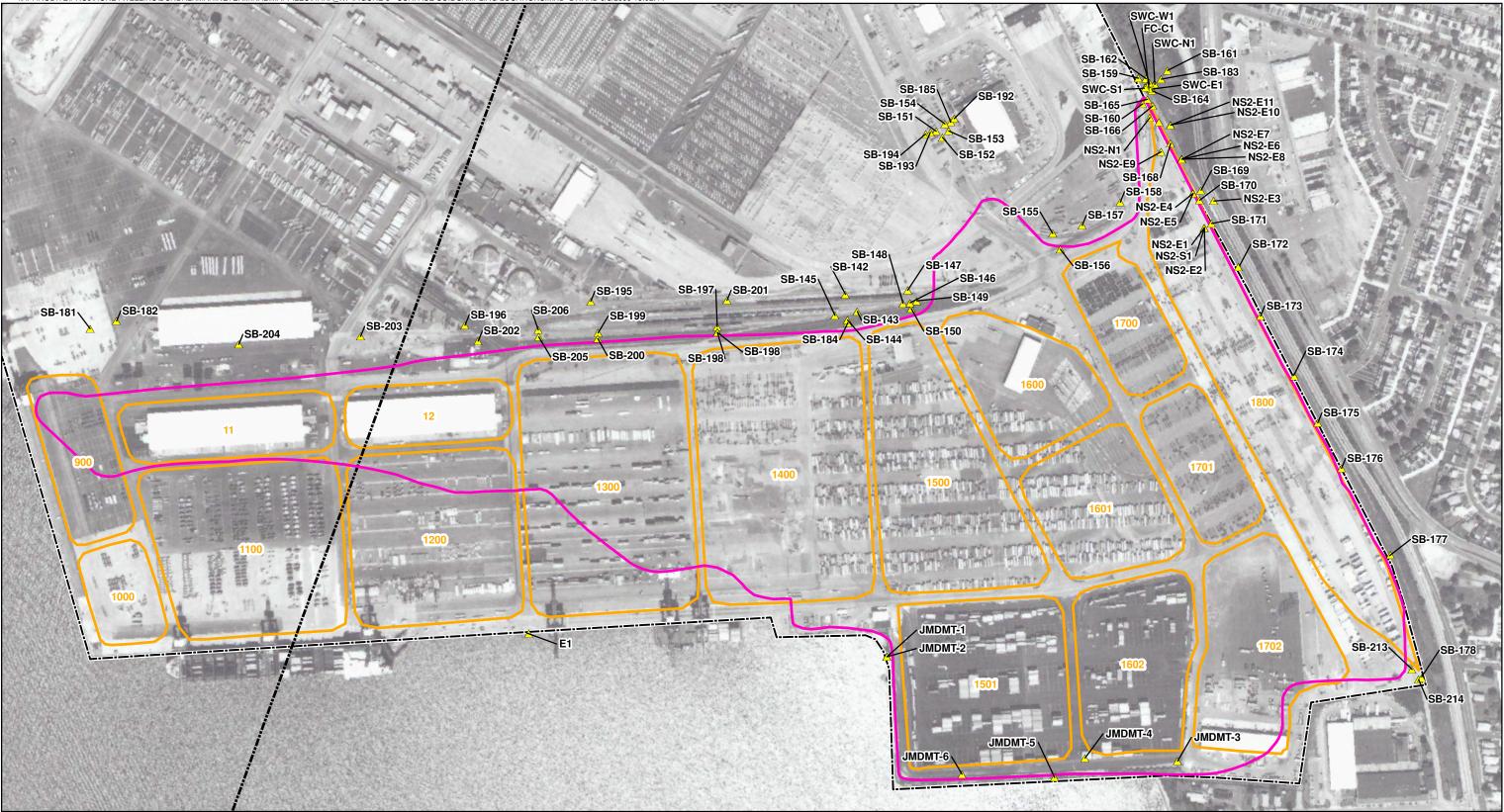
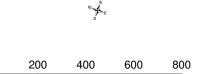



Figure 2-1 Groundwater Sampling Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

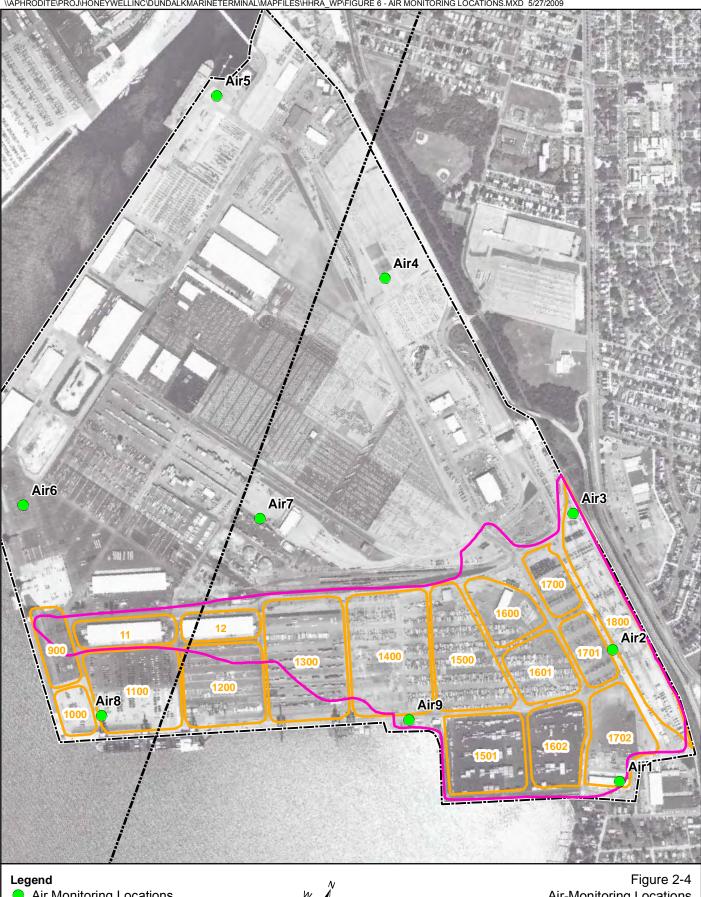


▲ Surface Soil Sampling Locations


- COPR Extent Areas

- ---- City/County Boundary

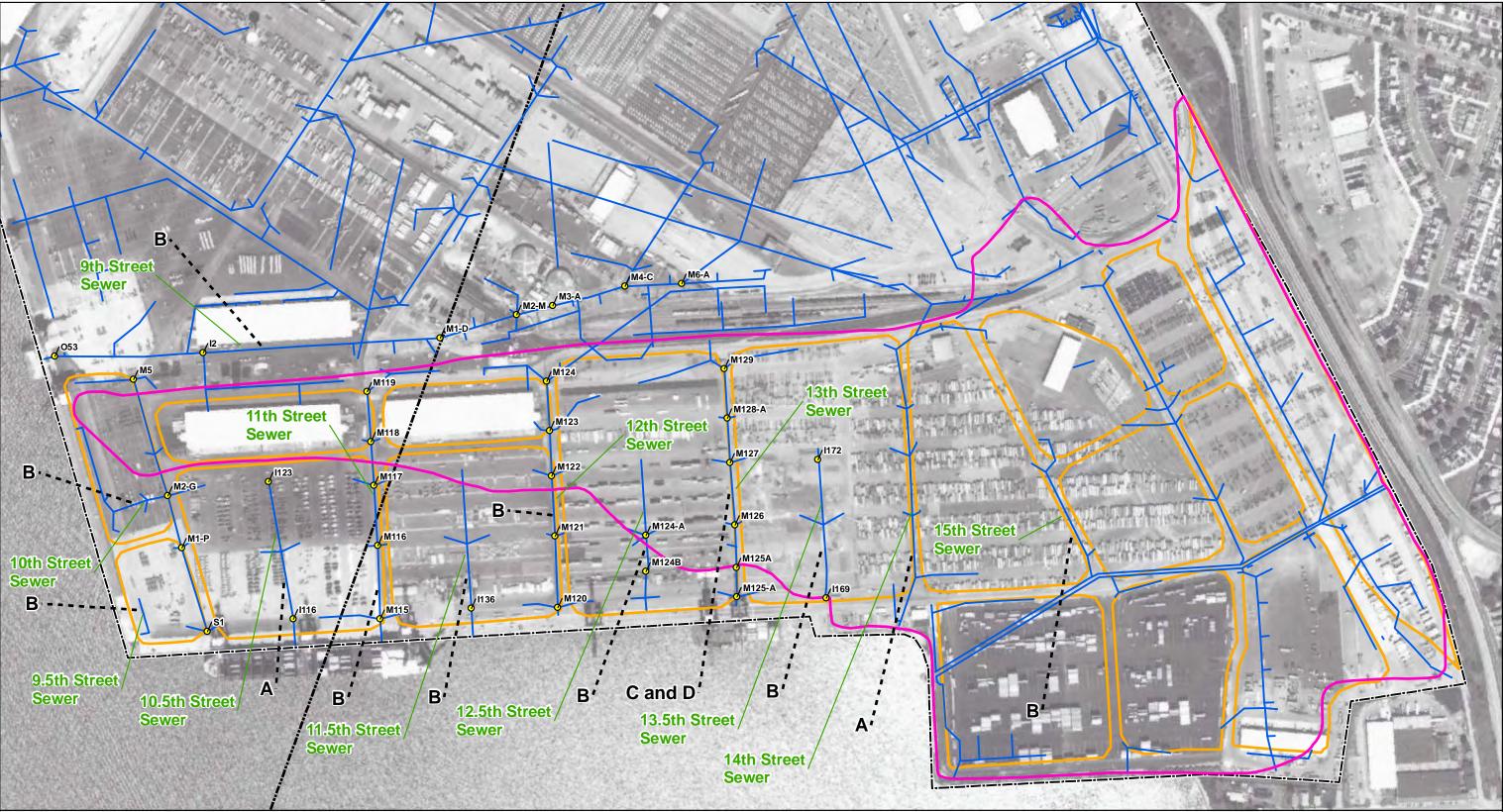
Feet


Figure 2-2 Surface Soil (<0.5 feet) Sampling Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

Subsurface Soil (0-10 feet) Sampling Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

Air Monitoring Locations
 COPR Extent

Areas


DMT Boundary ---- City/County Boundary

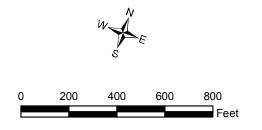
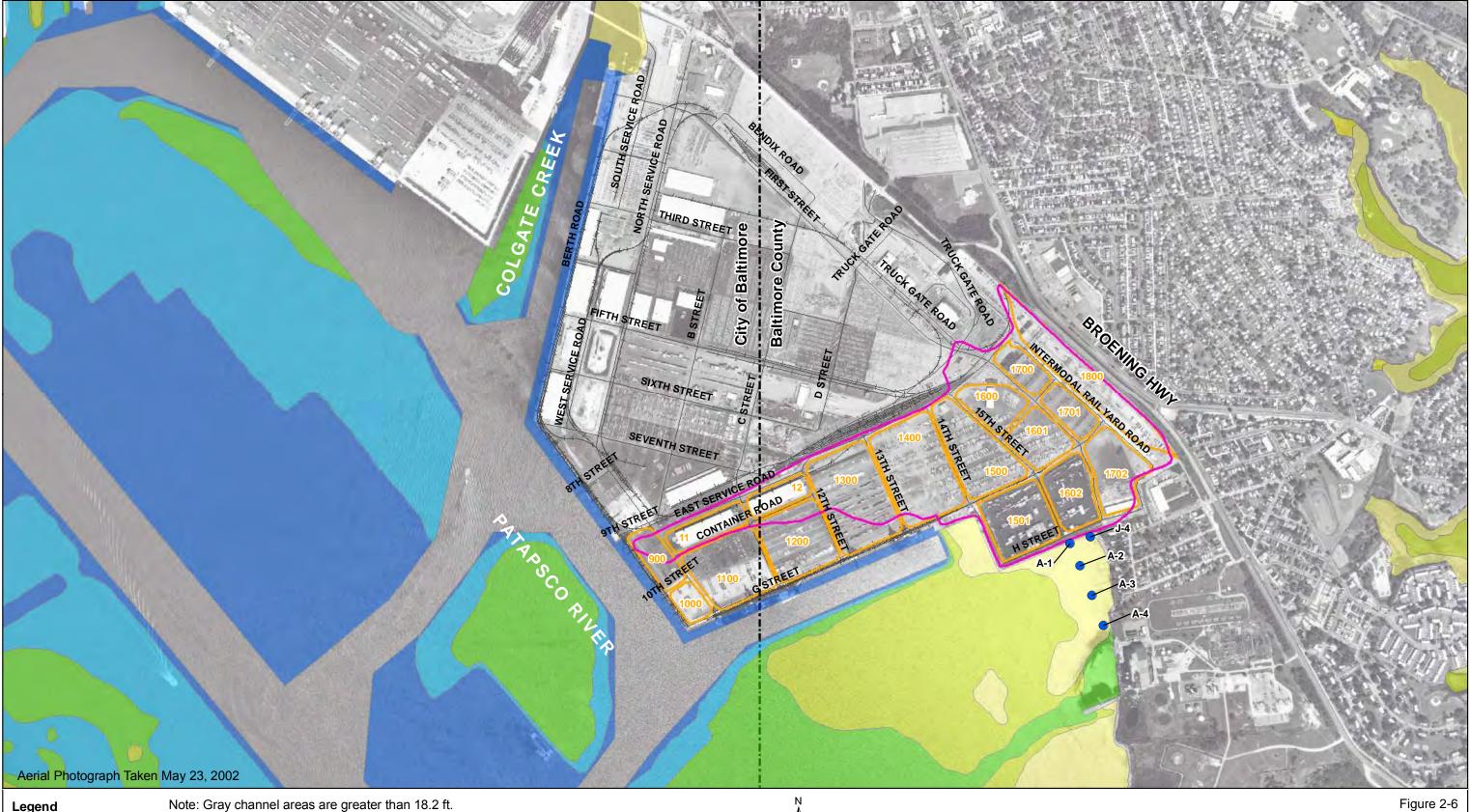
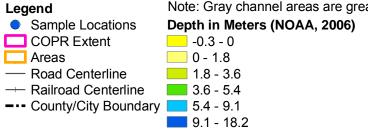
850 425 Feet Air-Monitoring Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

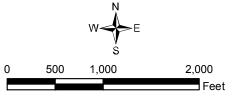
Legend

- Storm Water Sample Location
- ---- Storm Sewer Main

- COPR Extent Areas
- ---- City/County Boundary

A. The exact sampling location of 2004 samples is unknown.B. The exact sampling location of 2005 samples is unknown.C. The exact sampling location of 2008 samples is unknown.D. The exact sampling location of 2009 samples is unknown.


Figure 2-5 Stormwater-Sampling Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

\APHRODITE\PROJIHONEYWELLINC\DUNDALKMARINETERMINAL\MAPFILES\HHRA_WP\FIGURE 8 - SURFACE WATER AND SEDIMENT SAMPLING LOCATIONS.MXD KJACKSO5 5/29/2009 07:55:30

Surface Water and Sediment Sampling Locations Human Health Risk Assessment Dundalk Marine Terminal, Baltimore, MD

SECTION 3 Exposure Assessment

The objective of the exposure assessment was to estimate the types and magnitude of potential current or future exposures to COPR-related constituents at (or potentially migrating from) DMT. The exposure assessment was conducted in two major steps:

- 1. Characterizing the exposure setting
- 2. Identifying potential exposure pathways for each environmental medium

3.1 Conceptual Exposure Model

The preliminary human health CEM (Figure 3-1) was used to qualitatively depict the types of potential exposures to COPCs at or migrating from the site. The CEM presents the onsite source, the affected environmental media, the chemical fate and transport mechanisms that might be involved, the potentially exposed receptor groups, and potential exposure pathways. The CEM considers existing site characterization data and current and future site conditions and activities to identify potentially complete exposure pathways. The source of contamination associated with the site is COPR, which was used as fill when a portion of DMT was constructed.

3.2 Exposure Setting

Characterizing an exposure setting consists of two parts: (1) identifying the physical characteristics of the site as they relate to exposure and (2) characterizing human populations on or near the site (the potentially exposed populations).

The DMT property is a peninsula bounded by Colgate Creek and the Patapsco River, except for the north side, where it is bounded by Broening Highway and the Norfolk Southern Railroad. The land uses surrounding DMT consist of commercial, industrial, and residential. The residential neighborhood of Carnegie Plats is adjacent to the southeastern boundary of DMT. Communities near DMT also include Turners Station and Logan Village. Other residential areas near DMT include St. Helena and the greater Dundalk community. The commercial area closest to DMT is the Logan Village Shopping Center, on Dundalk Avenue. Industrial facilities located within ¼ to ½ mile of DMT include Baltimore Gas and Electric and Millennium Chemicals. The 120-year-old steel plant at Sparrows Point (currently owned by OAO Severstal) is also in the vicinity of DMT.

Potentially exposed populations are identified in Section 3.3 on the basis of their locations relative to the site, their activity patterns, and the presence of potentially sensitive subpopulations.

3.3 Potential Exposure Pathways

To evaluate the potential health risks associated with exposure to COPCs, potentially complete exposure pathways were identified. An exposure pathway is a mechanism by which a receptor can be exposed to COPCs at or originating from the site. An exposure

pathway must be complete for exposure to occur. A complete exposure pathway has four elements:

- Source or release from a source
- Environmental transport medium
- Exposure point (receptor location)
- Route of intake (inhalation, direct contact, or incidental ingestion)

The following populations are present onsite and are discussed in the HHRA:

- DMT workers those involved in shipping and receiving activities and other onsite activities
- DMT visitors those involved in dropping off and picking up cargo
- Utility workers those periodically involved in repairing and maintaining water, stormwater, electrical, and communication lines at the DMT
- Construction workers those periodically involved in maintaining the surface cover on the COPR-impacted areas or constructing or modifying buildings

The following populations are present offsite and were addressed in the HHRA:

- Residents in homes at the adjacent cove
- Recreational users in the cove
- Anglers in the Patapsco River and Colgate Creek

There is a high level of security at DMT, including security fencing, full-time police surveillance, continuous perimeter monitoring, and a Maryland Transportation Authority police station; access is limited to authorized personnel only through guarded security gates. Therefore, trespassers cannot gain access to the site and were not evaluated as a potential receptor population in the HHRA.

In compliance with the Consent Decree, an MPA Master Health and Safety Plan (HASP) (Emilcott, 2006) was prepared for DMT and approved by MDE. It addresses all projects at the site that involve work performed in areas that might have COPR-impacted soil or water. The overall purpose for the MPA HASP is to ensure that minimum requirements and procedures are in place to protect workers, the public, and the environment from possible chromium-related exposures associated with activities conducted onsite and establish health and safety management systems to maintain regulatory compliance, worker safety, and environmental protection. The contractor site-specific health and safety plan (SSHSP) must meet or exceed the requirements of the MPA master HASP. Each SSHSP must include provisions for controlling the project work site to ensure that only authorized personnel are permitted access to the site and obtain an approved air-monitoring plan of the work site (Emilcott, 2006).

Also in compliance with the Consent Decree, the SCMP was prepared for the site and approved by MDE (CH2M HILL, 2007a, 2008b). The plan contains inspection and maintenance procedures for the cover system, open pavement excavation, and the 14th and 15th Streets storm drain system at DMT. The plan describes inspection and maintenance

procedures, training, and monitoring requirements in areas where COPR is present at DMT for the following:

- Routine inspection and repair of surface cover materials (based on historical inspections, heaves occur slowly, and when cracks occur, they are less than 1 inch wide and are surficial only)
- Semiannual inspection along the railroad tracks within the DMT property boundaries
- Routine inspection and repair of the existing 14th Street and 15th Street storm drain systems
- Mitigation of events, if any, where the 14th Street and 15th Street storm drains are damaged or are likely to be damaged

Currently, surface cover penetration is controlled pursuant to the surface cover penetration SOP (CH2M HILL, 2009). All excavations and other intrusive work through existing cover systems currently require work plans addressing, at a minimum, construction area security, project-specific health, safety, containment, and/or control measures for exposed or excavated COPR materials, water control requirements, and temporary and permanent cover measures. The plans must include the following:

- A HASP that includes health and safety and air-monitoring requirements at least as stringent as those in the MPA master HASP
- A security plan that includes the locations of barriers, security points, and other measures required to prevent indvertent intrusion and exposure within the work areas
- An environmental control plan that includes provisions for preventing the spread of contaminants by air or water

Site activities are currently conducted under the MPA master HASP and the SCMP. Therefore, current exposures to COPR-impacted soil, groundwater, stormwater, and air are not likely to occur by persons who are not Hazardous Waste Operations and Emergency Response (HAZWOPER)-trained and protected.

3.3.1 Groundwater

Current Scenario

The shallow and deep groundwater units under the site have been investigated. Barriers (clay and organic silt units) are present that impede vertical migration of constituents of concern in the shallow groundwater unit to the deeper underlying potable groundwater unit (the Patuxent Aquifer). Therefore, the shallow groundwater unit was assessed further in the HHRA.

Site groundwater is not a potable supply. In the State of Maryland, wherever the local jurisdiction provides municipal water, private potable wells cannot be installed. Potable water is supplied to DMT by the City of Baltimore. As the operator of DMT, the MPA is responsible for maintaining the potable water system at the DMT.

The site drinking water plan (CH2M HILL, 2007d) was prepared in response to Section III.B.9.c of the April 2006 Consent Decree and was approved by MDE. The plan ensures that

chromium-contaminated materials are not adversely impacting the drinking water at the DMT. The plan establishes a routine sampling program to test for chromium in the water distribution system, a contingency plan for operating the water system in the event of a pipe break (including returning the system to normal operation after a break has been repaired), and purging procedures to remove potential impact. Therefore, the potable water exposure pathway is incomplete for current site conditions.

Groundwater is present approximately 10 feet bgs. If workers excavate in COPR-impacted areas to the depth of groundwater, workers operate under a SSHSP and are HAZWOPER-trained; such workers are not addressed in HHRAs. Therefore, dermal contact with groundwater during excavations is an incomplete exposure pathway for current site conditions.

Assumed Future Scenario

The site drinking water plan that has been implemented will continue to be used in the future. The contingency plan implemented during line breakage will remain in place in the foreseeable future, and the local regulations prohibiting the installation of private wells will remain in place. Therefore, the potable water exposure pathway is considered incomplete for future site conditions.

As a hypothetical future scenario, it was assumed that an SSHSP is no longer required and construction workers could contact shallow groundwater while performing excavation activities. Therefore, dermal contact with shallow groundwater in excavations was assumed to be a complete exposure pathway for hypothetical future site conditions.

3.3.2 Soil

Current Scenario

With the exception of the rail yard and rail spur areas, a cover approximately 2 feet thick is typically present atop COPR-impacted areas (CH2M HILL, 2007c, 2009b). The cover typically consists of clay or silty sand, road base, asphalt, or concrete. When invasive activities are conducted in COPR-impacted areas, workers perform their activities under an SSHSP and are HAZWOPER trained; such current workers subject to the institutional and engineering controls currently in place are not addressed in the HHRA. Within limited areas of the railroad ballast, when small "COPR blooms" are observed during implementation of the SCMP, they are immediately addressed. Therefore, the surface soil (less than 0.5 foot bgs) exposure pathway may occasionally be complete for DMT workers. However, because of the likely low exposure frequency and short exposure duration, this exposure scenario was not quantified in the HHRA for current conditions but rather was quantified as part of a hypothetical future scenario.

Assumed Future Scenario

As a hypothetical future scenario, it was assumed that the institutional/engineering controls currently in place (e.g., the SSHSP and SCMP) are no longer required and COPR blooms occur at the site surface (at a depth less than 0.5 foot bgs) and are contacted by DMT workers. In addition, it was assumed that construction workers could contact soil (0 to 10 feet bgs) without institutional/engineering controls during excavation activities, and deeper soils could be brought to the surface during construction activities and contacted by future

DMT workers. Therefore, surface soil (0 to 0.5 foot bgs) exposures by DMT workers (through ingestion, dermal contact, and inhalation) and total soil (0 to 10 feet bgs) exposures by construction workers and DMT workers (through ingestion, dermal contact, and inhalation) were quantified in the HHRA under hypothetical future scenarios.

3.3.3 Air

Current Scenario

Most of the DMT surface is covered with asphalt or concrete. In addition, cover materials (approximately 2 feet thick) are typically present atop COPR-impacted areas, and an MDE-approved SCMP with perimeter air monitoring is being implemented. Therefore, outdoor air is not a viable transport pathway because the site is covered, and the SCMP includes routine inspection and repair of the surface cover, which has been effective at controlling this potential pathway.

When invasive activities are conducted in COPR-impacted areas, work is conducted under an SSHSP that includes air monitoring. Work operations in the COPR-impacted area may be stopped when total dust measurements at the Exclusion Zone perimeter meet or exceed 1 mg/m³ (30-minute time-weighted average) (Emilcott, 2006). Therefore, invasive activities are not expected to contribute significant concentrations of Cr(VI) to air.

The purpose of the perimeter air-monitoring program is to evaluate the effectiveness of the surface cover and maintenance systems in the COPR fill area through measuring Cr(VI) in airborne particulates. As stated above, within limited areas of the railroad ballast, small COPR blooms occasionally are manifested at the site surface and are observed during implementation of the SCMP and immediately addressed. Therefore, the outdoor air exposure pathway may occasionally be complete for DMT workers. However, due to the likely low exposure frequency and short exposure duration, this exposure scenario was not quantified in the HHRA for current conditions but rather was quantified as part of a hypothetical future scenario.

Potential site-related impacts on DMT workers and offsite residents were evaluated in the HHRA. The Cr(VI) concentrations measured in outdoor air during the perimeter airmonitoring program were evaluated to assess whether the Cr(VI) concentrations detected in outdoor air are indicative of a site release or attributed to local background levels. A comparison was also made between the measured Cr(VI) concentrations and particulate matter (PM) concentrations to assess whether the measured Cr(VI) concentrations are associated with potential fugitive dust either from the site or from offsite sources.

Assumed Future Scenario

As a hypothetical future scenario, it was assumed that the institutional/engineering controls currently in place (e.g., the SSHSP and SCMP) are no longer required and DMT workers and construction workers could inhale fugitive dust from COPR materials (currently situated at 0 to 10 feet bgs) every day while onsite. This inhalation exposure pathway was evaluated using a calculated particulate emission factor (PEF) and soil data.

3.3.4 Stormwater

Current Scenario

Subsurface stormwater lines are present in portions of the site. When storm sewer cleaning or inspection occurs in COPR-impacted areas, workers/inspectors operate under an SSHSP and are HAZWOPER-trained; such current workers are not evaluated in the HHRA. The nonpriority drains (9th Street to 11.5th Street Outfalls, which contribute de minimis mass flux) are cleaned/inspected on an irregular basis. The priority drains (12th Street to 15th Street Outfalls) are also cleaned on an irregular basis; however, the 14th and 15th Street lines are visually inspected annually as part of the SCMP. The visual inspections consist of entering the pipe through manholes and walking from manhole to manhole inside the pipe. Each storm drain system takes approximately 2 to 4 days to inspect. At the points where stormwater enters the Patapsco River, the public has no access. Therefore, the stormwater exposure pathway is incomplete for current site conditions.

Assumed Future Scenario

For the hypothetical future scenario, it was assumed that the current SSHSP is no longer implemented and utility workers could come in contact with stormwater within the pipelines. Therefore, dermal contact with stormwater by utility workers was quantified in the HHRA under a hypothetical future scenario.

3.3.5 Surface Water and Sediment

Because of the high level of security at DMT (including full-time police surveillance with continuous perimeter monitoring) and the extensive commercial ship operations, people do not engage in recreational activities (swimming, waterskiing, or wading) in most areas near DMT. The high level of port activity (i.e., consistent movement of ships, large vessels, tugs, and barges) results in an area that is both undesirable and unsafe for individuals to engage in recreational activities. In addition, the surface of DMT is inaccessible to swimmers and small craft due to the height of the docks. Shipping lanes around DMT allow access for large hulled vessels, and bathymetric imaging indicates that the lanes extend to a depth of approximately 45 feet near the berths at DMT. Therefore, even if individuals were to engage in recreational activities in the waters adjacent to DMT, most sediments would be inaccessible due to water depth. Currently, there are no complete exposure pathways to surface water or sediment in most areas near DMT, nor are there expected to be in the future should the level of port security decrease (which is unlikely).

A few residences with boat docks are situated immediately adjacent to DMT on its southeastern boundary. Residents may enter the Patapsco River at their docks in the cove and not be intercepted or stopped by DMT police. It was assumed that residents in this area might occasionally wade and swim in the cove near the docks. Therefore, the surface water and sediment (incidental ingestion and dermal contact) exposure pathways are potentially complete for offsite residents adjacent to the site under current and future site conditions.

During the sediment study, it was noted that sediments in this area of the cove are very sandy, and if a person were to walk in this area of the cove, they would not sink into the sediment more than approximately 6 inches. Also during the sediment study, grain size analysis was performed on the samples and the sediment type determined. As indicated in

Table 3-1, one location (A1) was characterized as sandy silt and silty sand, whereas the remaining sampling locations were categorized as sand.

3.3.6 Biota

Fish and crab consumption advisories issued by MDE are in effect for Patapsco River and the Baltimore Harbor. The advisory recommends that eel and catfish not be consumed because of impact by polychlorinated biphenyls (PCBs) and pesticides, and crab and fish consumption be limited because of PCBs, pesticides, and methylmercury.

People have been observed fishing and crabbing in Colgate Creek around the Broening Highway Bridge crossing the creek near DMT. The city has posted signs prohibiting fishing from the bridge. People also catch fish and crab in the Patapsco River and Colgate Creek at locations farther from DMT. However, for purposes of the HHRA, fish and crab ingestion are incomplete exposure pathways because of the lack of a significant site-related source in edible tissue.

The Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles (ATSDR, 1992, 2000a, 2000b, and 2006) and Argonne National Laboratory sources (2001) indicate that COPR constituents do not significantly accumulate in the food chain. The aquatic bioaccumulation factors (BAFs) for freshwater are provided in Table 3-2. Although these BAFs are for fresh water and the Patapsco River and Colgate Creek are marine water, the values indicate that the COPR constituents have low bioaccumulation potential (BAFs below 1,000 are not considered to be bioaccumulative) and COPR constituents are not included in EPA's list of bioaccumulative compounds (EPA, 2000a, b).

Overall, the COPR constituents are not expected to biomagnify in the aquatic food chain and be present at levels significant for fish or shellfish consumers. A summary of chemicalspecific information is provided in the following paragraphs.

Aluminum

When present in an aquatic ecosystem, most aluminum-containing compounds do not dissolve to a large extent in water unless the water is acidic or very alkaline; therefore, bioavailability is often decreased. As a result, aluminum does not biomagnify in the food web, and consumption of aquatic biota is not a significant exposure pathway for aluminum (ATSDR, 2006).

Calcium

Information available for bioaccumulation of calcium within the food web is limited because calcium is an essential nutrient for human health, in addition to the relatively widespread natural abundance and availability of calcium in sediments and surface waters. Calcium is an important component of aquatic plant cell walls and the shells and bones of many aquatic organisms. The relatively nontoxic properties of calcium within aquatic ecosystems are indicated in U.S. Department of Energy's (1999) Environmental Restoration Division sources. Calcium does not biomagnify in the food chain, and consumption of aquatic biota is not a significant exposure pathway for calcium.

Chromium

Cr(III) is an essential nutrient for biological organisms and does not biomagnify in the food web. Flora and fauna have natural mechanisms to regulate uptake and elimination of Cr(III). Specifically, Cr(III) plays a role in sugar and protein metabolism (Eisler, 1986; Newman and Unger, 2003; NPS, 1997). As a result of bioregulation, the extent to which Cr(III) is accumulated is expected to be concentration-dependent. That is, the ratio of chromium in tissue to bioavailable chromium in environmental media is highest when bioavailable chromium is scarce and lowest when bioavailable chromium is relatively abundant.

Like many other metals, chromium exhibits biodiminution through the food web. Eisler (1986) indicated the following:

...Although chromium is abundant in primary producers, there is little evidence of biomagnification through marine food chains consisting of herbivores and carnivores. [Previous researchers] followed the transfer of assimilated and unassimilated radiochromium through an experimental food chain that included phytoplankton, brine shrimp, postlarval fish, and adult fish. When chromium was successively transferred through each of the four trophic levels, concentrations declined after each transfer.

A study more directly related to DMT is of chromium bioaccumulation from sediment assessed for a wetland site along the Hackensack River surrounded by COPR (Hall and Pulliam, 1995). Researchers found that metals (including chromium) in sediment were detected at concentrations nine times greater in the COPR-impacted wetland study site than in a reference site. However they found no statistically significant differences between the study and reference sites for total chromium in blue crab (Callinectes sapidus) muscle tissue, whole-body killifish (Fundulus sp.), or giant reed tissue (Phragmites). Although there was a statistically significant difference seen in chromium in blue crab hepatopancreas tissues in this study between the study site and the reference site (Hall and Pulliam, 1995), researchers indicated that this difference was likely caused by foraging strategies of crabs and the role of their hepatopancreas. Crabs ingest sediments while gleaning food, and the hepatopancreas' function is to filter foreign materials from the blood. Researchers concluded that the lack of statistically significant differences in total chromium concentrations in these tissue samples provides evidence of tight binding of total chromium to the study site sediments and low bioavailability of chromium (Hall and Pulliam, 1995). These results are also consistent with the bioregulation of chromium as an essential nutrient.

In addition to these studies above, ENVIRON (2006) evaluated more than 300 fish tissue samples from among 24 species of fish compared with chromium concentrations in sediment, using data available from National Oceanic and Atmospheric Administration Regional Environmental Mapping Program. The results of this study showed no statistical correlation between chromium in sediment and chromium concentrations in fish tissues.

The maximum detected concentration of Cr(III) in surface water samples addressed in the HHRA is below the National Ambient Water Quality Criterion (NAWQC) (EPA, 2006d) for consumption of water and organisms.¹ A report was recently submitted to MDE summarizing studies conducted by MDE; EPA; Johns Hopkins University's Center for

¹ The maximum concentration of Cr(III) was identified based on a combined dataset of measured concentrations and concentrations calculated from Cr(VI) and Cr(total). As indicated in the NAWQC document, the Cr(III) Maximum Contaminant Level was used as the Cr(III) surface water criterion.

Contaminant Transport, Fate, and Remediation; the University of Maryland; and others (ENVIRON, 2008). The report concluded that Cr(III) concentrations present in the environment are far below levels that are toxic to estuarine organisms. Further, none of the toxicity studies evaluated in the report exhibited a concentration-response relationship with chromium in sediments. These studies and general information from scientific literature indicate that biomagnification in the food chain (to edible fish tissue) does not occur. Therefore, consumption of aquatic biota is not a significant exposure pathway for either Cr(III) or Cr(VI).

Iron

Iron is an essential trace element required by both aquatic plants and animals. It is a vital oxygen transport mechanism in the blood of all vertebrate animals.

The ferrous (bivalent) and the ferric (trivalent) irons are the primary forms of concern in the aquatic environment. For practical purposes the ferric form is insoluble (EPA, 1986b). There are no EPA-established national acute or chronic water quality criteria for iron.

Furthermore, toxicity and bioaccumulation studies of iron on aquatic life are rare. Iron is usually an objectionable constituent in water supplies only when the supplies are used for either domestic or industrial use (because iron can affect the taste of beverages and can stain laundered clothes and plumbing fixtures). As a result, iron is not typically a concern in risk assessment because aesthetic considerations often outweigh actual toxicological effects (Iowa Department of Natural Resources, 2005). There is no information indicating that iron biomagnifies in the food chain (to edible fish tissue). Therefore, consumption of aquatic biota is not a significant exposure pathway for iron.

Magnesium

Magnesium is similar to calcium in its low solubility and its being a critical essential nutrient within aquatic ecosystems; limited information on adverse bioaccumulative effects is available for magnesium. Studies have shown that the concentration of magnesium within fish tissue is generally equal to the available dissolved magnesium in the water body from which the specimen was collected (Vincoli, 1997). Additional studies also provide evidence that as with manganese, the potential for biomagnification of magnesium from lower trophic levels to higher ones is low (Newman and Unger, 2003). Therefore, consumption of aquatic biota is not a significant exposure pathway for magnesium.

Manganese

It has been established that while lower organisms (e.g., plankton, aquatic plants, and some fish) can significantly bioconcentrate manganese, higher organisms (including humans) tend to maintain manganese homeostasis. This indicates that the potential for biomagnification of manganese from lower trophic levels to higher ones is low. ATSDR (2000b) indicates that additional research in this area does not appear to be essential at this time. Therefore, consumption of aquatic biota is not a significant exposure pathway for manganese.

Vanadium

Bioaccumulation of vanadium is low for fish (Irwin et al., 1997). There is no evidence of vanadium accumulation or biomagnification in food chains in marine organisms, the most

studied group (World Health Organization, 2001). Based on human studies, biomagnification of vanadium in food chains is unlikely because any vanadium absorbed is rapidly excreted (Fox, 1987, as cited in ATSDR, 1992). In a study by Miramand et al. (1992), the whole-body concentration factor for the benthic fish *Gobius minutus* was low (0.8) after three weeks of exposure to vanadium using a radiotracer (⁴⁸V) in seawater. Miramand et al. (1992) hypothesized that low vanadium toxicity in fish is likely related to the low degree of vanadium uptake from water and food. Although one study of rainbow trout indicated that this species bioaccumulated vanadium from a diet that was directly supplemented with sodium orthovanadate, BCFs were overall low, ranging from 0.75 to 33.5 (Hilton and Bettger, 1988). In summary, consumption of aquatic biota is not expected to be a significant exposure pathway because vanadium bioaccumulation is low, and that which is accumulated is rapidly excreted.

3.4 Quantification of Exposures

For the COPCs identified in media impacted by a potential site release, potential exposures were quantified for applicable receptors for the exposure medium. To further evaluate the potentially complete exposure pathways, the magnitude, frequency, and duration of potential exposures were quantified. The EPCs were estimated, and potential intakes were quantified. EPA (1989) guidance recommends selecting intake variable values for a given pathway so that the combination of all intake values results in an estimate of the Reasonable Maximum Exposure (RME) for that pathway. EPA recommends using upper-bound parameter values (as opposed to average values) for exposure frequency and duration.

3.4.1 Exposure Point Concentrations

EPCs are the concentrations in an environmental medium to which a receptor can be exposed at a specific location (the "exposure point"). If fewer than 10 samples are available for a COPC within a data grouping, the maximum detected concentration was used as the EPC at the direction of MDE. However, if 10 or more samples are available, the EPCs were identified using the most recent parametric (distributional) and nonparametric EPA recommendations provided in ProUCL (EPA, 2006a, 2009b). Version 4 of ProUCL provides approaches for calculating upper confidence limits (UCLs) of the mean, particularly when nondetects are present. These approaches consider a large variety of inputs, including the perceived distribution of the detected results (if no perceived distribution is acceptable, nonparametric alternatives are offered), sample size, variability, and skewness.

The recommended UCLs from the ProUCL output were used as the EPCs for all media. The UCL concentrations are presented in Tables 3.1 through 3.9 of Appendix A, and the ProUCL output is provided in Appendix B.

3.4.2 Exposure Estimates

Exposure Factors

Exposure factors often are assumed values, and their magnitude affects the estimates of potential exposure. The applicability of the selected exposure factor values contributes to uncertainty in the resulting exposure estimates. The equations and exposure factors used in the HHRA are presented in Tables 4.1 through 4.8 of Appendix A. The primary sources for the exposure factors are the following:

- Risk Assessment Guidance for Superfund (RAGS) Part E (Dermal Risk Assessment) (EPA, 2004)
- Supplemental Guidance to RAGS: Standard Default Exposure Factors (EPA, 1991)
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (EPA, 2002)
- RAGS Part A (EPA, 1989)
- Exposure Factors Handbook (EPA, 1997)
- Cleanup Standards for Soil and Groundwater (MDE, 2008)

The following exposure scenarios were quantified in the HHRA:

- **Groundwater:** hypothetical future dermal contact with shallow groundwater in excavations by construction workers
- **Surface soil (less than 0.5 foot bgs):** hypothetical future ingestion, dermal contact, and inhalation by DMT workers
- **Total soil (0 to 10 feet bgs):** hypothetical future ingestion, dermal contact, and inhalation by DMT workers and construction workers
- Stormwater: hypothetical future dermal contact by utility workers
- **Surface water:** current and future ingestion and dermal contact by offsite residents (adult, adolescent, and child)
- **Sediment (0 to 1 foot bgs):** current ingestion and dermal contact by offsite residents (adult, adolescent, and child)
- Sediment (0 to 3 feet bgs): future ingestion and dermal contact by offsite residents (adult, adolescent, and child)

Sediment-to-Skin Adherence Factor

A sediment-to-skin adherence factor (AF) is needed to estimate sediment exposures. Few published studies are available that address sediment adherence. However, four documents (MDEP, 2002; EPA, 2004; Shoaf et al., 2005; Spalt et al., 2009)that form the basis for the proposed conservative sediment-to-skin AF of 1 mg/cm² were located.

Dermal absorption of chemicals from soil (or sediment) is potentially affected by various physical and chemical factors including layering, particle size distribution, sorption capacity, soil-chemical contact time, and contaminant soil-skin contact time (Spalt et al., 2009). Adherence of soil to skin varies considerably by body part and by activity. Weighted AFs are weighted according to the skin surface area assumed to be exposed to soil (MDEP, 2002).

Spalt et al. (2009) provide a literature review of 41 available studies addressing soil adherence. Inconsistent and flawed experimental designs and incomplete reporting make interpretation and use of much data extremely difficult. In most of the reviewed empirical

investigations, absorption was reported as percentage of initial dose applied even though soil-loading results were super-monolayer.

Shoaf et al. (2005) provide sediment adherence data for nine children playing (wading, running, and sliding along the shoreline; throwing sediment and digging with bare hands) in a tide flat in Rhode Island. Sediments at the study site were characterized as predominately sand on the basis of size range; only 0.77 percent of the total sample mass (dry mass basis) was characterized as clay or silt. Sandy sediment is less adhesive and more subject to rapid attrition once active contact stops. The field protocol included washing participants (face, forearms, hands, lower legs, and feet) before and after unscripted activity. The total sediment mass recovered in wash water was converted to average skin loading for each body part based on the surface area of each body part exposed. The highest dermal loadings were observed on feet. The weighted sediment adherence factor was 4.67 mg/cm² but included super-monolayer loading.

MDEP (2002) identified on the basis of judgment and unpublished experimental observations a value of 1 mg/cm^2 as a best estimate of the loading that corresponds to a monolayer with most sediment types encountered at hazardous waste sites.

The soil adherence protocol in RAGS Part E (EPA, 2004) is based on only a few studies available at that time. On the basis of the "Children Playing (wet soil)" scenario, the geometric mean weighted AF is 0.2 mg/cm², whereas the 95th percentile weighted AF is 3.3 mg/cm². On the basis of the "Children-in-Mud (No. 1 & 2)" scenario, the geometric mean weighted AF is 21 mg/cm², whereas the 95th percentile weighted AF is 231 mg/cm². The children-in-mud AFs have the following footnote:

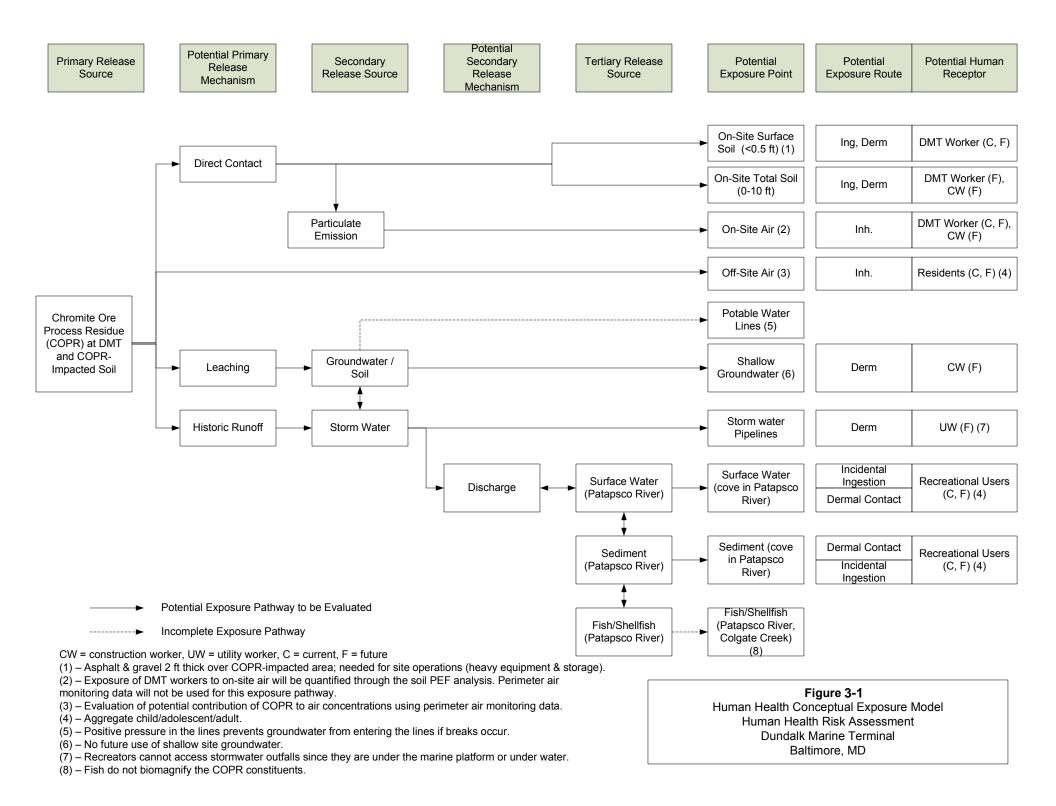
Information on soil adherence values for the children-in-mud scenario is provided to illustrate the range of values for this type of activity. However, the application of these data to the dermal dose equations in this guidance may result in a significant overestimation of dermal risk. Therefore, it is recommended that the 95th percentile AF values not be used in a quantitative dermal risk assessment.

The document also indicates that sediments consistently covered by considerable amounts of water are likely to wash off before the individual reaches the shore.

Chemical-specific values for the dermal absorption fraction from soil are presented in Exhibit 3-4 of RAGS Part E (EPA, 2004). The document indicates that other chemicals will be added to the list as results of further research become available, and that as an interim method, dermal exposure to other compounds should be treated qualitatively in the uncertainty section or quantitatively using default values after presenting relevant studies to the regional risk assessor. The document also indicates that, for inorganics, the speciation of the compound is critical to dermal absorption and there are too little data to extrapolate a reasonable default value. Loren Lund (a member of the RAGS Part E workgroup while employed by the Texas Natural Resource Conservation Commission) indicated that it was the intention of the workgroup that dermal risk estimates for metals other than arsenic and cadmium not be quantified because of the lack of dermal absorption studies (Lund, 2009). Because none of the COPR-related constituents is included in Exhibit 3-4 (EPA, 2004), quantitative dermal exposure estimates to COPR constituents could be eliminated from the HHRA according to RAGS Part E.

TABLE 3-1Grain Size Distribution and Sediment TypeDundalk Marine Terminal, Baltimore, Maryland

Station	Sample Interval (ft)	Date Collected	Total Water Depth (ft)	% Gravel >2 mm	% Sand 0.062–2.0 mm	% Silt 0.004–0.062 mm	% Clay <0.004 mm	Sediment Type
A1	0.0–0.5	8/22/2007	5.7	0.1	46.2	48.7	5.0	Sandy silt
	0.0–0.5	5/12/2007	4.0	0.0	72.8	22.7	4.5	Silty sand
	0.9–1.4	8/13/2007	5.7	0.2	59.2	17.6	23.0	Clayey sand
	2.5–3.0	8/13/2007	5.7	0.0	97.8	0.2	2.0	Sand
A2	0.0–0.5	8/22/2007	5.1	0.0	97.8	0.7	1.5	Sand
	0.0–0.5	5/17/2007	3.9	0.0	96.1	3.4	0.5	Sand
A3	0.0–0.5	8/22/2007	4.8	0.0	97.3	0.7	2.0	Sand
	0.0–0.5	5/17/2007	3.2	0.0	97.9	1.1	1.0	Sand
A4	0.0–0.5	8/22/2007	4.5	0.0	97.1	0.9	2.0	Sand
	0.0–0.5	5/17/2007	4.2	0.0	98.1	0.4	1.5	Sand
J4	0.0–0.5	2/21/2008	1.4	0.0	93.2	5.8	1.0	Sand
	0.5–1.0	2/20/2008	1.4	0.0	92.9	4.1	3.0	Sand
	2.5–3.0	2/20/2008	1.4	0.0	97.5	0.5	2.0	Sand


TABLE 3-2

Bioaccumulation Factors for COPR Constituents in Freshwater Dundalk Marine Terminal, Baltimore, MD

Chemical	BAF (L/kg)				
Aluminum	500				
Calcium	n/a				
Chromium	200				
Iron	200				
Magnesium	n/a				
Manganese	400				
Vanadium	n/a				

BAF, Bioaccumulation Factor; n/a, not available.

Source: Environmental Assessment Division, User's Manual for RESRAD Version 6, *ANL/EAD-4*, Argonne National Laboratory, 2001.

Toxicity Assessment

4.1 Approach

The purpose of the toxicity assessment is to provide an estimate of the relationship between the extent of exposure to a COPC and the likelihood of, or severity of, adverse health effects. EPA uses a weight-of-evidence approach to evaluate potential human carcinogens and categorizes them in the Integrated Risk Information System (IRIS) (EPA, 2009c). The cancer slope factors (CSF) and inhalation unit risks (IUR) express the potential carcinogenicity of a chemical. The CSF and IUR are toxicity values that define the quantitative relationship between dose and response. It is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical over a lifetime. The CSF and IUR are usually the 95 percent UCL of the slope of the dose-response curve. Noncarcinogen reference doses (RfD) and Reference Concentration (RfC) are the toxicity values used in evaluating the potential for noncarcinogenic effects resulting from exposures to chemicals. The RfD and RfC are defined as estimates of a daily exposure level for the human population, including sensitive subpopulations (such as the elderly and children), that is likely to be without an appreciable risk of adverse effects during a lifetime.

4.2 Toxicity Values

The toxicity values used in the HHRA are summarized in Table 4-1. Under the current guidelines (EPA, 1986c), Cr(VI) by the inhalation route of exposure is classified as a known human carcinogen (i.e., Group A). Current EPA toxicity value sources do not indicate that Cr(III) and Cr(VI) are carcinogenic through the oral route of exposure.

The quantitative toxicity values for COPR constituents were obtained from EPA's IRIS database (EPA, 2009c). However, in the RSL table, the Cr(VI) IUR is 8.4×10^{-2} per (micrograms per cubic meter [µg/m³) (assuming 100 percent Cr(VI)) as presented. This IUR is calculated by multiplying the IUR of 1.2×10^{-2} per (µg/m³) presented in IRIS (EPA, 2009c) by 7, because the IRIS supporting documentation states that the IUR in IRIS is based on an assumed 1:6 ratio of Cr(VI):Cr(III). The use of the higher IUR in the RSL table is consistent with the State of California's interpretation of the Mancuso study (1975), which forms the basis of the Cr(VI) toxicity value.

Chromium Metabolism

Within the human body, Cr(VI) is reduced and eventually transformed into Cr(III). Once absorbed, Cr(VI) is reduced by many substances, including ascorbate, glutathione, and gastric juice, and in many organs such as the lungs, stomach, and liver (ATSDR, 2006). The Cr(III) RfD used in this HHRA was obtained from a feeding study of Cr(III) in rats; therefore, if any transformation of Cr(III) occurred, the intermediates and resulting Cr(VI) were formed within the gastrointestinal system after ingestion, and the derived RfD accounted for toxicity effects caused by the transformed chromium species.

Toxicity values for calcium and magnesium are not available in EPA sources. For these chemicals, the DRIs published by the National Academy of Sciences (2004), were used to calculate RfDs by dividing the DRIs by the body weight of an adult or child, as appropriate. Toxicity values for aluminum and iron were based on Provisional Peer-Reviewed Toxicity Values (PPRTVs) as presented in the RSL table (EPA, 2006b, c).

Vanadium

The toxicity of vanadium is dependent on its physiochemical state (primarily valence state and solubility), with toxicity generally increasing with increased valence state. The only Tier 1 toxicity values (in EPA's (2003a) hierarchy of toxicity values for HHRAs) for vanadium are those for vanadium pentoxide; in addition, the RSL table contains a calculated oral toxicity value for "vanadium and compounds" based on the toxicity data in IRIS. Tier 2 PPRTVs are available for oral and inhalation exposures to vanadium pentoxide, and Tier 3 toxicity values ("other toxicity values" from peer-reviewed sources) are available for oral exposure to vanadium sulfate and metallic vanadium.

Vanadium toxicity following oral exposure by humans is generally low. Chronic oral RfDs (expressed in milligrams per kilogram per day) in EPA's RSL table range from 0.005 mg/kg-d (for "vanadium and compounds") to 0.02 mg/kg-d for vanadium sulfate (EPA, 2009a).

For cancer effects from oral exposures to vanadium, the data from animal studies are contradictory. Although one study on the carcinogenicity of vanadium indicated that tumors were induced in female mice (Schroeder and Mitchener, 1975), data from more than 20 other studies suggest that vanadium compounds could have a protective effect against cancer and are associated with a decreased incidence of tumors and with smaller tumors (National Toxicology Program, 2008).

The Institutes of Medicine (2001) have reviewed information to determine whether vanadium could be an essential element. It determined that there is evidence of vanadium playing a beneficial role in some physiological processes in some species, but that the data are not consistent enough to support the development of a recommended daily intake level. It did, however, identify a tolerable upper intake level for vanadium of 1.8 mg/day.

At the DMT site, data are available for total vanadium. The pH and environmental conditions (i.e., pH, reducing versus oxidizing conditions) were evaluated to determine the form of vanadium most likely to be present so that the appropriate toxicity values could be identified for each environmental matrix. The following were concluded:

- **Groundwater.** Because of the high pH of groundwater in the COPR area, vanadium is not likely to be present as vanadium pentoxide, vanadium sulfate, or metallic vanadium; therefore, "vanadium and compounds" toxicity values were used for risk estimates associated with groundwater.
- **Surface soil.** In dry soils, vanadium pentoxide associated with iron oxyhydroxides can be present; therefore, vanadium pentoxide toxicity values were used for risk estimates associated with surface soil.
- **Total soil.** In dry soils (i.e., those at the soil-air interface and at a depth of 1 to 2 inches into the soil, away from the soil-air interface), vanadium pentoxide can be present; in deeper soils, the form is more likely to be "vanadium and compounds." Because the

exposure scenario for total soil exposures involves excavated soils, vanadium pentoxide toxicity values were used for risk estimates associated with soil.

- **Stormwater.** The pH is high (up to 12) in some sewer lines (the "priority drains") as a result of groundwater infiltration, and therefore vanadium is not likely to be present as vanadium pentoxide, vanadium sulfate, or metallic vanadium; "vanadium and compounds" toxicity values were used for risk estimates associated with stormwater.
- **Surface water.** Because the pH of surface water is circumneutral, detected vanadium is modeled as vanadium pentoxide; therefore, vanadium pentoxide toxicity values were used for risk estimates associated with surface water.
- **Sediment.** Reducing conditions are present, and the most likely form present is vanadate; therefore, "vanadium and compounds" toxicity values were used for risk estimates associated with sediment.

No dermal toxicity values are available from the resources listed above. In accordance with RAGS Part E (EPA, 2004) and the EPA Region 3 (2003b) technical guidance manual, the dermal (absorbed-dose) toxicity values are derived by applying gastrointestinal absorption factors (ABS_{GI}) to oral (administered-dose) toxicity values. Because of the intrinsic variability in the analysis of absorption studies, the "twofold rule" was applied, where no adjustment of absorbed-dose toxicity values are made unless there will be at least a twofold difference in the toxicity values (i.e., if ABS_{GI} is approximately 50 percent or less). The ABS_{GI} values were used for calculating dermal toxicity values as follows:

$$RfD_{ABS(dermal)} = RfD_{oral} \times ABS_{GI}$$

The ABS_{GI} values and dermal toxicity values for each COPC are presented in Table 4-1.

TABLE 4-1 Toxicity Values Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Chronic Oral or Dermal RfD (mg/kg/day) or Inhalation RfC (mg/m ³) (Target Organ)		UR (μg/m³) ⁻¹		Cancer Slope Factor (mg/kg/day) ⁻¹		Absorption Factor		Absorption Factor		Permeability Coefficient			
	Oral	Dermal	Inhalation	Inhalation	Reference	Oral ^g	Dermal ^g	Reference	ABS GI	Reference	ABS _{derm}	Reference	К _р (cm/hr)	Reference
Cr(III)	1.5 ^ª	0.02 ^a	NA	NA	IRIS (EPA, 2009)	_	_	IRIS (EPA, 2009)	1.3%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001	EPA, 1994
Cr(VI)	0.003 ^a	0.000075 ^ª	0.0001 ^d	0.084	IRIS (EPA, 2009)	_	_	IRIS (EPA, 2009)	2.5%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.002	EPA, 1994
Aluminum	1.0 ^b	1.0 ^b	0.005 ^b	NA	PPRTV	-	-	NA	100%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Calcium	36 (adult), 170 (child) ^a	36 (adult), 170 (child) ^a	NA	NA	DRI (NAS, 2004)	_	_	NA	100%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Iron	0.7 ^e	0.7 ^e	NA	NA	PPRTV	_	_	NA	100%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Magnesium	5.0 (adult), 4.3 (child) ^a	5.0 (adult), 4.3 (child) ^a	NA	NA	DRI (NAS, 2004)	-	_	NA	100%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Manganese	0.14 ^b	0.0056 ^b	0.00005 ^c	NA	IRIS (EPA, 2009)	_	_	NA	4%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Vanadium and compounds	0.005 ^f	0.00013 ^f	NA	NA	RSL Table (EPA, 2009)	—	_	NA	2.6%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994
Vanadium pentoxide	0.009 ^f	0.000234 ^f	0.000007	0.0083	IRIS (EPA, 2009), PPRTV	-	_	IRIS (EPA, 2009)	2.6%	RAGS E (EPA, 2004)	1% (default)	EPA Region 3 (1995)	0.001 (default)	EPA, 1994

NAS, National Academy of Sciences; RfC, reference concentration; RfD, reference dose; CSF, cancer slope factor; IUR, inhalation unit risk; ABS_{GI}, gastrointestinal absorption; ABS_{derm}, dermal absorption; PPRTV, Provisional Peer-Reviewed Toxicity Value published by the National Center for Environmental Assessment; RSL, Regional Screening Level (EPA, 2009).

Oral Reference Dose is based on the Dietary Reference Intake (DRI) Tolerable Upper Intake Level divided by body weight.

RfD-Dermal = RfD-Oral × ABS-GI

^a No observed effects.

^b Central nervous system.

^c Impairment of neurobehavioral function. ^d Respiratory. ^e Gastrointestinal.

^fHair cystine. ^gNot available; Group D chemicals (not classifiable as to human carcinogenicity) are agents with inadequate human and animal evidence of carcinogenicity or for which no data are available.

Risk Characterization

Risk characterization involves estimating the magnitude of potential adverse health effects from exposure to COPCs associated with a potential release from the site. This step of the HHRA combines the estimated exposure levels and toxicity values to provide numerical estimates of potential carcinogenic health risks and semiquantitative estimates of noncarcinogenic health risks. Risk characterization also considers the nature and weight of evidence supporting these estimates and the magnitude of uncertainty surrounding the estimates.

The risk estimates are intended to provide the basis for management decisions and do not predict actual health outcomes. The estimates are based on conservative (health-protective) assumptions and a hypothetical future scenario whereby the institutional/engineering controls currently in place (e.g., the SSHSP and SCMP) are no longer required, and uncontrolled contact with COPR-impacted media occurs by DMT workers, construction workers, and utility workers. Thus, actual risks are likely to be less than these estimates.

5.1 Approach for Potential Excess Lifetime Cancer Risks

To characterize potential carcinogenic effects, statistical probabilities are estimated from calculated exposures and toxicity values that a hypothetical receptor group will develop cancer over a lifetime as a result of the assumed exposures.

Using the IUR, estimated air concentrations were converted to incremental risks of a hypothetical receptor developing cancer (EPA, 2009d). The following formula was used to estimate potential carcinogenic risk ("excess lifetime cancer risk," or ELCR) from inhalation exposures to Cr(VI) and vanadium pentoxide:

ELCR = *Exposure Concentration* × *IUR*

EPA's target range for carcinogenic risk associated with Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) sites is 1 in 10,000 (1×10^{-4}) to 1 in 1 million (1×10^{-6}). That is, the risk associated with a CERCLA site should not exceed this target range. Although the DMT site is not a CERCLA site, this target range is relevant. The MDE target cumulative site ELCR is 1×10^{-5} .

5.2 Approach for Potential Noncarcinogenic Effects

Potential noncarcinogenic health risks were estimated by calculating a hazard quotient (HQ) for each COPC through each exposure route. The HQ was calculated as the ratio of the estimated intake to the RfD (and air concentration to RfC) as follows:

$$HQ = \frac{Intake}{RfD}$$
 or $HQ = \frac{Exposure\ Concentration}{RfC}$

HONEYWELL SITE#: R37825 DOCUMENT FILE LOC: 4.03.05 If the estimated daily intake for a COPC exceeds its RfD (or air concentration exceeds its RfC), the HQ will exceed 1.0. An HQ that exceeds 1.0 indicates that there is a potential for adverse health effects associated with exposure to the COPC, but it does not indicate the actual level of risk.

A hazard index (HI) approach was used to evaluate potential noncarcinogenic health risks posed by more than one COPC and exposure route. The HI approach assumes that simultaneous subthreshold exposures to several chemicals and exposure routes are additive. The HI is equal to the sum of the HQs and is calculated as follows:

$$HI = \frac{I_1}{RfD_1} + \frac{I_2}{RfD_2} \dots \frac{I_i}{RfD_i}$$

where:

I = intake level (mg/kg-day)
RfD = chronic reference dose (mg/kg-day)
I_i = intake level (intake) for the *i*th constituent
RfD_i = reference dose for the *i*th constituent

and

$$HI = \frac{Exp.Conc_1}{RfC_1} + \frac{Exp.Conc_2}{RfC_2} \dots \frac{Exp.Conc_i}{RfC_i}$$

where:

Exp. Conc. = exposure concentration (mg/m³) RfC = reference concentration (mg/m³) *Exp. Conc_i* = air concentration for the *i*th constituent RfC_i = reference concentration for the *i*th constituent

According to EPA (1989) guidance for noncarcinogens, it is appropriate to calculate HI values for each applicable target organ. Therefore, target-organ-specific HIs were used to evaluate potential noncarcinogenic effects.

Calculation of a cumulative target-organ-specific HI in excess of 1.0 indicates the potential for adverse health effects. The cumulative HI is defined as the sum of the HQs associated with all media, COPCs, and pathways of exposure that are applicable for a particular receptor group.

5.3 Results of Risk Estimates

Potential risks associated with exposures to the COPCs were estimated for the potential current and hypothetical future exposure scenarios identified in Section 3.4.2. The calculated ELCRs and HIs for each receptor group are summarized below.

5.3.1 Current Exposure Scenarios

Outdoor Air

The Cr(VI) concentrations measured in outdoor air as part of the perimeter air-monitoring program were evaluated to determine whether the Cr(VI) concentrations detected in outdoor air are indicative of a site release or attributed to local background levels. An evaluation was also made between the measured Cr(VI) concentrations and PM concentrations to determine whether the measured Cr(VI) concentrations are associated with potential fugitive dust either from the site or from offsite sources. Findings are summarized below:

- There is no statistically significant variation in the monitored Cr(VI) concentrations attributed to any particular wind direction.
- There is no statistically significant correlation between the monitored particulate concentrations and concurrent Cr(VI) concentrations, indicating that measured Cr(VI) concentrations cannot be attributed to fugitive dust emanating from the site.

One hundred nineteen background air samples were identified based on the prevailing wind direction measured during the perimeter air-monitoring events. The background samples are indicated in Table 1.4 of Appendix A. The background Cr(VI) EPC was calculated as described in Section 3.4.1, and the ProUCL output is provided in Appendix B. Because no current site releases to outdoor air were identified, current site-related air impacts on DMT workers and offsite residents are insignificant.

Offsite Recreational Users

Offsite recreational users in the cove were assumed to contact surface water and sediment (0 to 1 foot deep) through incidental ingestion and dermal contact.

- Adult. All target organ-specific HIs less than 1.0 (Table 5.1 of Appendix A; summarized in Table 6.1 of Appendix A).
- Adolescent. All target organ-specific HIs less than 1.0 (Table 5.2 of Appendix A; summarized in Table 6.2 of Appendix A).
- **Child.** All target organ-specific HIs less than 1.0 (Table 5.3 of Appendix A; summarized in Table 6.3 of Appendix A).

5.3.2 Future Exposure Scenarios

DMT Workers

As a hypothetical scenario, it was assumed that the institutional/engineering controls currently in place (e.g., the SSHSP and SCMP) are no longer required, and COPR blooms occur at the site surface (at a depth less than 0.5 foot bgs) and are contacted by DMT workers through incidental ingestion, dermal contact, and inhalation. In addition, it was assumed that deeper soils (currently 0 to 10 feet bgs) could be brought to the surface during construction activities and contacted by future DMT workers through incidental ingestion, dermal contact, and inhalation.

- Surface soil. 2 × 10⁻⁴ ELCR (driven by Cr(VI) inhalation exposures from COPR dust that is hypothetically assumed to be continuously exposed at the site surface and contacted on a daily basis) and all target-organ-specific HIs less than 1.0 (Table 5.4, summarized in Table 6.4 RME of Appendix A).
- **Total soil.** 3 × 10⁻⁴ ELCR (driven by Cr(VI) inhalation exposures from COPR dust that is hypothetically assumed to be continuously exposed and contacted on a daily basis) and all target organ-specific HIs less than 1.0 (Table 5.5, summarized in Table 6.5 RME of Appendix A).

Construction Workers

As a hypothetical scenario, it was assumed that the current institutional/engineering controls (e.g., the SSHSP and SCMP) do not remain in place, and soil (0 to 10 feet bgs) is contacted by construction workers during excavation activities through incidental ingestion, dermal contact, and inhalation. In addition, it was assumed that construction workers may have uncontrolled dermal exposures to shallow groundwater in excavations.

- **Exposure frequency of 60 days/year.** 3 × 10⁻⁶ ELCR and a target-organ-specific HI of 3 (driven by Cr(VI) in soil and groundwater) (Table 5.6 of Appendix A; summarized in Table 6.6 of Appendix A).
- Exposure frequency of 250 days/year. 1 × 10⁻⁵ ELCR and a target-organ-specific HI of 14 (driven by Cr(VI) in soil and groundwater) (Table 5.7 of Appendix A; summarized in Table 6.7 of Appendix A).

Utility Workers

As a hypothetical scenario, it was assumed that the current institutional controls (e.g., the SSHSP) do not remain in place, and utility workers have uncontrolled dermal exposures to stormwater.

- Nonpriority drains. HI less than 1.0 (Table 5.8, summarized in Table 6.8 of Appendix A).
- **Priority drains.** A target-organ-specific HI of 30 (driven by Cr(VI)) (Table 5.9 of Appendix A; summarized in Table 6.9 of Appendix A).

Offsite Recreational Users

Offsite recreational users in the cove were assumed to contact surface water and sediment (0 to 3 feet deep) through incidental ingestion and dermal contact.

- Adult. All target-organ-specific HIs less than 1.0 (Table 5.10 of Appendix A; summarized in Table 6.10 of Appendix A).
- Adolescent. All target-organ-specific HIs less than 1.0 (Table 5.11 of Appendix A; summarized in Table 6.11 of Appendix A).
- **Child.** All target-organ-specific HIs less than 1.0 (Table 5.12 of Appendix A; summarized in Table 6.12 of Appendix A).

5.3.3 Summary of Risk Estimates

A summary of risk estimates and risk drivers is presented in Table 5-1.

Current and future potential exposures by recreational users in the cove adjacent to DMT are within acceptable levels.

Measured outdoor air concentrations of Cr(VI) exceed risk-based screening levels. However, the evaluation of the air transport pathway found no significant difference between upwind and downwind concentrations of Cr(VI) in air (see Appendix C). This finding is expected, given that COPR is contained beneath the surface cover present at DMT. The SCMP includes a rigorous inspection and repair program for the surface cover that ensures COPR remains contained, thereby limiting the potential for chromium transport via air.

As a hypothetical future scenario, it was assumed that the institutional/engineering controls currently in place (e.g., the SSHSP and SCMP) are no longer required, and uncontrolled contact with COPR-impacted media occurs by DMT workers, construction workers, and utility workers. COPR materials were assumed to be continuously exposed and contacted by DMT workers and construction workers every workday while onsite. The following risk estimates were calculated for these receptor groups:

DMT Workers

- Surface soil. 2 × 10-4 ELCR and HI less than 1
- Total soil. 3 × 10⁻⁴ ELCR and HI less than 1

Both estimates were driven by Cr(VI) inhalation exposures. The estimates exceed EPA's target risk range and MDE's target cumulative ELCR of 1×10^{-5} .

Construction Workers

- **Low-exposure frequency.** 3 × 10⁻⁶ ELCR and HI of 3
- High-exposure frequency. 1 × 10⁻⁵ ELCR and HI of 14

Both estimates are driven by Cr(VI) in soil and groundwater. These estimates exceed EPA's and MDE's target HI of 1.0.

As an additional hypothetical future scenario, utility workers were assumed to access stormwater in storm drains without adhering to an SSHSP. The following risk estimates were calculated for utility workers in nonpriority drains and priority drains.

Utility Workers

- Nonpriority drains. HI less than 1.0
- **Priority drains.** HI of 30 (driven by Cr(VI))

Risk estimates for priority drains exceed EPA's and MDE's target HI of 1.0.

5.4 Uncertainty Analyses

All HHRAs involve assumptions, professional judgments, and imperfect data to varying degrees; these in turn result in uncertainty in the final risk estimates. This subsection of the HHRA describes the likelihood that the approaches incorporated in the HHRA result in an

overestimate or underestimate of actual risks associated with exposure to site-related COPC concentrations. There are several categories of uncertainty (e.g., data evaluation) associated with risk assessment. The major uncertainties associated with each category are briefly discussed below.

5.4.1 Uncertainty Associated with Data Evaluation

A comparison of maximum detected concentrations to adjusted RSLs (noncarcinogenicbased RSLs were reduced by a factor of 10 to account for the cumulative effects from multiple chemicals) was conducted for each medium. Constituents whose maximum detected concentrations were below their RSLs were not carried through the HHRA. It is unlikely that this risk-based screening would have excluded constituents that would be of concern, based on the conservative exposure assumptions and conservatively derived toxicity criteria on which the RSLs are based. Although following this methodology does not provide a quantitative risk estimate for every COPR constituent, it focuses the HHRA on the constituents accounting for the greatest relative risks (i.e., constituents whose maximum concentrations exceed their respective adjusted RSLs), and the overall cumulative risk estimates are not expected to be significantly underestimated.

Measured outdoor air data are available for Cr(VI) but not for the other COPR constituents. Inhalation toxicity data are available for three other COPR constituents listed in Table 4-1: aluminum, manganese, and vanadium pentoxide. A comparison of the surface soil EPCs (based on COPR blooms) for these constituents with the inhalation component of the industrial and residential soil RSLs is provided below (in milligrams per kilograms):

- Aluminum. EPC (maximum detected concentration since aluminum was not identified as a COPC in surface soil) = 51,900; industrial RSL = 30,000,000; residential RSL = 7,100,000.
- Manganese. EPC = 750; industrial RSL = 300,000; residential RSL = 71,000.
- Vanadium pentoxide. EPC = 390; industrial RSL = 2,000; residential RSL -= 400.

Based on the comparison of surface soil EPCs (or the maximum detected concentration for aluminum) with the RSL for protection of residential and industrial air, the lack of measured outdoor air data for constituents other than Cr(VI) is not expected to significantly affect the conclusions of the HHRA.

5.4.2 Uncertainty Associated with the Exposure Assessment

The primary areas of uncertainty regarding chemical intakes are assumptions regarding potentially complete exposure pathways, estimating EPCs, and selecting exposure factors to estimate chemical intakes. The uncertainties associated with these sources are discussed below.

Exposure Pathways

The potential exposure pathways that were quantified were assumed to be complete currently or under a hypothetical future scenario where the existing engineering and institutional controls in place at the site (e.g., the SCMP and SSHSP) are no longer implemented. The hypothetical scenario assumes that DMT workers and construction workers inhale fugitive dusts from COPR materials (currently situated at 0 to 10 feet bgs) and contact COPR materials every day while onsite. The inhalation exposure pathway was evaluated using a calculated PEF and soil data. The hypothetical scenario also assumes that utility workers have uncontrolled exposures to stormwater.

Onsite outdoor air may occasionally be a complete exposure pathway for DMT workers when small COPR blooms are present. Due to the likely low exposure frequency and short exposure duration, this exposure scenario was not quantified in the HHRA for current conditions but rather was quantified as part of the hypothetical future scenario addressing constant exposures to COPR materials.

Exposure Point Concentrations

With respect to calculating EPCs, it was assumed that contact with COPR-impacted soil, groundwater, and stormwater occurs in the future without the use of personal protective equipment. The soil EPCs for DMT workers and construction workers were based on a data set composed mostly of COPR material samples rather than traditional soil samples. In addition, it was assumed that the EPCs remain constant over time. This approach will likely lead to an overestimate of actual exposure because receptors are assumed to be exposed to the UCL of the mean concentration for their entire exposure duration. As the data indicate, some chemicals were detected in specific media at a relatively low frequency (less than 50 percent). Thus, the assumption that all potential exposures are to the UCL or maximum concentrations probably will result in an overestimation of actual exposures and estimates of potential risk.

Exposure Factors

Most of the exposure factors used to estimate chemical intakes are conservative and reflect worst-case or upper-bound exposure assumptions in accordance with EPA guidance regarding evaluation of potential exposures at Superfund sites. For example, future DMT workers were assumed to have uncontrolled exposures to COPR materials on a daily basis for a period of 25 years. In addition, construction workers were assumed to have uncontrolled exposures to soil and groundwater, and utility workers were assumed to have uncontrolled exposures to stormwater every day when onsite. An underlying assumption in the HHRA is that individuals at the site will regularly engage in activities that will result in chemical exposures. This assumption is conservative in that it is more likely that the future activities assumed to occur onsite (e.g., uncontrolled soil, groundwater, and stormwater exposures) will not occur, but rather that the current institutional and engineering controls will remain in place.

The entire exposed skin surface of a utility worker is assumed to contact stormwater in storm drains for the entire workday (i.e., 8 hours) for 25 days per year. It is highly unlikely that an individual utility worker would engage in inspection activities at the site for this extended time period (8 hours) and that his or her entire exposed skin area would be in contact with stormwater in the storm drain. Therefore, the actual risks for future utility workers are likely to be less than the estimated risks presented in this HHRA.

5.4.3 Uncertainty Associated with Toxicity Assessment

Uncertainty factors are applied to extrapolate doses from animal studies to humans. For instance, the uncertainty factor applied to the Cr(VI) RfD is 300. Therefore, uncertainty is inherent in the toxicity values used to estimate risks.

Inhalation unit risks developed by EPA represent upper-bound estimates. The ELCRs generated in this HHRA should be regarded as upper-bound estimates on the potential ELCR rather than an accurate representation of ELCR. The true ELCR is likely to be less than the predicted value.

EPA-derived toxicity values were not available for two essential nutrients (calcium and magnesium). Noncarcinogenic toxicity values were calculated based on the DRIs provided by the National Academy of Sciences. Therefore, there is some uncertainty in the screening levels and toxicity values used for calcium and magnesium, but risks are not expected to significantly overestimate potential exposures.

For dermal exposures, the absence of dermal toxicity values necessitated the use of oral toxicity data. To calculate risk estimates for the dermal pathway, dermal absorption doses were combined with oral toxicity values. Oral toxicity values, which are typically expressed in terms of potential (or administered) doses, are adjusted when assessing dermal absorption doses, which are expressed as internal (or absorbed) doses. In this HHRA, absolute oral absorption factors that reflect the toxicity study conditions were used to modify the oral toxicity values.

Cr(VI) Contact Dermatitis

There is uncertainty associated with the RSLs for Cr(VI) in addressing contact dermatitis. Dermal exposure to Cr(VI) may produce irritant and allergic contact dermatitis (Bruynzeel et al., 1988; Polak, 1983; Cronin, 1980; Hunter, 1974). The Cr(VI) RSLs that are protective of carcinogenic and noncarcinogenic effects are likely lower than the concentrations inducing allergic contact dermatitis. However, these RSLs might not be lower than concentrations eliciting an allergic response in individuals who have been previously induced (EPA, 2009c).

New Jersey Department of Environmental Protection (NJDEP) and Massachusetts Department of Environmental Protection (MDEP) are two leading state environmental agencies regarding this subject and have proposed health-based soil concentrations of Cr(VI) for protection of allergic contact dermatitis based on intensive literature review. The Cr(VI) soil concentrations recommended by these two agencies and key information used to derive these concentrations are presented in Table 6-1. As seen in Table 6-1, Cr(VI) soil cleanup levels of 170 and 400 mg/kg were established by MDEP and NJDEP, respectively, based on a patch testing study of 54 subjects with a known Cr(VI) sensitivity (Nethercott et al., 1994). The difference between the two cleanup levels is primarily a result of the different soil AFs applied in the calculation. Because the soil AF used by NJDEP is consistent with the current EPA dermal guidance document (EPA, 2004), the Cr(VI) concentration derived by NJDEP (400 mg/kg) is considered the more appropriate level. The industrial soil RSL of 200 mg/kg for Cr(VI) (particulates) was used to screen soil in the HHRA. Because the soil RSL value is lower than the Cr(VI) cleanup level currently recommended by NJDEP (400 mg/kg), the soil RSL used in the HHRA is protective of inducing contact dermatitis. However, these agencies indicate uncertainties associated with the derived Cr(VI) soil cleanup level (NJDEP, 2005; MDEP, 1998), potentially warranting additional evaluations of soil concentrations addressing this health effect in the future. A summary of the major areas of uncertainty associated with the derived Cr(VI) soil cleanup level identified by NJDEP and MDEP include the following:

- Relevance of data derived from patch testing to environmental exposures
- Bioavailability factor for Cr(VI) in soil.
- pH level in soil (Historical patch testing studies have demonstrated increasing allergic contact dermatitis sensitivity to Cr(VI) at higher pH levels.)
- Route of exposure (Available data strongly suggest that Cr(VI) could be a more potent dermal sensitizer when exposures are through ingestion or inhalation exposure routes.)

5.4.3 Uncertainty in Risk Characterization

The uncertainties identified in each component of the HHRA ultimately contribute to uncertainty in the risk estimates. The addition of risks and HQs across potential pathways and constituents contributes to uncertainty based on the interaction of COPCs (i.e., additivity, synergism, and potentiation) and susceptibility of exposed receptors. The uncertainties associated with potential interactions of COPR constituents are provided below.

The COPCs in soil are aluminum, calcium, chromium (III and VI), iron, magnesium, manganese, and vanadium. These chemicals occur naturally in food and environmental media. Some of these chemicals are essential nutrients for normal physiological functioning of organisms. These chemicals are reported to have either competition or synergism in absorption and physiological functioning. For example, calcium, chromium, magnesium, and manganese are required for normal functioning of the body and organ systems. However, deficiency of some of the nutrients and acidic conditions can promote absorption of iron and manganese.

Aluminum is absorbed more in the presence of citrate, whereas silicic acid will decrease the bioavailability of aluminum by providing a strong competitive binding site for it within the gut contents, thus making aluminum less available for absorption (ATSDR, 2008).

The absorption of iron increases in the presence of manganese. High levels of iron lead to decreased manganese absorption and toxicity, and low levels of iron lead to increased manganese absorption and toxicity. High levels of calcium in systems reduce the uptake of manganese.

Calcium, chromium, and magnesium belong to a group of "parasympathetic" elements that exhibit anti-inflammatory properties, in contrast to elements such as iron, which are pro-inflammatory at high concentrations.

The combination of manganese and vanadium administered to pregnant mice caused some alterations in behavioral development of the pups as compared with either element administered alone (ATSDR, 1992).

The overall presence of multiple inorganic chemicals in various combinations in site media could result in different effects than those assumed in the risk assessment, thus contributing to uncertainty in the risk estimates. As noted in the above-listed studies, some inorganic chemicals can prevent the absorption of others.

TABLE 5-1

Summary of Risk Estimates and Risk Drivers Honeywell Dundalk Marine Terminal, Baltimore, MD

Receptor	Age	Cancer	Noncancer
Current Exposure Scenario			
Offsite recreational user	Adult	—	HI < 1.0
(sediment, 0–1 foot)	Youth	—	HI < 1.0
	Child	—	HI < 1.0
Future Exposure Scenario			
DMT worker (Surface Soil)	Adult	2 × 10 ⁻⁴ ; chemical: Cr(VI) (surface soil)	HI < 1.0
DMT worker (Total Soil)	Adult	3 × 10 ⁻⁴ chemical: Cr (VI) (subsurface soil)	HI ≤ 1.0
Construction worker (low frequency; EF=60 d/yr)	Adult	< 1 × 10 ⁻⁵	Total HI = 4; Maximum Target Organ- Specific HI = 3; chemical: Cr(VI) (total soil)
Construction worker (high frequency; EF=250 d/yr)	Adult	≤ 1 × 10 ⁻⁵	Total HI = 16; Maximum Target Organ Specific HI = 14; chemical: Cr(VI) (total soil, groundwater)
Utility worker (nonpriority drain)	Adult	_	HI < 1.0
Utility worker (priority drain)	Adult	_	Total HI = 29; Maximum Target Organ Specific HI = 29 chemical: Cr(VI) (stormwater)
Offsite recreational user	Adult		HI < 1.0
(sediment, 0–3 feet)	Youth	—	HI < 1.0
	Child	_	HI < 1.0

Summary and Conclusion

The HHRA was conducted in accordance with EPA (1989) risk assessment guidance using a four-step process. In Step 1 (data evaluation), analytical data for COPR-related constituents were identified and detected concentrations were compared to risk-based screening levels to select COPCs. In Step 2 (exposure assessment), potential current and future exposure points, receptors, exposure scenarios, and EPCs were identified. In Step 3, relevant toxicity values were selected in accordance with EPA's hierarchy for toxicity value sources. In Step 4, a risk characterization was performed and significant uncertainties discussed.

Analytical data were available from various media: groundwater, soil, air, stormwater, surface water, and sediment. The COPR-related constituents were screened to identify COPCs through a conservative selection process in accordance with EPA (1989) guidance. The COPCs in each exposure medium were identified by comparing maximum detected concentrations to EPA RSLs (EPA, 2009a). Potentially complete exposure pathways were assessed for onsite receptors (DMT workers and visitors, utility workers, and construction workers) and offsite receptors (residents near the adjacent cove, recreational users in the cove, and anglers in the Patapsco River and Colgate Creek).

The HHRA results indicate acceptable risks for onsite receptors (DMT workers, construction workers, and utility workers) and for recreational users exposed to surface water and sediment in the cove adjacent to the site.

The air transport pathway evaluation found no significant difference between upwind and downwind concentrations of Cr(VI) in air. This finding is expected, given that COPR is contained beneath the surface cover present at DMT, and the SCMP includes a rigorous inspection and repair program for surface cover which ensures that COPR remains contained, thereby limiting the potential for chromium transport via air.

TABLE 6-1 Recommended Cr(VI) Soil Levels for Allergic Contact Dermatitis Honeywell Dundalk Marine Terminal, Baltimore, MD

Agency	Cr(VI) Skin Loading Inducing ACD (μg/cm²)	Source	Soil Adherence Factor (mg/cm ²)	Source ^a	Bioavailability	Recommended Cr(VI) Soil Level for ACD (mg/kg)
MDEP (1998)	0.089	10% MET ^b	0.51	EPA (1996)	100%	170
NJDEP (2005)	0.08	BMDL ₁₀ ^c	0.2	EPA (2004)	100%	400

ACD, allergic contact dermatitis.

^a EPA. 1996. Soil Screening Guidance: Technical Background Document, *EPA/540/R-95/128*. Office of Solid Waste and Emergency Response, Washington, DC. EPA. 2004. Risk Assessment Guidance for Superfund (RAGS), Volume 1—Human Health Evaluation Manual (HHEM) (Part E) Supplemental Guidance for Dermal Risk Assessment. July.

^b MET (minimum elicitation threshold) is the concentration that would elicit allergic reaction in 10% of the Cr(VI) sensitized population. (Source: Nethercott et al. (1994). A study of chromium induced allergic contact dermatitis with 54 volunteers: Implications for environmental risk assessment. Occup. Environ. Med.51(6):371-380.)

^c BMDL₁₀ is the lower 95% confidence limit on the dose corresponding to a 10% response among sensitized individuals. (Modeled on the basis of Nethercott et al. (1994). A study of chromium induced allergic contact dermatitis with 54 volunteers: Implications for environmental risk assessment. Occup. Environ. Med.51(6):371-380.)

References

Argonne National Laboratory. 2001. User's Manual for RESRAD Version 6. ANL/EAD-4. Environmental Assessment Division. Argonne, Ill.

ATSDR (Agency for Toxic Substances and Disease Registry). 1992. Toxicological Profile for Vanadium. U.S Department of Health and Human Services. Public Health Service. July.

ATSDR (Agency for Toxic Substances and Disease Registry). 2000a. Toxicological Profile for Chromium. U.S Department of Health and Human Services. Public Health Service. September.

ATSDR (Agency for Toxic Substances and Disease Registry). 2000b. Toxicological Profile for Manganese. U.S Department of Health and Human Services. Public Health Service. September.

ATSDR (Agency for Toxic Substances and Disease Registry). 2006. Toxicological Profile for Aluminum. Draft. U.S Department of Health and Human Services. Public Health Service. September.

ATSDR (Agency for Toxic Substances and Disease Registry). 2008. Draft Toxicological Profile for Aluminum. U.S Department of Health and Human Services. Public Health Service. September.

Bruynzeel, DP; Hennipman, G; van Ketel, WG. 1988. Irritant contact dermatitis and chromepassivated metal. *Contact Dermatitis* Vol. 19. pp. 175-179.

CH2M HILL and ENVIRON. 2009. Sediment and Surface Water Study Report, Dundalk Marine Terminal, Baltimore, Maryland. Prepared for Honeywell.

CH2M HILL. 2007a. Surface Cover and 14th and 15th Streets Storm Drain Inspection and Maintenance Plan for Dundalk Marine Terminal, Baltimore, Maryland. Prepared for Honeywell. August.

CH2M HILL. 2007b. The Relative Contribution of Vanadium and Hexavalent Chromium for Risk-Based Decisions for Environmental Media for Dundalk Marine Terminal, Baltimore, Maryland.

CH2M HILL. 2007c. Phase 1 COPR Investigation Data Report, Dundalk Marine Terminal, Baltimore, Maryland. Prepared for Honeywell. July.

CH2M HILL. 2007d. Site Drinking Water Plan, Dundalk Marine Terminal, Baltimore, Maryland. Prepared for Honeywell. April.

CH2M HILL. 2008a. Response to MDE Comments on "The Relative Contribution of Vanadium and Hexavalent Chromium for Risk-Based Decisions for Environmental Media for Dundalk Marine Terminal, Baltimore, Maryland." Prepared for Honeywell.

CH2M HILL. 2008b. Supplemental COPR Investigation Work Plan, Dundalk Marine Terminal, Baltimore, MD. July 9.

CH2M HILL. 2009a. Standard Operating Procedure: Surface Cover Penetration.

CH2M HILL. 2009b. COPR Investigation Report, Dundalk Marine Terminal, Baltimore, Maryland. Prepared for Honeywell and Maryland Port Administration. May.

Colo.

Cronin, E. 1980. Contact Dermatitis. New York: Churchill Livingstone, pp. 287-390.

Eisler, R. 1986. Chromium Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. *U.S. Fish Wildlife Serv. Biol. Rep.* Vol. 85, No. 1.6. 60 pp.

Emilcott. 2006. Master Health and Safety Program for Chromium Related Work Projects. Prepared for Maryland Port Administration. June.

ENVIRON. 2006. Sediment Investigation Report for Study Area 7, Jersey City, New Jersey. Submitted to The Louis Berger Group (NJ). U.S. Court for the District of New Jersey, Civil Action No. 95-2097.

ENVIRON. 2008. Relationship Between the Presence of Chromium and Toxicity in Baltimore Harbor: New Scientific Evidence. March 10.

EPA (U.S. Environmental Protection Agency). 1986a. Method 3060A, in: Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, SW-846, Update, Office of Solid Waste and Emergency Response, Washington, DC, 1986.

EPA (U.S. Environmental Protection Agency). 1986b. Quality Criteria for Water 1986 [The Gold Book]. EPA 440/5-86-001. Office of Water. May 1.

EPA (U.S. Environmental Protection Agency). 1986c. Guidelines for Carcinogen Risk Assessment. *51 FR* 33992-34003.

EPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund (RAGS), Volume 1—Human Health Evaluation Manual (HHEM) (Part A). Interim final. EPA/540/1-89/002. Office of Emergency and Remedial Response. Washington, D.C.

EPA (U.S. Environmental Protection Agency). 1991. RAGS: Volume 1–HHEM Supplemental Guidance. Standard Default Exposure Factors. Interim Final. Office of Solid Waste and Emergency Response. OSWER Directive 9285.6-03.

EPA (U.S. Environmental Protection Agency). 1996. Soil Screening Guidance: Technical Background Document, EPA/540/R-95/128. Office of Solid Waste and Emergency Response, Washington, DC.

EPA (U.S. Environmental Protection Agency). 1997. Exposure Factors Handbook. Office of Research and Development. EPA/600/C-99/001.

EPA (U.S. Environmental Protection Agency). 2000a. Bioaccumulation Testing and Interpretation for the Purpose of Sediment

EPA (U.S. Environmental Protection Agency). 2000b. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins. Region 4. Originally published November 1995. Website version last updated May 2000. Available athttp://www.epa.gov/region4/waste/ots/healtbul.htm. EPA (U.S. Environmental Protection Agency). 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December 2002.

EPA (U.S. Environmental Protection Agency). 2003a. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5.

EPA (U.S. Environmental Protection Agency) Region 3. 2003b. Updated Dermal Exposure Assessment Guidance. Region 3 Technical Guidance Manual, Risk Assessment. June.

EPA (U.S. Environmental Protection Agency). 2004. Risk Assessment Guidance for Superfund (RAGS), Volume 1 – Human Health Evaluation Manual (HHEM) (Part E) Supplemental Guidance for Dermal Risk Assessment. EPA/540/R/99/005. Final. Office of Emergency and Remedial Response. July.

EPA (U.S. Environmental Protection Agency). 2005. Procedures For The Derivation Of Equilibrium Partitioning Sediment Benchmarks (Esbs) For The Protection Of Benthic Organisms: Metal Mixtures (cadmium, copper, lead, nickel, silver and zinc) [Appendix D: Chromium]. EPA/600/R-02/011, US Environmental Protection Agency, Washington, DC.

EPA (U.S. Environmental Protection Agency). 2006a. On the Computation of a 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations. Office of Research and Development.

EPA (U.S. Environmental Protection Agency). 2006b. Provisional Peer Reviewed Toxicity Values for Aluminum (CASRN 7429-90-5). Superfund Health Risk Technical Support Center. National Center for Environmental Assessment. October 23.

EPA (U.S. Environmental Protection Agency). 2006c. Provisional Peer Reviewed Toxicity Values for Iron and Compounds (CASRN 7439-89-6). Derivation of Subchronic and Chronic Oral RfDs. Superfund Health Risk Technical Support Center. National Center for Environmental Assessment. September 11.

EPA (U.S. Environmental Protection Agency). 2006d. National Recommended Water Quality Criteria. Office of Water.

EPA (U.S. Environmental Protection Agency). 2007. Framework for Metals Risk Assessment. Office of the Science Advisor. Risk Assessment Forum. USEPA 120/R-07/001. March.

EPA (U.S. Environmental Protection Agency). 2009a. May 19, 2009. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

EPA (U.S. Environmental Protection Agency). 2009b. "ProUCL Version 4.00.04 User Guide." Draft. Office of Research and Development. February. EPA/600/R-07/038.

EPA (U.S. Environmental Protection Agency). 2009c. Integrated Risk Information System (IRIS) Data Base. Available at http://www.epa.gov/iris/index.html. Office of Emergency and Remedial Response.

EPA (U.S. Environmental Protection Agency). 2009d. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment." EPA-540-R-070-002. Final. Office of Superfund Remediation and Technology Innovation. January. Fox, M.R. 1987. Assessment of Cadmium, Lead and Vanadium Status of Large Animals as Related to the Human Food Chain. *J. Anim. Sci.* Vol. 65. pp. 1744–1752.

Hall, W.S., and G.W. Pulliam. 1995. An Assessment of Metals in an Estuarine Wetlands Ecosystem. *Arch. Environ. Contam. Toxicol.* Vol. 29. pp. 164–173.

Hilton, J., and W. Bettger. 1988. Dietary Vanadium Toxicity in Juvenile Rainbow Trout: A Preliminary Study. *Aquatic Toxicology*. Vol. 12. pp. 63–71.

Hunter, D. 1974. The Diseases of Occupations. 5th ed. Boston: Little, Brown.

Institutes of Medicine. 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press, Washington, D.C.

Iowa Department of Natural Resources. 2005. Iron Criteria and Implementation for Iowa Surface Waters.

Irwin, R.J., M. VanMouwerik, L. Stevens, M.D. Seese, and W. Basham. 1997. Environmental Contaminants Encyclopedia. National Park Service, Water Resources Division, Fort Collins, James, B.R.; Bartlett, R.J. J. 1983. Journal of Environmental Quality, 12(2): 173 – 176.

Lund, L./CH2M HILL (formerly of Texas Natural Resource Conservation Commission). 2009. Personal communication with Barrie Selcoe/CH2M HILL. April 8.

Mancuso, T.F. 1975. Consideration of chromium as an industrial carcinogen. International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada, October 27-31. pp. 343-356.

McGeer, J., Henningsen, G., Lanno, R., Fisher, N., Sappington, K., Drexler, J., 2004. Issue Paper on the Bioavailability and Bioaccumulation of Metals. Available online at http://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=86119

MDE (Maryland Department of the Environment). 2004. Water Quality Analyses of Chromium in the Inner Harbor/Northwest Branch and Bear Creek Portions of Baltimore Harbor in Baltimore City and Baltimore County, Maryland.

MDE (Maryland Department of the Environment). 2008. Cleanup Standards for Soil and Groundwater. Interim Final Guidance. Update No. 2. March.

MDE (Maryland Department of the Environment). 2009. Personal communication with Barrie Selcoe/CH2M HILL. February 24.

MDEP (Massachusetts Department of Environmental Protection). 1998. Evaluation of the Risk Assessment Methodologies Based on the Hexavalent Chromium [Cr(VI)]-Elicited Allergic Contact Dermatitis (ACD) in Sensitized Population and MADEP's Recommendations. Prepared by Tsedash Zewdie. July 1998.

MDEP (Massachusetts Department of Environmental Protection). 2002. Technical Update: Weighted Skin-Soil Adherence Factors.

Miramand, P., S.W. Fowler, and J.C. Guary. 1992. Experimental Study on Vanadium Transfer in the Benthic Fish *Gobius minutus*. *Marine Biology*. Vol. 114. pp. 349–353.

National Academy of Sciences. 2004. Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, Elements. Institute of Medicine. Food and Nutrition Board. Available at http://www.iom.edu/Object.File/Master/21/372/0.pdf.

National Oceanic and Atmospheric Administration (NOAA) 2006. National Ocean Service (NOS), NOS Hydrographic Survey Data. Available at http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html.

National Park Service (NPS). 1997. "Chromium." In *Environmental Contaminants Encyclopedia*. Water Resources Divisions, Water Operations Branch. Fort Collins, Colo.

National Toxicology Program . 2008. Chemical information review document for oral exposure to tetravalent and pentavalent vanadium compounds. Supporting nomination for toxicological evaluation by the National Toxicology Program. National Institute of Environmental Health Sciences. National Institutes of Health. U.S. Department of Health and Human Services. Research Triangle Park, N.C. January.

Nethercott, J., Paustenbach, D., Adams, R., Fowler, J., Marks, J., Morton, C, Taylor, J, Horowitz, S, and Finley, B (1994). A study of chromium induced allergic contact dermatitis with 54 volunteers: Implications for environmental risk assessment. Occup. Environ. Med. 51(6):371-380

New Jersey Department of Environmental Protection (NJDEP) . 2005. Report for Public Comment and Response to Peer Review Comments. Chapter 3 Risk Assessment – Subgroup.

Newman, M.C., and M. A. Unger. 2003. *Fundamentals of Ecotoxicology*. 2nd ed. Lewis Publishers.

Pettine M and S. Capri. 2005. Digestion treatments and risks of Cr(III)–Cr(VI) interconversions during Cr(VI) determination in soils and sediments – a review. *Analytica Chimica Acta* 540 (2005) 231–238.

Polak, L. 1983. Immunology of chromium. In: Chromium: metabolism and toxicity. Burrows, D, ed. Boca Raton, FL: CRC Press, pp. 51-135.

Quality Assessment. Status and Needs. Bioaccumulation Analysis Workgroup. Office of Water (4305). EPA-823-R-00-001. February.

Schroeder, H., and M. Mitchener. 1975. Life-Time Effects of Mercury, Methyl Mercury, and Nine Other Trace Metals in Mice. *J. Nutr.* Vol. 105. pp. 452–458.

Shoaf, M.B., J.H. Shirai, G. Kedan, J. Schaum, and J.C. Kissel. 2005. Child Dermal Sediment Loads Following Play in a Tide Flat. *Journal of Exposure Analysis and Environmental Epidemiology*. Vol. 15. pp. 407–412.

Spalt, E.W., J.C. Kissel, J.H. Shirai, and A.L. Bunge. 2009. Dermal Absorption of Environmental Contaminants from Soil and Sediment: A Critical Review. *Journal of Exposure Science and Environmental Epidemiology*. Vol. 19. pp. 119–148.

U.S. Department of Energy. 1999. Aquatic Toxicity Reference Values (TRVs). ERD-AG-003. Revision: 0, November 08.

Vincoli, J. W. 1997. Risk Management for Hazardous Chemicals. CRC Lewis Publishers. Boca Raton, Florida.

WHO (World Health Organization). 2001. Concise International Chemical Assessment Document 29. Vanadium Pentoxide and Other Inorganic Vanadium Compounds.

Zatka VJ. 1985. Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium. J. Ray Gordon Research Laboratory. INCO Limited, Sheridan Park, Mississauga, Ontario. L5K 1Z9. Am. Ind. Hyg. Assos. J. 46(6); 327 – 331.

Appendix A HHRA Calculation Tables

TABLE 1.1

Groundwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Collection Date	Field Sample ID	Purpose		
DMT-12S	5/22/2006	DMT12S-052206	REG		
DMT-123 DMT-14S	5/22/2006	DMT12S-052200	REG		
DMT-143 DMT-15S	5/22/2006	DMT15S-052206	REG		
DMT-16S	5/22/2006	DMT16S-052206	REG		
DMT-103			REG		
	5/23/2006	DMT17S-052306	-		
DMT-18S	5/23/2006 5/23/2006	DMT18S-052306	REG		
DMT-1S		DMT01S-052306	REG FD		
DMT-1S	5/23/2006	DMT01S-052306-D	REG		
DMT-22S	5/23/2006	DMT22S-052306			
DMT-23S	5/23/2006	DMT23S-052306	REG		
DMT-2S	5/23/2006	DMT02S-052306	REG		
DMT-3S	5/23/2006	DMT03S-052306	REG		
DMT-4S	5/23/2006	DMT04S-052306	REG		
DMT-5S	5/23/2006	DMT05S-052306	REG		
DMT-6S	5/23/2006	DMT06S-052306	REG		
DMT-10S	5/24/2006	DMT10S-052406	REG		
DMT-11S	5/24/2006	DMT11S-052406	REG		
DMT-13S	5/24/2006	DMT13S-052406	REG		
DMT-19S	5/24/2006	DMT19S-052406	REG		
DMT-20S	5/24/2006	DMT20S-052406	REG		
DMT-21S	5/24/2006	DMT21S-052506	REG		
DMT-24S	5/24/2006	DMT24S-052406	REG		
DMT-25S	5/24/2006	DMT25S-052406	REG		
DMT-7S	5/24/2006	DMT07S-052406	REG		
DMT-8S	5/24/2006	DMT08S-052406	REG		
DMT-9S	5/24/2006	DMT09S-052406	REG		
DMT-9S	5/24/2006	DMT09S-052406-D	FD		
DMT-21S	10/4/2006	DMT-21S-GRW-100406	REG		
DMT-23S	10/4/2006	DMT-23S-GRW-100406	REG		
DMT-23S	10/4/2006	DMT-23S-GRW-100406-D	FD		
DMT-24S	10/4/2006	DMT-24S-GRW-100406	REG		
DMT-25S	10/4/2006	DMT-25S-GRW-100406	REG		
EAC-1S	11/28/2006	EAC-1S-GRW-112806	REG		
EA-6S	11/29/2006	EA-6S-GRW-112906	REG		
EA-15S	11/30/2006	EA-15S-GRW-113006	REG		
EAC-4S	11/30/2006	EAC-4S-GRW-113006	REG		
EAC-4S	11/30/2006	EAC-4S-GRW-113006-D	FD		
EA-11S	12/1/2006	EA-11S-GRW-120106	REG		
DMT-25S	12/4/2006	DMT-25S-GRW-120406	REG		
DMT-29S	12/15/2006	DMT-29S-GRW-1011	REG		
DMT-29S	12/15/2006	DMT-29S-GRW-1415	REG		
DMT-29S	12/15/2006	DMT-29S-GRW-1920	REG		
DMT-12S	2/26/2007	DMT-12S-GRW-022607	REG		
DMT-120 DMT-14S	2/26/2007	DMT-14S-GRW-022607	REG		
TPZ-27A	2/26/2007	TPZ-27A-GRW-022607	REG		
TPZ-27B	2/26/2007	TPZ-27B-GRW-022607	REG		
TPZ-30A	2/26/2007	TPZ-30A-GRW-022607	REG		
TPZ-30B	2/26/2007	TPZ-30B-GRW-022607	REG		
DMT-17S	2/27/2007	DMT-17S-GRW-022707	REG		
DMT-173			REG		
	2/27/2007	DMT-27S-GRW-022707			
DMT-29S	2/27/2007	DMT-29S-GRW-022707	REG		
DMT-33S	2/27/2007	DMT-33S-GRW-022707	REG		
DMT-33S	2/27/2007	DMT-33S-GRW-022707-D	FD		
DMT-39S	2/27/2007	DMT-39S-GRW-022707	REG		
EAC-3S	2/27/2007	EAC-3S-GRW-022707	REG		

Groundwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Location ID Date		Purpose
TPZ-28	2/27/2007	TPZ-28-GRW-022707	REG
TPZ-29	2/27/2007	TPZ-29-GRW-022707	REG
DMT-15S	2/28/2007	DMT-15S-GRW-022807	REG
DMT-18S	2/28/2007	DMT-18S-GRW-022807	REG
DMT-18S	2/28/2007	DMT-18S-GRW-022807-D	FD
DMT-19S	2/28/2007	DMT-19S-GRW-022807	REG
DMT-26S	2/28/2007	DMT-26S-GRW-022807	REG
DMT-30S	2/28/2007	DMT-30S-GRW-022807	REG
EA-8S	2/28/2007	EA-8S-GRW-022807	REG
EA-8S	2/28/2007	EA-8S-GRW-022807-D	FD
DMT-16S	3/1/2007	DMT-16S-GRW-030107	REG
DMT-31S	3/1/2007	DMT-31S-GRW-030107	REG
DMT-32S	3/1/2007	DMT-32S-GRW-030107	REG
EA-10S	3/1/2007	EA-10S-GRW-030107	REG
DMT-20S	3/2/2007	DMT-20S-GRW-030207	REG
DMT-28S	3/2/2007	DMT-28S-GRW-030207	REG
EAC-2S	3/2/2007	EAC-2S-GRW-030207	REG
DMT-40S	9/25/2007	DMT-40S-GRW-092507	REG
DMT-40S	9/25/2007	DMT-40S-GRW-092507-F	REG
DMT-43S	9/25/2007	DMT-43S-GRW-092507	REG
DMT-43S	9/25/2007	DMT-43S-GRW-092507-F	REG
DMT-438 DMT-44S	9/25/2007	DMT-44S-GRW-092507	REG
DMT-44S	9/25/2007	DMT-44S-GRW-092507-F	REG
DMT-443	9/26/2007	DMT-41S-GRW-092607	REG
DMT-41S	9/26/2007	DMT-41S-GRW-092607-F	REG
DMT-413	9/26/2007	DMT-413-GRW-092607-F	REG
			-
DMT-42S	9/26/2007	DMT-42S-GRW-092607-F	REG
DMT-45S	9/26/2007	DMT-45S-GRW-092607	REG REG
DMT-45S TPZ-33	9/26/2007 9/26/2007	DMT-45S-GRW-092607-F TPZ-33-GRW-092607	REG
		TPZ-33-GRW-092607-F	REG
TPZ-33	9/26/2007		
TPZ-36	9/26/2007	TPZ-36-GRW-092607	REG
TPZ-36	9/26/2007	TPZ-36-GRW-092607-F	REG
TPZ-38	9/26/2007	TPZ-38-GRW-092607	REG
TPZ-38	9/26/2007	TPZ-38-GRW-092607-F	REG
DMT-56S	9/27/2007	DMT-56S-GRW-092707	REG
DMT-56S	9/27/2007	DMT-56S-GRW-092707-F	REG
DMT-57S	9/27/2007	DMT-57S-GRW-092707	REG
DMT-57S	9/27/2007	DMT-57S-GRW-092707-F	REG
DMT-58S	9/27/2007	DMT-58S-GRW-092707	REG
DMT-58S	9/27/2007	DMT-58S-GRW-092707-F	REG
EA-8S	9/28/2007	EA-8S-GRW-092807	REG
EA-8S	9/28/2007	EA-8S-GRW-092807-F	REG
TPZ-44	9/28/2007	TPZ-44-GRW-092807	REG
TPZ-44	9/28/2007	TPZ-44-GRW-092807-F	REG
TPZ-45	9/28/2007	TPZ-45-GRW-092807	REG
TPZ-45	9/28/2007	TPZ-45-GRW-092807-D	FD
TPZ-45	9/28/2007	TPZ-45-GRW-092807-F	REG
TPZ-45	9/28/2007	TPZ-45-GRW-092807-FD	FD
TPZ-46	9/28/2007	TPZ-46-GRW-092807	REG
TPZ-46	9/28/2007	TPZ-46-GRW-092807-F	REG
DMT-46S	10/1/2007	DMT-46S-GRW-100107	REG
DMT-46S	10/1/2007	DMT-46S-GRW-100107-F	REG
DMT-47S	10/2/2007	DMT-47S-GRW-100207	REG
DMT-47S	10/2/2007	DMT-47S-GRW-100207-F	REG

Groundwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Collection Date	Field Sample ID	Purpose	
DMT-30S	10/8/2007	DMT-30S-GRW-100807	REG	
DMT-30S	10/8/2007	DMT-30S-GRW-100807-F	REG	
DMT-61S	11/26/2007	DMT-61S-GRW-100007-1	REG	
DMT-61S	11/26/2007	DMT-61S-GRW-112607-F	REG	
DMT-62S	11/26/2007	DMT-62S-GRW-112607-1	REG	
DMT-62S	11/26/2007	DMT-62S-GRW-112607-F	REG	
DMT-48S	11/27/2007	DMT-48S-GRW-112007-1	REG	
DMT-48S	11/27/2007	DMT-48S-GRW-112707-F	REG	
DMT-55S	11/27/2007	DMT-55S-GRW-112707-1	REG	
DMT-55S	11/27/2007	DMT-55S-GRW-112707-F	REG	
DMT-59S	11/29/2007	DMT-59S-GRW-112707-1	REG	
DMT-59S	11/29/2007	DMT-59S-GRW-112907-F	REG	
DMT-63S	11/20/2008		REG	
DMT-63S	11/20/2008	DMT-63US-GRW-112008	REG	
DMT-033	6/4/2009	DMT-63US-GRW-112008F DMT-17S-GRW-060409	REG	
DMT-173	6/4/2009	DMT-17S-GRW-060409-D	FD	
DMT-173	6/4/2009	DMT-17S-GRW-060409-D-F	FD	
DMT-173		DMT-27S-GRW-060409-D-F	REG	
DMT-27S	6/4/2009		REG	
	6/4/2009 6/4/2009	DMT-27S-GRW-060409-F DMT-42S-GRW-060409		
DMT-42S			REG	
DMT-42S	6/4/2009	DMT-42S-GRW-060409-F	REG	
EAC-1S	6/4/2009	EAC-01S-GRW-060409	REG	
EAC-1S	6/4/2009	EAC-01S-GRW-060409-F	REG	
DMT-12S	6/5/2009	DMT-12S-GRW-060509	REG	
DMT-12S	6/5/2009	DMT-12S-GRW-060509-F	REG	
DMT-41S	6/5/2009	DMT-41S-GRW-060509	REG	
DMT-41S	6/5/2009	DMT-41S-GRW-060509-F	REG	
DMT-14S	6/8/2009	DMT-14S-GRW-060809	REG	
DMT-14S	6/8/2009	DMT-14S-GRW-060809-F	REG	
DMT-15S	6/8/2009	DMT-15S-GRW-060809	REG	
DMT-15S	6/8/2009	DMT-15S-GRW-060809-F	REG	
DMT-44S	6/8/2009	DMT-44S-GRW-060809	REG	
DMT-44S	6/8/2009	DMT-44S-GRW-060809-D	FD	
DMT-44S	6/8/2009	DMT-44S-GRW-060809-F	REG	
EA-11S	6/8/2009	EA-11S-GRW-060809	REG	
EA-11S	6/8/2009	EA-11S-GRW-060809-F	REG	
DMT-57S	6/9/2009	DMT-57S-GRW-060909	REG	
DMT-57S	6/9/2009	DMT-57S-GRW-060909-F	REG	
DMT-63S	6/9/2009	DMT-63S-GRW-060909	REG	
DMT-63S	6/9/2009	DMT-63S-GRW-060909-F	REG	
DMT-39S	6/10/2009	DMT-39S-GRW-061009	REG	
DMT-39S	6/10/2009	DMT-39S-GRW-061009-D	FD	
DMT-39S	6/10/2009	DMT-39S-GRW-061009-F	REG	
DMT-59S	6/10/2009	DMT-59S-GRW-061009	REG	
DMT-59S	6/10/2009	DMT-59S-GRW-061009-F	REG	
DMT-45S	6/11/2009	DMT-45S-GRW-061109	REG	
DMT-45S	6/11/2009	DMT-45S-GRW-061109-F	REG	
DMT-58S	6/11/2009	DMT-58S-061109	REG	
DMT-58S	6/11/2009	DMT-58S-061109-F	REG	

Note:

Reg - Normal sample FD - Field Duplicate

Location ID	Collection Date	Start Depth	End Depth	Field Sample ID	Purpose
SB-159	12/17/2008	0	2	SB-159-SOI-000020	REG
SB-162	12/17/2008	0	2	SB-162-SOI-000020	REG
SB-164	12/17/2008	0	2	SB-164-SOI-000020	REG
SB-165	12/17/2008	0	2	SB-165-SOI-000020	REG
SB-166	12/17/2008	0	2	SB-166-SOI-000020	REG
SB-168	12/17/2008	0	2	SB-168-SOI-000020	REG
SB-170	12/17/2008	0	3	SB-170-SOI-000030	REG
SB-170	12/17/2008	0	3	SB-170-SOI-000030-D	FD
SB-171	12/17/2008	0	1	SB-171-SOI-000010	REG
SB-173	12/17/2008	0	2	SB-173-SOI-000020	REG
SB-175	12/17/2008	0	2	SB-175-SOI-000020	REG
SB-144	12/18/2008	0	2	SB-144-SOI-000020	REG
SB-145	12/18/2008	0	3	SB-145-SOI-000030	REG
SB-145	12/18/2008	0	3	SB-145-SOI-000030-D	FD
SB-146	12/18/2008	0	4	SB-146-SOI-000040	REG
SB-148	12/18/2008	0	3	SB-148-SOI-000030	REG
SB-161	12/18/2008	0	2	SB-161-SOI-000020	REG
SB-169	12/18/2008	0	2	SB-169-SOI-000020	REG
SB-176	12/18/2008	0	2	SB-176-SOI-000020	REG
SB-181	12/18/2008	0	2	SB-181-SOI-000020	REG
SB-183	12/18/2008	0	2	SB-183-SOI-000020	REG
SB-142	12/19/2008	0	2	SB-142-SOI-000020	REG
SB-147	12/19/2008	0	2	SB-142-SOI-000020	REG
SB-147	12/19/2008	0	4	SB-150-SOI-000020	REG
SB-150	12/19/2008	0	4	SB-150-SOI-000040-D	FD
SB-150	12/19/2008	0	2.5	SB-151-SOI-000025	REG
SB-151	12/19/2008	0	3	SB-152-SOI-000023	REG
SB-152	12/19/2008	0	4	SB-152-SOI-000030 SB-153-SOI-000040	REG
SB-153	12/19/2008	0	4 4	SB-153-SOI-000040-D	FD
SB-155	12/19/2008	0	4 4	SB-153-301-000040-D SB-154-SOI-000040	REG
SB-154	12/19/2008	0	2	SB-155-SOI-000040	REG
SB-155 SB-157	12/19/2008	0	2	SB-155-SOI-000020 SB-157-SOI-000020	REG
SB-157 SB-158		0	2		REG
SB-130 SB-184	12/19/2008	0	2	SB-158-SOI-000020	REG
	12/19/2008	-		SB-184-SOI-000020	
SB-185	12/19/2008	0	3	SB-185-SOI-000030	REG
SB-192	12/23/2008	0	2	SB-192-SOI-000020	REG
SB-193	12/23/2008	0	3	SB-193-SOI-000030	REG
SB-194	12/23/2008	0	3	SB-194-SOI-000030	REG
SB-195	12/23/2008	0	3	SB-195-SOI-000030	REG
SB-196	12/23/2008	0	2	SB-196-SOI-000020	REG
SB-197	12/23/2008	0	4	SB-197-SOI-000040	REG
SB-197	12/23/2008	0	4	SB-197-SOI-000040-D	FD
SB-198	12/23/2008	0	4	SB-198-SOI-000040	REG
SB-199	12/23/2008	0	4	SB-199-SOI-000040	REG
SB-200	12/23/2008	0	3	SB-200-SOI-000030	REG
SB-201	12/29/2008	0	2	SB-201-SOI-000020	REG
SB-202	12/29/2008	0	2	SB-202-SOI-000020	REG
SB-203	12/29/2008	0	2	SB-203-SOI-000020	REG
SB-204	12/29/2008	0	2	SB-204-SOI-000020	REG
SB-205	12/29/2008	0	2	SB-205-SOI-000020	REG
SB-206	12/29/2008	0	2	SB-206-SOI-000020	REG
NS2-E1	1/5/2009	0	2.5	DMT-NS2-SWC-E1-01	REG

Surface Soil (0<0.5 feet) Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
NS2-E1	1/5/2009	0	2.5	DMT-NS2-SWC-E1-01-D	FD
NS2-E2	1/5/2009	0	2	DMT-NS2-SWC-E2-01	REG
NS2-S1	1/5/2009	0	1	DMT-NS2-SWC-S1-01	REG
NS2-E3	1/6/2009	0	2	DMT-NS2-SWC-E3-01	REG
NS2-E4	1/6/2009	0	2	DMT-NS2-SWC-E4-01	REG
NS2-E5	1/7/2009	0	2.5	DMT-NS2-SWC-E5-01	REG
NS2-E6	1/7/2009	0	2.5	DMT-NS2-SWC-E6-01	REG
NS2-E7	1/8/2009	0	2	DMT-NS2-SWC-E7-01	REG
NS2-E7	1/8/2009	0	2	DMT-NS2-SWC-E7-01-D	FD
NS2-E8	1/12/2009	0	1.5	DMT-NS2-SWC-E8-01	REG
NS2-E9	1/12/2009	0	3	DMT-NS2-SWC-E9-01	REG
NS2-E10	1/13/2009	0	2	DMT-NS2-SWC-E10-01	REG
NS2-E11	1/14/2009	0	1.5	DMT-NS2-SWC-E11-01	REG
NS2-E11	1/14/2009	0	1.5	DMT-NS2-SWC-E11-01-D	FD
NS2-N1	1/14/2009	0	1.5	DMT-NS2-SWC-N1-01	REG
Area 1501/1602 JMDMT-1	5/19/2009	0	0.5	JMDMT-1	REG
Area 1501/1602 JMDMT-2	5/19/2009	0	0.5	JMDMT-2	REG
Area 1501/1602 JMDMT-3	5/19/2009	0	0.5	JMDMT-3	REG
Area 1501/1602 JMDMT-4	5/19/2009	0	0.5	JMDMT-4	REG
Area 1501/1602 JMDMT-5	5/19/2009	0	0.5	JMDMT-5	REG
Area 1501/1602 JMDMT-6	5/19/2009	0	0.5	JMDMT-6	REG
Area 1501/1602 JMDMT-6	5/19/2009	0	0.5	JMDMT-6-D	FD
SB-213	6/17/2009	0	1	SB-213-SOI-000010	REG
SB-214	6/17/2009	0	3	SB-214-SOI-000030	REG
E1	12/11/2008	0	2.5	DMT-NS-SWC-E1-01	REG
N1	12/11/2008	0	2.5	DMT-NS-SWC-N1-01	REG
N1	12/11/2008	0	2.5	DMT-NS-SWC-N1-01D	FD
S1	12/11/2008	0	2.5	DMT-NS-SWC-S1-01	REG
W1	12/11/2008	0	2.5	DMT-NS-SWC-W1-01	REG
SB-167	12/17/2008	0	2	SB-167-SOI-000020	REG
SB-172	12/17/2008	0	2	SB-172-SOI-000020	REG
SB-174	12/17/2008	0	2	SB-174-SOI-000020	REG
SB-174	12/17/2008	0	2	SB-174-SOI-000020-D	FD
SB-177	12/18/2008	0	2	SB-177-SOI-000020	REG
SB-178	12/18/2008	0	2	SB-178-SOI-000020	REG

Note:

Sample depth is presented in feet. Reg - Normal sample FD - Field Duplicate

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
SB-159	12/17/2008	0	2	SB-159-SOI-000020	REG
SB-159	12/17/2008	2	4	SB-159-SOI-020040	REG
SB-160	12/17/2008	1	3	SB-160-SOI-010030	REG
SB-160	12/17/2008	4	6	SB-160-SOI-040060	REG
SB-162	12/17/2008	0	2	SB-162-SOI-000020	REG
SB-162	12/17/2008	2	4	SB-162-SOI-020040	REG
SB-164	12/17/2008	0	2	SB-164-SOI-000020	REG
SB-164	12/17/2008	2	4	SB-164-SOI-020040	REG
SB-164	12/17/2008	2	4	SB-164-SOI-020040-D	FD
SB-165	12/17/2008	0	2	SB-165-SOI-000020	REG
SB-165	12/17/2008	2	4	SB-165-SOI-020040	REG
SB-166	12/17/2008	0	2	SB-166-SOI-000020	REG
SB-166	12/17/2008	2	4	SB-166-SOI-020040	REG
SB-168	12/17/2008	0	2	SB-168-SOI-000020	REG
SB-168	12/17/2008	2	4	SB-168-SOI-020040	REG
SB-168	12/17/2008	6	8	SB-168-SOI-060080	REG
SB-170	12/17/2008	0	3	SB-170-SOI-000030	REG
SB-170	12/17/2008	0	3	SB-170-SOI-000030-D	FD
SB-170	12/17/2008	3	4	SB-170-SOI-030040	REG
SB-171	12/17/2008	0	1	SB-171-SOI-000010	REG
SB-171	12/17/2008	2	4	SB-171-SOI-020040	REG
SB-173	12/17/2008	0	2	SB-173-SOI-020040	REG
SB-173	12/17/2008	2	4	SB-173-SOI-000020	REG
SB-175	12/17/2008	0	4	SB-175-SOI-020040	REG
SB-175		2	4	SB-175-SOI-000020	REG
	12/17/2008				
SB-143	12/18/2008	1	3	SB-143-SOI-010030	REG
SB-143	12/18/2008	3		SB-143-SOI-030040	REG
SB-144	12/18/2008	0	2	SB-144-SOI-000020	REG
SB-144	12/18/2008	2	4	SB-144-SOI-020040	REG
SB-145	12/18/2008	0	3	SB-145-SOI-000030	REG
SB-145	12/18/2008	0	3	SB-145-SOI-000030-D	FD
SB-145	12/18/2008	3	4	SB-145-SOI-030040	REG
SB-146	12/18/2008	0	4	SB-146-SOI-000040	REG
SB-146	12/18/2008	6	8	SB-146-SOI-060080	REG
SB-148	12/18/2008	0	3	SB-148-SOI-000030	REG
SB-148	12/18/2008	3	4	SB-148-SOI-030040	REG
SB-149	12/18/2008	1	3	SB-149-SOI-010030	REG
SB-149	12/18/2008	3	4	SB-149-SOI-030040	REG
SB-161	12/18/2008	0	2	SB-161-SOI-000020	REG
SB-161	12/18/2008	2	4	SB-161-SOI-020040	REG
SB-169	12/18/2008	0	2	SB-169-SOI-000020	REG
SB-169	12/18/2008	2	4	SB-169-SOI-020040	REG
SB-176	12/18/2008	0	2	SB-176-SOI-000020	REG
SB-176	12/18/2008	2	4	SB-176-SOI-020040	REG
SB-181	12/18/2008	0	2	SB-181-SOI-000020	REG
SB-181	12/18/2008	2	4	SB-181-SOI-020040	REG
SB-182	12/18/2008	2	4	SB-182-SOI-020040	REG
SB-182	12/18/2008	4	6	SB-182-SOI-040060	REG
SB-183	12/18/2008	0	2	SB-183-SOI-000020	REG
SB-183	12/18/2008	2	4	SB-183-SOI-020040	REG
SB-183	12/18/2008	2	4	SB-183-SOI-020040-D	FD
SB-142	12/19/2008	0	2	SB-142-SOI-000020	REG

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
SB-142	12/19/2008	2	4	SB-142-SOI-020040	REG
SB-147	12/19/2008	0	2	SB-147-SOI-000020	REG
SB-147	12/19/2008	2	4	SB-147-SOI-020040	REG
SB-150	12/19/2008	0	4	SB-150-SOI-000040	REG
SB-150	12/19/2008	0	4	SB-150-SOI-000040-D	FD
SB-151	12/19/2008	0	2.5	SB-151-SOI-000025	REG
SB-151	12/19/2008	2.5	4	SB-151-SOI-025040	REG
SB-152	12/19/2008	0	3	SB-152-SOI-000030	REG
SB-153	12/19/2008	0	4	SB-153-SOI-000040	REG
SB-153	12/19/2008	0	4	SB-153-SOI-000040-D	FD
SB-153	12/19/2008	6	8	SB-153-SOI-060080	REG
SB-154	12/19/2008	0	4	SB-154-SOI-000040	REG
SB-154	12/19/2008	6	8	SB-154-SOI-060080	REG
SB-155	12/19/2008	0	2	SB-155-SOI-000020	REG
SB-155	12/19/2008	2	4	SB-155-SOI-020040	REG
SB-156	12/19/2008	1	4	SB-156-SOI-010040	REG
SB-156	12/19/2008	5	6	SB-156-SOI-050060	REG
SB-157	12/19/2008	0	2	SB-157-SOI-000020	REG
SB-157	12/19/2008	2	4	SB-157-SOI-020040	REG
SB-157	12/19/2008	2	4	SB-157-SOI-020040-D	FD
SB-158	12/19/2008	0	2	SB-158-SOI-000020	REG
SB-158	12/19/2008	2	4	SB-158-SOI-020040	REG
SB-184	12/19/2008	0	2	SB-184-SOI-000020	REG
SB-184	12/19/2008	2	4	SB-184-SOI-020040	REG
SB-185	12/19/2008	0	3	SB-185-SOI-000030	REG
SB-185	12/19/2008	3	4	SB-185-SOI-030040	REG
SB-103	12/23/2008	0	2	SB-192-SOI-000020	REG
SB-192	12/23/2008	2	4	SB-192-SOI-000020	REG
SB-192	12/23/2008	0	3	SB-192-SOI-020040 SB-193-SOI-000030	REG
SB-193	12/23/2008	3	4	SB-193-SOI-000030	REG
SB-193	12/23/2008	0	3	SB-193-SOI-030040 SB-194-SOI-000030	REG
SB-194	12/23/2008	3	4	SB-194-SOI-000030	REG
SB-194	12/23/2008	0	3	SB-194-SOI-030040 SB-195-SOI-000030	REG
SB-195	12/23/2008	0	2	SB-195-SOI-000030	REG
SB-190	12/23/2008	2	4	SB-196-SOI-000020 SB-196-SOI-020040	REG
SB-197	12/23/2008	0	4	SB-197-SOI-000040	REG
SB-197	12/23/2008	0	4	SB-197-SOI-000040-D	FD
SB-197	12/23/2008	6	8	SB-197-SOI-060080	REG
SB-198	12/23/2008	0	4	SB-198-SOI-000040	REG
SB-198	12/23/2008	4	6	SB-198-SOI-040060	REG
SB-199	12/23/2008	0	4	SB-199-SOI-000040	REG
SB-199	12/23/2008	6	8	SB-199-SOI-060080	REG
SB-200	12/23/2008	0	3	SB-200-SOI-000030	REG
SB-200	12/23/2008	3	4	SB-200-SOI-030040	REG
SB-201	12/29/2008	0	2	SB-201-SOI-000020	REG
SB-201	12/29/2008	2	4	SB-201-SOI-020040	REG
SB-202	12/29/2008	0	2	SB-202-SOI-000020	REG
SB-202	12/29/2008	2	4	SB-202-SOI-020040	REG
SB-202	12/29/2008	2	4	SB-202-SOI-020040-D	FD
SB-203	12/29/2008	0	2	SB-203-SOI-000020	REG
SB-203	12/29/2008	2	4	SB-203-SOI-020040	REG
SB-204	12/29/2008	0	2	SB-204-SOI-000020	REG

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
SB-204	12/29/2008	2	4	SB-204-SOI-020040	REG
SB-205	12/29/2008	0	2	SB-205-SOI-000020	REG
SB-205	12/29/2008	2	4	SB-205-SOI-020040	REG
SB-206	12/29/2008	0	2	SB-206-SOI-000020	REG
SB-206	12/29/2008	2	4	SB-206-SOI-020040	REG
SB-212	6/17/2009	2.5	4	SB-212-SOI-025040	REG
SB-215	6/17/2009	6	8	SB-215-SOI-060080	REG
SB-215	6/17/2009	6	8	SB-215-SOI-060080-D	FD
SB-217	6/17/2009	2	4	SB-217-SOI-020040	REG
SB-217	6/17/2009	4	7	SB-217-SOI-040070	REG
SB-218	6/17/2009	2	4	SB-218-SOI-020040	REG
SB-218	6/17/2009	6	7	SB-218-SOI-060070	REG
SB-219	6/17/2009	3	4	SB-219-SOI-030040	REG
SB-219	6/17/2009	6	8	SB-219-SOI-060080	REG
SB-220	6/18/2009	2	4	SB-220-SOI-020040	REG
SB-221	6/18/2009	1.5	3	SB-221-SOI-015030	REG
SB-222	6/18/2009	1.5	3	SB-222-SOI-015030	REG
SB-223	6/18/2009	3	4	SB-223-SOI-030040	REG
SB-224	6/18/2009	5.5	7	SB-224-SOI-050070	REG
SB-224	6/18/2009	5.5	7	SB-224-SOI-050070-D	FD
SB-225	6/18/2009	6	7	SB-225-SOI-060070	REG
SB-226	6/18/2009	1.5	3	SB-226-SOI-000070	REG
SB-220	6/18/2009	6.5	8	SB-227-SOI-065080	REG
SB-228	6/18/2009	3	4	SB-228-SOI-0030040	REG
SB-220	6/18/2009	7	8	SB-229-SOI-030040	REG
SB-229 SB-230	6/18/2009	7	8	SB-229-SOI-070080	REG
SB-230	6/18/2009	7	8	SB-231-SOI-070080	REG
SB-231	6/18/2009	5.5	7	SB-232-SOI-070080	REG
SB-232	6/19/2009	2	4	SB-232-SOI-055070 SB-235-SOI-020040	REG
SB-235	6/19/2009	2	4	SB-235-SOI-020040 SB-236-SOI-020040	REG
SB-230	6/19/2009	3.5	4	SB-230-SOI-020040 SB-237-SOI-035040	REG
SB-237	6/19/2009		8	SB-237-SOI-035040 SB-238-SOI-070080	REG
SB-238	6/19/2009	3	0 4	SB-239-SOI-070080	REG
		3.5	4	SB-240-SOI-030040	
SB-240	6/19/2009	5	6		REG REG
SB-241 SB-242	6/19/2009	7	8	SB-241-SOI-050060 SB-242-SOI-070080	
	6/19/2009		-	SB-242-SOI-070080 SB-243-SOI-060070	REG
SB-243	6/19/2009	6	8		REG
SB-244	6/19/2009	6 5	7 6	SB-244-SOI-060070 SB-245-SOI-050060	REG
SB-245	6/19/2009				REG
SB-246	6/19/2009	3	4	SB-246-SOI-030040	REG
DMT-10S	12/6/2005	8	10	SODMT10S-0810	REG
DMT-9S	12/7/2005	6	8	SODMT9S-0608	REG
DMT-6S	12/9/2005	8	10	SODMT6S-0810	REG
DMT-1S	12/11/2005	6	8	SODMT1S-0608	REG
DMT-38M	11/28/2006	8	10	DMT-38M-SOI-0810	REG
DMT-35M	12/4/2006	8	9	DMT-35M-SOI-0809	REG
DMT-32S	12/6/2006	4	6	DMT-32S-SOI-0406	REG
B-127	2/8/2007	4	5.5	B-127-SOI-0406	REG
B-127	2/8/2007	6	10	B-127-SOI-0610	REG
B-128	2/12/2007	2	4	B-128-SOI-0204	REG
B-128	2/12/2007	4	5.5	B-128-SOI-0406	REG
TPZ-25	2/13/2007	5	5.5	TPZ-25-SOI-0405	REG

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
TPZ-25	2/13/2007	5.5	6	TPZ-25-SOI-0506	REG
TPZ-26	2/13/2007	3.5	5	TPZ-26-SOI-0405	REG
TPZ-27	2/14/2007	4.5	9.5	TPZ-27-SOI-0510	REG
TPZ-28	2/14/2007	3	3.5	TPZ-28-SOI-0304	REG
TPZ-29	2/15/2007	3.5	5	TPZ-29-SOI-0305-D	FD
TPZ-29	2/15/2007	5	6.5	TPZ-29-SOI-0507	REG
TPZ-30	2/15/2007	3.5	6	TPZ-30-SOI-0406	REG
TPZ-30	2/15/2007	3.5	6	TPZ-30-SOI-0406-D	FD
DMT-39S	2/16/2007	4	7.5	DMT-39S-SOI-0407	REG
TPZ-31	2/16/2007	5	6	TPZ-31-SOI-0506	REG
TPZ-31	2/16/2007	6	10	TPZ-31-SOI-0610	REG
TPZ-32	2/17/2007	4	5	TPZ-32-SOI-0405	REG
TPZ-32	2/17/2007	5	7	TPZ-32-SOI-0507	REG
SBA-F-1	6/28/2007	5	6	SBA-F-1-SOI-050060-A	REG
SBA-F-1	6/28/2007	6.5	7.5	SBA-F-1-SOI-065075-A	REG
SBA-H-1	6/30/2007	2	3	SBA-H-1-SOI-020030-A	REG
SBA-H-1	6/30/2007	4	5	SBA-H-1-SOI-040050-A	REG
SBA-H-1	6/30/2007	5.5	6	SBA-H-1-SOI-055060-A	REG
SBA-H-1	6/30/2007	6	8	SBA-H-1-SOI-060080-A	REG
SBA-F-3	7/2/2007	4	5	SBA-F-3-SOI-040050-A	REG
SBA-F-3	7/2/2007	9	10	SBA-F-3-SOI-090100-A	REG
SBA-D-1	7/10/2007	6	7	SBA-D-1-SOI-060070-A	REG
SBA-D-1	7/10/2007	8	9	SBA-D-1-SOI-080090-A	REG
SBA-D-4	7/12/2007	6	7	SBA-D-4-SOI-060070-A	REG
SBA-D-4	7/12/2007	8	9	SBA-D-4-SOI-080090-A	REG
SBA-D-5	7/12/2007	6	7	SBA-D-5-SOI-060070-A	REG
SBA-D-5	7/12/2007	7	8	SBA-D-5-SOI-070080-A	REG
TT1	7/12/2007	5.5	5.7	TT1-SOI-S22-055057-A	REG
TT1	7/12/2007	5.5	6.2	TT1-SOI-S30-055062-A	REG
SBA-F-5	7/13/2007	4	8	SBA-F-5-SOI-040080-A	REG
SBA-F-5	7/13/2007	9	10	SBA-F-5-SOI-090100-A	REG
SBA-H-4	7/13/2007	6	7	SBA-H-4-SOI-060070-A	REG
SBA-H-4	7/13/2007	8	9	SBA-H-4-SOI-080090-A	REG
SBA-H-4	7/13/2007	8	9	SBA-H-4-SOI-080090-AD	FD
SBA-H-6	7/13/2007	6	7	SBA-H-6-SOI-060070-A	REG
SBA-H-6	7/13/2007	8	9	SBA-H-6-SOI-080090-A	REG
TT1	7/16/2007	0.8	1.6	TT1-SOI-S09N-008016-A	REG
TT1	7/16/2007	1.6	2.4	TT1-SOI-S09N-016024-AD	FD
TT1	7/16/2007	1.6	2.8	TT1-SOI-S25N-016028-A	REG
TT1	7/16/2007	2.4	3.9	TT1-SOI-S09N-024039-A	REG
TT1	7/16/2007	2.8	3.6	TT1-SOI-S25N-028036-A	REG
TT1	7/16/2007	3.6	4.1	TT1-SOI-S25N-036041-A	REG
TT1	7/16/2007	4.1	4.7	TT1-SOI-S25N-041047-A	REG
TT1	7/16/2007	4.5	5	TT1-SOI-S09N-045050-A	REG
TT1	7/16/2007	4.7	4.8	TT1-SOI-S25N-047048-A	REG
TT1	7/16/2007	4.8	5	TT1-SOI-S25N-048050-A	REG
TT1	7/16/2007	5	5.1	TT1-SOI-S09N-050051-A	REG
TT1	7/16/2007	5.1	5.5	TT1-SOI-S09N-051055-A	REG
TT1	7/16/2007	5.5	6	TT1-SOI-S25N-055060-A	REG
TT1	7/16/2007	5.7	6	TT1-SOI-S09N-057060-A	REG
TT1	7/16/2007	6	6.5	TT1-SOI-S25N-060065-A	REG
TT1	7/16/2007	6.2	7	TT1-SOI-S09N-062070-A	REG

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
TT1	7/16/2007	7.5	7.5	TT1-SOI-S09N-075075-A	REG
TT1	7/16/2007	7.5	7.8	TT1-SOI-S09N-075078-A	REG
TT1	7/16/2007	8	9	TT1-SOI-S09N-080090-A	REG
TT1	7/16/2007	8	9	TT1-SOI-S45N-080090-A	REG
TT1	7/16/2007	8	9	TT1-SOI-S09N-080090-AD	FD
TT1	7/16/2007	8.1	8.5	TT1-SOI-S25N-081085-A	REG
TT1	7/16/2007	8.6	8.7	TT1-SOI-S25N-086087-A	REG
TT1	7/16/2007	8.7	9.2	TT1-SOI-S25N-087092-A	REG
DMT-53US	7/26/2007	8	9	DMT-53US-SOI-080090-A	REG
SBA-I-1	8/6/2007	9	9.5	SBA-I-1-SOI-090095-A	REG
SBA-I-1	8/6/2007	9.5	10	SBA-I-1-SOI-095100-A	REG
SBA-I-2	8/6/2007	8	9	SBA-I-2-SOI-080090-A	REG
CSG-2	8/9/2007	2	3.5	CSG-2-SOI-020035-A	REG
CSG-2	8/9/2007	3.5	4	CSG-2-SOI-035040-A	REG
CSG-2	8/9/2007	5	6	CSG-2-SOI-050060-A	REG
CSG-1	8/10/2007	2	3	CSG-1-SOI-020030-A	REG
CSG-1	8/10/2007	3	4	CSG-1-SOI-030040-A	REG
CSG-1	8/10/2007	4	4.5	CSG-1-SOI-040045-A	REG
CSG-1	8/10/2007	4.5	5	CSG-1-SOI-045050-A	REG
CSG-1	8/10/2007	5.5	6.5	CSG-1-SOI-055065-A	REG
CSG-1	8/10/2007	8	10	CSG-1-SOI-080100-A	REG
SBA-F-6	9/8/2007	2	6	SBA-F-6-SOI-020060-A	REG
SBA-F-6	9/8/2007	8.5	10	SBA-F-6-SOI-085100-A	REG
SBA-H-7	9/8/2007	2	8	SBA-H-7-SOI-020080-A	REG
DMT-71US	10/12/2008	1	4	DMT-71US-SOI-0104	REG
DMT-65US	10/14/2008	6	10	DMT-65US-SOI-0610	REG
DMT-64US	10/23/2008	6	10	DMT-64US-SOI-0610	REG
DMT-70US	10/25/2008	6	10	DMT-70US-SOI-0610	REG
DMT-66US	10/26/2008	6	10	DMT-66US-SOI-0610	REG
DMT-69US	11/5/2008	2	6	DMT-69US-SOI-0206	REG
DMT-67US	11/7/2008	2	6	DMT-67US-SOI-0206	REG
DMT-68US	11/8/2008	2	6	DMT-68US-SOI-0206	REG
NS2-C1	1/5/2009	2.5	2.5	DMT-NS2-CF-C1-01	REG
NS2-C2	1/5/2009	3	3	DMT-NS2-CF-C2-01	REG
NS2-E1	1/5/2009	0	2.5	DMT-NS2-SWC-E1-01	REG
NS2-E1	1/5/2009	0	2.5	DMT-NS2-SWC-E1-01-D	FD
NS2-E2	1/5/2009	0	2	DMT-NS2-SWC-E2-01	REG
NS2-S1	1/5/2009	0	1	DMT-NS2-SWC-S1-01	REG
NS2-C3	1/6/2009	4	4	DMT-NS2-CF-C3-01	REG
NS2-C4	1/6/2009	2.5	2.5	DMT-NS2-CF-C4-01	REG
NS2-E3	1/6/2009	0	2	DMT-NS2-SWC-E3-01	REG
NS2-E4	1/6/2009	0	2	DMT-NS2-SWC-E4-01	REG
NS2-C5	1/7/2009	3	3	DMT-NS2-CF-C5-01	REG
NS2-C6	1/7/2009	3	3	DMT-NS2-CF-C6-01	REG
NS2-E5	1/7/2009	0	2.5	DMT-NS2-SWC-E5-01	REG
NS2-E6	1/7/2009	0	2.5	DMT-NS2-SWC-E6-01	REG
NS2-C7	1/8/2009	2.5	2.5	DMT-NS2-CF-C7-01	REG
NS2-E7	1/8/2009	0	2	DMT-NS2-SWC-E7-01	REG
NS2-E7	1/8/2009	0	2	DMT-NS2-SWC-E7-01-D	FD
NS2-C8	1/12/2009	2	2	DMT-NS2-CF-C8-01	REG
NS2-C9	1/12/2009	4	4	DMT-NS2-CF-C9-01	REG
NS2-E8	1/12/2009	0	1.5	DMT-NS2-SWC-E8-01	REG

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
NS2-E9	1/12/2009	0	3	DMT-NS2-SWC-E9-01	REG
NS2-C10	1/13/2009	3	3	DMT-NS2-CF-C10-01	REG
NS2-E10	1/13/2009	0	2	DMT-NS2-SWC-E10-01	REG
NS2-C11	1/14/2009	2	2	DMT-NS2-CF-C11-01	REG
NS2-E11	1/14/2009	0	1.5	DMT-NS2-SWC-E11-01	REG
NS2-E11	1/14/2009	0	1.5	DMT-NS2-SWC-E11-01-D	FD
NS2-N1	1/14/2009	0	1.5	DMT-NS2-SWC-N1-01	REG
NS2-C12	1/20/2009	4	4	DMT-NS2-CF-C12-01	REG
NS2-C13	1/20/2009	2.5	2.5	DMT-NS2-CF-C13-01	REG
Area 1501/1602 JMDMT-1	5/19/2009	0	0.5	JMDMT-1	REG
Area 1501/1602 JMDMT-2	5/19/2009	0	0.5	JMDMT-2	REG
Area 1501/1602 JMDMT-3	5/19/2009	0	0.5	JMDMT-3	REG
Area 1501/1602 JMDMT-4	5/19/2009	0	0.5	JMDMT-4	REG
Area 1501/1602 JMDMT-5	5/19/2009	0	0.5	JMDMT-5	REG
Area 1501/1602 JMDMT-6	5/19/2009	0	0.5	JMDMT-6	REG
Area 1501/1602 JMDMT-6	5/19/2009	0	0.5	JMDMT-6-D	FD
SB-12+95	6/9/2009	4	5	NS-SOI-12+95-01	REG
SB-13+30	6/9/2009	4	5	NS-SOI-13+30-01	REG
SB-13+70	6/9/2009	4	5	NS-SOI-13+70-01	REG
SB-213	6/17/2009	0	1	SB-213-SOI-000010	REG
SB-213	6/17/2009	1	4	SB-213-SOI-010040	REG
SB-214	6/17/2009	0	3	SB-214-SOI-000030	REG
SB-214	6/17/2009	5	8	SB-214-SOI-050080	REG
Station 27 SB-207	6/17/2009	2.5	4	SB-207-SOI-025040	REG
Station 27 SB-208	6/17/2009	1	3	SB-208-SOI-010030	REG
Station 27 SB-209	6/17/2009	2	4	SB-209-SOI-020040	REG
Station 27 SB-210	6/17/2009	1	3	SB-210-SOI-010030	REG
Station 27 SB-211	6/17/2009	2	4	SB-211-SOI-020040	REG
Station 27 SB-233	6/18/2009	3.5	4	SB-233-SOI-035040	REG
Station 27 SB-234	6/18/2009	3.5	4	SB-234-SOI-035040	REG
INC-11	10/22/2006	8	10	INC-11-SOI-0810	REG
INC-13	10/22/2006	7	9	INC-13-SOI-0709	REG
INC-16	10/22/2006	8.2	8.4	INC-16-SOI-0808	REG
INC-21	10/22/2006	5.7	6.1	INC-21-SOI-0506	REG
INC-22	10/22/2006	1.5	2.5	INC-22-SOI-0102	REG
INC-17	10/25/2006	4	6	INC-17-SOI-0406	REG
INC-18	10/25/2006	5	8	INC-18-SOI-0508	REG
INC-18	10/25/2006	8	10	INC-18-SOI-0810	REG
INC-18	10/25/2006	8	10	INC-18-SOI-0810-D	FD
INC-23	11/3/2006	6	8	INC-23-SOI-0608	REG
INC-14	11/7/2006	6	8	INC-14-SOI-0608	REG
INC-20	11/7/2006	5	6	INC-20-SOI-0506	REG
INC-5	11/7/2006	5	7	INC-5-SOI-0507	REG
INC-5	11/7/2006	8	10	INC-5-SOI-0810	REG
INC-4	12/4/2006	8.5	9	INC-4-SOI-0809	REG
INC-18	12/15/2006	8.7	8.8	INC-18-SOI-0808	REG
INC-18	12/15/2006	9.8	9.9	INC-18-SOI-0909	REG
INC-8	12/16/2006	7	8	INC-8-SOI-0708	REG
INC-9	1/8/2007	5	5.4	INC-9-SOI-0505-3	REG
INC-9	1/8/2007	5.4	5.4	INC-9-SOI-0505-2	REG
INC-9	1/8/2007	5.5	5.9	INC-9-SOI-0606	REG
INC-I-1	8/6/2007	9	10	INC-I-1-SOI-090100-A	REG

Total Soil (0-10 feet) Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Leastien ID	Collection Date	Ctart Danth		Field Comple ID	Durran
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
C1	12/11/2008	2.5	2.5	DMT-NS-CF-C1-01	REG
E1	12/11/2008	0	2.5	DMT-NS-SWC-E1-01	REG
N1	12/11/2008	0	2.5	DMT-NS-SWC-N1-01	REG
N1	12/11/2008	0	2.5	DMT-NS-SWC-N1-01D	FD
S1	12/11/2008	0	2.5	DMT-NS-SWC-S1-01	REG
W1	12/11/2008	0	2.5	DMT-NS-SWC-W1-01	REG
SB-167	12/17/2008	0	2	SB-167-SOI-000020	REG
SB-167	12/17/2008	2	4	SB-167-SOI-020040	REG
SB-172	12/17/2008	0	2	SB-172-SOI-000020	REG
SB-172	12/17/2008	2	4	SB-172-SOI-020040	REG
SB-174	12/17/2008	0	2	SB-174-SOI-000020	REG
SB-174	12/17/2008	0	2	SB-174-SOI-000020-D	FD
SB-174	12/17/2008	2	4	SB-174-SOI-020040	REG
SB-177	12/18/2008	0	2	SB-177-SOI-000020	REG
SB-177	12/18/2008	2	4	SB-177-SOI-020040	REG
SB-178	12/18/2008	0	2	SB-178-SOI-000020	REG
SB-178	12/18/2008	2	4	SB-178-SOI-020040	REG

Note:

Sample depth is presented in feet. Reg - Normal sample FD - Field Duplicate

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air2	9/5/2007	Air2-090507T	REG	
Air2C	9/5/2007	AirC-090507T	FD	
Air3	9/5/2007	Air3-090507T	REG	
Air4	9/5/2007	Air4-090507T	REG	
Air5	9/5/2007	Air5-090507T	REG	Х
Air6	9/5/2007	Air6-090507T	REG	Х
Air7	9/5/2007	Air7-090507T	REG	
Air8	9/5/2007	Air8-090507T	REG	Х
Air9	9/5/2007	Air9-090507T	REG	
Air1	9/13/2007	Air1-091307T	REG	
Air2	9/13/2007	Air2-091307T	REG	
Air2C	9/13/2007	AirC-091307T	FD	
Air3	9/13/2007	Air3-091307T	REG	
Air3	9/13/2007	Air4-091307T	REG	
Air5	9/13/2007	Air5-091307T	REG	X
Air6	9/13/2007	Air6-091307T	REG	X
Air7	9/13/2007	Air7-091307T	REG	^
Air8	9/13/2007	Air8-091307T	REG	Х
-			REG	^
Air9	9/13/2007	Air9-091307T	-	V
Air1	9/21/2007	Air1-092107T	REG	X
Air2	9/21/2007	Air2-092107T	REG	
Air3	9/21/2007	Air3-092107T	REG	
Air4	9/21/2007	Air4-092107T	REG	
Air5	9/21/2007	Air5-092107T	REG	
Air6	9/21/2007	Air6-092107T	REG	
Air7	9/21/2007	Air7-092107T	REG	
Air8	9/21/2007	Air8-092107T	REG	X
Air8C	9/21/2007	AirC-092107T	FD	X
Air9	9/21/2007	Air9-092107T	REG	Х
Air1	9/25/2007	Air1-092507T	REG	Х
Air2	9/25/2007	Air2-092507T	REG	
Air3	9/25/2007	Air3-092507T	REG	
Air4	9/25/2007	Air4-092507T	REG	
Air5	9/25/2007	Air5-092507T	REG	
Air6	9/25/2007	Air6-092507T	REG	Х
Air6C	9/25/2007	AirC-092507T	FD	Х
Air7	9/25/2007	Air7-092507T	REG	
Air8	9/25/2007	Air8-092507T	REG	Х
Air9	9/25/2007	Air9-092507T	REG	Х
Air1	10/3/2007	Air1-100307T	REG	Х
Air2	10/3/2007	Air2-100307T	REG	Х
Air3	10/3/2007	Air3-100307T	REG	
Air4	10/3/2007	Air4-100307T	REG	
Air5	10/3/2007	Air5-100307T	REG	
Air5C	10/3/2007	AirC-100307T	FD	1
Air6	10/3/2007	Air6-100307T	REG	1
Air7	10/3/2007	Air7-100307T	REG	
Air8	10/3/2007	Air8-100307T	REG	Х
Air9	10/3/2007	Air9-100307T	REG	X
Air1	10/11/2007	Air1-101107T	REG	
Air2	10/11/2007	Air2-101107T	REG	1
Air3	10/11/2007	Air3-101107T	REG	+

	Collection			Used for
Location ID	Date	Field Sample ID	Purpose	Background
Air4	10/11/2007	Air4-101107T	REG	
Air5	10/11/2007	Air5-101107T	REG	Х
Air6	10/11/2007	Air6-101107T	REG	Х
Air7	10/11/2007	Air7-101107T	REG	
Air8	10/11/2007	Air8-101107T	REG	
Air1	10/19/2007	Air1-101907T	REG	
Air5	10/19/2007	Air5-101907T	REG	Х
Air1	10/23/2007	Air1-102307T	REG	Х
Air2	10/23/2007	Air2-102307T	REG	
Air2C	10/23/2007	AirC-102307T	FD	
Air3	10/23/2007	Air3-102307T	REG	
Air4	10/23/2007	Air4-102307T	REG	
Air5	10/23/2007	Air5-102307T	REG	
Air6	10/23/2007	Air6-102307T	REG	Х
Air7	10/23/2007	Air7-102307T	REG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Air8	10/23/2007	Air8-102307T	REG	Х
Air1	10/31/2007	Air1-103107T	REG	X
Air2	10/31/2007	Air2-103107T	REG	~
Air3	10/31/2007	Air3-103107T	REG	
Air4	10/31/2007	Air4-103107T	REG	
Air5	10/31/2007	Air5-103107T	REG	
Air6	10/31/2007	Air6-103107T	REG	X
Airo Air7	10/31/2007	Air7-103107T	REG	^
Air 7 Air 8	10/31/2007	Air8-103107T	REG	X
Air8C	10/31/2007	AirC-103107T	FD	X
Air9	10/31/2007	Air9-103107T	REG	X
Air9 Air1	11/8/2007	Air1-110807T	REG	^
Air1 Air2	11/8/2007		REG	
	11/8/2007	Air2-110807T Air3-110807T	REG	
Air3				
Air4	11/8/2007	Air4-110807T	REG	N N
Air5	11/8/2007	Air5-110807T	REG	X
Air6	11/8/2007	Air6-110807T	REG	X
Air6C	11/8/2007	AirC-110807T	FD	Х
Air7	11/8/2007	Air7-110807T	REG	-
Air8	11/8/2007	Air8-110807T	REG	
Air9	11/8/2007	Air9-110807T	REG	
Air1	11/20/2007	Air1-112007T	REG	X
Air2	11/20/2007	Air2-112007T	REG	X
Air3	11/20/2007	Air3-112007T	REG	X
Air4	11/20/2007	Air4-112007T	REG	Х
Air5	11/20/2007	Air5-112007T	REG	
Air6	11/20/2007	Air6-112007T	REG	
Air7	11/20/2007	Air7-112007T	REG	
Air8	11/20/2007	Air8-112007T	REG	
Air8C	11/20/2007	AirC-112007T	FD	
Air9	11/20/2007	Air9-112007T	REG	
Air1	11/28/2007	Air1-112807T	REG	
Air2	11/28/2007	Air2-112807T	REG	
Air3	11/28/2007	Air3-112807T	REG	
Air4	11/28/2007	Air4-112807T	REG	
Air5	11/28/2007	Air5-112807T	REG	Х
Air6	11/28/2007	Air6-112807T	REG	

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air7	11/28/2007	Air7-112807T	REG	
Air7C	11/28/2007	AirC-112807T	FD	
Air8	11/28/2007	Air8-112807T	REG	
Air9	11/28/2007	Air9-112807T	REG	1
Air1	12/7/2007	Air1-120707T	REG	1
Air2	12/7/2007	Air2-120707T	REG	
Air3	12/7/2007	Air3-120707T	REG	Х
Air4	12/7/2007	Air4-120707T	REG	
Air5	12/7/2007	Air5-120707T	REG	Х
Air5C	12/7/2007	AirC-120707T	FD	Х
Air6	12/7/2007	Air6-120707T	REG	
Air7	12/7/2007	Air7-120707T	REG	
Air8	12/7/2007	Air8-120707T	REG	
Air1	12/19/2007	Air1-121907T	REG	
Air2	12/19/2007	Air2-121907T	REG	
Air3	12/19/2007	Air3-121907T	REG	
Air4	12/19/2007	Air4-121907T	REG	
Air4C	12/19/2007	AirC-121907T	FD	
Air5	12/19/2007	Air5-121907T	REG	Х
Air6	12/19/2007	Air6-121907T	REG	Λ
Air7	12/19/2007	Air7-121907T	REG	
Air8	12/19/2007	Air8-121907T	REG	-
Airo Air1	12/19/2007	Air1-122807T	REG	Х
Air 1 Air 2	12/28/2007	Air2-122807T	REG	^
			REG	
Air3 Air3C	12/28/2007	Air3-122807T	FD	
Air3C	12/28/2007 12/28/2007	AirC-122807T Air4-122807T	REG	
			REG	
Air5	12/28/2007 12/28/2007	Air5-122807T Air6-122807T	REG	
Air6				
Air7	12/28/2007	Air7-122807T	REG	V
Air8	12/28/2007	Air8-122807T	REG	Х
Air9	12/28/2007	Air9-122807T	REG	
Air1	1/3/2008	Air1-010308T	REG	
Air2	1/3/2008	Air2-010308T	REG	
Air2C	1/3/2008	AirC-010308T	FD	
Air3	1/3/2008	Air3-010308T	REG	
Air4	1/3/2008	Air4-010308T	REG	
Air5	1/3/2008	Air5-010308T	REG	Х
Air6	1/3/2008	Air6-010308T	REG	
Air7	1/3/2008	Air7-010308T	REG	
Air8	1/3/2008	Air8-010308T	REG	
Air9	1/3/2008	Air9-010308T	REG	
Air1	1/8/2008	Air1-010808T	REG	X
Air2	1/8/2008	Air2-010808T	REG	Х
Air3	1/8/2008	Air3-010808T	REG	Х
Air4	1/8/2008	Air4-010808T	REG	Х
Air5	1/8/2008	Air5-010808T	REG	
Air6	1/8/2008	Air6-010808T	REG	
Air7	1/8/2008	Air7-010808T	REG	
Air8	1/8/2008	Air8-010808T	REG	Х
Air8C	1/8/2008	AirC-010808T	FD	Х
Air9	1/8/2008	Air9-010808T	REG	

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air1	1/16/2008	Air1-011608T	REG	
Air2	1/16/2008	Air2-011608T	REG	
Air3	1/16/2008	Air3-011608T	REG	
Air4	1/16/2008	Air4-011608T	REG	
Air5	1/16/2008	Air5-011608T	REG	
Air7	1/16/2008	Air7-011608T	REG	
Air8	1/16/2008	Air8-011608T	REG	
Air8C	1/16/2008	AirC-011608T	FD	
Air9	1/16/2008	Air9-011608T	REG	
Air1	1/24/2008	Air1-012408T	REG	
Air2	1/24/2008	Air2-012408T	REG	
Air3	1/24/2008	Air3-012408T	REG	
Air4	1/24/2008	Air4-012408T	REG	
Air5	1/24/2008	Air5-012408T	REG	Х
Air6	1/24/2008	Air6-012408T	REG	X
Air6C	1/24/2008	AirC-012408T	FD	X
Air7	1/24/2008	Air7-012408T	REG	~
Air8	1/24/2008	Air8-012408T	REG	
Air9	1/24/2008	Air9-012408T	REG	
Air1	1/31/2008	Air1-013108T	REG	
Air2	1/31/2008	Air2-013108T	REG	
Air2	1/31/2008	Air3-013108T	REG	
Air3	1/31/2008	Air3-0131081	REG	
Air5	1/31/2008	Air5-013108T	REG	
Air6	1/31/2008	Air6-013108T	REG	
Airo	1/31/2008	Air7-013108T	REG	-
Air7C	1/31/2008	AirC-013108T	FD	-
Air8	1/31/2008	Air8-013108T	REG	
Air9	1/31/2008	Air9-013108T	REG	-
Air 9 Air 1	2/8/2008	Air1-020808T	REG	
Air2	2/8/2008	Air2-020808T	REG	
Air3	2/8/2008	Air3-020808T	REG	
Air3	2/8/2008	Air4-020808T	REG	
Air5	2/8/2008	Air5-020808T	REG	X
Air5 Air5C	2/8/2008	AirC-020808T	FD	X
Air6	2/8/2008	Air6-020808T	REG	X
Airo Air7	2/8/2008	Air7-020808T	REG	^
Air8	2/8/2008	Air8-020808T	REG	X
Air9			REG	<u> </u>
Air9 Air1	2/8/2008 2/12/2008	Air9-020808T Air1-021208T	REG	+
Air1 Air2	2/12/2008	Air2-0212081	REG	+
Air2	2/12/2008	Air3-021208T	REG	
Air3	2/12/2008	Air3-0212081 Air4-021208T	REG	-
Air4C	2/12/2008	AirC-021208T	FD	1
Air5	2/12/2008	Air5-0212081	REG	X
	2/12/2008	Air6-021208T	REG	X
Air6				^
Air7	2/12/2008	Air7-021208T	REG	
Air8	2/12/2008	Air8-021208T	REG REG	Х
Air9	2/12/2008	Air9-021208T		X
Air1	2/20/2008	Air1-022008T	REG	^
Air2 Air3	2/20/2008 2/20/2008	Air2-022008T Air3-022008T	REG REG	+

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air3C	2/20/2008	AirC-022008T	FD	
Air4	2/20/2008	Air4-022008T	REG	
Air5	2/20/2008	Air5-022008T	REG	Х
Air6	2/20/2008	Air6-022008T	REG	Х
Air7	2/20/2008	Air7-022008T	REG	
Air8	2/20/2008	Air8-022008T	REG	Х
Air9	2/20/2008	Air9-022008T	REG	X
Air1	2/28/2008	Air1-022808T	REG	
Air2	2/28/2008	Air2-022808T	REG	
Air2C	2/28/2008	AirC-022808T	FD	
Air3	2/28/2008	Air3-022808T	REG	
Air4	2/28/2008	Air4-022808T	REG	
Air5	2/28/2008	Air5-022808T	REG	Х
Air6	2/28/2008	Air6-022808T	REG	X
Air7	2/28/2008	Air7-022808T	REG	Λ
Air8	2/28/2008	Air8-022808T	REG	Х
Air1	3/7/2008	Air1-030708T	REG	~
Air1 Air2	3/7/2008	Air2-030708T	REG	Х
Air2	3/7/2008		REG	X
Air4	3/7/2008	Air3-030708T Air4-030708T	REG	X
Air5			REG	^
	3/7/2008 3/7/2008	Air5-030708T		-
Air6	3/7/2008	Air6-030708T	REG	
Air6C		AirC-030708T	FD	
Air7	3/7/2008	Air7-030708T	REG	
Air1	3/11/2008	Air1-031108T	REG	
Air3	3/11/2008	Air3-031108T	REG	
Air4	3/11/2008	Air4-031108T	REG	
Air5	3/11/2008	Air5-031108T	REG	
Air6	3/11/2008	Air6-031108T	REG	
Air6C	3/11/2008	AirC-031108T	FD	
Air7	3/11/2008	Air7-031108T	REG	
Air9	3/11/2008	Air9-031108T	REG	
Air1	3/21/2008	Air1-032108T	REG	
Air2	3/21/2008	Air2-032108T	REG	
Air3	3/21/2008	Air3-032108T	REG	
Air4	3/21/2008	Air4-032108T	REG	
Air5	3/21/2008	Air5-032108T	REG	Х
Air6	3/21/2008	Air6-032108T	REG	Х
Air7	3/21/2008	Air7-032108T	REG	
Air7C	3/21/2008	AirC-032108T	FD	
Air8	3/21/2008	Air8-032108T	REG	
Air9	3/21/2008	Air9-032108T	REG	
Air1	3/25/2008	Air1-032508T	REG	
Air2	3/25/2008	Air2-032508T	REG	
Air3	3/25/2008	Air3-032508T	REG	
Air4	3/25/2008	Air4-032508T	REG	
Air5	3/25/2008	Air5-032508T	REG	
Air5C	3/25/2008	AirC-032508T	FD	
Air6	3/25/2008	Air6-032508T	REG	
Air7	3/25/2008	Air7-032508T	REG	1
Air8	3/25/2008	Air8-032508T	REG	1
Air9	3/25/2008	Air9-032508T	REG	

	Collection			Used for
Location ID	Date	Field Sample ID	Purpose	Background
Air1	4/3/2008	Air1-040308T	REG	
Air2	4/3/2008	Air2-040308T	REG	
Air3	4/3/2008	Air3-040308T	REG	
Air4	4/3/2008	Air4-040308T	REG	
Air4C	4/3/2008	AirC-040308T	FD	
Air5	4/3/2008	Air5-040308T	REG	Х
Air6	4/3/2008	Air6-040308T	REG	
Air7	4/3/2008	Air7-040308T	REG	
Air8	4/3/2008	Air8-040308T	REG	
Air9	4/3/2008	Air9-040308T	REG	
Air1	4/11/2008	Air1-041108T	REG	Х
Air2	4/11/2008	Air2-041108T	REG	
Air3	4/11/2008	Air3-041108T	REG	
Air3C	4/11/2008	AirC-041108T	FD	
Air4	4/11/2008	Air4-041108T	REG	
Air5	4/11/2008	Air5-041108T	REG	
Air6	4/11/2008	Air6-041108T	REG	
Air7	4/11/2008	Air7-041108T	REG	
Air8	4/11/2008	Air8-041108T	REG	Х
Air1	4/15/2008	Air1-041508T	REG	~~~~~
Air2	4/15/2008	Air2-041508T	REG	
Air2C	4/15/2008	AirC-041508T	FD	
Air3	4/15/2008	Air3-041508T	REG	
Air3	4/15/2008	Air4-041508T	REG	Х
Air5	4/15/2008	Air5-041508T	REG	X
Air6	4/15/2008	Air6-041508T	REG	~
Airo Air7	4/15/2008	Air7-041508T	REG	+
Air8	4/15/2008	Air8-041508T	REG	+
Air0 Air1	4/23/2008	Air1-042308T	REG	Х
Air2	4/23/2008	Air2-042308T	REG	X
Air3	4/23/2008	Air3-042308T	REG	X
Air4	4/23/2008	Air4-042308T	REG	Χ
Air5	4/23/2008	Air5-042308T	REG	
Air6	4/23/2008	Air6-042308T	REG	
Air7	4/23/2008	Air7-042308T	REG	
Air8	4/23/2008	Air8-042308T	REG	
Air8C	4/23/2008	AirC-042308T	FD	
Air9	4/23/2008	Air9-042308T	REG	
Air1	5/1/2008	Air1-050108T	REG	
Air2	5/1/2008	Air2-050108T	REG	
Air3	5/1/2008	Air3-050108T	REG	
Air4	5/1/2008	Air4-050108T	REG	
Air5	5/1/2008	Air5-050108T	REG	
Air6	5/1/2008	Air6-050108T	REG	Х
Air6C	5/1/2008	AirC-050108T	FD	Х
Air7	5/1/2008	Air7-050108T	REG	
Air8	5/1/2008	Air8-050108T	REG	Х
Air9	5/1/2008	Air9-050108T	REG	
Air1	5/14/2008	Air1-051408T	REG	
Air2	5/14/2008	Air2-051408T	REG	Х
Air3	5/14/2008	Air3-051408T	REG	Х
Air4	5/14/2008	Air4-051408T	REG	Х

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air5	5/14/2008	Air5-051408T	REG	Х
Air6	5/14/2008	Air6-051408T	REG	
Air7	5/14/2008	Air7-051408T	REG	
Air8	5/14/2008	Air8-051408T	REG	
Air8C	5/14/2008	AirC-051408T	FD	
Air9	5/14/2008	Air9-051408T	REG	
Air1	5/22/2008	Air1-052208T	REG	
Air2	5/22/2008	Air2-052208T	REG	
Air3	5/22/2008	Air3-052208T	REG	
Air4	5/22/2008	Air4-052208T	REG	
Air5	5/22/2008	Air5-052208T	REG	
Air6	5/22/2008	Air6-052208T	REG	Х
Air7	5/22/2008	Air7-052208T	REG	
Air7C	5/22/2008	AirC-052208T	FD	
Air8	5/22/2008	Air8-052208T	REG	Х
Air9	5/22/2008	Air9-052208T	REG	Λ
Air1	5/30/2008	Air1-053008T	REG	X
Air2	5/30/2008	Air 2-053008T	REG	~
Air3	5/30/2008	Air3-053008T	REG	
Air4	5/30/2008	Air4-053008T	REG	
Air5	5/30/2008	Air5-053008T	REG	
Air5C	5/30/2008	AirC-053008T	FD	
			REG	
Air6 Air7	5/30/2008	Air6-053008T	REG	
	5/30/2008	Air7-053008T	REG	Х
Air8	5/30/2008	Air8-053008T		X
Air9	5/30/2008	Air9-053008T	REG	
Air1	6/26/2008	Air1-062608T	REG	X
Air2	6/26/2008	Air2-062608T	REG	
Air3	6/26/2008	Air3-062608T	REG	
Air4	6/26/2008	Air4-062608T	REG	
Air4C	6/26/2008	AirC-062608T	FD	
Air5	6/26/2008	Air5-062608T	REG	X
Air6	6/26/2008	Air6-062608T	REG	Х
Air7	6/26/2008	Air7-062608T	REG	
Air8	6/26/2008	Air8-062608T	REG	Х
Air9	6/26/2008	Air9-062608T	REG	Х
Air1	7/22/2008	Air1-072208T	REG	
Air2	7/22/2008	Air2-072208T	REG	1
Air3	7/22/2008	Air3-072208T	REG	
Air3C	7/22/2008	AirC-072208T	FD	
Air4	7/22/2008	Air4-072208T	REG	
Air5	7/22/2008	Air5-072208T	REG	
Air6	7/22/2008	Air6-072208T	REG	Х
Air7	7/22/2008	Air7-072208T	REG	
Air8	7/22/2008	Air8-072208T	REG	Х
Air9	7/22/2008	Air9-072208T	REG	
Air1	8/13/2008	Air1-081308T	REG	
Air2	8/13/2008	Air2-081308T	REG	
Air2C	8/13/2008	AirC-081308T	FD	
Air3	8/13/2008	Air3-081308T	REG	1
Air4	8/13/2008	Air4-081308T	REG	
Air5	8/13/2008	Air5-081308T	REG	Х

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air7	8/13/2008	Air7-081308T	REG	
Air8	8/13/2008	Air8-081308T	REG	
Air9	8/13/2008	Air9-081308T	REG	
Air2	1/30/2009	Air2-013009T	REG	
Air2C	1/30/2009	AirC-013009T	FD	
Air3	1/30/2009	Air3-013009T	REG	
Air4	1/30/2009	Air4-013009T	REG	
Air5	1/30/2009	Air5-013009T	REG	Х
Air6	1/30/2009	Air6-013009T	REG	Х
Air7	1/30/2009	Air7-013009T	REG	1
Air8	1/30/2009	Air8-013009T	REG	Х
Air9	1/30/2009	Air9-013009T	REG	
Air1	2/17/2009	Air1-021709T	REG	
Air2	2/17/2009	Air2-021709T	REG	
Air3	2/17/2009	Air3-021709T	REG	
Air5	2/17/2009	Air5-021709T	REG	Х
Air6	2/17/2009	Air6-021709T	REG	X
Air7	2/17/2009	Air7-021709T	REG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Air8	2/17/2009	Air8-021709T	REG	
Air8C	2/17/2009	AirC-021709T	FD	
Air1	3/18/2009	Air1-031809T	REG	
Air2	3/18/2009	Air2-031809T	REG	
Air2	3/18/2009	Air3-031809T	REG	
Air3	3/18/2009	Air3-031809T	REG	
Air4 Air5	3/18/2009	Air5-031809T	REG	-
Air6	3/18/2009	Air6-031809T	REG	
Air6C	3/18/2009	AirC-031809T	FD	-
Airoc Air7	3/18/2009	Air7-031809T	REG	+
Air8	3/18/2009	Air8-031809T	REG	
-				
Air1	4/17/2009	Air1-041709T	REG	
Air2	4/17/2009	Air2-041709T Air3-041709T	REG REG	
Air3	4/17/2009		-	
Air4	4/17/2009	Air4-041709T	REG	X
Air5	4/17/2009	Air5-041709T	REG	X
Air6	4/17/2009	Air6-041709T	REG	Х
Air7	4/17/2009	Air7-041709T	REG	
Air7C	4/17/2009	AirC-041709T	FD	
Air8	4/17/2009	Air8-041709T	REG	X
Air1	5/19/2009	Air1-051909T	REG	X
Air2	5/19/2009	Air2-051909T	REG	X
Air3	5/19/2009	Air3-051909T	REG	Х
Air4	5/19/2009	Air4-051909T	REG	X
Air5C	5/19/2009	AirC-051909T	FD	Х
Air6	5/19/2009	Air6-051909T	REG	1
Air7	5/19/2009	Air7-051909T	REG	
Air8	5/19/2009	Air8-051909T	REG	
Air9	5/19/2009	Air9-051909T	REG	
Air2	6/26/2009	Air2-062609T	REG	
Air3	6/26/2009	Air3-062609T	REG	
Air4	6/26/2009	Air4-062609T	REG	
Air5	6/26/2009	Air5-062609T	REG	Х
Air6	6/26/2009	Air6-062609T	REG	Х

Air Monitoring Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Collection Date	Field Sample ID	Purpose	Used for Background
Air7	6/26/2009	Air7-062609T	REG	
Air8	6/26/2009	Air8-062609T	REG	Х
Air1	7/16/2009	Air1-071609T	REG	
Air2	7/16/2009	Air2-071609T	REG	
Air3	7/16/2009	Air3-071609T	REG	
Air3C	7/16/2009	AirC-071609T	FD	
Air4	7/16/2009	Air4-071609T	REG	
Air5	7/16/2009	Air5-071609T	REG	
Air6	7/16/2009	Air6-071609T	REG	
Air7	7/16/2009	Air7-071609T	REG	
Air8	7/16/2009	Air8-071609T	REG	

Note:

Reg - Normal sample

FD - Field Duplicate

Non-Priority Drain Stormwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection		
Location ID	Date	Field Sample ID	Purpose
10TH STREET OUTFALL	7/1/2005	10ST_3Q05_DRY_070105-C	REG
10.5TH STREET OUTFALL	9/1/2005	10.5ST_3Q05_DRY_090105-C	REG
11.5TH STREET OUTFALL	9/1/2005	11.5ST_3Q05_DRY_090105-C	REG
11TH STREET OUTFALL	9/1/2005	11ST_3Q05_DRY_090105-C	REG
10.5TH STREET OUTFALL	9/15/2005	10.5ST_3Q05_WET_091505-C	REG
9.5TH STREET OUTFALL	9/15/2005	9.5ST_3Q05_Wet_091505-C	REG
9TH STREET OUTFALL	9/15/2005	9ST_3Q05_Wet_091505-C	REG
11TH STREET OUTFALL	4/30/2007	11.0-MH117-043007	REG
11TH STREET OUTFALL	4/30/2007	11.0-MH118-043007	REG
11.5TH STREET OUTFALL	5/9/2007	11.5-IN136-050907	REG
10.5TH STREET OUTFALL	5/12/2007	10.5-IN116-051207	REG
10.5TH STREET OUTFALL	5/12/2007	10.5-IN123-051207	REG
11TH STREET OUTFALL	10/12/2007	11.0-MH115-101207	REG
11TH STREET OUTFALL	10/12/2007	11.0-MH116-101207	REG
11TH STREET OUTFALL	10/12/2007	11.0-MH117-101207	REG
11TH STREET OUTFALL	10/12/2007	11.0-MH118-101207	REG
10TH STREET OUTFALL	11/30/2007	10.0-MHM1-113007	REG
10TH STREET OUTFALL	11/30/2007	10.0-MHM2-113007	REG
10TH STREET OUTFALL	11/30/2007	10.0-MHM5-113007	REG
10TH STREET OUTFALL	11/30/2007	10.0-MHS1-113007	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHI2-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHM1-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHM2-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHM3-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHM4-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHM6-122107	REG
9TH STREET OUTFALL	12/21/2007	9.0-MHO53-122107	REG

Note:

Reg - Normal sample FD - Field Duplicate

FF

Priority Drain Stormwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Collection Date	Field Sample ID	Purpose
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B1	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B2	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B3	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B4	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B5	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B6	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B7	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B8	REG
14TH STREET OUTFALL	2/26/2004	14ST_1Q04_DRY_022604B8D	FD
14TH STREET OUTFALL	3/5/2004	14ST_1Q04_WET_030504-C	REG
14TH STREET OUTFALL	8/24/2004	DMT14th08242004-F10	REG
14TH STREET OUTFALL	8/24/2004	DMT14th08242004-F45	REG
14TH STREET OUTFALL	1/7/2005	14_ST_1Q05_WET_010705-C	REG
15N STREET OUTFALL	1/7/2005	15N_ST_1Q05_WET_010705-C	REG
15S STREET OUTFALL	1/7/2005	15S_ST_1Q05_WET_010705-C	REG
12.5TH STREET OUTFALL	2/15/2005	12_5ST_1Q05_WET_021505-D	FD
13.5TH STREET OUTFALL	3/9/2005	 13_5ST_1Q05_Wet_030905-C	REG
14TH STREET OUTFALL	3/16/2005	14_ST_1Q05_DRY_031605B1	REG
14TH STREET OUTFALL	3/16/2005	14_ST_1Q05_DRY_031605B2	REG
14TH STREET OUTFALL	3/16/2005	14_ST_1Q05_DRY_031605B3	REG
14TH STREET OUTFALL	3/16/2005	14 ST 1Q05 DRY 031605B4	REG
14TH STREET OUTFALL	3/16/2005	14 ST 1Q05 DRY 031605B5	REG
14TH STREET OUTFALL	3/16/2005	14 ST 1Q05 DRY 031605B6	REG
14TH STREET OUTFALL	3/16/2005	14 ST 1Q05 DRY 031605B7	REG
14TH STREET OUTFALL	3/16/2005	14 ST 1Q05 DRY 031605B8	REG
15S STREET OUTFALL	3/16/2005	15S ST 1Q05 DRY 031605B1	REG
15S STREET OUTFALL	3/16/2005	15S ST 1Q05 DRY 031605B2	REG
15S STREET OUTFALL	3/16/2005	15S ST 1Q05 DRY 031605B3	REG
15S STREET OUTFALL	3/16/2005	15S ST 1Q05 DRY 031605B4	REG
15S STREET OUTFALL	3/16/2005	15S ST 1Q05 DRY 031605B5	REG
15S STREET OUTFALL	3/16/2005	15S_ST_1Q05_DRY_031605B6	REG
15S STREET OUTFALL	3/16/2005	15S_ST_1Q05_DRY_031605B7	REG
15S STREET OUTFALL	3/16/2005	15S_ST_1Q05_DRY_031605B8	REG
15N STREET OUTFALL	3/17/2005	15N_ST_1Q05_DRY_031705B1	REG
15N STREET OUTFALL	3/17/2005	15N_ST_1Q05_DRY_031705B2	REG
15N STREET OUTFALL	3/17/2005	15N_ST_1Q05_DRY_031705B3	REG
15N STREET OUTFALL	3/17/2005		REG
15N STREET OUTFALL	3/17/2005	15N_ST_1Q05_DRY_031705B5	REG
15N STREET OUTFALL	3/17/2005	15N_ST_1Q05_DRY_031705B6	REG
15N STREET OUTFALL	3/17/2005		REG
15N STREET OUTFALL	3/17/2005		REG
12.5TH STREET OUTFALL	5/9/2005	 12_5ST_2Q05_DRY_050905_B1	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B2	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B3	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B4	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B5	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B6	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B7	REG
12.5TH STREET OUTFALL	5/9/2005	12_5ST_2Q05_DRY_050905_B8	REG
15S STREET OUTFALL	5/9/2005	15S_ST_2Q05_DRY_050905B1	REG
15S STREET OUTFALL	5/9/2005	15S_ST_2Q05_DRY_050905B2	REG
15S STREET OUTFALL	5/9/2005	15S_ST_2Q05_DRY_050905B3	REG

Priority Drain Stormwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection		
Location ID	Date	Field Sample ID	Purpose
15S STREET OUTFALL	5/9/2005	15S ST 2Q05 DRY 050905B4	REG
15S STREET OUTFALL	5/9/2005	15S_ST_2Q05_DRY_050905B5	REG
15S STREET OUTFALL	5/9/2005	15S ST 2Q05 DRY 050905B6	REG
15S STREET OUTFALL	5/9/2005	15S ST 2Q05 DRY 050905B7	REG
15S STREET OUTFALL	5/9/2005	15S ST 2Q05 DRY 050905B8D	FD
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B1	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B2	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B3	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B4	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B5	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B6	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B7	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B8	REG
15N STREET OUTFALL	5/11/2005	15N ST 2Q05 DRY 051105B8D	FD
12.5TH STREET OUTFALL	5/25/2005	12 5ST 2Q05 WET 052505-C	REG
13.5TH STREET OUTFALL	5/25/2005	13 5ST 2Q05 WET 052505-C	REG
14TH STREET OUTFALL	5/25/2005	14 ST 2Q05 WET 052505-C	REG
15N STREET OUTFALL	5/25/2005	15N ST 2Q05 WET 052505-C	REG
15S STREET OUTFALL	5/25/2005	15S ST 2Q05 WET 052505-C	REG
12.5TH STREET OUTFALL	8/19/2005	12 5ST 3Q05 WET 081905-C	REG
12TH STREET OUTFALL	8/19/2005	12ST 3Q05 WET 081905-C	REG
14TH STREET OUTFALL	9/15/2005	14 ST 3Q05 WET 091505-C	REG
15N STREET OUTFALL	9/15/2005	15N ST 3Q05 WET 091505-C	REG
15S STREET OUTFALL	9/15/2005	15S ST 3Q05 WET 091505-C	REG
12.5TH STREET OUTFALL	9/23/2005	12 5ST 3Q05 DRY 092305-C	REG
12TH STREET OUTFALL	9/23/2005	12ST 3Q05 DRY 092305-C	REG
14TH STREET OUTFALL	9/30/2005	14 ST 3Q05 DRY 09305-C	REG
14TH STREET OUTFALL	9/30/2005	14 ST 3Q05 DRY 09305-D	FD
15N STREET OUTFALL	9/30/2005	15N ST 3Q05 DRY 093005-C	REG
15S STREET OUTFALL	9/30/2005	15S ST 3Q05 DRY 093005-C	REG
12.5TH STREET OUTFALL	3/28/2007	MESDMTMH-124	REG
12.5TH STREET OUTFALL	3/28/2007	MESDMTMH-124B	REG
13.5TH STREET OUTFALL	4/11/2007	DMTI169	REG
13.5TH STREET OUTFALL	4/11/2007	DMTI172	REG
12TH STREET OUTFALL	4/26/2007	12.0-MH122-042607	REG
12TH STREET OUTFALL	4/26/2007	12.0-MH124-042607	REG
13TH STREET OUTFALL	4/26/2007	13.0-MH127-042607	REG
13TH STREET OUTFALL	4/26/2007	13.0-MH128-042607	REG
12.5TH STREET OUTFALL	4/30/2007	12.5-MH124-043007	REG
13.5TH STREET OUTFALL	5/16/2007	13.5-IN169-051607	REG
13TH STREET OUTFALL	5/16/2007	13.0-MH125A-051607	REG
13TH STREET OUTFALL	5/16/2007	13.0-MH126-051607	REG
13TH STREET OUTFALL	5/16/2007	13.0-MH128-051607	REG
13TH STREET OUTFALL	5/24/2007	13.0-MH128-052407	REG
13TH STREET OUTFALL	6/6/2007	13.0-MH128-060607	REG
12TH STREET OUTFALL	10/4/2007	12.0-MH120-100407-D	FD
12TH STREET OUTFALL	10/5/2007	12.0-MH120-100507	REG
13TH STREET OUTFALL	10/5/2007	13.0-MH125-100507	REG
13TH STREET OUTFALL	10/5/2007	13.0-MH126-100507	REG
13TH STREET OUTFALL	10/5/2007	13.0-MH128-100507	REG
12TH STREET OUTFALL	10/8/2007	12.0-MH120-100807	REG
12TH STREET OUTFALL	10/8/2007	12.0-MH121-100807	REG

Priority Drain Stormwater Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection		
Location ID	Date	Field Sample ID	Purpose
12TH STREET OUTFALL	10/8/2007	12.0-MH122-100807	REG
12TH STREET OUTFALL	10/8/2007	12.0-MH123-100807	REG
12TH STREET OUTFALL	10/8/2007	12.0-MH124-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH125-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH125A-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH126-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH127-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH128-100807	REG
13TH STREET OUTFALL	10/8/2007	13.0-MH129-100807	REG
13TH-ST-IRM	9/25/2008	13THSTOUTFALL_092508_DRY	REG
13TH-ST-IRM	4/1/2009	13.0-13IRM-040109-02	REG
13TH-ST-IRM	4/1/2009	13.0-13IRM-040109-02F	REG
13TH-ST-IRM	6/25/2009	13.0-13IRM-062509-01	REG
13TH-ST-IRM	6/25/2009	13.0-13IRM-062509-01F	REG

Note:

Reg - Normal sample FD - Field Duplicate

Surface Water Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection		
Location ID	Date	Field Sample ID	Purpose
A1	5/17/2007	051707-A1-SW-02.00	REG
A1	8/22/2007	082207-A1-SW-02.00	REG
A1	8/22/2007	082207-A1-SW-04.00	REG
A1	12/5/2007	120507-A1-SW-01.50	REG
A1	2/24/2008	022408-A1-SW-01.50	REG
A1	2/24/2008	022408-A1-SW-04.00	REG
A2	5/17/2007	051707-A2-SW-02.00-D	FD
A2	5/17/2007	051707-A2-SW-02.00	REG
A2	8/22/2007	082207-A2-SW-01.50	REG
A2	8/22/2007	082207-A2-SW-03.50	REG
A2	12/11/2007	121107-A2-SW-02.00	REG
A2	2/24/2008	022408-A2-SW-02.40	REG
A3	5/17/2007	051707-A3-SW-02.00	REG
A3	8/22/2007	082207-A3-SW-02.50	REG
A3	12/11/2007	121107-A3-SW-02.00	REG
A3	2/24/2008	022408-A3-SW-02.30-D	FD
A3	2/24/2008	022408-A3-SW-02.30	REG
A4	5/17/2007	051707-A4-SW-02.00	REG
A4	8/22/2007	082207-A4-SW-02.20-D	FD
A4	8/22/2007	082207-A4-SW-02.20	REG
A4	12/11/2007	121107-A4-SW-02.00	REG
A4	2/24/2008	022408-A4-SW-02.50	REG
J4	2/21/2008	022108-J4-SW-01.00	REG

Note:

Reg - Normal sample FD - Field Duplicate

Sediment (0-1 foot) Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

	Collection				
Location ID	Date	Start Depth	End Depth	Field Sample ID	Purpose
A1	5/17/2007	0	0.5	051707-A1-SD-00.50	REG
A1	8/22/2007	0	0.5	082207-A1-SD-00.50	REG
A2	5/17/2007	0	0.5	051707-A2-SD-00.50	REG
A2	8/22/2007	0	0.5	082207-A2-SD-00.50	REG
A3	5/17/2007	0	0.5	051707-A3-SD-00.50	REG
A3	8/22/2007	0	0.5	082207-A3-SD-00.50	REG
A4	5/17/2007	0	0.5	051707-A4-SD-00.50	REG
A4	8/22/2007	0	0.5	082207-A4-SD-00.50	REG
J4	2/20/2008	0.5	1	022008-J4-SD-01.00	REG
J4	2/21/2008	0	0.5	022108-J4-SD-00.50	REG

Note:

Sample depth is presented in feet. Reg - Normal sample

Sediment (0-3 feet) Samples Used in the HHRA Dundalk Marine Terminal, Baltimore, MD

Location ID	Collection Date	Field Sample ID	Start Depth	End Depth	Purpose
					· · · · · · · · · · · · · · · · · · ·
A1	5/17/2007	051707-A1-SD-00.50	0	0.5	REG
A1	8/13/2007	081307-A1-SD-01.40	0.9	1.4	REG
A1	8/13/2007	081307-A1-SD-03.00	2.5	3	REG
A1	8/22/2007	082207-A1-SD-00.50	0	0.5	REG
A2	5/17/2007	051707-A2-SD-00.50	0	0.5	REG
A2	8/13/2007	081307-A2-SD-01.40	0.9	1.4	REG
A2	8/13/2007	081307-A2-SD-03.00	2.5	3	REG
A2	8/22/2007	082207-A2-SD-00.50	0	0.5	REG
A3	5/17/2007	051707-A3-SD-00.50	0	0.5	REG
A3	8/13/2007	081307-A3-SD-01.50	1	1.5	REG
A3	8/13/2007	081307-A3-SD-03.00	2.5	3	REG
A3	8/22/2007	082207-A3-SD-00.50	0	0.5	REG
A4	5/17/2007	051707-A4-SD-00.50	0	0.5	REG
A4	8/13/2007	081307-A4-SD-01.50	1	1.5	REG
A4	8/13/2007	081307-A4-SD-03.00	2.5	3	REG
A4	8/22/2007	082207-A4-SD-00.50	0	0.5	REG
J4	2/20/2008	022008-J4-SD-01.00	0.5	1	REG
J4	2/20/2008	022008-J4-SD-03.00	2.5	3	REG
J4	2/21/2008	022108-J4-SD-00.50	0	0.5	REG

Note:

Sample depth is presented in feet. Reg - Normal sample

Table 2.1
OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN
Dundalk Marine Terminal, Baltimore, MD

Γ	Scenario Timeframe: Future
	Medium: Groundwater (Shallow)
L	Exposure Medium: Groundwater (Shallow)

Exposure Point	CAS Number	Chemical	Minimum Concentratio Qualifier		Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screening Toxicity Va (1)	0	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Groundwater in Excavations (Shallow)	7429-90-5 7429-90-5 7440-70-2 16065-83-1 186065-83-1 18540-29-9 7439-89-6 7439-95-4 7439-95-4 7439-95-4 7439-95-4 7439-96-5 7440-62-2 7440-62-2	Aluminum Aluminum, Dissolved Calcium, Dissolved Chromium (III), Dissolved Chromium (VI), Dissolved Chromium (VI), Dissolved Iron Iron, Dissolved Magnesium, Dissolved Manganese, Dissolved Vanadium Vanadium, Dissolved	98.1 83.9 3600 409 2.8 1.7 5.2 6.7 73.8 45 36.9 21.1 0.58 0.52 1.7 1.6	J B J J B B B	190000 32900 984000 21600 220000 70000 1850000 178000 391000 416000 25800 27400 4540 2200	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	DMT-29S DMT-45S DMT-29S TPZ-33 DMT-30S DMT-29S DMT-29S DMT-7S TPZ-33 TPZ-33 TPZ-33 TPZ-33 TPZ-33 TPZ-33 TPZ-33 TPZ-33 DMT-29S DMT-29S	84 / 90 52 / 90 89 / 90 90 / 90 81 / 101 29 / 57 87 / 90 63 / 90 84 / 90 61 / 90 89 / 90 66 / 90 75 / 90	$\begin{array}{c} 0.84 + 401 \\ 23 - 401 \\ 49 - 5000 \\ 5 - 500 \\ - \\ 12 - 2500 \\ 1.2 - 2500 \\ 1.2 - 2500 \\ 25 - 522 \\ 25 - 522 \\ 13.5 - 5000 \\ 0.36 - 15 \\ 0.36 - 15 \\ 0.36 - 15 \\ 1.5 - 50 \\ 1.5 - 50 \end{array}$	190000 32900 984000 808000 21600 24000 220000 70000 1850000 1780000 391000 416000 25800 27400 4540 2200		3700 3700 130000 5500 5500 11 11 2600 2600 16000 16000 88 88 88 18 18	n n n n n n n n n			Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	ASL ASL ASL ASL ASL ASL ASL ASL ASL ASL

Regional Screening Levels for Tapwater (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1. (1)

Rationale Codes (2)

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium.

Chromium VI (chromic acid mists) SL was used as the SL for Hexavalent Chromium. Manganese (Water) SL was used as the SL for Manganese.

Vanadium and Compounds SL was used as the SL for Vanadium.

Screening levels for Calcium and Magnesium were calculated using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic

n = Noncarcinogenic

NA = Not available

SL = Screening Level

J = Estimated Value

B = Value between the MDL/IDL and the RL

L = Analyte is present but low bias

Table 2.2 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future
Medium: Surface Soil
Exposure Medium: Surface Soil (0-0.5 feet)

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screenin Toxicity Va (1)	•	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Surface Soil	7439-89-6 7439-95-4 7439-96-5 7440-09-7	Aluminum Calcium Chromium (III) Chromium (VI) Iron Magnesium Manganese Potassium Sodium Vanadium	3470 534 8.2 0.28 B 3570 768 56.6 328 40.4 J 10.6	51900 242000 17600 6710 129000 85300 4060 6490 3830 1210	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB-168 SB-153 SB-153 SB-170 SB-153 SB-200 SB-161 SB-174 SB-177 SB-153	57 / 57 57 / 57 77 / 77 70 / 70 57 / 57 57 / 57 18 / 18 18 / 18 57 / 57	3.4 - 4.23 6.3 - 69.2 0.61 - 50.2 0.21 - 129 4.78 - 53.3 2.58 - 14.1 0.0569 - 0.341 3.36 - 4.15 3.7.9 - 46.8 0.173 - 0.994	51900 242000 17600 6710 129000 85300 4060 6490 3830 1210		99000 100000 200 72000 100000 2300 100000 100000 750	n max c n max n max max n			No Yes No Yes No Yes No No Yes	BSL ASL BSL ASL BSL ASL BSL BSL ASL

(1) Regional Screening Levels for Industrial Soil (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

(2)

Rationale Codes

Selection Reason:
Deletion Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium.

Chromium VI (particulates) SL was used as the SL for Hexavalent Chromium.

Manganese (Water) SL was used as the SL for Manganese.

Vanadium Pentoxide SL was used as the SL for Vanadium.

Screening levels for Calcium, Magnesium, Potassium, and Sodium were calculated using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic n = Noncarcinogenic max = ceiling limit NA = Not available SL = Screening Level J = Estimated Value B = Value between the MDL/IDL and the RL

Table 2.3 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future
Medium: Total Soil
Exposure Medium: Total Soil (0-10 feet)

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screening Toxicity Val (1)	-	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Total Soil	7429-90-5 7440-70-2 16065-83-1 18540-29-9 7439-96-4 7439-96-5 7440-09-7 7440-23-5 7440-62-2	Aluminum Calcium Chromium (III) Chromium (VI) Iron Magnesium Manganese Potassium Sodium Yanadium	79.9 102 2.461 0.28 B 242 29.7 3.4 109 B 40.4 J 1.47	164000 85300 4060	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	INC-23 INC-20 TT1 TT1 INC-8, TT1 SB-200 SB-161 SB-174 INC-23 INC-9	204 / 204 203 / 203 293 / 295 293 / 301 204 / 204 204 / 204 27 / 44 34 / 44 204 / 204	2.4 - 130 6.3 - 3200 0.61 - 50.2 0.21 - 2000 4.4 - 64 0.6 - 3200 0.032 - 9.6 3.36 - 3200 37.9 - 6400 0.14 - 32	65400 272000 32070 41800 164000 85300 4060 6490 6710 1630		99000 100000 200 72000 100000 2300 100000 100000 750	n max c n max max max n			No Yes No Yes No Yes No No Yes	BSL ASL ASL ASL BSL ASL BSL ASL

(1) Regional Screening Levels for Industrial Soil (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

(2)

Rationale Codes

Selection	Reason:
Deletion	Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium.

Chromium VI (particulates) SL was used as the SL for Hexavalent Chromium.

Manganese (Water) SL was used as the SL for Manganese.

Vanadium Pentoxide SL was used as the SL for Vanadium.

Screening levels for Calcium, Magnesium, Potassium, and Sodium were calculated using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic n = Noncarcinogenic max = ceiling limit NA = Not available SL = Screening Level J = Estimated Value

B = Value between the MDL/IDL and the RL

	Table 2.4
OCCURRENCE, DISTRIBUTION A	ND SELECTION OF CHEMICALS OF POTENTIAL CONCERN
Dundal	k Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future
Medium: Outdoor Air
Exposure Medium: Outdoor Air (Perimeter)

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value (3)	Screenin Toxicity Va (1)	•	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Outdoor Air (Perimeter)	18540-29-9	Chromium (VI)	6.36E-07	3.67E-06	mg/m ³	Air6	228 / 427	2.12E-07 - 2.85E-07	3.67E-06	1.15E-06	2.90E-08	с		-	Yes	ASL

(1) Regional Screening Levels for Residential Air (EPA, 2009a).

(2) Rationale Codes

Selection Reason: Above Deletion Reason: Below

Above Screening Levels (ASL) Below Screening Level (BSL)

(3) Upper confidence limit concentration based on 119 upwind samples (see Appendix E).

Chromium VI (particulates) SL was used as the SL for Hexavalent Chromium.

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic NA = Not available SL = Screening Level

Table 2.5
OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN
Dundalk Marine Terminal, Baltimore, MD

Scenario	Timeframe: Future
Medium:	Stormwater
Exposure	Medium: Stormwater (Non-Priority Drains)

Exposure Point	CAS Number	Chemical	Minimum Concentratior Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screenii Toxicity V (1)	•	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Subsurface Stormwater Lines	16065-83-1 18540-29-9	Chromium (III) Chromium (VI)	3.1 10	J 650 1000 J	ug/L ug/L	9TH STREET OUTFALL 11TH STREET OUTFALL	18/27 9/27	- 0 - 50	650 1000		5500 11	n n			No Yes	BSL ASL

Regional Screening Levels for Tapwater (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

(2) Rationale Codes

(1)

 Selection Reason:
 Above Screening Levels (ASL)

 Deletion Reason:
 Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium. Chromium VI (chromic acid mists) SL was used as the SL for Hexavalent Chromium. COPC = Chemical of Potential Concern ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

c = Carcinogenic n = Noncarcinogenic NA = Not available SL = Screening Level J = Estimated Value

Table 2.6
OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN
Dundalk Marine Terminal, Baltimore, MD

	Scenario Timeframe: Future
	Medium: Stormwater
	Exposure Medium: Stormwater (Priority Drains)
ļ	Exposed of modulant: eleminator (i nonty Braine)

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screenii Toxicity V (1)	•	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Subsurface	7429-90-5	Aluminum, Dissolved	110	921	ug/L	14TH STREET OUTFALL	2/2	39.8 - 39.8	921		3700	n			No	BSL
Stormwater Lines		Calcium, Dissolved	422000	422000	ug/L	14TH STREET OUTFALL	1/1	47.9 - 47.9	422000		130000	n			Yes	ASL
	16065-83-1	Chromium (III)	20	10000	ug/L	12.5TH STREET OUTFALL	53 / 110	-	10000		5500	n			Yes	ASL
	18540-29-9	Chromium (VI)	20	57000	ug/L	12.5TH STREET OUTFALL	106 / 111	0 - 2500	57000		11	n			Yes	ASL
	18540-29-9	Chromium (VI), Dissolved	31000	31000	ug/L	14TH STREET OUTFALL	1/1	600 - 600	31000		11	n			Yes	ASL
	7439-96-5	Manganese, Dissolved	0.9 J	0.9	J ug/L	14TH STREET OUTFALL	1/2	0.84 - 0.84	0.9		88	n			No	BSL
	7440-62-2	Vanadium, Dissolved	42	42	ug/L	14TH STREET OUTFALL	1/1	1.6 - 1.6	42		18	n			Yes	ASL

(1) Regional Screening Levels for Tapwater (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

(2) Rationale Codes

Selection Reason: Deletion Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium.

Chromium VI (chromic acid mists) SL was used as the SL for Hexavalent Chromium. Manganese (Water) SL was used as the SL for Manganese.

Vanadium and Compounds SL was used as the SL for Vanadium.

variadium and compounds SE was used as the SE for variadium.

A screening level was calculated for calcium using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic

n = Noncarcinogenic

NA = Not available

SL = Screening Level

J = Estimated Value

Table 2.7 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future
Medium: Surface Water
Exposure Medium: Surface Water

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum n Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screening Toxicity Val (1)	-	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Patapsco River	7429-90-5	Aluminum	82.4	347	ug/L	A1	16 / 20	80.2 - 80.2	347		3700	n			No	BSL
	7440-70-2	Calcium	71100	165000	ug/L	A1	20 / 20	63.2 - 104	165000		130000	n			Yes	ASL
	7440-70-2	Calcium, Dissolved	71300	165000	ug/L	A1	20 / 20	63.2 - 104	165000		130000	n	-		Yes	ASL
	16065-83-1	Chromium (III)	2.8	J 16.9	ug/L	A1	4 / 20	-	16.9		5500	n			No	BSL
	7439-89-6	Iron	174	556	ug/L	A1	12 / 20	52.2 - 52.2	556		2600	n			No	BSL
	7439-89-6	Iron, Dissolved	55.7	62.4	J ug/L	A1	2 / 20	52.2 - 52.2	62.4		2600	n			No	BSL
	7439-95-4	Magnesium	191000	506000	ug/L	A2	20 / 20	13.5 - 32.2	506000		16000	n			Yes	ASL
	7439-95-4	Magnesium, Dissolved	185000	473000	ug/L	A2	20 / 20	13.5 - 32.2	473000		16000	n			Yes	ASL
	7439-96-5	Manganese	11.9	106	ug/L	A1	20 / 20	0.36 - 0.84	106		88	n			Yes	ASL
	7439-96-5	Manganese, Dissolved	3.8	56.4	ug/L	A1	20 / 20	0.36 - 0.84	56.4		88	n			No	BSL
	7440-62-2	Vanadium	1.5	J 4.5	ug/L	A1	12 / 20	1.5 - 1.5	4.5		33	n			No	BSL
	7440-62-2	Vanadium, Dissolved	2.2	3	ug/L	A1	6 / 20	1.5 - 1.5	3		33	n			No	BSL

(1) Regional Screening Levels for Tapwater (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

(2) Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Trivalent Chromium.

Manganese (Water) SL was used as the SL for Manganese.

Vanadium Pentoxide SL was used as the SL for Vanadium.

Screening levels for calcium and magnesium were calculated using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

c = Carcinogenic

n = Noncarcinogenic

NA = Not available

SL = Screening Level

J = Estimated Value

Table 2.8 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current
Medium: Sediment
Exposure Medium: Sediment (0-1 foot)

Exposure Point	CAS Number	Chemical	Minimum Concentratic Qualifier	Maxim n Concentr Qualif	ation	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screenin Toxicity Va (1)		Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Patapsco River	7429-90-5	Aluminum	1140	120	00	mg/kg	J4	10 / 10	4.24 - 5.34	12000	-	7700	n	-		Yes	ASL
	7440-70-2	Calcium	198	133	00	mg/kg	J4	10 / 10	7.75 - 19.2	13300		100000	max			No	BSL
	7440-47-3	Chromium	89.6	81	40 J	mg/kg	J4	10 / 10	0.737 - 7.53	8140		12000	n			No	BSL
	7439-89-6	Iron	6180	376	00	mg/kg	A4	10 / 10	5.95 - 7.51	37600		5500	n			Yes	ASL
	7439-95-4	Magnesium	269	302	00	mg/kg	J4	10 / 10	3.21 - 4.05	30200		34000	n			No	BSL
	7439-96-5	Manganese	70.9	20	70	mg/kg	J4	10 / 10	0.0708 - 0.42	2070		180	n			Yes	ASL
	7440-62-2	Vanadium	9.4	1	46	mg/kg	J4	10 / 10	0.202 - 0.255	146	-	39	n			Yes	ASL

(1) Regional Screening Levels for Residential Soil (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

Deletion Reason:

(2) Rationale Codes

Selection Reason:

Above Screening Levels (ASL) Below Screening Level (BSL)

Chromium (III) (Insoluble Salts) SL was used as the SL for Chromium. Vanadium and Compounds SL was used as the SL for Vanadium.

Screening levels were calculated for calcium and magnesium using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

c = Carcinogenic n = Noncarcinogenic max = ceiling limit NA = Not available SL = Screening Level J = Estimated Value

Table 2.9 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future
Medium: Sediment
Exposure Medium: Sediment (0-3 feet)

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screenin Toxicity Va (1)		Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Selection or Deletion (2)
Patapsco River	7429-90-5	Aluminum	227	12700	mg/kg	A4	19 / 19	3.86 - 5.34	12700	-	7700	n			Yes	ASL
	7440-70-2	Calcium	10.3	13300	mg/kg	J4	19 / 19	7.07 - 19.2	13300		100000	max			No	BSL
	7440-47-3	Chromium	2.91	K 8140	J mg/kg	J4	19 / 19	0.672 - 7.53	8140		12000	n			No	BSL
	7439-89-6	Iron	316	37600	mg/kg	A4	19 / 19	5.43 - 7.51	37600		5500	n			Yes	ASL
	7439-95-4	Magnesium	16.2	30200	mg/kg	J4	19 / 19	2.93 - 4.05	30200		34000	n			No	BSL
	7439-96-5	Manganese	1.69	2070	mg/kg	J4	19 / 19	0.0646 - 0.42	2070		180	n			Yes	ASL
	7440-62-2	Vanadium	1.42	146	mg/kg	J4	19 / 19	0.185 - 0.255	146	-	39	n	-		Yes	ASL

(1) Regional Screening Levels for Residential Soil (EPA, 2009a). Concentrations based on non-carcinogenic health effects are adjusted using HQ=0.1.

Above Screening Levels (ASL)

Below Screening Level (BSL)

(2) Rationale Codes

Selection Reason: Deletion Reason:

Chromium (III) (Insoluble Salts) SL was used as the SL for Chromium.

Vanadium and Compounds SL was used as the SL for Vanadium.

Screening levels were calculated for calcium and magnesium using Dietary Reference Intake (NAS, 2004).

COPC = Chemical of Potential Concern ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

c = Carcinogenic n = Noncarcinogenic max = ceiling limit NA = Not available SL = Screening Level J = Estimated Value

K = The analyte is present but biased high.

Table 3.1.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future

Medium: Groundwater (Shallow) Exposure Medium: Groundwater (Shallow)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)	Maximum Concentration	Exposure Point Concentration			
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Groundwater	Aluminum	ug/L	1.1E+04	2.9E+04	1.9E+05	2.9E+04	ug/L	97.5% KM (Chebyshev)	(4)
	Calcium	ug/L	1.4E+05	2.2E+05	9.8E+05	2.2E+05	ug/L	95% Cheb-m	(4)
	Chromium (III)	ug/L	2.3E+03	6.5E+03	2.4E+04	6.5E+03	ug/L	99% KM (Chebyshev)	(4)
	Chromium (VI)	ug/L	1.8E+04	1.1E+04	2.2E+05	1.1E+04	ug/L	95% KM (t)	(4)
	Iron	ug/L	4.5E+04	1.7E+05	1.9E+06	1.7E+05	ug/L	97.5% KM (Chebyshev)	(4)
	Magnesium	ug/L	5.3E+04	1.1E+05	3.9E+05	1.1E+05	ug/L	97.5% KM (Chebyshev)	(4)
	Manganese	ug/L	1.1E+03	2.8E+03	2.7E+04	2.8E+03	ug/L	97.5% KM (Chebyshev)	(4)
	Vanadium	ug/L	2.5E+02	5.9E+02	4.5E+03	5.9E+02	ug/L	97.5% KM (Chebyshev)	(4)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

Table 3.2.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Surface Soil Exposure Medium: Surface Soil (0-0.5 feet)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)		Maximum Concentration	Exposure Point Concentration			
	Potential Concern					(Qualifier)	Value Units		Statistic	Rationale
Surface Soil	Calcium Chromium (VI) Iron Manganese Vanadium	mg/kg mg/kg mg/kg mg/kg mg/kg	1.2E+05 6.2E+02 3.0E+04 6.0E+02 1.8E+02	1.4E+05 2.4E+03 3.9E+04 7.5E+02 3.9E+02	N T G	2.4E+05 6.7E+03 1.3E+05 4.1E+03 1.2E+03	1.4E+05 2.4E+03 3.9E+04 7.5E+02 3.9E+02	mg/kg mg/kg mg/kg mg/kg mg/kg	95% Stud-t 99% Chebyshev (Mean, Sd) 95% H-UCL App. Gamma 97.5% Chebyshev (Mean, Sd)	(2) (4) (1) (3) (4)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

mg/kg= milligrams/kilograms

Table 3.3.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Total Soil Exposure Medium: Total Soil (0-10 feet)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)	Maximum Concentration	Exposure Point Concentration			
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Total Soil	Calcium Chromium (VI) Iron Manganese Vanadium	mg/kg mg/kg mg/kg mg/kg mg/kg	1.0E+05 1.7E+03 4.7E+04 5.5E+02 3.8E+02	1.7E+05 3.1E+03 6.9E+04 8.1E+02 6.1E+02	2.7E+05 4.2E+04 1.6E+05 4.1E+03 1.6E+03	1.7E+05 3.1E+03 6.9E+04 8.1E+02 6.1E+02	mg/kg mg/kg mg/kg mg/kg mg/kg	 99% Chebyshev (Mean, Sd) 97.5% KM (Chebyshev) 97.5% Chebyshev (Mean, Sd) 97.5% Chebyshev (Mean, Sd) 97.5% Chebyshev (Mean, Sd) 	(4) (4) (4) (4) (4)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

mg/kg= milligrams/kilograms

Table 3.4.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future Medium: Outdoor Air Exposure Medium: Outdoor Air

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)	Maximum Concentration	Exposure Point Concentration			
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Outdoor Air (Perimeter)	Chromium (VI)	mg/m ³	1.5E-06	1.1E-06	3.7E-06	1.1E-06	mg/m ³	95% KM (t)	(4)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

mg/m³= milligrams/(meter)³

Table 3.5.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Stormwater Exposure Medium: Stormwater (Non-Priority Drains)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)	Maximum Concentration	Exposure Point Concentration			
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Subsurface Stormwater Lines	Chromium (VI)	ug/L	3.5E+02	2.1E+02	1.0E+03 J	2.1E+02	ug/L	99% KM (Chebyshev)	(4)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL; 99% Chebyshev (Mean, Sd) (99% Cheb-m) UCL

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

Table 3.6.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Stormwater

Exposure Medium: Stormwater (Priority Drains)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)	Maximum Concentration	Exposure Point Concentration			
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Subsurface Stormwater Lines	Calcium Chromium (III) Chromium (VI) (7) Vanadium	ug/L ug/L ug/L ug/L	NA 2.0E+03 1.7E+04 NA	NA 1.3E+03 2.5E+04 NA	4.2E+05 1.0E+04 5.7E+04 4.2E+01	4.2E+05 1.3E+03 2.5E+04 4.2E+01	ug/L ug/L ug/L ug/L	Max 95% KM (t) 97.5% KM (Chebyshev) Max	(6) (4) (4) (6)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL; 99% Chebyshev (Mean, Sd) (99% Cheb-m) UCL

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

(5) The maximum detected concentration was used as the UCL because the value recommended by ProUCL was higher than the Max.

(6) The maximum detected concentration was used as the UCL because there were less than 10 samples.

(7) The UCL for Chromium (VI) (total) data was used rather than the UCL of Chromium (VI) (Dissolved) due to the higher detection frequency of Chromium (VI) (total) compared to Chromium (VI) (Dissolved) (106/110 vs 1/1).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

Table 3.7.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future Medium: Surface Water Exposure Medium: Surface Water

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T//G)	Maximum Concentration	Exposure Point Concentration		posure Point Concentration	
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Patapsco River	Calcium Magnesium Manganese	ug/L ug/L ug/L	1.2E+05 3.4E+05 6.1E+01	1.4E+05 N 3.9E+05 N 7.2E+01 N	1.7E+05 5.1E+05 1.1E+02	1.4E+05 3.9E+05 7.2E+01	ug/L ug/L ug/L	95% Stud-t 95% Stud-t 95% Stud-t	(2) (2) (2)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL;

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Modified-t UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

Table 3.8.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Medium: Sediment Exposure Medium: Sediment (0-1 foot)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL Maximum (N/T/G) Concentration			Exp	osure Point Concentration	
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale
Patapsco River	Aluminum Iron Manganese Vanadium	mg/kg mg/kg mg/kg mg/kg	4.2E+03 2.2E+04 4.6E+02 4.0E+01	9.7E+03 3.6E+04 G 9.5E+02 G 1.1E+02 T	1.2E+04 3.8E+04 2.1E+03 1.5E+02	9.7E+03 3.6E+04 9.5E+02 1.1E+02	mg/Kg mg/Kg mg/Kg mg/Kg	95% Cheb-m App. Gamma App. Gamma 95% H-UCL	(4) (3) (3) (1)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

mg/kg= milligrams/kilograms

Table 3.9.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Sediment

Exposure Medium: Sediment (0-3 feet)

Exposure Point	Chemical of	Units	Arithmetic Mean	UCL (N/T/G)		Maximum Concentration	Exposure Point Concentration			
	Potential Concern					(Qualifier)	Value	Units	Statistic	Rationale
Patapsco River	Aluminum Iron Manganese Vanadium	mg/kg mg/kg mg/kg mg/kg	4.2E+03 1.8E+04 2.6E+02 3.0E+01	5.7E+02	G G G	1.3E+04 3.8E+04 2.1E+03 1.5E+02	1.1E+04 2.8E+04 5.7E+02 5.0E+01	mg/Kg mg/Kg mg/Kg mg/Kg	95% Chebyshev (MVUE) App. Gamma Adj. Gamma App. Gamma	(4) (3) (3) (3)

ProUCL, Version 4.0 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. May 2009. ProUCL, Version 4.00.04. Prepared by Lockheed Martin Environmental Services).

Statistics: Maximum Detected Value (Max); 95% KM (t) UCL; 95% KM (z) UCL; 95% KM (jackknife) UCL;

99% KM (Chebyshev) UCL; 97.5% KM (Chebyshev) UCL; 95% KM (Chebyshev) UCL; 99% Chebyshev (MVUE) UCL

95% KM (bootstrap t) UCL; 95% Student's-T test UCL (95% Stud-t); 95% KM (BCA) UCL; 95% H-UCL; 95% Chebyshev (MVUE) UCL;

95% KM (Percentile Bootstrap) UCL; 95% Approximate Gamma (App. Gamma); 95% Adjusted Gamma (Adj. Gamma); 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m)

Rationale:

(1) Shapiro-Wilk W Test indicates data are log-normally distributed.

(2) Shapiro-Wilk W Test indicates data are normally distributed.

(3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.

(4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

G = Gamma distribution.

N = Normal distribution.

T = Log-normal distribution.

mg/kg= milligrams/kilograms

TABLE 4.1 Exposure Factors for Groundwater REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Groundwater (Shallow) Exposure Medium: Groundwater (Excavation)

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	Construction Worker	Adult	Groundwater in	CW	Chemical Concentration in Water	UCL	µg/l	UCL	CDI (mg/kg-day) =
			Exacavations	DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event	calculated	DAevent x SA x EV x EF x ED x 1/BW x 1/AT
			(Shallow)	t _{event}	Event Time	0.58	hr/event	MDE, 2008 (2)	Inorganics: DAevent (mg/cm ² -event) =
				SA	Skin Surface Area Available for Contact	5,670	cm ²	MDE, 2008 (2, 3)	Kp x CW x t _{event} x CF1 x CF2
				EV	Event Frequency	1	events/day	MDE, 2008 (2, 3)	
				EF	Exposure Frequency	60, 250	days/year	(1)	
				ED	Exposure Duration	1	years	MDE, 2008 (2, 3); EPA, 2002	
				BW	Body Weight	70	kg	EPA, 1991; MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	I/cm ³		

Notes:

(1) Professional judgment for short-term and longer-term construction activities.

(2) Commercial site

(3) Industrial site

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. USEPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

MDE, 2008: Cleanup Standards for Soil and Groundwater

Exposure Factors for Surface Soil (<0.5 feet) REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Surface Soil Exposure Medium: Surface Soil (0-0.5 feet)

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	DMT Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	50	mg/day	MDE, 2008 (1)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	250	days/year	EPA, 1991; MDE, 2008 (1)	
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	70	kg	EPA, 1991; MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
Dermal	DMT Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,300	cm ²	EPA, 2004 (2); MDE, 2008 (1)	CS x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				SSAF	Soil to Skin Adherence Factor	0.07	mg/cm2-day	MDE, 2008 (1)	
				DABS	Dermal Absorption Factor Solids	chem-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	250	days/year	EPA, 1991; MDE, 2008 (1)	
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	

Notes:

(1) Default for commercial/industrial worker

(2) Head, hands, forearms, and lower legs.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. USEPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2004: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Final. USEPA/540/R/99/005.

MDE, 2008: Cleanup Standards for Soil and Groundwater

Exposure Factors for Outdoor Air Impacts from Surface Soil (<0.5 feet) REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Surface Soil (0-0.5 feet) Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	DMT Worker	Adult	Air	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	Average Exposure Concentration (mg/m ³) =
				CA	Chemical Concentration in Air	calculated	mg/m ³	calculated	CA x ET x EF x ED x CF x 1/AT
				PEF	Particulate Emission Factor	7.80E+07	m³/kg	MDE, 2008 (1)	
				ET	Exposure Time	8	hours/day	EPA, 2009	
				EF	Exposure Frequency	250	days/year	EPA, 1991, MDE, 2008 (1)	CA (mg/m ³) = CS / PEF
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
				CF	Conversion Factor	1/24	days/hour		

Notes:

(1) Default for commercial/industrial scenario

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. USEPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

MDE, 2008: Cleanup Standards for Soil and Groundwater

EPA, 2009: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part F. Supplemental Guidance for Inhalation Risk Assessment.

Exposure Factors for Total Soil (0-10 feet) REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Total Soil Exposure Medium: Total Soil (0-10 feet)

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	DMT Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	50	mg/day	MDE, 2008 (1)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	250	days/year	EPA, 1991; MDE, 2008 (1)	
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	70	kg	EPA, 1991; MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
	Construction Worker	Adult	Total Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	CDI (mg/kg-day) =
				IR-S Ingestion Rate of Soil		480	mg/day	MDE, 2008 (2,3)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				IR-S Ingestion Rate of Soil EF Exposure Frequency		60, 250	days/year	(4)	
				ED	Exposure Duration	1	years	EPA, 2002; MDE, 2008 (2,3)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	70	kg	EPA, 1991; MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
Dermal	DMT Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,300	cm ²	EPA, 2004 (5); MDE, 2008 (1)	CS x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				SSAF	Soil to Skin Adherence Factor	0.07	mg/cm2-day	MDE, 2008 (1)	
				DABS	Dermal Absorption Factor Solids	chem-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	250	days/year	EPA, 1991; MDE, 2008 (1)	
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
	Construction Worker	Adult	Total Soil	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,280	cm ²	MDE, 2008 (2,3)	CS x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				SSAF	Soil to Skin Adherence Factor	0.2	mg/cm2-day	MDE, 2008 (2)	
				DABS	Dermal Absorption Factor Solids	chem-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	60, 250	days/year	(4)	
				ED	Exposure Duration	1	years	EPA, 2002; MDE, 2008 (2,3)	
				BW	Body Weight	70	kg	EPA, 1991; MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	

Notes:

(1) Default for commercial/industrial worker

(2) Commercial setting

(3) Industrial setting

(4) Professional judgment for short-term and longer-term construction activities.

Exposure Factors for Total Soil (0-10 feet) REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Total Soil Exposure Medium: Total Soil (0-10 feet)

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
----------------	---------------------	--------------	----------------	-------------------	----------------------	-------	-------	-------------------------	--------------------------------

(5) Head, hands, forearms, and lower legs.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. USEPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Final. USEPA/540/R/99/005.

MDE, 2008: Cleanup Standards for Soil and Groundwater

TABLE 4.5 Exposure Factors for Total Soil (0-10 Feet)/Outdoor Air REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Total Soil (0-10 feet) Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	DMT Worker	Adult	Air	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	Average Exposure Concentration (AEC) (mg/m ³) =
				CA	Chemical Concentration in Air	calculated	mg/m ³	calculated	CA x ET x EF x ED x CF x 1/AT
				PEF	Particulate Emission Factor	7.80E+07	m ³ /kg	MDE, 2008 (1)	
				ET	Exposure Time	8	hours/day	EPA, 2009	
				EF	Exposure Frequency	250	days/year	EPA, 1991, MDE, 2008 (1)	$CA (mg/m^3) = CS / PEF$
				ED	Exposure Duration	25	years	EPA, 1991; MDE, 2008 (1)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
				CF	Conversion Factor	1/24	days/hour		
	Construction Worker	Adult	Air	CS	Chemical Concentration in Soil	UCL	mg/kg	UCL	AEC (mg/m ³) =
				CA	Chemical Concentration in Air	calculated	mg/m ³	calculated	CA x ET x EF x ED x CF x 1/AT
				PEF	Particulate Emission Factor	7.80E+07	m³/kg	MDE, 2008 (2, 3)	
				ET	Exposure Time	8	hours/day	EPA, 2009	
				EF	Exposure Frequency	60, 250	days/year	(4)	CA (mg/m ³) = CS / PEF
				ED	Exposure Duration	1	years	MDE, 2008; EPA, 2002	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
				CF	Conversion Factor	1/24	days/hour		

Notes:

(1) Default for commercial/industrial scenario

(2) Default for CW commercial scenarios.

(3) Default for industrial scenario.

(4) Professional judgment for short-term and longer-term construction activities.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. USEPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

MDE, 2008: Cleanup Standards for Soil and Groundwater

EPA, 2009: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part F. Supplemental Guidance for Inhalation Risk Assessment.

TABLE 4.6 Exposure Factors for Stormwater REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Medium: Stormwater Exposure Medium: Stormwater

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/Reference	Intake Equation/Model Name
Dermal	Utility Worker	Adult	Subsurface	CW	Chemical Concentration in Storm Water	UCL	µg/l		CDI (mg/kg-day) =
			Stormwater Pipelines	DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event		DAevent x SA x EV x EF x ED x 1/BW x 1/AT
				Кр	Permeability Coefficient	chemical-specific	cm/hr	EPA, 2004	
				t _{event}	Event Time	8	hr/event	(1)	Inorganics: DAevent (mg/cm ² -event) =
				SA	Skin Surface Area Available for Contact	5,670	cm ³	MDE, 2008 (2)	Kp x CW x t _{event} x CF1 x CF2
				EV	Event Frequency	1	events/day	EPA, 2004	
				EF	Exposure Frequency	25	days/year	(3)	
				ED	Exposure Duration	1	years	EPA, 2002 (4)	
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	I/cm ³		

Notes:

(1) Professional judgment.

(2) Industrial site or commercial site.

(3) Professional judgment; yearly inspection of 14th & 15th Street drain lines requires a maximum of 8 days total. 9th Street to 13th Street drain lines are cleaned on an irregular basis (conservatively assumed at 17 days/year).

(4) Inspections currently performed by CH2M HILL, drain cleaning currently performed by MES or subcontractors.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

MDE, 2008: Cleanup Standards for Soil and Groundwater

TABLE 4.7 Exposure Factors for Surface Water REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future Medium: Surface Water Exposure Medium: Surface Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point						
				D		Value	11.2		
				Parameter Code	Code Parameter Definition Chemical Concentration in Water		Units	Rationale/References	Intake Equation/Model Name
Ingestion	Recreational User	Adult	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-W	Ingestion Rate of Water	0.050	liters/hour	EPA, 1989	CW x IR-W x ET x EV x EF x ED x CF1 x 1/BW x 1/AT
				ET	Exposure Time	3	hours/event	EPA, 1997 (1)	
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	30	years	EPA, 1991	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	10,950	days	EPA, 1989	
		Adolescent (4)	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		CDI (mg/kg-day) =
				IR-W	Ingestion Rate of Water	0.050	liters/hour	EPA, 1989	CW x IR-W x ET x EV x EF x ED x CF1 x 1/BW x 1/AT
				ET	Exposure Time	3	hours/event	EPA, 1997 (1)	
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	12	years	MDE, 2008	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW	Body Weight	40	kg	MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	4,380	days	MDE, 2008	
		Child	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		CDI (mg/kg-day) =
				IR-W	Ingestion Rate of Water	0.050	liters/hour	EPA, 1989	CW x IR-W x ET x EV x EF x ED x CF1 x 1/BW x 1/AT
				ET	Exposure Time	3	hours/event	EPA, 1997 (1)	
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	6	years	EPA, 1991	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adolescent/Adult	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		CDI (mg/kg-day) =
		Aggregate		IR-W-Adj	Ingestion Rate of Water, Age-adjusted	0.111	liters-year/event-kg	calculated	CW x IR-W-adj x EV x EF x CF1 x 1/AT
				IR-W	Ingestion Rate of Water	0.050	liters/hour	EPA, 1989	
				ET	Exposure Time	3	hours/event	EPA, 1997 (1)	IR-W-Adj (liters-year/event-kg) =
				ED _{adult}	Exposure Duration (adult)	24	years	EPA, 1991	∑(IR-W x ET x ED x 1/BW) [from adult and child age groups (5)]
				ED _{child}	Exposure Duration (child)	6	years	EPA, 1991	
				EV	Event Frequency	1	events/day	EPA, 1997	1
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW _{adult}	Body Weight	70	kg	EPA, 1991	1
				BW _{child}	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	

TABLE 4.7 Exposure Factors for Surface Water REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future Medium: Surface Water Exposure Medium: Surface Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point						
				Parameter Code	Parameter Definition	Value	Units	Rationale/References	Intake Equation/Model Name
				T anameter obue		Value	Units	Rationaler Clerences	
Dermal	Recreational User	Adult	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		CDI (mg/kg-day) =
				DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm ² -event		DAevent x SA x EV x EF x ED x 1/BW x 1/AT
				Кр	Permeability Coefficient	chemical-specific	cm/hr	EPA, 2004	
				t _{event}	Event Time	3	hr/event	EPA, 1997 (1)	Inorganics: DAevent (mg/cm ² -event) =
				SA	Skin Surface Area Available for Contact	18,000	cm ²	EPA, 2004 (3)	Kp x CW x t _{event} x CF1 x CF2
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	30	years	EPA, 1991	
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	10,950	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	I/cm ³		
		Adolescent (4)	Patapsco River	CW	Chemical Concentration in Water	UCL	μg/l		CDI (mg/kg-day) =
				DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event		DAevent x SA x EV x EF x ED x 1/BW x 1/AT
				Кр	Permeability Coefficient	chemical-specific	cm/hr	EPA, 2004	
				t _{event}	Event Time	3	hr/event	EPA, 1997 (1)	Inorganics: DAevent (mg/cm ² -event) =
				SA	Skin Surface Area Available for Contact	13,100	cm ²	MDE, 2008 (3)	Kp x CW x tevent x CF1 x CF2
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	12	years	MDE, 2008	
				BW	Body Weight	40	kg	MDE 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	4,380	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	I/cm ³		
		Child	Patapsco River	CW	Chemical Concentration in Water	UCL	μg/l		CDI (mg/kg-day) =
				DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event		DAevent x SA x EV x EF x ED x 1/BW x 1/AT
				Кр	Permeability Coefficient	chemical-specific	cm/hr	EPA, 2004	
				t _{event}	Event Time	3	hr/event	EPA, 1997 (1)	Inorganics: DAevent (mg/cm ² -event) =
				SA	Skin Surface Area Available for Contact	6,600	cm ²	EPA, 2004 (3)	Kp x CW x t _{event} x CF1 x CF2
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	6	years	EPA, 1991	
				BW	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	I/cm ³		

TABLE 4.7 Exposure Factors for Surface Water REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current/Future Medium: Surface Water Exposure Medium: Surface Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/References	Intake Equation/Model Name
Dermal	Recreational User	Child/Adolescent/Adult	Patapsco River	CW	Chemical Concentration in Water	UCL	µg/l		CDI (mg/kg-day) =
(cont.)	(cont.)	Aggregate		DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event	-	DAevent-Adj x EV x EF x 1/AT
				DAevent-Adj	Dermally Absorbed Dose per Event, Age-adjusted	calculated	mg-year/event-kg	calculated	Inorganics: DAevent (mg/cm2-event) =
				Кр	Permeability Coefficient	chemical-specific	cm/hr	EPA, 2004	Kp x CW x t _{event} x CF1 x CF2
				t _{event}	Event Time	3	hr/event	EPA, 1997 (1)	
				SA _{adult}	Skin Surface Area Available for Contact	18,000	cm ²	EPA, 2004 (3)	DAevent-Adj (mg-year/event-kg)=
				SA _{child}	Skin Surface Area Available for Contact	6,600	cm ²	EPA, 2004 (3)	\sum (DA-event x ED x SA/BW)[from adult and child age groups (5)]
				EV	Event Frequency	1	events/day	EPA, 1997	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED _{adult}	Exposure Duration	24	years	EPA, 1991	
				ED _{child}	Exposure Duration	6	years	EPA, 1991	
				BW _{adult}	Body Weight	70	kg	EPA, 1991	
				BW _{child}	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				CF1	Conversion Factor 1	0.001	mg/µg		
				CF2	Conversion Factor 2	0.001	l/cm3		

Notes:

(1) Recommended swimming exposure duration (90th percentile).

(2) EF based on Level 3 Recreational Scenario (Open Space Public Rec Area - Low Frequency Use)

(3) Total body surface area.

(4) Adolescent age group spans 6-18 years of age.

(5) Consistent with MDE's age aggregate approach, adult and child age groups are used.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final.

EPA, 1997: Exposure Factors Handbook. EPA/600/P-95/002Fa.

EPA, 2004: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

MDE, 2008: Cleanup Standards for Soil and Groundwater

TABLE 4.8 Exposure Factors for Sediment REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Time Frame: Current/Future Medium: Sediment Exposure Medium: Sediment

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/Reference	Intake Equation/Model Name
Ingestion	Recreational User	Adult	Patapsco River	CSed	Chemical Concentration in Sediment	UCL	mg/kg		Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-Sed	Ingestion Rate of Sediment	100	mg/day	EPA, 1991 (1)	CSed x IR-Sed x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	30	years	EPA, 1991	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	10,950	days	EPA, 1989	
		Adolescent (3)	Patapsco River	CSed	ed Ingestion Rate of Sediment		mg/kg		CDI (mg/kg-day) =
				IR-Sed	EF Exposure Frequency		mg/day	MDE, 2008 (1)	CSed x IR-Sed x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	12	years	MDE, 2008	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
				BW	Body Weight	40	kg	MDE, 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	4,380	days	EPA, 1989	
		Child	Patapsco River	CSed	Chemical Concentration in Sediment	UCL	mg/kg		CDI (mg/kg-day) =
				IR-Sed	Ingestion Rate of Sediment	200	mg/day	EPA, 1991 (1)	CSed x IR-Sed x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	6	years	EPA, 1991	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
				BW	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adolescent/Adult	Patapsco River	CSed	Chemical Concentration in Sediment	UCL	mg/kg		CDI (mg/kg-day) =
		Aggregate		IR-S-Adj	Ingestion Rate of Sediment, Age-Adjusted	114	mg-year/kg-day	Calculated	Csed x IR-S-Adj x EF x CF1 x 1/AT
				IR-Sed _{adult}	Ingestion Rate of Sediment	100	mg/day	EPA, 1991 (1)	
				IR-Sed _{child}	Ingestion Rate of Sediment	200	mg/day	EPA, 1991 (1)	IR-S-Adj (mg-year/kg-day)
				EF	Exposure Frequency	52	days/year	MDE, 2008 (3)	Σ (ED x IR-S x 1/BW) [from adult and child age groups (8)]
				ED _{adult}	Exposure Duration	24	years	EPA, 1991	
				ED _{child}	Exposure Duration	6	years	EPA, 1991	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
				BW _{adult}	Body Weight	70	kg	EPA, 1991	
				BW _{child}	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	

TABLE 4.8 Exposure Factors for Sediment REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Time Frame: Current/Future Medium: Sediment Exposure Medium: Sediment

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/Reference	Intake Equation/Model Name
Dermal Contact	Recreational User	Adult	Patapsco River	CSed	Chemical Concentration in Sediment	UCL	mg/kg		CDI (mg/kg-day) =
				SSAF	Sediment to Skin Adherence Factor	1	mg/cm2-day	MDEP, 2002 (7)	CSed x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	chemical-specific	unitless	EPA, 2004	
				SA	Skin Surface Area Available for Contact	5,700	cm ²	EPA, 2004 (4)	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	30	years	EPA, 1991	
				BW	Body Weight	70	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	10,950	days	EPA, 1989	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
		Adolescent (3)	Patapsco River	CSed	Chemical Concentration in Sediment	UCL	mg/kg	-	CDI (mg/kg-day) =
				SSAF	Sediment to Skin Adherence Factor	1	mg/cm2-day	MDEP, 2002 (7)	CSed x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	chemical-specific	unitless	EPA, 2004	
				SA	Skin Surface Area Available for Contact	4,000	cm ²	EPA, 2004 (5)	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	12	years	MDE 2008	
				BW	Body Weight	40	kg	MDE 2008	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N CF1	Averaging Time (Non-Cancer)	4,380 1.00E-06	days	EPA, 1989	
		Child	Patapsco River	CFI	Conversion Factor 1 Chemical Concentration in Sediment	UCL	kg/mg mg/kg		CDI (mg/kg-day) =
		Crind	Falapsco River	SSAF	Sediment to Skin Adherence Factor	1	mg/cm ² -day	 MDEP, 2002 (7)	CSed x SA x SSAF x DABS x EF x ED x CF1 x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	chemical-specific	unitless	EPA, 2004	
				SA	Skin Surface Area Available for Contact	1,900	cm ²	EPA, 2004 (6)	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (2)	
				ED	Exposure Duration	6	years	EPA, 1991	
				BW	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		
		Child/Adolescent/Adult	Patapsco River	Csed	Chemical Concentration in Sediment	UCL	mg/kg	-	CDI (mg/kg-day) =
		Aggregate		SSAF	Sediment to Skin Adherence Factor	1	mg/cm2-day	MDEP, 2002 (7)	Csed x DA-Adj x DABS x CF1 x EF x 1/AT
				DABS	Dermal Absorption Factor Solids	chemical-specific	unitless	EPA, 2004	
				DA-Adj	Dermal Absorption, Age-adjusted	2,714	mg-year/kg-day	calculated	DA-Adj (mg-year/kg-day)
				SA _{adult}	Skin Surface Area Available for Contact	5,700	cm ²	EPA, 2004 (4)	Σ (ED x SA x SSAF x 1/BW) [from adult and child age groups (8)]
				SA _{child}	Skin Surface Area Available for Contact	1,900	cm ²	EPA, 2004 (6)	
				EF	Exposure Frequency	52	days/year	MDE, 2008 (3)	
				ED _{adult}	Exposure Duration	24	years	EPA, 1991	
				ED _{child}	Exposure Duration	6	years	EPA, 1991	
				BW _{adult}	Body Weight	70	kg	EPA, 1991	
				BW _{child}	Body Weight	15	kg	EPA, 1991	
				AT-C	Averaging Time (Canoer)	25,550	days	EPA, 1989	
				CF1	Conversion Factor 1	1.00E-06	kg/mg		

TABLE 4.8 Exposure Factors for Sediment REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Time Frame: Current/Future

Medium: Sediment

Exposure Medium: Sediment

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/Reference	Intake Equation/Model Name
----------------	---------------------	--------------	----------------	----------------	----------------------	-------	-------	---------------------	----------------------------

Notes:

(1) Equal to the soil ingestion rate

(2) EF based on Level 3 Recreational Scenario (Open Space Public Rec Area - Low Frequency Use)

(3) Adolescent age group spans 6-18 years of age.

(4) Average adult surface area for hands, forearms, lower legs, and feet.

(5) Surface area for children age "<7 to <18" for hands, forearms, lower legs and feet

(6) Surface area for children age "<1 to <6" for hands, forearms, lower legs and feet

(7) MDEP's recommended value as a best estimate of the loading that corresponds to a monolayer with most sediment types

(8) Consistent with MDE's age aggregate approach, adult and child age groups are used.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final.

EPA, 2004: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

MDE, 2008: Cleanup Standards for Soil and Groundwater

MDEP, 2002: Technical Update. Weighted Skin-Soil Adherence Factors

TABLE 5.1.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route				tions			Non-Can	cer Hazard Calc	ulations				
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposu	re Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Sediment	Sediment	Patapsco River	Ingestion	Aluminum	9.7E+03	mg/kg	8.5E-04	mg/kg-day	NA	NA	NA	2.0E-03	mg/kg-day	1.0E+00	mg/kg-day	2.0E-03
Sediment	(0 -1 foot)	Sediment	ingestion	Iron	3.6E+04	mg/kg	3.1E-03	mg/kg-day	NA	NA	NA	7.3E-03	mg/kg-day	7.0E-01	mg/kg-day	1.0E-02
	(0 - 1 1001)	ocument		Manganese	9.5E+02	mg/kg	8.3E-05	mg/kg-day	NA	NA	NA	1.9E-04	mg/kg-day	1.4E-01	mg/kg-day	1.4E-02
				Vanadium	1.1E+02	mg/kg	9.9E-06	mg/kg-day	NA	NA	NA	2.3E-05	mg/kg-day	5.0E-03	mg/kg-day	4.6E-03
			Exp. Route Total				<u> </u>				0.0E+00					1.8E-02
							/						1			
Sediment	Sediment	Patapsco River	Dermal	Aluminum	9.7E+03	mg/kg	4.8E-05	mg/kg-day	NA	NA	NA	1.1E-04	mg/kg-day	1.0E+00	mg/kg-day	1.1E-04
	(0 -1 foot)	Sediment		Iron	3.6E+04	mg/kg	1.8E-04	mg/kg-day	NA	NA	NA	4.2E-04	mg/kg-day	7.0E-01	mg/kg-day	6.0E-04
				Manganese	9.5E+02	mg/kg	4.7E-06	mg/kg-day	NA	NA	NA	1.1E-05	mg/kg-day	5.6E-03	mg/kg-day	2.0E-03
				Vanadium	1.1E+02	mg/kg	5.6E-07	mg/kg-day	NA	NA	NA	1.3E-06	mg/kg-day	1.3E-04	mg/kg-day	1.0E-02
			Exp. Route Total								0.0E+00					1.3E-02
		Exposure Point Total									0.0E+00					3.1E-02
	Exposure Medium Total										0.0E+00					3.1E-02
Sediment Total				<u> </u>			<u> </u>	1		1	0.0E+00				-	3.1E-02
Ourfeas Mater	Ourfaire Mater	Deterror Diver	la sa tina	O eleitere	4.45.05		4.05.00	ma flux alars				4.1E-02	and the stars	3.6E+01	and the start	4.05.00
Surface Water	Surface Water	Patapsco River Surface Water	Ingestion	Calcium	1.4E+05	ug/L	1.8E-02	mg/kg-day	NA	NA	NA	4.1E-02 1.2E-01	mg/kg-day		mg/kg-day	1.2E-03
		Surface water		Magnesium	3.9E+05	ug/L	5.1E-02	mg/kg-day	NA	NA	NA		mg/kg-day	5.0E+00	mg/kg-day	2.4E-02
				Manganese	7.2E+01	ug/L	9.5E-06	mg/kg-day	NA	NA	NA	2.2E-05	mg/kg-day	1.4E-01	mg/kg-day	1.6E-04
			Exp. Route Total								0.0E+00					2.5E-02
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	6.4E-03	mg/kg-day	NA	NA	NA	1.5E-02	mg/kg-day	3.6E+01	mg/kg-day	4.2E-04
		Surface Water		Magnesium	3.9E+05	ug/L	1.8E-02	mg/kg-day	NA	NA	NA	4.3E-02	mg/kg-day	5.0E+00	mg/kg-day	8.5E-03
				Manganese	7.2E+01	ug/L	3.4E-06	mg/kg-day	NA	NA	NA	8.0E-06	mg/kg-day	5.6E-03	mg/kg-day	1.4E-03
			Exp. Route Total	1		1	í	1	1	1	0.0E+00		1		1	1.0E-02
		Exposure Point Total	<u>u</u> .				Î				0.0E+00					3.5E-02
	Exposure Medium Total										0.0E+00					3.5E-02
Surface Water Tota	al										0.0E+00					3.5E-02
Receptor Total											0.0E+00					6.7E-02

NA = Not applicable.

TABLE 5.1.RME SUPPLEMENT A CALCULATION OF DAEVENT Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.2.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	I of EPC Cancer Risk Calculations							Non-Can	cer Hazard Calo	ulations		
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposu	re Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Sediment	Sediment	Patapsco River	Ingestion	Aluminum	9.7E+03	mg/kg	5.9E-04	mg/kg-day	NA	NA	NA	3.5E-03	mg/kg-day	1.0E+00	mg/kg-day	3.5E-03
Sediment	(0 -1 foot)	Sediment	ingestion	Iron	3.6E+04	mg/kg	2.2E-03	mg/kg-day	NA	NA	NA	1.3E-02	mg/kg-day	7.0E-01	mg/kg-day	1.8E-02
	(0 -1 1001)	Sediment		Manganese	9.5E+02	mg/kg	5.8E-05	mg/kg-day	NA	NA	NA	3.4E-04	mg/kg-day	1.4E-01	mg/kg-day	2.4E-03
				Vanadium	1.1E+02	mg/kg	6.9E-06	mg/kg-day	NA	NA	NA	4.0E-05	mg/kg-day	5.0E-03	mg/kg-day	8.0E-03
				Vanadiam	1.12.02	nig/kg	0.52-00	mg/kg-day	nn a	inter a	1973	4.02-00	mg/kg-day	0.0E-00	ing/kg-day	0.02-00
i			Exp. Route Total				ļ				0.0E+00				•	3.2E-02
Sediment	Sediment	Patapsco River	Dermal	Aluminum	9.7E+03	mg/kg	2.4E-05	mg/kg-day	NA	NA	NA	1.4E-04	mg/kg-day	1.0E+00	mg/kg-day	1.4E-04
	(0 -1 foot)	Sediment		Iron	3.6E+04	mg/kg	8.8E-05	mg/kg-day	NA	NA	NA	5.1E-04	mg/kg-day	7.0E-01	mg/kg-day	7.3E-04
				Manganese	9.5E+02	mg/kg	2.3E-06	mg/kg-day	NA	NA	NA	1.3E-05	mg/kg-day	5.6E-03	mg/kg-day	2.4E-03
				Vanadium	1.1E+02	mg/kg	2.8E-07	mg/kg-day	NA	NA	NA	1.6E-06	mg/kg-day	1.3E-04	mg/kg-day	1.2E-02
			Exp. Route Total				 				0.0E+00					1.6E-02
		Exposure Point Total									0.0E+00					4.8E-02
	Exposure Medium Total										0.0E+00					4.8E-02
Sediment Total											0.0E+00					4.8E-02
í																
Surface Water	Surface Water	Patapsco River	Ingestion	Calcium	1.4E+05	ug/L	1.2E-02	mg/kg-day	NA	NA	NA	7.2E-02	mg/kg-day	3.6E+01	mg/kg-day	2.0E-03
		Surface Water		Magnesium	3.9E+05	ug/L	3.6E-02	mg/kg-day	NA	NA	NA	2.1E-01	mg/kg-day	5.0E+00	mg/kg-day	4.2E-02
				Manganese	7.2E+01	ug/L	6.6E-06	mg/kg-day	NA	NA	NA	3.9E-05	mg/kg-day	1.4E-01	mg/kg-day	2.8E-04
			Exp. Route Total								0.0E+00				1	4.4E-02
			1								1					
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	3.3E-03	mg/kg-day	NA	NA	NA	1.9E-02	mg/kg-day	3.6E+01	mg/kg-day	5.3E-04
		Surface Water		Magnesium	3.9E+05	ug/L	9.3E-03	mg/kg-day	NA	NA	NA	5.4E-02	mg/kg-day	5.0E+00	mg/kg-day	1.1E-02
				Manganese	7.2E+01	ug/L	1.7E-06	mg/kg-day	NA	NA	NA	1.0E-05	mg/kg-day	5.6E-03	mg/kg-day	1.8E-03
			Exp. Route Total	<u> </u>			l				0.0E+00				<u> </u>	1.3E-02
d .		Exposure Point Total		1			¦				0.0E+00					5.7E-02
1 1	Exposure Medium Total										0.0E+00					5.7E-02
/																
Surface Water Tota	al										0.0E+00					5.7E-02

NA = Not applicable.

TABLE 5.2.RME SUPPLEMENT A CALCULATION OF DAEVENT Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.3.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	РС	C Cancer Risk Calculations						Non-Car	icer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	re Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Sediment	Sediment	Defenses Diver	Ingestion	Aluminum	9.7E+03		1.6E-03	and the start	NA	NA	NA	1.9E-02	and the start	1.0E+00	and the stars	1.9E-02
Sediment	(0 -1 foot)	Patapsco River Sediment	ingestion	Iron	3.6E+04	mg/kg mg/kg	5.9E-03	mg/kg-day mg/kg-day	NA	NA	NA	6.9E-02	mg/kg-day mg/kg-day	7.0E-01	mg/kg-day mg/kg-day	9.8E-02
	(0 - 1 1001)	ocument		Manganese	9.5E+02	mg/kg	1.5E-04	mg/kg-day	NA	NA	NA	1.8E-02	mg/kg-day	1.4E-01	mg/kg-day	1.3E-02
				Vanadium	1.1E+02	mg/kg	1.8E-05	mg/kg-day	NA	NA	NA	2.1E-04	mg/kg-day	5.0E-03	mg/kg-day	4.3E-02
											<u></u>					
	-		Exp. Route Total					r	1	1	0.0E+00				-	1.7E-01
					0.75.00		4 55 65							4.05.00		4.05.04
Sediment	Sediment (0 -1 foot)	Patapsco River Sediment	Dermal	Aluminum Iron	9.7E+03 3.6E+04	mg/kg	1.5E-05 5.6E-05	mg/kg-day	NA NA	NA NA	NA NA	1.8E-04 6.5E-04	mg/kg-day	1.0E+00 7.0E-01	mg/kg-day	1.8E-04 9.3E-04
	(0 - 1 1001)	Sediment		Manganese	9.5E+02	mg/kg mg/kg	1.5E-06	mg/kg-day mg/kg-day	NA	NA	NA	0.5E-04	mg/kg-day mg/kg-day	5.6E-03	mg/kg-day mg/kg-day	9.3E-04 3.1E-03
				Vanadium	1.1E+02	mg/kg	1.7E-07	mg/kg-day	NA	NA	NA	2.0E-06	mg/kg-day	1.3E-04	mg/kg-day	1.6E-02
				Vanadiam	1.12.02	mana	1.7 2-07	ing/kg-day	104	1073		2.02-00	ing/kg-day	1.02-04	mg/ng-day	1.02-02
			Exp. Route Total								0.0E+00		1			2.0E-02
		Exposure Point Total	-								0.0E+00					1.9E-01
	Exposure Medium Total										0.0E+00					1.9E-01
Sediment Total											0.0E+00					1.9E-01
Surface Water	Surface Water	Patapsco River	Ingestion	Calcium	1.4E+05	ug/L	1.7E-02	mg/kg-day	NA	NA	NA	1.9E-01	mg/kg-day	1.7E+02	mg/kg-day	1.2E-03
		Surface Water		Magnesium	3.9E+05	ug/L	4.7E-02	mg/kg-day	NA	NA	NA	5.5E-01	mg/kg-day	4.3E+00	mg/kg-day	1.3E-01
				Manganese	7.2E+01	ug/L	8.8E-06	mg/kg-day	NA	NA	NA	1.0E-04	mg/kg-day	1.4E-01	mg/kg-day	7.4E-04
			Exp. Route Total								0.0E+00					1.3E-01
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	2.2E-03	mg/kg-day	NA	NA	NA	2.5E-02	mg/kg-day	1.7E+02	mg/kg-day	1.5E-04
		Surface Water		Magnesium	3.9E+05	ug/L	6.3E-03	mg/kg-day	NA	NA	NA	7.3E-02	mg/kg-day	4.3E+00	mg/kg-day	1.7E-02
				Manganese	7.2E+01	ug/L	1.2E-06	mg/kg-day	NA	NA	NA	1.4E-05	mg/kg-day	5.6E-03	mg/kg-day	2.4E-03
			Exp. Route Total	J	I				1		0.0E+00					1.9E-02
		Exposure Point Total									0.0E+00					1.5E-01
	Exposure Medium Total	•									0.0E+00					1.5E-01
Surface Water Tota	al										0.0E+00					1.5E-01
Receptor Total	eceptor Total									0.0E+00					3.4E-01	

NA = Not applicable.

TABLE 5.3.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.4.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future
Receptor Population: DMT Workers
Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Cancer Ri	sk Calculations	3			Non-Ca	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure Co	oncentration	CSF/	Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD	RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Surface Soil	Surface Soil	Surface Soil	Ingestion	Calcium	1.4E+05	mg/kg	2.4E-02	mg/kg-day	NA	NA	NA	6.7E-02	mg/kg/day	3.6E+01	mg/kg-day	1.9E-03
	(0-0.5 feet)			Chromium (VI)	2.4E+03	mg/kg	4.2E-04	mg/kg-day	NA	NA	NA	1.2E-03	mg/kg/day	3.0E-03	mg/kg-day	3.9E-01
				Iron	3.9E+04	mg/kg	6.8E-03	mg/kg-day	NA	NA	NA	1.9E-02	mg/kg/day	7.0E-01	mg/kg-day	2.7E-02
				Manganese	7.5E+02	mg/kg	1.3E-04	mg/kg-day	NA	NA	NA	3.7E-04	mg/kg/day	1.4E-01	mg/kg-day	2.6E-03
				Vanadium	3.9E+02	mg/kg	6.8E-05	mg/kg-day	NA	NA	NA	1.9E-04	mg/kg/day	9.0E-03	mg/kg-day	2.1E-02
			Exp. Route Total								0.0E+00				<u> </u>	4.5E-01
			1								Î					
Surface Soil	Surface Soil	Surface Soil	Dermal	Calcium	1.4E+05	mg/kg	1.1E-04	mg/kg-day	NA	NA	NA	3.1E-04	mg/kg/day	3.6E+01	mg/kg-day	8.7E-06
	(0-0.5 feet)			Chromium (VI)	2.4E+03	mg/kg	1.9E-06	mg/kg-day	NA	NA	NA	5.4E-06	mg/kg/day	7.5E-05	mg/kg-day	7.3E-02
				Iron	3.9E+04	mg/kg	3.2E-05	mg/kg-day	NA	NA	NA	8.8E-05	mg/kg/day	7.0E-01	mg/kg-day	1.3E-04
				Manganese	7.5E+02	mg/kg	6.0E-07	mg/kg-day	NA	NA	NA	1.7E-06	mg/kg/day	5.6E-03	mg/kg-day	3.0E-04
				Vanadium	3.9E+02	mg/kg	3.1E-07	mg/kg-day	NA	NA	NA	8.8E-07	mg/kg/day	2.3E-04	mg/kg-day	3.8E-03
			Exp. Route Total								0.0E+00				L	7.7E-02
		Exposure Point Total	Exp. Route Total								0.0E+00					5.2E-01
	Exposure Medium Total	Exposure Fount Fotal									0.0E+00					5.2E-01
								1								
Surface Soil	Outdoor Air	Emissions from	Inhalation	Calcium	1.8E-03	mg/m ³	1.4E-04	mg/m ³	NA	NA	NA	4.0E-04	mg/m ³	NA	NA	NA
		Surface Soil		Chromium (VI)	3.1E-05	mg/m ³	2.5E-06	mg/m ³	8.4E-02	1/(ug/m3)	2.1E-04	7.1E-06	mg/m ³	1.0E-04	mg/m3	7.1E-02
				Iron	5.0E-04	mg/m ³	4.1E-05	mg/m ³	NA	NA	NA	1.1E-04	mg/m ³	NA	NA	NA
				Manganese	9.6E-06	mg/m ³	7.8E-07	mg/m ³	NA	NA	NA	2.2E-06	mg/m ³	5.0E-05	mg/m3	4.4E-02
				Vanadium	5.0E-06	mg/m ³	4.1E-07	mg/m ³	8.3E-03	1/(ug/m3)	3.4E-06	1.1E-06	mg/m ³	7.0E-06	mg/m3	1.6E-01
			Exp. Route Total	1		l	l				2.1E-04				<u> </u>	2.8E-01
		Exposure Point Total		1							2.1E-04 2.1E-04					2.8E-01
	Exposure Medium Total										2.1E-04					2.8E-01
Soil Total											2.1E-04					8.0E-01
Receptor Total											2.1E-04					8.0E-01

NA = Not applicable.

TABLE 5.5.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe:	Future
Scenario Timeframe: Receptor Population: Receptor Age: Adult	DMT Workers
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	°C		Cancer Ri	sk Calculations	3			Non-Ca	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure Co	oncentration	CSF/	Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD/	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Total Soil	Total Soil	Total Soil	Ingestion	Calcium	1.7E+05	mg/kg	2.9E-02	mg/kg-day	NA	NA	NA	8.1E-02	mg/kg/day	3.6E+01	mg/kg-day	2.3E-03
	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	5.4E-04	mg/kg-day	NA	NA	NA	1.5E-03	mg/kg/day	3.0E-03	mg/kg-day	5.0E-01
				Iron	6.9E+04	mg/kg	1.2E-02	mg/kg-day	NA	NA	NA	3.4E-02	mg/kg/day	7.0E-01	mg/kg-day	4.9E-02
				Manganese	8.1E+02	mg/kg	1.4E-04	mg/kg-day	NA	NA	NA	3.9E-04	mg/kg/day	1.4E-01	mg/kg-day	2.8E-03
				Vanadium	6.1E+02	mg/kg	1.1E-04	mg/kg-day	NA	NA	NA	3.0E-04	mg/kg/day	9.0E-03	mg/kg-day	3.3E-02
			Exp. Route Total								0.0E+00					5.9E-01
			<u> </u>	1												
Total Soil	Total Soil	Total Soil	Dermal	Calcium	1.7E+05	mg/kg	1.3E-04	mg/kg-day	NA	NA	NA	3.7E-04	mg/kg/day	3.6E+01	mg/kg-day	1.0E-05
	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	2.5E-06	mg/kg-day	NA	NA	NA	6.9E-06	mg/kg/day	7.5E-05	mg/kg-day	9.2E-02
				Iron	6.9E+04	mg/kg	5.6E-05	mg/kg-day	NA	NA	NA	1.6E-04	mg/kg/day	7.0E-01	mg/kg-day	2.2E-04
				Manganese	8.1E+02	mg/kg	6.5E-07	mg/kg-day	NA	NA	NA	1.8E-06	mg/kg/day	5.6E-03	mg/kg-day	3.3E-04
				Vanadium	6.1E+02	mg/kg	4.9E-07	mg/kg-day	NA	NA	NA	1.4E-06	mg/kg/day	2.3E-04	mg/kg-day	5.9E-03
			Exp. Route Total								0.0E+00					9.9E-02
		Exposure Point Total	Exp. Route Total								0.0E+00					6.9E-01
	Exposure Medium Total	Exposure Found Forda									0.0E+00					6.9E-01
								1								
Total Soil	Outdoor Air	Emissions from	Inhalation	Calcium	2.1E-03	mg/m ³	1.7E-04	mg/m ³	NA	NA	NA	4.9E-04	mg/m ³	NA	NA	NA
		Total Soil		Chromium (VI)	3.9E-05	mg/m ³	3.2E-06	mg/m ³	8.4E-02	1/(ug/m3)	2.7E-04	9.0E-06	mg/m ³	1.0E-04	mg/m3	9.0E-02
				Iron	8.9E-04	mg/m ³	7.3E-05	mg/m ³	NA	NA	NA	2.0E-04	mg/m ³	NA	NA	NA
				Manganese	1.0E-05	mg/m ³	8.4E-07	mg/m ³	NA	NA	NA	2.4E-06	mg/m ³	5.0E-05	mg/m3	4.7E-02
				Vanadium	7.8E-06	mg/m ³	6.3E-07	mg/m ³	8.3E-03	1/(ug/m3)	5.3E-06	1.8E-06	mg/m ³	7.0E-06	mg/m3	2.5E-01
			Exp. Route Total	1			l				2.7E-04					3.9E-01
		Exposure Point Total	Exp. Roule Total	1							2.7E-04 2.7E-04					3.9E-01
	Exposure Medium Total	Exposure Form Fold		1							2.7E-04 2.7E-04					3.9E-01
Soil Total	, procession of the										2.7E-04					1.1E+00
Receptor Total			- 							2.7E-04					1.1E+00	

NA = Not applicable.

TABLE 5.6.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Construction Worker (Low Exposure Frequency) Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Cancer	Risk Calcula	tions			Non-Car	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Total Soil	Total Soil	Total Soil	Ingestion	Calcium	1.7E+05	mg/kg	2.7E-03	mg/kg-day	NA	NA	NA	1.9E-01	mg/kg-day	3.6E+01	mg/kg-day	5.2E-03
ł	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	4.9E-05	mg/kg-day	NA	NA	NA	3.5E-03	mg/kg-day	3.0E-03	mg/kg-day	1.2E+00
ŀ				Iron	6.9E+04	mg/kg	1.1E-03	mg/kg-day	NA	NA	NA	7.8E-02	mg/kg-day	7.0E-01	mg/kg-day	1.1E-01
ł				Manganese	8.1E+02	mg/kg	1.3E-05	mg/kg-day	NA	NA	NA	9.1E-04	mg/kg-day	1.4E-01	mg/kg-day	6.5E-03
ľ				Vanadium	6.1E+02	mg/kg	9.8E-06	mg/kg-day	NA	NA	NA	6.8E-04	mg/kg-day	9.0E-03	mg/kg-day	7.6E-02
			Exp. Route Total						l		0.0E+00	 				1.4E+00
			I	ĺ			l I									
Total Soil	Total Soil	Total Soil	Dermal	Calcium	1.7E+05	mg/kg	3.7E-06	mg/kg-day	NA	NA	NA	2.6E-04	mg/kg-day	3.6E+01	mg/kg-day	7.2E-06
ł	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	6.8E-08	mg/kg-day	NA	NA	NA	4.7E-06	mg/kg-day	7.5E-05	mg/kg-day	6.3E-02
ł				Iron	6.9E+04	mg/kg	1.5E-06	mg/kg-day	NA	NA	NA	1.1E-04	mg/kg-day	7.0E-01	mg/kg-day	1.5E-04
ł				Manganese	8.1E+02	mg/kg	1.8E-08	mg/kg-day	NA	NA	NA	1.2E-06	mg/kg-day	5.6E-03	mg/kg-day	2.2E-04
ľ				Vanadium	6.1E+02	mg/kg	1.3E-08	mg/kg-day	NA	NA	NA	9.3E-07	mg/kg-day	2.3E-04	mg/kg-day	4.0E-03
ľ			Exp. Route Total				<u> </u>				0.0E+00					6.7E-02
ł		Exposure Point Total									0.0E+00					1.4E+00
ſ	Exposure Medium Total										0.0E+00					1.4E+00
Total Soil	Outdoor Air	Emissions from	Inhalation	Calcium	2.1E-03	mg/m ³	1.7E-06	mg/m ³	NA	NA	NA	1.2E-04	mg/m3	NA	NA	NA
ł		Total Soil		Chromium (VI)	3.9E-05	mg/m ³	3.1E-08	mg/m ³	8.4E-02	1/(ug/m3)	2.6E-06	2.2E-06	mg/m3	1.0E-04	mg/m3	2.2E-02
ł				Iron	8.9E-04	mg/m ³	7.0E-07	mg/m ³	NA	NA	NA	4.9E-05	mg/m3	NA	NA	NA
ł				Manganese	1.0E-05	mg/m ³	8.1E-09	mg/m ³	NA	NA	NA	5.7E-07	mg/m3	5.0E-05	mg/m3	1.1E-02
				Vanadium	7.8E-06	mg/m ³	6.1E-09	mg/m ³	8.3E-03	1/(ug/m3)	5.1E-08	4.3E-07	mg/m3	7.0E-06	mg/m3	6.1E-02
			Exp. Route Total				l l				2.6E-06	╏────				9.4E-02
ł		Exposure Point Total									2.6E-06					9.4E-02
ſ	Exposure Medium Total										2.6E-06					9.4E-02
Soil Total	1										2.6E-06					1.5E+00
·							Î									
Groundwater	Groundwater	Groundwater	Dermal	Aluminum	2.9E+04	ug/L	3.2E-06	mg/kg-day	NA	NA	NA	2.2E-04	mg/kg-day	1.0E+00	mg/kg-day	2.2E-04
ł	(Excavation)	(Excavation)		Calcium	2.2E+05	ug/L	2.4E-05	mg/kg-day	NA	NA	NA	1.7E-03	mg/kg-day	3.6E+01	mg/kg-day	4.7E-05
ŀ				Chromium (III)	6.5E+03	ug/L	7.1E-07	mg/kg-day	NA	NA	NA	5.0E-05	mg/kg-day	2.0E-02	mg/kg-day	2.6E-03
ł				Chromium (VI)	1.1E+04	ug/L	2.3E-06	mg/kg-day	NA	NA	NA	1.6E-04	mg/kg-day	7.5E-05	mg/kg-day	2.2E+00
ł				Iron	1.7E+05	ug/L	1.9E-05	mg/kg-day	NA	NA	NA	1.4E-03	mg/kg-day	7.0E-01	mg/kg-day	1.9E-03
ł				Magnesium	1.1E+05	ug/L	1.2E-05	mg/kg-day	NA	NA	NA	8.3E-04	mg/kg-day	5.0E+00	mg/kg-day	1.7E-04
ł				Manganese	2.8E+03	ug/L	3.1E-07	mg/kg-day	NA	NA	NA	2.2E-05	mg/kg-day	5.6E-03	mg/kg-day	3.9E-03
				Vanadium	5.9E+02	ug/L	6.5E-08	mg/kg-day	NA	NA	NA	4.5E-06	mg/kg-day	1.3E-04	mg/kg-day	3.5E-02
			Exp. Route Total		1	1	<u> </u>	1	1	1	0.0E+00	i	I	1	1	2.2E+00
		Exposure Point Total									0.0E+00					2.2E+00
ľ	Exposure Medium Total										0.0E+00					2.2E+00
Groundwater Total											0.0E+00					2.2E+00
											2.6E-06					3.7E+00

TABLE 5.6.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Aluminum	2.86E+04	1.0E-03	NA	NA	NA	NA	0.58	1.7E-05	1
Calcium	2.17E+05	1.0E-03	NA	NA	NA	NA	0.58	1.3E-04	1
Chromium (III)	6.47E+03	1.0E-03	NA	NA	NA	NA	0.58	3.8E-06	1
Chromium (VI)	1.06E+04	2.0E-03	NA	NA	NA	NA	0.58	1.2E-05	1
Iron	1.75E+05	1.0E-03	NA	NA	NA	NA	0.58	1.0E-04	1
Magnesium	1.07E+05	1.0E-03	NA	NA	NA	NA	0.58	6.2E-05	1
Manganese	2.80E+03	1.0E-03	NA	NA	NA	NA	0.58	1.6E-06	1
Vanadium	5.88E+02	1.0E-03	NA	NA	NA	NA	0.58	3.4E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.7.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Construction Worker (High Exposure Frequency) Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	РС		Cancer	r Risk Calcula	tions			Non-Car	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	re Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Total Soil	Subsurface Soil	Total Soil	Ingestion	Calcium	1.7E+05	mg/kg	1.1E-02	mg/kg-day	NA	NA	NA	7.8E-01	mg/kg-day	3.6E+01	mg/kg-day	2.2E-02
	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	2.1E-04	mg/kg-day	NA	NA	NA	1.4E-02	mg/kg-day	3.0E-03	mg/kg-day	4.8E+00
				Iron	6.9E+04	mg/kg	4.7E-03	mg/kg-day	NA	NA	NA	3.3E-01	mg/kg-day	7.0E-01	mg/kg-day	4.7E-01
				Manganese	8.1E+02	mg/kg	5.4E-05	mg/kg-day	NA	NA	NA	3.8E-03	mg/kg-day	1.4E-01	mg/kg-day	2.7E-02
				Vanadium	6.1E+02	mg/kg	4.1E-05	mg/kg-day	NA	NA	NA	2.8E-03	mg/kg-day	9.0E-03	mg/kg-day	3.2E-01
			Exp. Route Total				/ 	I			0.0E+00					5.6E+00
							Û									
Total Soil	Subsurface Soil	Total Soil	Dermal	Calcium	1.7E+05	mg/kg	1.5E-05	mg/kg-day	NA	NA	NA	1.1E-03	mg/kg-day	3.6E+01	mg/kg-day	3.0E-05
	(0-10 feet)			Chromium (VI)	3.1E+03	mg/kg	2.8E-07	mg/kg-day	NA	NA	NA	2.0E-05	mg/kg-day	7.5E-05	mg/kg-day	2.6E-01
				Iron	6.9E+04	mg/kg	6.4E-06	mg/kg-day	NA	NA	NA	4.5E-04	mg/kg-day	7.0E-01	mg/kg-day	6.4E-04
				Manganese	8.1E+02	mg/kg	7.4E-08	mg/kg-day	NA	NA	NA	5.2E-06	mg/kg-day	5.6E-03	mg/kg-day	9.2E-04
				Vanadium	6.1E+02	mg/kg	5.6E-08	mg/kg-day	NA	NA	NA	3.9E-06	mg/kg-day	2.3E-04	mg/kg-day	1.7E-02
			Exp. Route Total				Î				0.0E+00		•			2.8E-01
		Exposure Point Total									0.0E+00					5.9E+00
	Exposure Medium Total										0.0E+00					5.9E+00
Total Soil	Outdoor Air	Emissions from	Inhalation	Calcium	2.1E-03	mg/m ³	6.9E-06	mg/m ³	NA	NA	NA	4.9E-04	mg/m3	NA	NA	NA
		Total Soil		Chromium (VI)	3.9E-05	mg/m ³	1.3E-07	mg/m ³	8.4E-02	1/(ug/m3)	1.1E-05	9.0E-06	mg/m3	1.0E-04	mg/m3	9.0E-02
				Iron	8.9E-04	mg/m ³	2.9E-06	mg/m ³	NA	NA	NA	2.0E-04	mg/m3	NA	NA	NA
				Manganese	1.0E-05	mg/m ³	3.4E-08	mg/m ³	NA	NA	NA	2.4E-06	mg/m3	5.0E-05	mg/m3	4.7E-02
				Vanadium	7.8E-06	mg/m ³	2.5E-08	mg/m ³	8.3E-03	1/(ug/m3)	2.1E-07	1.8E-06	mg/m3	7.0E-06	mg/m3	2.5E-01
							Į				ļ					
			Exp. Route Total								1.1E-05					3.9E-01
		Exposure Point Total									1.1E-05					3.9E-01
-	Exposure Medium Total										1.1E-05					3.9E-01
Soil Total				1			<u> </u>	1	1	1	1.1E-05	-			1	6.3E+00
Groundwater	Groundwater	Groundwater	Dermel	A !	2.9E+04		1.3E-05	and the start	NA		NA	9.2E-04	and the start	1.0E+00	meller devi	9.2E-04
Groundwater			Dermal	Aluminum		ug/L		mg/kg-day		NA			mg/kg-day		mg/kg-day	
	(Excavation)	(Excavation)		Calcium	2.2E+05 6.5E+03	ug/L	1.0E-04 3.0E-06	mg/kg-day	NA NA	NA NA	NA NA	7.0E-03 2.1E-04	mg/kg-day	3.6E+01 2.0E-02	mg/kg-day	2.0E-04 1.1E-02
				Chromium (III)	6.5E+03 1.1E+04	ug/L		mg/kg-day	NA	NA	NA	-	mg/kg-day	2.0E-02 7.5E-05	mg/kg-day	9.1E+00
				Chromium (VI)		ug/L	9.7E-06	mg/kg-day				6.8E-04	mg/kg-day		mg/kg-day	
				Iron	1.7E+05	ug/L	8.0E-05	mg/kg-day	NA	NA	NA	5.6E-03	mg/kg-day	7.0E-01	mg/kg-day	8.0E-03
				Magnesium	1.1E+05	ug/L	4.9E-05	mg/kg-day	NA	NA	NA	3.4E-03	mg/kg-day	5.0E+00	mg/kg-day	6.9E-04
				Manganese	2.8E+03	ug/L	1.3E-06	mg/kg-day	NA	NA	NA	9.0E-05	mg/kg-day	5.6E-03	mg/kg-day	1.6E-02
				Vanadium	5.9E+02	ug/L	2.7E-07	mg/kg-day	NA	NA	NA	1.9E-05	mg/kg-day	1.3E-04	mg/kg-day	1.4E-01
			Exp. Route Total		•		j				0.0E+00		•	·	•	9.3E+00
_		Exposure Point Total									0.0E+00					9.3E+00
	Exposure Medium Total										0.0E+00					9.3E+00
Groundwater Total											0.0E+00					9.3E+00
Receptor Total							<u> </u>				1.1E-05					1.6E+01

TABLE 5.7.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Aluminum	2.86E+04	1.0E-03	NA	NA	NA	NA	0.58	1.7E-05	1
Calcium	2.00E+04 2.17E+05	1.0E-03	NA	NA	NA	NA	0.58	1.3E-04	2
Chromium (III)	6.47E+03	1.0E-03	NA	NA	NA	NA	0.58	3.8E-06	3
Chromium (VI)	1.06E+04	2.0E-03	NA	NA	NA	NA	0.58	1.2E-05	4
Iron	1.75E+05	1.0E-03	NA	NA	NA	NA	0.58	1.0E-04	5
Magnesium	1.07E+05	1.0E-03	NA	NA	NA	NA	0.58	6.2E-05	6
Manganese	2.80E+03	1.0E-03	NA	NA	NA	NA	0.58	1.6E-06	7
Vanadium	5.88E+02	1.0E-03	NA	NA	NA	NA	0.58	3.4E-07	8

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.8.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundak Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EF	°C	Cancer Risk Calculations					Non-Cancer Hazard Calculations				
				Potential Concern	Value	Units	Intake/Exposure Concentration		CSF/Unit Risk		Cancer Risk	Intake/Exposure Concentration		RfD/RfC		Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Storm Water	Storm Water (Non Priority Subsurface Stormwater Lines)	Storm Water (Subsurface Stormwater Lines)	Dermal	Chromium (VI)	2.1E+02	ug/L	2.7E-07	mg/kg-day	NA	NA	NA	1.9E-05	mg/kg-day	7.5E-05	mg/kg-day	2.5E-01
			Exp. Route Total)				0.0E+00				2.5E-01	
		Exposure Point Total									0.0E+00				2.5E-01	
	Exposure Medium Total										0.0E+00				2.5E-01	
Storm Water Total	Storm Water Total							0.0E								2.5E-01
Receptor Total	Receptor Total							0.0E+00								2.5E-01

NA = Not applicable.

TABLE 5.8.RME SUPPLEMENT B CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Chromium (VI)	2.11E+02	2.0E-03	NA	NA	NA	NA	8.0	3.4E-06	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document. B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.9 RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE Dundak Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC 24		Cancer	Risk Calculat	ions			Non-Car	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD/	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Storm Water	Storm Water (Priority Subsurface Stormwater Lines)	Storm Water (Subsurface Stormwater Lines)		Chromium (III) Chromium (VI) Vanadium Calcium	1.3E+03 2.5E+04 4.2E+01 4.2E+05	ug/L ug/L ug/L ug/L	8.3E-07 3.1E-05 2.7E-08 2.7E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA	NA NA NA	NA NA NA NA	5.8E-05 2.2E-03 1.9E-06 1.9E-02	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.0E-02 7.5E-05 1.3E-04 3.6E+01	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	3.0E-03 2.9E+01 1.4E-02 5.2E-04 2.9E+01
		Exposure Point Total	Exp. Route Total								0.0E+00					2.9E+01
	Exposure Medium Total										0.0E+00					2.9E+01
Storm Water Total										0.0E+00					2.9E+01	
Receptor Total											0.0E+00				-	2.9E+01

NA = Not applicable.

TABLE 5.9.RME SUPPLEMENT B CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	ť* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Chromium (III) Chromium (VI) Vanadium Calcium	1.31E+03 2.46E+04 4.20E+01 4.22E+05	1.0E-03 2.0E-03 1.0E-03 1.0E-03	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	8.0 8.0 8.0 8.0	1.1E-05 3.9E-04 3.4E-07 3.4E-03	1 1 1 1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document. B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.10.RME

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	ъС		Cancer	Risk Calcula	tions			Non-Car	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD	(RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Sediment	Sediment	Patapsco River Sediment	Ingestion	Aluminum	1.1E+04	mg/kg	9.4E-04	mg/kg-day	NA	NA	NA	2.2E-03	mg/kg-day	1.0E+00	mg/kg-day	2.2E-03
	(0 -3 feet)	Sediment		Iron Manganese	2.8E+04 5.7E+02	mg/kg mg/kg	2.4E-03 5.0E-05	mg/kg-day mg/kg-day	NA NA	NA NA	NA NA	5.7E-03 1.2E-04	mg/kg-day mg/kg-day	7.0E-01 1.4E-01	mg/kg-day mg/kg-day	8.1E-03 8.3E-04
				Vanadium	5.0E+01	mg/kg	4.4E-06	mg/kg-day	NA	NA	NA	1.2E-04 1.0E-05	mg/kg-day	5.0E-03	mg/kg-day	2.0E-03
				- Childrenni	0.02.01			inging day					inging day	0.02 00	inging day	2.02 00
			Exp. Route Total								0.0E+00					1.3E-02
Sediment	Sediment	Patapsco River	Dermal	Aluminum	1.1E+04	mg/kg	5.4E-05	mg/kg-day	NA	NA	NA	1.3E-04	mg/kg/day	1.0E+00	mg/kg-day	1.3E-04
	(0 -3 feet)	Sediment		Iron	2.8E+04	mg/kg	1.4E-04	mg/kg-day	NA	NA	NA	3.2E-04	mg/kg/day	7.0E-01	mg/kg-day	4.6E-04
				Manganese	5.7E+02	mg/kg	2.8E-06	mg/kg-day	NA	NA	NA	6.6E-06	mg/kg/day	5.6E-03	mg/kg-day	1.2E-03
				Vanadium	5.0E+01	mg/kg	2.5E-07	mg/kg-day	NA	NA	NA	5.8E-07	mg/kg/day	1.3E-04	mg/kg-day	4.4E-03
			Exp. Route Total				ļ				0.0E+00					6.2E-03
		Exposure Point Total	-								0.0E+00					1.9E-02
	Exposure Medium Total										0.0E+00					1.9E-02
Sediment Total										1	0.0E+00		1			1.9E-02
Surface Water	Surface Water	Patapsco River	Ingestion	Calcium	1.4E+05	ug/L	1.8E-02	mg/kg-day	NA	NA	NA	4.1E-02		3.6E+01	mg/kg-day	1.2E-03
Surface water	Surface water	Surface Water	ingestion	Magnesium	3.9E+05	ug/L ug/L	5.1E-02	mg/kg-day	NA	NA	NA	4.1E-02 1.2E-01	mg/kg/day mg/kg/day		mg/kg-day	2.4E-02
		Surface Water		Magnese	7.2E+01	ug/L	9.5E-06	mg/kg-day	NA	NA	NA	2.2E-05	mg/kg/day	5.0E+00 1.4E-01	mg/kg-day	1.6E-04
				manganese	7.22.01	ug/L	0.02-00	ing/kg-uay		103	100	2.22-00	mg/ng/day	1.42-01	ing/kg-day	1.02-04
			Exp. Route Total				·				0.0E+00					2.5E-02
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	6.4E-03	mg/kg-day	NA	NA	NA	1.5E-02	mg/kg/day	3.6E+01	mg/kg-day	4.2E-04
		Surface Water		Magnesium	3.9E+05	ug/L	1.8E-02	mg/kg-day	NA	NA	NA	4.3E-02	mg/kg/day	5.0E+00	mg/kg-day	8.5E-03
				Manganese	7.2E+01	ug/L	3.4E-06	mg/kg-day	NA	NA	NA	8.0E-06	mg/kg/day	5.6E-03	mg/kg-day	1.4E-03
			Exp. Route Total	J		I	/	1	1	1	0.0E+00		1		1	1.0E-02
		Exposure Point Total	-				Î				0.0E+00					3.5E-02
	Exposure Medium Total										0.0E+00					3.5E-02
Surface Water Total	ace Water Total										0.0E+00					3.5E-02
Receptor Total											0.0E+00					5.5E-02

NA = Not applicable.

TABLE 5.10.RME SUPPLEMENT A CALCULATION OF DAEVENT Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless). t^{\ast} - Time to reach steady-state

TABLE 5.11.RME

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Cancer	r Risk Calcula	tions			Non-Car	ncer Hazard Calo	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	re Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
0	0.11.1			AL			0.05.04					0.05.00		4.05.00		0.05.00
Sediment	Sediment (0 -3 feet)	Patapsco River Sediment	Ingestion	Aluminum Iron	1.1E+04 2.8E+04	mg/kg mg/kg	6.6E-04 1.7E-03	mg/kg-day mg/kg-day	NA NA	NA NA	NA NA	3.8E-03 9.9E-03	mg/kg-day mg/kg-day	1.0E+00 7.0E-01	mg/kg-day mg/kg-day	3.8E-03 1.4E-02
	(0 -5 1661)	Sediment		Manganese	5.7E+02	mg/kg	3.5E-05	mg/kg-day	NA	NA	NA	2.0E-04	mg/kg-day	1.4E-01	mg/kg-day	1.4E-02
				Vanadium	5.0E+01	mg/kg	3.1E-06	mg/kg-day	NA	NA	NA	1.8E-05	mg/kg-day	5.0E-03	mg/kg-day	3.5E-03
			Exp. Route Total				<u> </u>				0.0E+00					2.3E-02
0 5 6							0.05.05							4.05.00		4.55.04
Sediment	Sediment (0 -3 feet)	Patapsco River Sediment	Dermal	Aluminum Iron	1.1E+04 2.8E+04	mg/kg mg/kg	2.6E-05 6.8E-05	mg/kg-day mg/kg-day	NA NA	NA NA	NA NA	1.5E-04 4.0E-04	mg/kg-day mg/kg-day	1.0E+00 7.0E-01	mg/kg-day mg/kg-day	1.5E-04 5.7E-04
	(0 -3 leet)	Sediment		Manganese	5.7E+02	mg/kg	0.8E-05	mg/kg-day	NA	NA	NA	4.0E-04 8.1E-06	mg/kg-day	5.6E-03	mg/kg-day	1.4E-03
				Vanadium	5.0E+01	mg/kg	1.2E-07	mg/kg-day	NA	NA	NA	7.1E-07	mg/kg-day	1.3E-04	mg/kg-day	5.4E-03
			Exp. Route Total								0.0E+00					7.6E-03
		Exposure Point Total									0.0E+00					3.1E-02
	Exposure Medium Total										0.0E+00					3.1E-02
Sediment Total	1		1		-			1		1	0.0E+00				-	3.1E-02
Surface Water	Surface Water	Patapsco River	Ingestion	Calcium	1.4E+05	ug/L	1.2E-02	mg/kg-day	NA	NA	NA	7.2E-02	mg/kg-day	3.6E+01	mg/kg-day	2.0E-03
Surface Water	Surface Water	Surface Water	ingestion	Magnesium	3.9E+05	ug/L	3.6E-02	mg/kg-day	NA	NA	NA	2.1E-02	mg/kg-day	5.0E+01	mg/kg-day	4.2E-02
		Surface Water		Manganese	7.2E+01	ug/L	6.6E-02	mg/kg-day	NA	NA	NA	3.9E-05	mg/kg-day	5.0E+00 1.4E-01	mg/kg-day	2.8E-04
						-9										
			Exp. Route Total				·				0.0E+00					4.4E-02
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	3.3E-03	mg/kg-day	NA	NA	NA	1.9E-02	mg/kg-day	3.6E+01	mg/kg-day	5.3E-04
		Surface Water		Magnesium	3.9E+05	ug/L	9.3E-03	mg/kg-day	NA	NA	NA	5.4E-02	mg/kg-day	5.0E+00	mg/kg-day	1.1E-02
				Manganese	7.2E+01	ug/L	1.7E-06	mg/kg-day	NA	NA	NA	1.0E-05	mg/kg-day	5.6E-03	mg/kg-day	1.8E-03
			Exp. Route Total		I	I	l <u></u>	I		I	0.0E+00		1		<u> </u>	1.3E-02
		Exposure Point Total		й			¦				0.0E+00					5.7E-02
	Exposure Medium Total	•									0.0E+00					5.7E-02
Surface Water Tota											0.0E+00					5.7E-02
Receptor Total											0.0E+00					8.8E-02

NA = Not applicable.

TABLE 5.11.RME SUPPLEMENT A CALCULATION OF DAEVENT Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 5.12.RME

CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Cancer	r Risk Calcula	tions			Non-Car	ncer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposure	Concentration	CSF	/Unit Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
0				AL			4.05.00					0.45.00		4.05.00		0.45.00
Sediment	Sediment (0 -3 feet)	Patapsco River Sediment	Ingestion	Aluminum Iron	1.1E+04 2.8E+04	mg/kg	1.8E-03 4.5E-03	mg/kg-day	NA NA	NA NA	NA NA	2.1E-02 5.3E-02	mg/kg-day	1.0E+00 7.0E-01	mg/kg-day	2.1E-02 7.6E-02
	(0 -3 leel)	Sediment		Manganese	5.7E+02	mg/kg mg/kg	4.5E-03 9.3E-05	mg/kg-day mg/kg-day	NA	NA	NA	1.1E-03	mg/kg-day mg/kg-day	1.4E-01	mg/kg/day mg/kg/day	7.0E-02 7.7E-03
				Vanadium	5.0E+01	mg/kg	9.3E-05 8.2E-06	mg/kg-day	NA	NA	NA	9.5E-05	mg/kg-day	5.0E-03	mg/kg/day	1.9E-02
				Vanadian	0.0E+01	mgrkg	0.22-00	ing/kg-uay	103	100	194	5.0E-00	ing/kg-day	0.0E-00	mg/kg/day	1.52-62
			Exp. Route Total								0.0E+00					1.2E-01
Sediment	Sediment	Patapsco River	Dermal	Aluminum	1.1E+04	mg/kg	1.7E-05	mg/kg-day	NA	NA	NA	1.9E-04	mg/kg-day	1.0E+00	mg/kg-day	1.9E-04
	(0 -3 feet)	Sediment		Iron	2.8E+04	mg/kg	4.3E-05	mg/kg-day	NA	NA	NA	5.0E-04	mg/kg-day	7.0E-01	mg/kg/day	7.2E-04
				Manganese	5.7E+02	mg/kg	8.8E-07	mg/kg-day	NA	NA	NA	1.0E-05	mg/kg-day	5.6E-03	mg/kg/day	1.8E-03
				Vanadium	5.0E+01	mg/kg	7.7E-08	mg/kg-day	NA	NA	NA	9.0E-07	mg/kg-day	1.3E-04	mg/kg/day	6.9E-03
			Exp. Route Total								0.0E+00					9.6E-03
		Exposure Point Total									0.0E+00					1.3E-01
	Exposure Medium Total										0.0E+00					1.3E-01
Sediment Total			-		-			-		-	0.0E+00					1.3E-01
Surface Water	Surface Water	Patapsco River	Ingestion	Calcium	1.4E+05	ug/L	1.7E-02	mg/kg-day	NA	NA	NA	1.9E-01	mg/kg-day	1.7E+02	mg/kg-day	1.2E-03
		Surface Water		Magnesium	3.9E+05	ug/L	4.7E-02	mg/kg-day	NA	NA	NA	5.5E-01	mg/kg-day	4.3E+00	mg/kg-day	1.3E-01
				Manganese	7.2E+01	ug/L	8.8E-06	mg/kg-day	NA	NA	NA	1.0E-04	mg/kg-day	1.4E-01	mg/kg-day	7.4E-04
			Exp. Route Total								0.0E+00					1.3E-01
Surface Water	Surface Water	Patapsco River	Dermal	Calcium	1.4E+05	ug/L	2.2E-03	mg/kg-day	NA	NA	NA	2.5E-02	mg/kg-day	1.7E+02	mg/kg-day	1.5E-04
		Surface Water		Magnesium	3.9E+05	ug/L	6.3E-03	mg/kg-day	NA	NA	NA	7.3E-02	mg/kg-day	4.3E+00	mg/kg-day	1.7E-02
				Manganese	7.2E+01	ug/L	1.2E-06	mg/kg-day	NA	NA	NA	1.4E-05	mg/kg-day	5.6E-03	mg/kg-day	2.4E-03
			Exp. Route Total		<u> </u>	1		<u>I</u>	1	1	0.0E+00		1		1	1.9E-02
		Exposure Point Total		í							0.0E+00					1.5E-01
	Exposure Medium Total	-									0.0E+00					1.5E-01
Surface Water Tota	1										0.0E+00					1.5E-01
Receptor Total											0.0E+00					2.8E-01

NA = Not applicable.

TABLE 5.12.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Chemical of Potential Concern	Surface Water Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	ť* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Calcium	1.35E+05	1.0E-03	NA	NA	NA	NA	3.0	4.1E-04	1
Magnesium	3.89E+05	1.0E-03	NA	NA	NA	NA	3.0	1.2E-03	1
Manganese	7.24E+01	1.0E-03	NA	NA	NA	NA	3.0	2.2E-07	1

Inorganics: DAevent (mg/cm2-event) =

DA_{event} = Kp x CW x tevent x 0.001 mg/ug x 0.001 l/cm³

(Eq 1)

Notes:

NA - Not applicable

Permeability constants from EPA 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final). EPA/540/R/99/005. The default value of 0.001 was assigned to inorganics not listed in this document.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability coefficient across the viable epidermis (dimensionless).

t* - Time to reach steady-state

TABLE 6.1.RME

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	iogenic Risk		Non-Carc	nogenic Hazard	Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Sediment	Sediment (0 -1 foot)	Patapsco River Sediment	Aluminum Iron	NA NA	NA NA	NA NA	NA NA	CNS GI	2E-03 1E-02	NA NA	1E-04 6E-04	2E-03 1E-02
			Manganese Vanadium	NA NA	NA NA	NA NA	NA NA	CNS Hair	1E-03 5E-03	NA NA	2E-03 1E-02	3E-03 1E-02
		Exposure Point Total		0E+00	NA	0E+00	0E+00		2E-02	NA	1E-02	3E-02
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		2E-02	NA	1E-02	3E-02
Sediment Total	-			0E+00	NA	0E+00	0E+00		2E-02	NA	1E-02	3E-02
Surface Water	Surface Water	Patapsco River Surface Water	Calcium Magnesium Manganese	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NOE NOE CNS	1E-03 2E-02 2E-04	NA NA NA	4E-04 9E-03 1E-03	2E-03 3E-02 2E-03
		Exposure Point Total		0E+00	NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02
	Exposure Medium Total				NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02
Surface Water Total				0E+00	NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02
Receptor Total				0E+00	NA	0E+00	0E+00		4E-02	NA	2E-02	7E-02

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media =

7E-03 1E-02 1E-02 3E-02

TABLE 6.2.RME

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	ogenic Risk		Non-Carcin	ogenic Hazard	Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Sediment	Sediment	Patapsco River	Aluminum	NA	NA	NA	NA	CNS	3E-03	NA	1E-04	4E-03
	(0 -1 foot)	Sediment	Iron	NA	NA	NA	NA	GI	2E-02	NA	7E-04	2E-02
			Manganese	NA	NA	NA	NA	CNS	2E-03	NA	2E-03	5E-03
			Vanadium	NA	NA	NA	NA	Hair	8E-03	NA	1E-02	2E-02
			0E+00	NA	0E+00	0E+00		3E-02	NA	2E-02	5E-02	
	Exposure Point Total Exposure Medium Total					0E+00	0E+00		3E-02	NA	2E-02	5E-02
Sediment Total				0E+00	NA	0E+00	0E+00		3E-02	NA	2E-02	5E-02
Surface Water	Surface Water	Patapsco River	Calcium	NA	NA	NA	NA	NOE	2E-03	NA	5E-04	3E-03
		Surface Water	Magnesium	NA	NA	NA	NA	NOE	4E-02	NA	1E-02	5E-02
			Manganese	NA	NA	NA	NA	CNS	3E-04	NA	2E-03	2E-03
	Exposure Point Total				NA	0E+00	0E+00		4E-02	NA	1E-02	6E-02
	Exposure Medium Total					0E+00	0E+00		4E-02	NA	1E-02	6E-02
Surface Water Total		0E+00	NA	0E+00	0E+00		4E-02	NA	1E-02	6E-02		
Receptor Total				0E+00	NA	0E+00	0E+00		8E-02	NA	3E-02	1E-01
NA = Not applicable	or not available											

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media =

1E-02 2E-02 2E-02 5E-02

TABLE 6.3.RME

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Current Receptor Population: Recreator Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk		Non-Carcin	ogenic Hazard	Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
							Hould's Fold					Troutes Total
Sediment	Sediment	Patapsco River	Aluminum	NA	NA	NA	NA	CNS	2E-02	NA	2E-04	2E-02
	(0 -1 foot)	Sediment	Iron	NA	NA	NA	NA	GI	1E-01	NA	9E-04	1E-01
			Manganese	NA	NA	NA	NA	CNS	1E-02	NA	3E-03	2E-02
			Vanadium	NA	NA	NA	NA	Hair	4E-02	NA	2E-02	6E-02
		Exposure Point Total		0E+00	NA	0E+00	0E+00		2E-01	NA	2E-02	2E-01
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		2E-01	NA	2E-02	2E-01
Sediment Total				0E+00	NA	0E+00	0E+00		2E-01	NA	2E-02	2E-01
Surface Water	Surface Water	Patapsco River	Calcium	NA	NA	NA	NA	NOE	1E-03	NA	2E-04	1E-03
		Surface Water	Magnesium	NA	NA	NA	NA	NOE	1E-01	NA	2E-02	1E-01
			Manganese	NA	NA	NA	NA	CNS	7E-04	NA	2E-03	3E-03
			Ĩ									
	Exposure Point Total		•	0E+00	NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01
	Exposure Medium Total				NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01
Surface Water Total		0E+00	NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01		
Receptor Total				0E+00	NA	0E+00	0E+00		3E-01	NA	4E-02	3E-01

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media = Total NOE HI Across Media =

a = 4E-02 a = 1E-01 a = 6E-02a = 1E-01

TABLE 6.4.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: DMT Workers Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk		Non-Carcin	ogenic Hazard	Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Surface Soil	Surface Soil	Surface Soil	Calcium	NA	NA	NA	NA	NOE	2E-03	NA	9E-06	2E-03
			Chromium (VI)	NA	NA	NA	NA	NOE	4E-01	NA	7E-02	5E-01
			Iron	NA	NA	NA	NA	GI	3E-02	NA	1E-04	3E-02
			Manganese	NA	NA	NA	NA	CNS	3E-03	NA	3E-04	3E-03
			Vanadium	NA	NA	NA	NA	Hair	2E-02	NA	4E-03	2E-02
		Exposure Point Total		0E+00	NA	0E+00	0E+00		4E-01	NA	8E-02	5E-01
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		4E-01	NA	8E-02	5E-01
	Outdoor Air	Emissions from	Calcium	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Surface Soil	Chromium (VI)	NA	2E-04	NA	2E-04	Respiratory	NA	7E-02	NA	7E-02
			Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Manganese	NA	NA	NA	NA	CNS	NA	4E-02	NA	4E-02
			Vanadium	NA	3E-06	NA	3E-06	NA	NA	2E-01	NA	2E-01
		Exposure Point Total		NA	2E-04	NA	2E-04		NA	3E-01	NA	3E-01
	Exposure Medium Total			NA	2E-04	NA	2E-04		NA	3E-01	NA	3E-01
Medium Total	Total				2E-04	NA	2E-04		4E-01	3E-01	8E-02	8E-01
Receptor Total			NA	2E-04	NA	2E-04		4E-01	3E-01	8E-02	8E-01	

NA = Not applicable or not available

Total CNS HI Across Media =

Total GI HI Across Media = Total Hair HI Across Media =

Total NOE HI Across Media =

- Total Respiratory HI Across Media =
- 7E-02 5E-01

5E-02

3E-02

2E-02

TABLE 6.5.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: DMT Workers Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential					Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure	
							Routes Total	Target Organ(s)				Routes Total	
Total Soil	Total Soil	Total Soil	Calcium	NA	NA	NA	NA	NOE	2E-03	NA	1E-05	2E-03	
			Chromium (VI)	NA	NA	NA	NA	NOE	5E-01	NA	9E-02	6E-01	
			Iron	NA	NA	NA	NA	GI	5E-02	NA	2E-04	5E-02	
			Manganese	NA	NA	NA	NA	CNS	3E-03	NA	3E-04	3E-03	
			Vanadium	NA	NA	NA	NA	Hair	3E-02	NA	6E-03	4E-02	
		Exposure Point Total	·	0E+00	NA	0E+00	0E+00		6E-01	NA	1E-01	7E-01	
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		6E-01	NA	1E-01	7E-01	
	Outdoor Air	Emissions from	Calcium	NA	NA	NA	NA	NA	NA	NA	NA	NA	
		Total Soil	Chromium (VI)	NA	3E-04	NA	3E-04	Respiratory	NA	9E-02	NA	9E-02	
			Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	
			Manganese	NA	NA	NA	NA	CNS	NA	5E-02	NA	5E-02	
			Vanadium	NA	5E-06	NA	5E-06	NA	NA	3E-01	NA	3E-01	
		Exposure Point Total		NA	3E-04	NA	3E-04		NA	4E-01	NA	4E-01	
	Exposure Medium Total			NA	3E-04	NA	3E-04		NA	4E-01	NA	4E-01	
Medium Total				NA	3E-04	NA	3E-04		6E-01	4E-01	1E-01	1E+00	
Receptor Total				NA	3E-04	NA	3E-04		6E-01	4E-01	1E-01	1E+00	

NA = Not applicable or not available

Total CNS HI Across Media =

5E-02

5E-02

4E-02

9E-02

6E-01

Total GI HI Across Media =

Total Hair HI Across Media =

Total Respiratory HI Across Media =

TABLE 6.6.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Construction Worker (Low Exposure Frequency) Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Ingestion	Carcir	nogenic Risk Dermal	Exposure	Non-Carcin Primary	ogenic Hazard (Ingestion	Quotient Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Total Soil	Total Soil	Total Soil	Calcium	NA	NA	NA	NA	NOE	5E-03	NA	7E-06	5E-03
			Chromium (VI)	NA	NA	NA	NA	NOE	1E+00	NA	6E-02	1E+00
			Iron	NA	NA	NA	NA	GI	1E-01	NA	2E-04	1E-01
			Manganese	NA	NA	NA	NA	CNS	6E-03	NA	2E-04	7E-03
			Vanadium	NA	NA	NA	NA	Hair	8E-02	NA	4E-03	8E-02
	-	Exposure Point Total		0E+00	NA	0E+00	0E+00		1E+00	NA	7E-02	1E+00
	Exposure Medium Total		-	0E+00	NA	0E+00	0E+00		1E+00	NA	7E-02	1E+00
	Outdoor Air	Emissions from	Calcium	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Total Soil	Chromium (VI)	NA	3E-06	NA	3E-06	Respiratory	NA	2E-02	NA	2E-02
			Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Manganese	NA	NA	NA	NA	CNS	NA	1E-02	NA	1E-02
			Vanadium	NA	5E-08	NA	5E-08	NA	NA	6E-02	NA	6E-02
		Exposure Point Total		NA	3E-06	NA	3E-06		NA	9E-02	NA	9E-02
	Exposure Medium Total			NA	3E-06	NA	3E-06		NA	9E-02	NA	9E-02
Medium Total				0E+00	3E-06	0E+00	3E-06	<u> </u>	1E+00	9E-02	7E-02	2E+00
Groundwater	Groundwater	Groundwater	Aluminum	NA	NA	NA	NA	CNS	NA	NA	2E-04	2E-04
	(Excavation)	(Excavation)	Calcium	NA	NA	NA	NA	NOE	NA	NA	5E-05	5E-05
			Chromium (III)	NA	NA	NA	NA	NOE	NA	NA	3E-03	3E-03
			Chromium (VI)	NA	NA	NA	NA	NOE	NA	NA	2E+00	2E+00
			Iron	NA	NA	NA	NA	GI	NA	NA	2E-03	2E-03
			Magnesium	NA	NA	NA	NA	NOE	NA	NA	2E-04	2E-04
			Manganese	NA	NA	NA	NA	CNS	NA	NA	4E-03	4E-03
			Vanadium	NA	NA	NA	NA	Hair	NA	NA	3E-02	3E-02
		Exposure Point Total		NA	NA	0E+00	0E+00		NA	NA	2E+00	2E+00
	Exposure Medium Total			NA	NA	0E+00	0E+00		NA	NA	2E+00	2E+00
Medium Total				NA	NA	0E+00	0E+00		NA	NA	2E+00	2E+00
Receptor Total				0E+00	3E-06	0E+00	3E-06	<u> </u>	1E+00	9E-02	2E+00	4E+00

NA = Not applicable or not available

Total CNS HI Across Media =

2E-02

1E-01

1E-01

2E-02

3E+00

Total GI HI Across Media =

Total Hair HI Across Media =

Total Respiratory HI Across Media =

TABLE 6.7.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Construction Worker (High Exposure Frequency) Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcir	nogenic Risk		Non-Carcin	ogenic Hazard	Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Total Soil	Subsurface Soil	Total Soil	Calcium Chromium (VI)	NA NA	NA NA	NA NA	NA NA	NOE NOE	2E-02 5E+00	NA NA	3E-05 3E-01	2E-02 5E+00
			Iron Manganese	NA	NA	NA	NA	GI CNS	5E-01 3E-02	NA	6E-04 9E-04	5E-01 3E-02
			Vanadium	NA	NA	NA	NA	Hair	3E-01	NA	2E-02	3E-01
		Exposure Point Total	•	0E+00	NA	0E+00	0E+00		6E+00	NA	3E-01	6E+00
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		6E+00	NA	3E-01	6E+00
	Outdoor Air	Emissions from	Calcium	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Total Soil	Chromium (VI)	NA	1E-05	NA	1E-05	Respiratory	NA	9E-02	NA	9E-02
			Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Manganese	NA	NA	NA	NA	CNS	NA	5E-02	NA	5E-02
			Vanadium	NA	2E-07	NA	2E-07	NA	NA	3E-01	NA	3E-01
		Exposure Point Total		NA	1E-05	NA	1E-05		NA	4E-01	NA	4E-01
	Exposure Medium Total			NA	1E-05	NA	1E-05		NA	4E-01	NA	4E-01
Medium Total				0E+00	1E-05	0E+00	1E-05		6E+00	4E-01	3E-01	6E+00
Groundwater	Groundwater	Groundwater	Aluminum	NA	NA	NA	NA	CNS	NA	NA	9E-04	9E-04
	(Excavation)	(Excavation)	Calcium	NA	NA	NA	NA	NOE	NA	NA	2E-04	2E-04
			Chromium (III)	NA	NA	NA	NA	NOE	NA	NA	1E-02	1E-02
			Chromium (VI)	NA	NA	NA	NA	NOE	NA	NA	9E+00	9E+00
			Iron	NA	NA	NA	NA	GI	NA	NA	8E-03	8E-03
			Magnesium	NA	NA	NA	NA	NOE	NA	NA	7E-04	7E-04
			Manganese	NA NA	NA NA	NA NA	NA	CNS	NA NA	NA	2E-02	2E-02 1E-01
			Vanadium	NA	NA	NA	NA	Hair	NA	NA	1E-01	1E-01
		Exposure Point Total		NA	NA	0E+00	0E+00		NA	NA	9E+00	9E+00
	Exposure Medium Total			NA	NA	0E+00	0E+00		NA	NA	9E+00	9E+00
Medium Total				NA	NA	0E+00	0E+00		NA	NA	9E+00	9E+00
Receptor Total				0E+00	1E-05	0E+00	1E-05		6E+00	4E-01	1E+01	2E+01

NA = Not applicable or not available

Total CNS HI Across Media =

9E-02

5E-01

5E-01

9E-02

1E+01

Total GI HI Across Media =

Total Hair HI Across Media =

Total Respiratory HI Across Media =

TABLE 6.8.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient						
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Stormwater	Stormwater (Non Priority Subsurface Stormwater Lines)	Stormwater (Subsurface Stormwater Lines)	Chromium (VI)	NA	NA	NA	NA	NOE	NA	NA	3E-01	3E-01
		Exposure Point Total		NA	NA	0E+00	0E+00		NA	NA	3E-01	3E-01
	Exposure Medium Total			NA	NA	0E+00	0E+00		NA	NA	3E-01	3E-01
Medium Total				NA	NA	0E+00	0E+00		NA	NA	3E-01	3E-01
Receptor Total				NA	NA	0E+00	0E+00		NA	NA	3E-01	3E-01

NA = Not applicable or not available

TABLE 6.9.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Utility Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk				Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Stormwater	Stormwater		Chromium (III)	NA	NA	NA	NA	NOE	NA	NA	3E-03	3E-03
	(Priority Subsurface Stormwater Lines)	(Subsurface Stormwater Lines)	Chromium (VI)	NA	NA	NA	NA	NOE	NA	NA	3E+01	3E+01
			Vanadium	NA	NA	NA	NA	Hair	NA	NA	1E-02	1E-02
			Calcium	NA	NA	NA	NA	NOE	NA	NA	5E-04	5E-04
		Exposure Point Total		NA	NA	0E+00	0E+00		NA	NA	3E+01	3E+01
	Exposure Medium Total			NA	NA	0E+00	0E+00		NA	NA	3E+01	3E+01
Medium Total				NA	NA	0E+00	0E+00		NA	NA	3E+01	3E+01
Receptor Total	Receptor Total			NA	NA	0E+00	0E+00		NA	NA	3E+01	3E+01

NA = Not applicable or not available

Total Hair HI Across Media = Total NOE HI Across Media =

1E-02

3E+01

TABLE 6.10.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk Non-Carcino				ogenic Hazard	genic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total	
Sediment	Sediment (0 -3 feet)	Patapsco River Sediment	Aluminum Iron Manganese Vanadium	NA NA NA	NA NA NA	NA NA NA	NA NA NA	CNS GI CNS Hair	2E-03 8E-03 8E-04 2E-03	NA NA NA NA	1E-04 5E-04 1E-03 4E-03	2E-03 9E-03 2E-03 6E-03	
		Exposure Point Total		0E+00	NA	0E+00	0E+00		1E-02	NA	6E-03	2E-02	
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		1E-02	NA	6E-03	2E-02	
Sediment Total				0E+00	NA	0E+00	0E+00		1E-02	NA	6E-03	2E-02	
Surface Water	Surface Water	Patapsco River Surface Water	Calcium Magnesium Manganese	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NOE NOE CNS	1E-03 2E-02 2E-04	NA NA NA	4E-04 9E-03 1E-03	2E-03 3E-02 2E-03	
		Exposure Point Total		0E+00	NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02	
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02	
Surface Water Total				0E+00	NA	0E+00	0E+00		3E-02	NA	1E-02	4E-02	
Receptor Total			0E+00	NA	0E+00	0E+00		4E-02	NA	2E-02	5E-02		

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media = Total NOE HI Across Media = 6E-03

9E-03

6E-03

3E-02

TABLE 6.11.RME

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk Non-Carcinogenic Hazard Quoti				Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Sediment	Sediment	Patapsco River	Aluminum	NA	NA	NA	NA	CNS	4E-03	NA	2E-04	4E-03
	(0 -3 feet)	Sediment	Iron	NA	NA	NA	NA	GI	1E-02	NA	6E-04	1E-02
			Manganese	NA	NA	NA	NA	CNS	1E-03	NA	1E-03	3E-03
			Vanadium	NA	NA	NA	NA	Hair	4E-03	NA	5E-03	9E-03
		Exposure Point Total	·	0E+00	NA	0E+00	0E+00		2E-02	NA	8E-03	3E-02
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		2E-02	NA	8E-03	3E-02
Sediment Total				0E+00	NA	0E+00	0E+00		2E-02	NA	8E-03	3E-02
								1				
Surface Water	Surface Water	Patapsco River	Calcium	NA	NA	NA	NA	NOE	2E-03	NA	5E-04	3E-03
		Surface Water	Magnesium	NA	NA	NA	NA	NOE	4E-02	NA	1E-02	5E-02
			Manganese	NA	NA	NA	NA	CNS	3E-04	NA	2E-03	2E-03
		Exposure Point Total		0E+00	NA	0E+00	0E+00		4E-02	NA	1E-02	6E-02
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		4E-02	NA	1E-02	6E-02
Surface Water Total				0E+00	NA	0E+00	0E+00		4E-02	NA	1E-02	6E-02
Receptor Total	Receptor Total			0E+00	NA	0E+00	0E+00		7E-02	NA	2E-02	9E-02

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media = Total NOE HI Across Media =

 Media =
 9E-03

 Media =
 1E-02

 Media =
 9E-03

 Media =
 5E-02

TABLE 6.12.RME

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

Dundalk Marine Terminal, Baltimore, MD

Scenario Timeframe: Future Receptor Population: Recreator Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carci	nogenic Risk		Non-Carcinogenic Hazard Quo		Quotient		
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Sediment	Sediment (0 -3 feet)	Patapsco River Sediment	Aluminum Iron Manganese Vanadium	NA NA NA	NA NA NA	NA NA NA	NA NA NA	CNS GI CNS Hair	2E-02 8E-02 8E-03 2E-02	NA NA NA	2E-04 7E-04 2E-03 7E-03	2E-02 8E-02 1E-02 3E-02
		Exposure Point Total		0E+00	NA	0E+00	0E+00		1E-01	NA	1E-02	1E-01
De allas e a 1 Te (- 1	Exposure Medium Total			0E+00 0E+00	NA NA	0E+00 0E+00	0E+00 0E+00		1E-01 1E-01	NA	1E-02 1E-02	1E-01 1E-01
Sediment Total	Surface Water	Patapsco River Surface Water	Calcium Magnesium Manganese	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NOE NOE CNS	1E-03 1E-01 7E-04	NA NA NA NA	2E-04 2E-02 2E-03	1E-03 1E-01 3E-03
		Exposure Point Total		0E+00	NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01
	Exposure Medium Total			0E+00	NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01
Surface Water Total				0E+00	NA	0E+00	0E+00		1E-01	NA	2E-02	1E-01
Receptor Total				0E+00	NA	0E+00	0E+00	l	3E-01	NA	3E-02	3E-01

NA = Not applicable or not available

Total CNS HI Across Media = Total GI HI Across Media = Total Hair HI Across Media = Total NOE HI Across Media =

a = <u>3E-02</u> a = <u>8E-02</u> a = <u>3E-02</u> a = <u>1E-01</u>

Appendix B ProUCL Output

General UCL	Statistics for Dat	ta Sets with Non-Detects

User Selected Options C:\Documents and Settings\sharper\Desktop\prel-proUCL2.xls.wst

Full Precision ON **Confidence Coefficient** 95% 2000 Number of Bootstrap Operations

Hexavalent Chromium(mg/m3)

General Statistics

From File

Number of Valid Data	427 Number of Detected Data	228
Number of Distinct Detected Data	224 Number of Non-Detect Data	199
	Percent Non-Detects	46.60%

Raw Statistics	Log-transformed Statistics	
Minimum Detected	6.355E-07 Minimum Detected	-14.26885
Maximum Detected	3.666E-06 Maximum Detected	-12.51641
Mean of Detected	1.495E-06 Mean of Detected	-13.50201
SD of Detected	6.553E-07 SD of Detected	0.4188793
Minimum Non-Detect	5.902E-07 Minimum Non-Detect	-14.3428
Maximum Non-Detect	7.781E-07 Maximum Non-Detect	-14.06641

Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	223
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	204
Observations < Largest ND are treated as NDs	Single DL Non-Detect Percentage	52.22%

UCL Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.1057514 Lilliefors Test Statistic	0.0575825	
5% Lilliefors Critical Value	0.0586768 5% Lilliefors Critical Value	0.0586768	
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method
Mean
SD
95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL

Assuming Lognormal Distribution

-14.14267
0.7522295
7.702E-07

Log ROS Method	
7.13E-07 Mean in Log Scale	-13.96529
1.051E-06 SD in Log Scale	0.5853169
7.969E-07 Mean in Original Scale	1.035E-06
8.19E-07 SD in Original Scale	6.876E-07
95% Percentile Bootstrap UCL	1.088E-06
95% BCA Bootstrap UCL	1.091E-06

Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star

Data Distribution Test with Detected Values Only 5.7174389 Data appear Lognormal at 5% Significance Level 2.615E-07

nu star

2607.1521

A-D Test Statistic	1.8723692 Nonparametric Statistics	
5% A-D Critical Value	0.7556359 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.7556359 Mean	1.096E-06
5% K-S Critical Value	0.0605229 SD	6.415E-07
Data not Gamma Distributed at 5% Significance Level	SE of Mean	3.112E-08
	95% KM (t) UCL	1.147E-06
Assuming Gamma Distribution	95% KM (z) UCL	1.147E-06
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	1.137E-06
Minimum	3.75E-07 95% KM (bootstrap t) UCL	1.145E-06
Maximum	3.666E-06 95% KM (BCA) UCL	1.172E-06
Mean	1.435E-06 95% KM (Percentile Bootstrap) UCL	1.157E-06
Median	1.383E-06 95% KM (Chebyshev) UCL	1.231E-06
SD	4.979E-07 97.5% KM (Chebyshev) UCL	1.29E-06
k star	9.4327401 99% KM (Chebyshev) UCL	1.405E-06
Theta star	1.521E-07	
Nu star	8055.56 Potential UCLs to Use	
AppChi2	7847.9226 95% KM (t) UCL	1.147E-06
95% Gamma Approximate UCL	1.473E-06 95% KM (% Bootstrap) UCL	1.157E-06
95% Adjusted Gamma UCL	1.473E-06	
Note: DL/2 is not a recommended method.		

User Selected Options

General UCL Statistics for Data Sets with Non-Detects

From File	C:\Documents and Settings\sharper\Desktop\prel-proUCL_v2_SH.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	

Aluminum(ug/L)

General Statistics

Number of Valid Data	90 Number of Detected Data	84
Number of Distinct Detected Data	80 Number of Non-Detect Data	6
	Percent Non-Detects	6.67%

Raw Statistics	Log-transformed Statistics	
Minimum Detected	98.1 Minimum Detected	4.586
Maximum Detected	190000 Maximum Detected	12.15
Mean of Detected	10661 Mean of Detected	7.666
SD of Detected	29235 SD of Detected	1.693
Minimum Non-Detect	80.2 Minimum Non-Detect	4.385
Maximum Non-Detect	80.2 Maximum Non-Detect	4.385

UCL Statistics

Normal Distribution Test with Detected Values Only Lognormal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.359 Lilliefors Test Statistic	0.114
5% Lilliefors Critical Value	0.0967 5% Lilliefors Critical Value	0.0967
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL

Gamma Distribution Test with Detected Values Only k star (bias corrected) Theta Star nu star

A-D Test Statistic

.359	Lilliefors Test Statistic	0.114
0967	5% Lilliefors Critical Value	0.0967
	Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

7.401
1.915
13046

Log ROS Method	
8579 Mean in Log Scale	7.4
29437 SD in Log Scale	1.921
13736 Mean in Original Scale	9953
13253 SD in Original Scale	28357
95% Percentile Bootstrap UCL	15567
95% BCA Bootstrap UCL	17092

Data Distribution Test with Detected Values Only

0.401 Data do not follow a Discernable Distribution (0.05) 26576 67.39

5.591 Nonparametric Statistics

2000

5% A-D Critical Value	0.841 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.841 Mean	9957
5% K-S Critical Value	0.104 SD	28198
Data not Gamma Distributed at 5% Significance Level	SE of Mean	2990
	95% KM (t) UCL	14927
Assuming Gamma Distribution	95% KM (z) UCL	14875
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	14925
Minimum	1E-09 95% KM (bootstrap t) UCL	20499
Maximum	190000 95% KM (BCA) UCL	15384
Mean	9950 95% KM (Percentile Bootstrap) UCL	14984
Median	1580 95% KM (Chebyshev) UCL	22991
SD	28358 97.5% KM (Chebyshev) UCL	28631
k star	0.213 99% KM (Chebyshev) UCL	39709
Theta star	46775	
Nu star	38.29 Potential UCLs to Use	
AppChi2	25.12 97.5% KM (Chebyshev) UCL	28631
95% Gamma Approximate UCL	15168	
95% Adjusted Gamma UCL	15273	
Note: DL/2 is not a recommended method.		

Aluminum, Dissolved(ug/L)

Maximum Non-Detect

General Statistics		
Number of Valid Data	90 Number of Detected Data	52
Number of Distinct Detected Data	52 Number of Non-Detect Data	38
	Percent Non-Detects	42.22%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	83.9 Minimum Detected	4.43
Maximum Detected	32900 Maximum Detected	10.4
Mean of Detected	4985 Mean of Detected	7.319
SD of Detected	8028 SD of Detected	1.672
Minimum Non-Detect	80.2 Minimum Non-Detect	4.385

Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	52
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	38
Observations < Largest ND are treated as NDs	Single DL Non-Detect Percentage	57.78%

401 Maximum Non-Detect

UCL Statistics	
Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Lilliefors Test Statistic 0.32	2 Lilliefors Test Statistic 0.0817
5% Lilliefors Critical Value 0.123	3 5% Lilliefors Critical Value 0.123
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method	
Mean	2904 Mean	5.864
SD	6552 SD	2.148

5.994

Honeywell Dundalk Marine Terminal, Groundwater ProUCL Output

95% DL/2 (t) UCL	4051	95% H-Stat (DL/2) UCL	2159
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	5.579
		SD in Log Scale	2.557
		Mean in Original Scale	2899
		SD in Original Scale	6554
		95% Percentile Bootstrap UCL	4088
		95% BCA Bootstrap UCL	4320
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.51	Data appear Lognormal at 5% Significance Level	
Theta Star	9785		
nu star	52.99		
A-D Test Statistic	1.573	Nonparametric Statistics	
5% A-D Critical Value	0.812	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.812	Mean	2917
5% K-S Critical Value	0.13	SD	6510
Data not Gamma Distributed at 5% Significance Level		SE of Mean	692.9
		95% KM (t) UCL	4069
Assuming Gamma Distribution		95% KM (z) UCL	4057
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	4055
Minimum	83.9	95% KM (bootstrap t) UCL	4459
Maximum	32900	95% KM (BCA) UCL	4106
Mean	4120	95% KM (Percentile Bootstrap) UCL	4171
Median	1904	95% KM (Chebyshev) UCL	5937
SD	6313	97.5% KM (Chebyshev) UCL	7244
k star	0.69	99% KM (Chebyshev) UCL	9811
Theta star	5972		
Nu star	124.2	Potential UCLs to Use	
AppChi2	99.44	97.5% KM (Chebyshev) UCL	7244
95% Gamma Approximate UCL	5144		
95% Adjusted Gamma UCL	5163		
Note: DL/2 is not a recommended method.			
Calcium(ug/L)			

Calcium(ug/L)

General Statistics			
Number of Valid Data	90	Number of Detected Data	89
Number of Distinct Detected Data	85	Number of Non-Detect Data	1
		Percent Non-Detects	1.11%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	3600	Minimum Detected	8.189
Maximum Detected	984000	Maximum Detected	13.8
Mean of Detected	136130	Mean of Detected	11.13
SD of Detected	179786	SD of Detected	1.238
Minimum Non-Detect	351	Minimum Non-Detect	5.861

Maximum Non-Detect	351 Maximum Non-Detect	5.861
UCL Statistics		
Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values	s Only
Lilliefors Test Statistic	0.25 Lilliefors Test Statistic	0.0467
5% Lilliefors Critical Value	0.0939 5% Lilliefors Critical Value	0.0939
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method	
Mean	134619 Mean	11.06
SD	179346 SD	1.382
95% DL/2 (t) UCL	166042 95% H-Stat (DL/2) UCL	223840
Maximum Likelihood Estimate(MLE) Method	Log ROS Method	
Mean	133461 Mean in Log Scale	11.09
SD	179784 SD in Log Scale	1.281
95% MLE (t) UCL	164960 Mean in Original Scale	134643
95% MLE (Tiku) UCL	162361 SD in Original Scale	179328
	95% Percentile Bootstrap UCL	167371
	95% BCA Bootstrap UCL	173350
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.825 Data appear Lognormal at 5% Significance Level	
Theta Star	164959	
nu star	146.9	
A-D Test Statistic	1.219 Nonparametric Statistics	
5% A-D Critical Value	0.789 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.789 Mean	134657
5% K-S Critical Value	0.0981 SD	178319
Data not Gamma Distributed at 5% Significance Level	SE of Mean	18903
	95% KM (t) UCL	166077
Assuming Gamma Distribution	95% KM (z) UCL	165750
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	166042
Minimum	1E-09 95% KM (bootstrap t) UCL	172751
Maximum	984000 95% KM (BCA) UCL	164606
Mean	134617 95% KM (Percentile Bootstrap) UCL	167041
Median	70150 95% KM (Chebyshev) UCL	217053
SD	179348 97.5% KM (Chebyshev) UCL	252706
k star	0.583 99% KM (Chebyshev) UCL	322739
Theta star	230913	
Nu star	104.9 Potential UCLs to Use	
AppChi2	82.3 95% KM (Chebyshev) UCL	217053
95% Gamma Approximate UCL	171649	
95% Adjusted Gamma UCL	172329	
Note: DL/2 is not a recommended method		

Note: DL/2 is not a recommended method.

Calcium, Dissolved(ug/L)

General Statistics

Number of Valid Observations	90 Number of Distinct Observations	88
	•••••••••••••••••••••••••••••••••••••••	

Raw Statistics	Log-transformed Statistics	
Minimum	409 Minimum of Log Data	6.014
Maximum	808000 Maximum of Log Data	13.6
Mean	119879 Mean of log Data	10.94
Median	67650 SD of log Data	1.366
SD	161291	
Coefficient of Variation	1.345	
Skewness	2.527	

Relevant UCL Statistics

Normal Distribution Test	Lognormal Distribution Test	
Lilliefors Test Statistic	0.252 Lilliefors Test Statistic	0.0682
Lilliefors Critical Value	0.0934 Lilliefors Critical Value	0.0934
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	

148138 95% H-UCL

156380

119879

136918

138

0.999

147898 148404 Assuming Lognormal Distribution

95% Chebyshev (MVUE) UCL

0.767 Data appear Lognormal at 5% Significance Level

152683 97.5% Chebyshev (MVUE) UCL

148893 99% Chebyshev (MVUE) UCL

Data Distribution

111.8 Nonparametric Statistics

95% Standard Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

97.5% Chebyshev(Mean, Sd) UCL

95% Bootstrap-t UCL

0.117 95% Percentile Bootstrap UCL

0.792 95% Hall's Bootstrap UCL

0.0978 95% BCA Bootstrap UCL

Use 95% H-UCL

111.5 95% Jackknife UCL

0.0473 95% CLT UCL

Assuming Normal Distribution

95% Student's-t UCL
95% UCLs (Adjusted for Skewness)
95% Adjusted-CLT UCL
95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution 95% Approximate Gamma UCL

95% Adjusted Gamma UCL

Potential UCL to Use

Hexavalent Chromium(ug/L)

Page	5	of	21
i aye	J	UI.	Z I

208883

256881

307423

406701

147844

148138

147915

153238

153445

148869

154277

193987

226053

289042

208883

General Statistics			
Number of Valid Data	101	Number of Detected Data	37
Number of Distinct Detected Data	37	7 Number of Non-Detect Data	64
		Percent Non-Detects	63.37%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	5.2	2 Minimum Detected	1.649
Maximum Detected) Maximum Detected	12.3
Mean of Detected		3 Mean of Detected	7.831
SD of Detected		SD of Detected	2.816
Minimum Non-Detect		5 Minimum Non-Detect	1.609
Maximum Non-Detect	2500) Maximum Non-Detect	7.824
Note: Data have multiple DLs - Use of KM Method is recommended	ł	Number treated as Non-Detect	78
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	23
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	77.23%
UCL Statistics Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0 476	S Shapiro Wilk Test Statistic	0.901
5% Shapiro Wilk Critical Value		5 5% Shapiro Wilk Critical Value	0.936
Data not Normal at 5% Significance Level	0.000	Data not Lognormal at 5% Significance Level	0.000
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	6590) Mean	3.73
SD	24054	\$ SD	3.683
95% DL/2 (t) UCL	10564	95% H-Stat (DL/2) UCL	35736
Maximum Likelihood Estimate(MLE) Method	I/A	Log ROS Method	
	I/A	-	3.004
MLE yields a negative mean		Mean in Log Scale SD in Log Scale	4.644
		Mean in Original Scale	6578
		SD in Original Scale	24057
		95% Percentile Bootstrap UCL	10755
		95% BCA Bootstrap UCL	13101
			10101
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.334	1 Data appear Gamma Distributed at 5% Significance Level	
Theta Star	53760)	
nu star	24.69		
A-D Test Statistic	0.471	Nonparametric Statistics	
5% A-D Critical Value		7 Kaplan-Meier (KM) Method	
K-S Test Statistic		7 Mean	6576
5% K-S Critical Value	0.156	S SD	23938
Data appear Gamma Distributed at 5% Significance Level		SE of Mean	2415
		95% KM (t) UCL	10585
Assuming Gamma Distribution		95% KM (z) UCL	10548

Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	10547
Minimum	1E-09 95% KM (bootstrap t) UCL	15707
Maximum	263964 95% KM (BCA) UCL	11382
Mean	46877 95% KM (Percentile Bootstrap) UCL	11019
Median	17000 95% KM (Chebyshev) UCL	17101
SD	66992 97.5% KM (Chebyshev) UCL	21656
k star	0.133 99% KM (Chebyshev) UCL	30603
Theta star	353667	
Nu star	26.77 Potential UCLs to Use	
AppChi2	15.98 95% KM (t) UCL	10585
95% Gamma Approximate UCL	78558	
95% Adjusted Gamma UCL	79156	
Note: DL/2 is not a recommended method.		

Hexavalent Chromium, Dissolved(ug/L)

General Statistics

Number of Valid Data	57 Number of Detected Data	22
Number of Distinct Detected Data	22 Number of Non-Detect Data	35
	Percent Non-Detects	61.40%
Raw Statistics	Log transformed Statistics	
Raw Statistics	Log-transformed Statistics	
Minimum Detected	6.7 Minimum Detected	1.902
Maximum Detected	70000 Maximum Detected	11.16
Mean of Detected	13558 Mean of Detected	8.148
SD of Detected	15703 SD of Detected	2.587
Minimum Non-Detect	5 Minimum Non-Detect	1.609
Maximum Non-Detect	2500 Maximum Non-Detect	7.824

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean

Lognormal Distribution Test with Detected Values Only 0.763 Shapiro Wilk Test Statistic 0.911 5% Shapiro Wilk Critical Value

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

Number treated as Non-Detect

Single DL Non-Detect Percentage

Number treated as Detected

	DL/2 Substitution Method	
5265	5 Mean	4.289
11683	3 SD	3.674
7854	4 95% H-Stat (DL/2) UCL	125845
N/A	Log ROS Method	
	Mean in Log Scale	4.196
	SD in Log Scale	3.923
	Mean in Original Scale	5246

41

16

0.822

0.911

71.93%

	SD in Original Scale	11690
	95% Percentile Bootstrap UCL	7897
	95% BCA Bootstrap UCL	8724
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.436 Data Follow Appr. Gamma Distribution at 5% Significance I	Level
Theta Star	31113	
nu star	19.17	
A-D Test Statistic	0.929 Nonparametric Statistics	
5% A-D Critical Value	0.811 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.811 Mean	5238
5% K-S Critical Value	0.197 SD	11591
Data follow Appr. Gamma Distribution at 5% Significance Level	SE of Mean	1571
	95% KM (t) UCL	7866
Assuming Gamma Distribution	95% KM (z) UCL	7823
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	7819
Minimum	1E-09 95% KM (bootstrap t) UCL	9112
Maximum	70000 95% KM (BCA) UCL	8162
Mean	13763 95% KM (Percentile Bootstrap) UCL	8004
Median	12329 95% KM (Chebyshev) UCL	12087
SD	13933 97.5% KM (Chebyshev) UCL	15051
k star	0.218 99% KM (Chebyshev) UCL	20873
Theta star	63018	
Nu star	24.9 Potential UCLs to Use	
AppChi2	14.53 95% KM (t) UCL	7866
95% Gamma Approximate UCL	23578	
95% Adjusted Gamma UCL	23917	
Note: DL/2 is not a recommended method.		

Iron(ug/L)

General Statistics		
Number of Valid Data	90 Number of Detected Data	87
Number of Distinct Detected Data	85 Number of Non-Detect Data	3
	Percent Non-Detects	3.33%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	73.8 Minimum Detected	4.301
Maximum Detected	1850000 Maximum Detected	14.43
Mean of Detected	45495 Mean of Detected	8.568
SD of Detected	202180 SD of Detected	2.068
Minimum Non-Detect	52.2 Minimum Non-Detect	3.955
Maximum Non-Detect	100 Maximum Non-Detect	4.605
Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	4
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	86
Observations < Largest ND are treated as NDs	Single DL Non-Detect Percentag	ge 4.44%

UCL Statistics		
Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.411 Lilliefors Test Statistic	0.0
5% Lilliefors Critical Value	0.095 5% Lilliefors Critical Value	0.09
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method	
Mean	43979 Mean	8.39
SD	198913 SD	2.23
95% DL/2 (t) UCL	78830 95% H-Stat (DL/2) UCL	9749
Maximum Likelihood Estimate(MLE) Method	Log ROS Method	
Mean	37349 Mean in Log Scale	8.4
SD	203103 SD in Log Scale	2.22
95% MLE (t) UCL	72934 Mean in Original Scale	43979
95% MLE (Tiku) UCL	69063 SD in Original Scale	19891;
	95% Percentile Bootstrap UCL	8389
	95% BCA Bootstrap UCL	10865
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.314 Data appear Lognormal at 5% Significance Level	
Theta Star	145079	
nu star	54.56	
A-D Test Statistic	4.689 Nonparametric Statistics	
5% A-D Critical Value	0.863 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.863 Mean	4398
5% K-S Critical Value	0.104 SD	19780
Data not Gamma Distributed at 5% Significance Level	SE of Mean	2097
	95% KM (t) UCL	7883
Assuming Gamma Distribution	95% KM (z) UCL	7847
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	78830
Minimum	1E-09 95% KM (bootstrap t) UCL	194619
Maximum	1850000 95% KM (BCA) UCL	8824
Mean	43978 95% KM (Percentile Bootstrap) UCL	8570
Median	4580 95% KM (Chebyshev) UCL	135392
SD	198913 97.5% KM (Chebyshev) UCL	174940
k star	0.232 99% KM (Chebyshev) UCL	252642
Theta star	189876	
Nu star	41.69 Potential UCLs to Use	
AppChi2	27.89 97.5% KM (Chebyshev) UCL	17494
95% Gamma Approximate UCL	65738	
95% Adjusted Gamma UCL	66174	
Note: DL/2 is not a recommended method.		

Iron, Dissolved(ug/L)

General Statistics

Number of Volid Date	00	Number of Data at a Data	62
Number of Valid Data		Number of Detected Data	63
Number of Distinct Detected Data	60	Number of Non-Detect Data	27 30.00%
		Percent Non-Detects	30.00%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	45	Minimum Detected	3.807
Maximum Detected	1780000	Maximum Detected	14.39
Mean of Detected	43152	Mean of Detected	7.921
SD of Detected	223944	SD of Detected	2.408
Minimum Non-Detect	52.2	Minimum Non-Detect	3.955
Maximum Non-Detect	261	Maximum Non-Detect	5.565
Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	40
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	50
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	44.44%
UCL Statistics			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.424	Lilliefors Test Statistic	0.0731
5% Lilliefors Critical Value	0.112	2 5% Lilliefors Critical Value	0.112
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean		Mean	6.613
SD	187966		2.856
95% DL/2 (t) UCL	63152	95% H-Stat (DL/2) UCL	38603
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	6.344
		SD in Log Scale	3.247
		Mean in Original Scale	30216
		SD in Original Scale	187967
		95% Percentile Bootstrap UCL	69446
		95% BCA Bootstrap UCL	91282
Gamma Distribution Test with Detected Values Only	0.055	Data Distribution Test with Detected Values Only	
k star (bias corrected) Theta Star		Data appear Lognormal at 5% Significance Level	
	169013 32.17		
nu star	32.17		
A-D Test Statistic	3.842	Nonparametric Statistics	
5% A-D Critical Value	0.884	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.884	Mean	30221
5% K-S Critical Value	0.123	SD	186919
Data not Gamma Distributed at 5% Significance Level		SE of Mean	19861
		95% KM (t) UCL	63234
Assuming Gamma Distribution		95% KM (z) UCL	62890
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	63150
Minimum	1E-09	95% KM (bootstrap t) UCL	263973

Maximum	1780000	95% KM (BCA) UCL	70165
Mean	30207	95% KM (Percentile Bootstrap) UCL	68233
Median	654.5	95% KM (Chebyshev) UCL	116794
SD	187968	97.5% KM (Chebyshev) UCL	154254
k star	0.0812	99% KM (Chebyshev) UCL	227838
Theta star	372082		
Nu star	14.61	Potential UCLs to Use	
AppChi2	6.993	97.5% KM (Chebyshev) UCL	154254
95% Gamma Approximate UCL	63120		
95% Adjusted Gamma UCL	63906		
Note: DL/2 is not a recommended method.			

Magnesium(ug/L)

General Statistics			
Number of Valid Data	90	Number of Detected Data	84
Number of Distinct Detected Data	81	Number of Non-Detect Data	6
		Percent Non-Detects	6.67%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	36.9	Minimum Detected	3.608
Maximum Detected	391000	Maximum Detected	12.88
Mean of Detected	52724	Mean of Detected	8.793
SD of Detected	89892	SD of Detected	2.519
Minimum Non-Detect	32.2	Minimum Non-Detect	3.472
Maximum Non-Detect	5000	Maximum Non-Detect	8.517
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	42
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	48

N/A

Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only Lilliefors Test Statistic 5% Lilliefors Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method MLE yields a negative mean

Lognormal Distribution Test with Detected Values Only

0.318 Lilliefors Test Statistic	0.0926
0.0967 5% Lilliefors Critical Value	0.0967
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

Single DL Non-Detect Percentage

8.513
2.718
477151

Log ROS MethodMean in Log Scale8.479SD in Log Scale2.743Mean in Original Scale49227SD in Original Scale8780095% Percentile Bootstrap UCL66102

46.67%

	95% BCA Bootstrap UCL	66310
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.323 Data appear Lognormal at 5% Significance Level	
Theta Star	163111	
nu star	54.3	
A-D Test Statistic	2.132 Nonparametric Statistics	
5% A-D Critical Value	0.86 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.86 Mean	49231
5% K-S Critical Value	0.106 SD	87309
Data not Gamma Distributed at 5% Significance Level	SE of Mean	9258
	95% KM (t) UCL	64620
Assuming Gamma Distribution	95% KM (z) UCL	64460
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	64614
Minimum	1E-09 95% KM (bootstrap t) UCL	68176
Maximum	391000 95% KM (BCA) UCL	66501
Mean	49209 95% KM (Percentile Bootstrap) UCL	64555
Median	6730 95% KM (Chebyshev) UCL	89588
SD	87810 97.5% KM (Chebyshev) UCL	107050
k star	0.188 99% KM (Chebyshev) UCL	141352
Theta star	261599	
Nu star	33.86 Potential UCLs to Use	
AppChi2	21.55 97.5% KM (Chebyshev) UCL	107050
95% Gamma Approximate UCL	77310	
95% Adjusted Gamma UCL	77888	
Note: DL/2 is not a recommended method.		

Magnesium, Dissolved(ug/L)

General Statistics		
Number of Valid Data	90 Number of Detected Data	61
Number of Distinct Detected Data	60 Number of Non-Detect Data	29
	Percent Non-Detects	32.22%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	21.1 Minimum Detected	3.049
Maximum Detected	416000 Maximum Detected	12.94
Mean of Detected	68186 Mean of Detected	8.987
SD of Detected	100580 SD of Detected	2.957
Minimum Non-Detect	13.5 Minimum Non-Detect	2.603
Maximum Non-Detect	5000 Maximum Non-Detect	8.517
Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	48
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	42

Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Single DL Non-Detect Percentage

53.33%

Lilliefors Test Statistic	0.301	Lilliefors Test Statistic	0.155
5% Lilliefors Critical Value		5% Lilliefors Critical Value	0.113
Data not Normal at 5% Significance Level	01110	Data not Lognormal at 5% Significance Level	
°		° °	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	46387	Mean	7.35
SD	88493	SD	3.605
95% DL/2 (t) UCL	61892	95% H-Stat (DL/2) UCL	1393932
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	7.115
		SD in Log Scale	3.783
		Mean in Original Scale	46241
		SD in Original Scale	88569
		95% Percentile Bootstrap UCL	61937
		95% BCA Bootstrap UCL	64132
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)		Data Follow Appr. Gamma Distribution at 5% Significance Level	
Theta Star	217191		
nu star	38.3		
A-D Test Statistic	0.903	Nonparametric Statistics	
5% A-D Critical Value		Kaplan-Meier (KM) Method	
K-S Test Statistic		Mean	46232
5% K-S Critical Value	0.123	SD	88080
Data follow Appr. Gamma Distribution at 5% Significance Level		SE of Mean	9361
		95% KM (t) UCL	61792
Assuming Gamma Distribution		95% KM (z) UCL	61630
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	61751
Minimum	1E-09	95% KM (bootstrap t) UCL	64186
Maximum	416000	95% KM (BCA) UCL	63816
Mean	48531	95% KM (Percentile Bootstrap) UCL	62891
Median	7924	95% KM (Chebyshev) UCL	87038
SD	87950	97.5% KM (Chebyshev) UCL	104695
k star	0.112	99% KM (Chebyshev) UCL	139378
Theta star	432517		
Nu star	20.2	Potential UCLs to Use	
AppChi2	11	95% KM (BCA) UCL	63816
95% Gamma Approximate UCL	89136		
95% Adjusted Gamma UCL	90042		
Note: DL/2 is not a recommended method.			

Manganese(ug/L)

General Statistics		
Number of Valid Data	90 Number of Detected Data	89
Number of Distinct Detected Data	88 Number of Non-Detect Data	1

	Percent Non-Detects	1.11%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	0.58 Minimum Detected	-0.545
Maximum Detected	25800 Maximum Detected	10.16
Mean of Detected	927.8 Mean of Detected	4.858
SD of Detected	2825 SD of Detected	2.321
Minimum Non-Detect	0.36 Minimum Non-Detect	-1.022

UCL Statistics

Maximum Non-Detect

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.371 Lilliefors Test Statistic	0.117
5% Lilliefors Critical Value	0.0939 5% Lilliefors Critical Value	0.0939
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	

0.36 Maximum Non-Detect

Assuming Normal Distribution

DL
917.5 Me
2810 SI
1410 9

Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL

Gamma Distribution Test with Detected Values Only
k star (bias corrected)
Theta Star
nu star

A-D Test Statistic
5% A-D Critical Value
K-S Test Statistic
5% K-S Critical Value
Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	
Maximum	
Mean	
Median	
SD	
k star	

Assuming Lognormal Distribution

 DL/2 Substitution Method
 4.785

 17.5 Mean
 4.785

 2810 SD
 2.41

 1410
 95% H-Stat (DL/2) UCL
 5302

Log ROS Method

895.8 Mean in Log Scale	4.788
2814 SD in Log Scale	2.401
1389 Mean in Original Scale	917.5
1331 SD in Original Scale	2810
95% Percentile Bootstrap UCL	1446
95% BCA Bootstrap UCL	1934

Data Distribution Test with Detected Values Only

0.338 Data do not follow a Discernable Distribution (0.05)274760.12

2.288 Nonparametric Statistics

0.857 Kaplan-Meier (KM) Method	
0.857 Mean	917.5
0.102 SD	2795
SE of Mean	296.3
95% KM (t) UCL	1410
95% KM (z) UCL	1405
95% KM (jackknife) UCL	1410
1E-09 95% KM (bootstrap t) UCL	2228
25800 95% KM (BCA) UCL	1553
917.5 95% KM (Percentile Bootstrap) UCL	1457
109.1 95% KM (Chebyshev) UCL	2209
2810 97.5% KM (Chebyshev) UCL	2768
0.303 99% KM (Chebyshev) UCL	3865

-1.022

Honeywell Dundalk Marine Terminal, Groundwater ProUCL Output

Theta star	3028	
Nu star	54.54 Potential UCLs to Use	
AppChi2	38.57 97.5% KM (Chebyshev) UCL	2768
95% Gamma Approximate UCL	1297	
95% Adjusted Gamma UCL	1305	
Note: DL/2 is not a recommended method.		

Manganese, Dissolved(ug/L)

General Statistics		
Number of Valid Data	90 Number of Detected Data	66
Number of Distinct Detected Data	63 Number of Non-Detect Data	24
	Percent Non-Detects	26.67%
Raw Statistics	Log-transformed Statistics	
Minimum Detected	0.52 Minimum Detected	-0.654
Maximum Detected	27400 Maximum Detected	10.22
Mean of Detected	1149 Mean of Detected	4.534
SD of Detected	3426 SD of Detected	3.007
Minimum Non-Detect	0.36 Minimum Non-Detect	-1.022
Maximum Non-Detect	15 Maximum Non-Detect	2.708
Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	46
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	44
Observations < Largest ND are treated as NDs	Single DL Non-Detect Percentage	51.11%

0.369 Lilliefors Test Statistic

0.109 5% Lilliefors Critical Value

Lognormal Distribution Test with Detected Values Only

Data not Lognormal at 5% Significance Level

UCL Statistics

Normal Distribution Test with Detected Values Only
Lilliefors Test Statistic
5% Lilliefors Critical Value
Data not Normal at 5% Significance Level

Data Distribution Test with Detected Values Only Gamma Distribution Test with Detected Values Only k star (bias corrected) 0.275 Data do not follow a Discernable Distribution (0.05) Theta Star 4173

0.188

0.109

3.25

3.449

16418

nu star

36.35

A-D Test Statistic	1.71 Nonparametric Statistics	
5% A-D Critical Value	0.875 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.875 Mean	843
5% K-S Critical Value	0.12 SD	2956
Data not Gamma Distributed at 5% Significance Level	SE of Mean	313.9
	95% KM (t) UCL	1365
Assuming Gamma Distribution	95% KM (z) UCL	1359
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	1364
Minimum	1E-09 95% KM (bootstrap t) UCL	2247
Maximum	27400 95% KM (BCA) UCL	1502
Mean	854.4 95% KM (Percentile Bootstrap) UCL	1414
Median	17.75 95% KM (Chebyshev) UCL	2211
SD	2970 97.5% KM (Chebyshev) UCL	2804
k star	0.102 99% KM (Chebyshev) UCL	3967
Theta star	8403	
Nu star	18.3 Potential UCLs to Use	
AppChi2	9.608 97.5% KM (Chebyshev) UCL	2804
95% Gamma Approximate UCL	1627	
95% Adjusted Gamma UCL	1645	
Note: DL/2 is not a recommended method.		

Trivalent Chromium(ug/L)

General Statistics

Number of Valid Data	101 Number of Detected Data	81
Number of Distinct Detected Data	74 Number of Non-Detect Data	20
	Percent Non-Detects	19.80%

Raw Statistics

Minimum Detected
Maximum Detected
Mean of Detected
Mean of Detected
Mean of Detected
Maximum Non-Detect
Note: Data have multiple DLs - Use of KM Method is recommended
For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only
Lilliefors Test Statistic
5% Lilliefors Critical Value
Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method

Log-transformed Statistics

2.8	Log Statistics Not Avaliable		
21600			
1341			
1341			
1341			
500			
	Number treated as Non-Detect		75
	Number treated as Detected		26
	Single DL Non-Detect Percentage	74.26%	

Lognormal Distribution Test with Detected Values Only 0.353 Not Available

0.0984

Assuming Lognormal Distribution

DL/2 Substitution Method

Mean	1078
SD	3226
95% DL/2 (t) UCL	1611

Maximum Likelihood Estimate(MLE) Method	
Mean	-5046
SD	7770
95% MLE (t) UCL	-3763
95% MLE (Tiku) UCL	-2469

Gamma Distribution Test with Detected Values Only

Gamma Statistics Not Available

Data Distribution Test with Detected Values Only

Log ROS Method

Data do not follow a Discernable Distribution (0.05)

Potential UCLs to Use	Nonparametric Statistics	
97.5% KM (Chebyshev) UCL	3084 Kaplan-Meier (KM) Method	
	Mean	1076
	SD	3210
	SE of Mean	321.4
	95% KM (t) UCL	1610
	95% KM (z) UCL	1605
	95% KM (jackknife) UCL	1609
	95% KM (bootstrap t) UCL	1907
	95% KM (BCA) UCL	1695
	95% KM (Percentile Bootstrap) UCL	1645
	95% KM (Chebyshev) UCL	2477
	97.5% KM (Chebyshev) UCL	3084
	99% KM (Chebyshev) UCL	4274

Note: DL/2 is not a recommended method.

Trivalent Chromium, Dissolved (Calc)(ug/L)

General Statistics		
Number of Valid Data	57 Number of Detected Data	29
Number of Distinct Detected Data	27 Number of Non-Detect Data	28
	Percent Non-Detects	49.12%

Raw Statistics		Log-transformed Statistics	
Minimum Detected	1.7	Log Statistics Not Avaliable	
Maximum Detected	24000		
Mean of Detected	2305	i	
Mean of Detected	2305	i	
Mean of Detected	2305	i	
Maximum Non-Detect	2.7	,	
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	29
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	28
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	50.88%

UCL Statistics

N/A

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.495 Not Available	
5% Shapiro Wilk Critical Value	0.926	
Data not Normal at 5% Significance Level		
Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method N/A	
Mean	1173	
SD	3982	
95% DL/2 (t) UCL	2055	
Maximum Likelihood Estimate(MLE) Method	Log ROS Method N/A	
Mean	-1684	
SD	6207	
95% MLE (t) UCL	-308.7	
95% MLE (Tiku) UCL	72.39	
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	

Gamma Statistics Not Available

Potential UCLs to Use

99% KM (Chebyshev) UCL

Note: DL/2 is not a recommended method.

Vanadium(ug/L)

General Statistics

Raw Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected

Number of Valid Data
Number of Distinct Detected Data

	99% KW (Chebysnev) UCL		
ded method.			

	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	75 15 16.67%
	Log-transformed Statistics	
1.7	Minimum Detected	0.531
4540	Maximum Detected	8.421
252.2	Mean of Detected	3.555
619.8	SD of Detected	2.143

Nonparametric Statistics

Data appear Lognormal at 5% Significance Level

6467 Kaplan-Meier (KM) Method	
Mean	1174
SD	3947
SE of Mean	532
95% KM (t) UCL	2064
95% KM (z) UCL	2049
95% KM (jackknife) UCL	2055
95% KM (bootstrap t) UCL	2942
95% KM (BCA) UCL	2217
95% KM (Percentile Bootstrap) UCL	2141
95% KM (Chebyshev) UCL	3493
97.5% KM (Chebyshev) UCL	4496
99% KM (Chebyshev) UCL	6467

Minimum Non-Detect		1.5 Minimum Non-Detect	0.405
Maximum Non-Detect		50 Maximum Non-Detect	3.912
			0.012
Note: Data have multiple DLs - Use of KM Method is recomm	ended	Number treated as Non-Detect	57
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	33
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	63.33%
UCL Statistics			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic		0.343 Lilliefors Test Statistic	0.129
5% Lilliefors Critical Value		0.102 5% Lilliefors Critical Value	0.102
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean		211.6 Mean	3.109
SD		572.5 SD	2.298
95% DL/2 (t) UCL		311.9 95% H-Stat (DL/2) UCL	440.8
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	2.893
		SD in Log Scale	2.549
		Mean in Original Scale	210.7
		SD in Original Scale	572.8
		95% Percentile Bootstrap UCL	319.6
		95% BCA Bootstrap UCL	373.8
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)		0.337 Data do not follow a Discernable Distribution (0.05)	
Theta Star		748.6	
nu star		50.54	
A-D Test Statistic		3.316 Nonparametric Statistics	
5% A-D Critical Value		0.855 Kaplan-Meier (KM) Method	
K-S Test Statistic		0.855 Mean	210.9
5% K-S Critical Value		0.111 SD	569.5
Data not Gamma Distributed at 5% Significance Level		SE of Mean	60.44
		95% KM (t) UCL	311.3
Assuming Gamma Distribution		95% KM (z) UCL	310.3
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	311.2
Minimum		1E-09 95% KM (bootstrap t) UCL	384.6
Maximum		4540 95% KM (BCA) UCL	331.4
Mean		213.8 95% KM (Percentile Bootstrap) UCL	322.5
Median		12.55 95% KM (Chebyshev) UCL	474.3
SD		572.3 97.5% KM (Chebyshev) UCL	588.3
k star		0.148 99% KM (Chebyshev) UCL	812.2
Theta star		1440 26.72 Petertial UCI e to Uce	
Nu star		26.72 Potential UCLs to Use	500.0
AppChi2		15.94 97.5% KM (Chebyshev) UCL	588.3
95% Gamma Approximate UCL		358.5	

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

361.6

Vanadium, Dissolved(ug/L)

General Statistics Number of Valid Data 90 Number of Detected Data 51 Number of Distinct Detected Data 49 Number of Non-Detect Data 39 Percent Non-Detects 43.33% **Raw Statistics** Log-transformed Statistics Minimum Detected 1.6 Minimum Detected 0.47 Maximum Detected 2200 Maximum Detected 7.696 Mean of Detected 215.8 Mean of Detected 3.538 SD of Detected 458.7 SD of Detected 2.053 Minimum Non-Detect 1.5 Minimum Non-Detect 0.405 Maximum Non-Detect 50 Maximum Non-Detect 3.912 Note: Data have multiple DLs - Use of KM Method is recommended Number treated as Non-Detect 68 For all methods (except KM, DL/2, and ROS Methods), Number treated as Detected 22 Observations < Largest ND are treated as NDs Single DL Non-Detect Percentage 75.56% **UCL Statistics** Normal Distribution Test with Detected Values Only Lognormal Distribution Test with Detected Values Only Lilliefors Test Statistic 0.32 Lilliefors Test Statistic 0.114 5% Lilliefors Critical Value 0.124 5% Lilliefors Critical Value 0.124 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level Assuming Normal Distribution Assuming Lognormal Distribution DL/2 Substitution Method DL/2 Substitution Method Mean 125 Mean 2.231 SD 359.3 SD 2.363 95% DL/2 (t) UCL 188 95% H-Stat (DL/2) UCL 131.2 Maximum Likelihood Estimate(MLE) Method N/A Log ROS Method MLE yields a negative mean Mean in Log Scale 1.499 SD in Log Scale 3.055 Mean in Original Scale 122.9 SD in Original Scale 360 95% Percentile Bootstrap UCL 189.9 95% BCA Bootstrap UCL 205.6 Gamma Distribution Test with Detected Values Only Data Distribution Test with Detected Values Only k star (bias corrected) 0.356 Data appear Lognormal at 5% Significance Level Theta Star 606.9

nu star

A-D Test Statistic5% A-D Critical Value

2.239 Nonparametric Statistics

36.27

0.847 Kaplan-Meier (KM) Method

K-S Test Statistic	0.847 Mean	123.5
5% K-S Critical Value	0.134 SD	357.8
Data not Gamma Distributed at 5% Significance Level	SE of Mean	38.09
	95% KM (t) UCL	186.9
Assuming Gamma Distribution	95% KM (z) UCL	186.2
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	186.6
Minimum	1E-09 95% KM (bootstrap t) UCL	226.7
Maximum	2200 95% KM (BCA) UCL	185.5
Mean	165.6 95% KM (Percentile Bootstrap) UCL	192.1
Median	12 95% KM (Chebyshev) UCL	289.6
SD	391.2 97.5% KM (Chebyshev) UCL	361.4
k star	0.101 99% KM (Chebyshev) UCL	502.6
Theta star	1635	
Nu star	18.24 Potential UCLs to Use	
AppChi2	9.561 97.5% KM (Chebyshev) UCL	361.4
95% Gamma Approximate UCL	315.8	
95% Adjusted Gamma UCL	319.2	
Note: DL/2 is not a recommended method.		

Page 21 of 21

Ge	eneral UCL Statistics for Data Sets	with Non-Detects	
User Selected Options			
From File C:	\Documents and Settings\sharper\De	esktop\prel-proUCL2.xls.wst	
Full Precision ON	1		
Confidence Coefficient 95	%		
Number of Bootstrap Operations			2000
Aluminum(mg/Kg)			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	1140	Minimum of Log Data	7.0387835
Maximum		Maximum of Log Data	9.3926619
Mean	4186	Mean of log Data	7.9339072
Median	1645	SD of log Data	0.9282608
SD	4032.1767		
Coefficient of Variation	0.9632529		
Skewness	1.133392		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.8233616
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	0.842
Data not Normal at 5% Significance Leve		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	6523.3771		10721.141
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	9488.6793
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	11837.603
95% Modified-t UCL	6599.5444	99% Chebyshev (MVUE) UCL	16451.608
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)	
Theta Star	4065.7227		
MLE of Mean	4186		
MLE of Standard Deviation	4125.423		
nu star	20.591665	Nonnoromatria Statistica	
Approximate Chi Square Value (.05)	0.0267	Nonparametric Statistics 95% CLT UCL	6283.3302
Adjusted Level of Significance Adjusted Chi Square Value		95% Jackknife UCL	6523.3771
Aujusteu Chi Square Value	10.111139	95% Standard Bootstrap UCL	6178.2028
Anderson Darling Test Statistic	0.9452577		7918.4963
Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value		95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	6223.8888
Kolmogorov-Smirnov Test Statistic	0.3194309		6259
Kolmogorov-Smirnov 5% Critical Value		95% BCA Bootstrap UCL	6589
Data not Gamma Distributed at 5% Signi		95% Chebyshev(Mean, Sd) UCL	9743.972
		97.5% Chebyshev(Mean, Sd) UCL	12148.911
		or one one of the one	12170.311

Assuming Gamma Distribution 95% Approximate Gamma UCL	7635.8202	99% Chebyshev(Mean, Sd) UCL	16872.948
95% Adjusted Gamma UCL	8524.9256		
Potential UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	9743.972
lron(mg/Kg)			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	6180	Minimum of Log Data	8.7290736
Maximum	37600	Maximum of Log Data	10.534759
Mean	22318	Mean of log Data	9.753673
Median	27000	SD of log Data	0.8259879
SD	13991.304		
Coefficient of Variation	0.6269067		
Skewness	-0.229673		
Relevant UCL Statistics			
Normal Distribution Test	0.001000	Lognormal Distribution Test	0.7500704
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.7592764
Shapiro Wilk Critical Value	0.842	Shapiro Wilk Critical Value	0.842
		Data not Lognormal at 5% Significance Level	
Data not Normal at 5% Significance Level		°°°	
Assuming Normal Distribution		Assuming Lognormal Distribution	
	30428.496	Assuming Lognormal Distribution	51756.785
Assuming Normal Distribution	30428.496	Assuming Lognormal Distribution	51756.785 50681.34
Assuming Normal Distribution 95% Student's-t UCL		Assuming Lognormal Distribution 95% H-UCL	
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	29252.196	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	50681.34
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	29252.196	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test	29252.196 30374.939	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	29252.196 30374.939	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected)	29252.196 30374.939 1.5214368	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star	29252.196 30374.939 1.5214368 14669.028	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean	29252.196 30374.939 1.5214368 14669.028 22318	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics	50681.34 62565.388
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL	50681.34 62565.388 85909.3
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 35% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL	50681.34 62565.388 85909.3 29595.554
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 35% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	50681.34 62565.388 85909.3 29595.554 30428.496
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 35% Modified-t UCL Camma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267 17.26086	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	50681.34 62565.388 85909.3 29595.554 30428.496 29358.347
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 35% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267 17.26086 1.097641	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	50681.34 62565.388 85909.3 29595.554 30428.496 29358.347 29946.318
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL 35% Modified-t UCL Camma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267 17.26086 1.097641 0.735314	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	50681.34 62565.388 85909.3 29595.554 30428.496 29358.347 29946.318 28267.16
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267 17.26086 1.097641 0.735314 0.2675374 0.2697036	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	50681.34 62565.388 85909.3 29595.554 30428.496 29358.347 29946.318 28267.16 29248
Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	29252.196 30374.939 1.5214368 14669.028 22318 18093.739 30.428737 18.830169 0.0267 17.26086 1.097641 0.735314 0.2675374 0.2697036	Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	50681.34 62565.388 85909.3 29595.554 30428.496 29358.347 29946.318 28267.16 29248 28765

95% Approximate Gamma UCL	36064.92		
95% Adjusted Gamma UCL	39343.842		
Potential UCL to Use		Use 95% Approximate Gamma UCL	36064.92
Manganese(mg/Kg)			
General Statistics			
Number of Valid Observations	10	Number of Distinct Observations	10
Raw Statistics		Log-transformed Statistics	
Minimum	70.9	Minimum of Log Data	4.2612704
Maximum	2070	Maximum of Log Data	7.6353039
Mean	463.59	Mean of log Data	5.564386
Median	181	SD of log Data	1.0545904
SD	619.44213		
Coefficient of Variation	1.3361853		
Skewness	2.34647		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0 6630945	Shapiro Wilk Test Statistic	0.9185204
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	0.842
Data not Normal at 5% Significance Level	0.0.1	Data appear Lognormal at 5% Significance Level	0.0.2
		Accurate a la successa l Distribution	
Assuming Normal Distribution 95% Student's-t UCL	822 66806	Assuming Lognormal Distribution	1400 475
	822.66896		1409.475
95% UCLs (Adjusted for Skewness)	041 10000	95% Chebyshev (MVUE) UCL	1065.808
95% Adjusted-CLT UCL		97.5% Chebyshev (MVUE) UCL	1344.5384
95% Modified-t UCL	846.894	99% Chebyshev (MVUE) UCL	1892.0504
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.7695023	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	602.45433		
MLE of Mean	463.59		
MLE of Standard Deviation	528.48066		
nu star	15.390046		
Approximate Chi Square Value (.05)	7.533647	Nonparametric Statistics	
Adjusted Level of Significance	0.0267	95% CLT UCL	785.79182
Adjusted Chi Square Value	6.6008585	95% Jackknife UCL	822.66896
		95% Standard Bootstrap UCL	772.52616
Anderson-Darling Test Statistic	0.7116974	95% Bootstrap-t UCL	1734.0007
Anderson-Darling 5% Critical Value	0.7481968	95% Hall's Bootstrap UCL	2159.4767
Kolmogorov-Smirnov Test Statistic	0.2717881	95% Percentile Bootstrap UCL	822.48
Kolmogorov-Smirnov 5% Critical Value	0.2737287	95% BCA Bootstrap UCL	977.5
Data appear Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	1317.432
		97.5% Chebyshev(Mean, Sd) UCL	1686.8902
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	2412.6191
95% Approximate Gamma UCL	947.04086		

95% Adjusted Gamma UCL	1080.8702	
Potential UCL to Use	Use 95% Approximate Gamma UCL	947.04086
Vanadium(mg/Kg)		
General Statistics		
Number of Valid Observations	10 Number of Distinct Observations	10
Raw Statistics	Log-transformed Statistics	
Minimum	9.4 Minimum of Log Data	2.2407097
Maximum	146 Maximum of Log Data	4.9836066
Mean	40.301 Mean of log Data	3.2251898
Median	14.9 SD of log Data	0.9883097
SD	44.238254	
Coefficient of Variation	1.0976962	
Skewness	1.764974	
Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.7394072 Shapiro Wilk Test Statistic	0.8527832
Shapiro Wilk Critical Value	0.842 Shapiro Wilk Critical Value	0.842
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% Student's-t UCL	65.945085 95% H-UCL	113.05964
95% UCLs (Adjusted for Skewness)	95% Chebyshev (MVUE) UCL	93.272939
95% Adjusted-CLT UCL	71.65435 97.5% Chebyshev (MVUE) UCL	117.00765
95% Modified-t UCL	67.246407 99% Chebyshev (MVUE) UCL	163.6299
Gamma Distribution Test	Data Distribution	
k star (bias corrected)	0.906949 Data appear Lognormal at 5% Significance Level	
Theta Star	44.435794	
MLE of Mean	40.301	
MLE of Standard Deviation	42.317927	
nu star	18.13898	
Approximate Chi Square Value (.05)	9.4913817 Nonparametric Statistics	
Adjusted Level of Significance	0.0267 95% CLT UCL	63.311457
Adjusted Chi Square Value	8.4251887 95% Jackknife UCL	65.945085
	95% Standard Bootstrap UCL	62.099905
Anderson-Darling Test Statistic	0.8424531 95% Bootstrap-t UCL	84.118445
Anderson-Darling 5% Critical Value	0.7446467 95% Hall's Bootstrap UCL	79.850158
Kolmogorov-Smirnov Test Statistic	0.3275401 95% Percentile Bootstrap UCL	64.031
Kolmogorov-Smirnov 5% Critical Value	0.2726959 95% BCA Bootstrap UCL	69.451
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	101.27923
	97.5% Chebyshev(Mean, Sd) UCL	127.66455
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	179.49342
95% Approximate Gamma UCL	77.019245	
95% Adjusted Gamma UCL	86.765896	
Potential UCL to Use	Use 95% H-UCL	113.05964

	General UCL Statistics for Data Sets with Non-Detects
User Selected Options	
From File	C:\Documents and Settings\sharper\Desktop\prel-proUCL2.xls.wst
Full Precision	ON
Confidence Coefficient	95%
Number of Bootstrap Operations	
Aluminum(mg/Kg)	

Number of Valid Observations	19 Number of Distinct Observations18
Raw Statistics	Log-transformed Statistics
Minimum	227 Minimum of Log Data 5.42495
Maximum	12700 Maximum of Log Data 9.4493573
Mean 419	6.5789 Mean of log Data 7.7464429
Median	1530 SD of log Data 1.2088204
SD 431	3.8981
Coefficient of Variation 1.02	79559
Skewness 1.02	33194

R	Relevant UCL Statistics		
N	lormal Distribution Test		Lognormal Distribution Test
S	Shapiro Wilk Test Statistic	0.7931248	Shapiro Wilk Test Statistic
S	Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value
D	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Signifi

Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL

General Statistics

Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

).7931248 Shapiro Wilk Test Statistic	0.9252593
0.901 Shapiro Wilk Critical Value	0.901
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

5912.7403	95% H-UCL	11037.49
	95% Chebyshev (MVUE) UCL	10793.773
6072.7119	97.5% Chebyshev (MVUE) UCL	13508.043
5951.464	99% Chebyshev (MVUE) UCL	18839.7

Data Distribution

0.8539322	Data appear Lognormal at 5% Significance Level	
4914.4171		
4196.5789		
4541.3367		
32.449423		
20.428756	Nonparametric Statistics	
0.03687	95% CLT UCL	5824.4513
19.596157	95% Jackknife UCL	5912.7403
	95% Standard Bootstrap UCL	5820.1347
0.7811041	95% Bootstrap-t UCL	6109.4836
0.7702852	95% Hall's Bootstrap UCL	5739.6617
0.2291441	95% Percentile Bootstrap UCL	5817.4737
0.2045156	95% BCA Bootstrap UCL	6040.6316
	95% Chebyshev(Mean, Sd) UCL	8510.4771
	97.5% Chebyshev(Mean, Sd) UCL	10377.104
	99% Chebyshev(Mean, Sd) UCL	14043.732

2000

95% Approximate Gamma UCL 95% Adjusted Gamma UCL 6665.9255 6949.1467

Potential UCL to Use		Use 95% Chebyshev (MVUE) UCL	10793.773
lron(mg/Kg)			
General Statistics			
Number of Valid Observations	19	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	316	Minimum of Log Data	5.7557422
Maximum	37600	Maximum of Log Data	10.534759
Mean		Mean of log Data	9.2006981
Median	8240	SD of log Data	1.3613856
SD	14488.689		
Coefficient of Variation	0.8209477		
Skewness	0.2638835		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.8341643	Shapiro Wilk Test Statistic	0.8608304
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	23412.649	95% H-UCL	68969.813
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	59643.053
95% Adjusted-CLT UCL	23331.135	97.5% Chebyshev (MVUE) UCL	75494.255
95% Modified-t UCL	23446.187	99% Chebyshev (MVUE) UCL	106630.87
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.8765332	Data Follow Appr. Gamma Distribution at 5% Significance Level	
Theta Star	20134.705		
MLE of Mean	17648.737		
MLE of Standard Deviation	18850.786		
nu star	33.30826		
Approximate Chi Square Value (.05)	21.112232	Nonparametric Statistics	
Adjusted Level of Significance	0.03687	95% CLT UCL	23116.121
Adjusted Chi Square Value	20.264552	95% Jackknife UCL	23412.649
		95% Standard Bootstrap UCL	23109.765
Anderson-Darling Test Statistic	0.8620601	95% Bootstrap-t UCL	23831.206
Anderson-Darling 5% Critical Value	0.7692599	95% Hall's Bootstrap UCL	22851.476
Kolmogorov-Smirnov Test Statistic	0.1865986	95% Percentile Bootstrap UCL	23361.368
Kolmogorov-Smirnov 5% Critical Value	0.2043255	95% BCA Bootstrap UCL	22948.421
Data follow Appr. Gamma Distribution at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	32137.426
		97.5% Chebyshev(Mean, Sd) UCL	38406.693
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	50721.455
95% Approximate Gamma UCL	27843.987		

95% Adjusted Gamma UCL

29008.719

Potential UCL to Use

Use 95% Approximate Gamma UCL

27843.987

Manganese(mg/Kg)

General Statistics

Number of Valid Observations 19	Number of Distinct Observations 19
Raw Statistics	Log-transformed Statistics
Minimum 1.69	Minimum of Log Data0.5247285
Maximum 2070) Maximum of Log Data 7.6353039
Mean 259.19947	7 Mean of log Data 4.0565629
Median 116	S SD of log Data 2.0867701
SD 491.87528	3
Coefficient of Variation 1.8976708	3
Skewness 3.18331	I

Relevant UCL Statistics

Normal Distribution Test
Shapiro Wilk Test Statistic
Shapiro Wilk Critical Value
Data not Normal at 5% Significance Level

Assuming Normal Distribution

Gamma Distribution Test

k star (bias corrected)
Theta Star
MLE of Mean
MLE of Standard Deviation
nu star
Approximate Chi Square Value (.05)
Adjusted Level of Significance
Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 95% Adjusted Gamma UCL

0.5519712 Shapiro Wilk Test Statistic	0.9465009
0.901 Shapiro Wilk Critical Value	0.901
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

454.87803	95% H-UCL	4449.7913
	95% Chebyshev (MVUE) UCL	1356.7489
532.86758	97.5% Chebyshev (MVUE) UCL	1778.2759
468.61304	99% Chebyshev (MVUE) UCL	2606.284

Data Distribution

0.3996129	Data appear Gamma Distributed at 5% Significance Level	
648.62647		
259.19947		
410.02883		
15.185288		
7.3906153	Nonparametric Statistics	
0.03687	95% CLT UCL	444.81122
6.9185741	95% Jackknife UCL	454.87803
	95% Standard Bootstrap UCL	440.83761
0.442334	95% Bootstrap-t UCL	862.0692
0.8162286	95% Hall's Bootstrap UCL	1172.7037
0.168614	95% Percentile Bootstrap UCL	466.79211
0.2117151	95% BCA Bootstrap UCL	559.72158
	95% Chebyshev(Mean, Sd) UCL	751.07476
	97.5% Chebyshev(Mean, Sd) UCL	963.90959
	99% Chebyshev(Mean, Sd) UCL	1381.9824
532.56984		

Potential UCL to Use		Use 95% Adjusted Gamma UCL	568.90607
Vanadium(mg/Kg)			
General Statistics	10	Number of Distinct Observations	10
Number of Valid Observations	19	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	1.42	Minimum of Log Data	0.3506569
Maximum	146	Maximum of Log Data	4.9836066
Mean	29.835263	Mean of log Data	2.6435843
Median	13.4	SD of log Data	1.3559003
SD	37.134922		
Coefficient of Variation	1.2446655		
Skewness	1.9985742		
Relevant U.C. Statistics			
Relevant UCL Statistics Normal Distribution Test		Lognormal Distribution Toot	
	0 7425266	Lognormal Distribution Test	0.0542004
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.9542004
Shapiro Wilk Critical Value	0.901	Shapiro Wilk Critical Value	0.901
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	44.608333	95% H-UCL	96.539603
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	83.900808
95% Adjusted-CLT UCL	48.022103	97.5% Chebyshev (MVUE) UCL	106.15885
95% Modified-t UCL	45.259358	99% Chebyshev (MVUE) UCL	149.88048
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0 700662	Data appear Gamma Distributed at 5% Significance Level	
Theta Star	42.581536		
MLE of Mean	29.835263		
MLE of Mean	35.64311		
nu star	26.625155		
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.03687	-	43.848323
Adjusted Chi Square Value	15.136899		44.608333
	10.100000	95% Standard Bootstrap UCL	43.483999
Anderson-Darling Test Statistic	0.4694656		52.601346
Anderson-Darling 5% Critical Value	0.7772379		52.309714
Kolmogorov-Smirnov Test Statistic	0.1929688	•	44.864737
Kolmogorov-Smirnov 5% Critical Value	0.2058042		47.821053
Data appear Gamma Distributed at 5% Significance Level	0.2000042	95% Chebyshev(Mean, Sd) UCL	66.970185
		97.5% Chebyshev(Mean, Sd) UCL	83.038495
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	83.038495 114.60158
95% Approximate Gamma UCL	50.08125		114.00100
	52.478945		
95% Adjusted Gamma UCL	JZ.470940		
Potential UCL to Use		Use 95% Approximate Gamma UCL	50.08125

	General UCL Statistics for Data Sets with Non-Detects	
User Selected Options		
From File	C:\Documents and Settings\sharper\Desktop\prel-proUCL2.wst	
Full Precision	ON	
Confidence Coefficient	95%	
Number of Bootstrap Operations		2000
Calcium(ug/L)		
General Statistics		
Number of Valid Observations	20 Number of Distinct Observations	20
Raw Statistics	Log-transformed Statistics	
Minimum	71100 Minimum of Log Data	11.171843
Maximum	165000 Maximum of Log Data	12.013701
Mean	122505 Mean of log Data	11.67668
Median	118000 SD of log Data	0.2954533
SD	33487.727	
Coefficient of Variation	0.273358	
	-0.15952	

Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.8731752 Shapiro Wilk Test Statistic	0.8585459
Shapiro Wilk Critical Value	0.905 Shapiro Wilk Critical Value	0.905
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	

	Assuming Lognormal Distribution	
135452.89	95% H-UCL	139465.58
	95% Chebyshev (MVUE) UCL	158599.19
134536.4	97.5% Chebyshev (MVUE) UCL	174102.78
135408.37	99% Chebyshev (MVUE) UCL	204556.59

Data Distribution

	11.007502	Data do not follow a Discernable Distribution (0.05)	
	11129.228		
	122505		
	36924.059		
	440.30007		
	392.65238	Nonparametric Statistics	
	0.038	95% CLT UCL	134821.8
	389.10291	95% Jackknife UCL	135452.89
		95% Standard Bootstrap UCL	134122.63
	1.0113046	95% Bootstrap-t UCL	135077.2
	0.7415169	95% Hall's Bootstrap UCL	134546.61
	0.1963303	95% Percentile Bootstrap UCL	134560
	0.1937423	95% BCA Bootstrap UCL	133155
el		95% Chebyshev(Mean, Sd) UCL	155144.8
		97.5% Chebyshev(Mean, Sd) UCL	169268.07

Gamma Distribution Test

95% Adjusted-CLT UCL 95% Modified-t UCL

Assuming Normal Distribution 95% Student's-t UCL

95% UCLs (Adjusted for Skewness)

k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	197010.49
95% Approximate Gamma UCL	137370.77		
95% Adjusted Gamma UCL	138623.89		
Potential UCL to Use		Use 95% Student's-t UCL	135452.89
		or 95% Modified-t UCL	135408.37
Calcium, Dissolved(ug/L)			
General Statistics Number of Valid Observations	20	Number of Distinct Observations	16
	20		10
Raw Statistics		Log-transformed Statistics	
Minimum	71300	Minimum of Log Data	11.174652
Maximum	165000	Maximum of Log Data	12.013701
Mean		Mean of log Data	11.65114
Median		SD of log Data	0.2815198
SD	31587.796		
Coefficient of Variation	0.2653545		
Skewness	-0.05944		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.8756174
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	131253.29	95% H-UCL	134521.85
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	152332.37
95% Adjusted-CLT UCL	130557.69	97.5% Chebyshev (MVUE) UCL	166660.52
95% Modified-t UCL	131237.64	99% Chebyshev (MVUE) UCL	194805.39
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	11.954313	Data do not follow a Discernable Distribution (0.05)	
Theta Star	9957.9122		
MLE of Mean	119040		
MLE of Standard Deviation	34429.491		
nu star	478.17253		
Approximate Chi Square Value (.05)	428.46785	Nonparametric Statistics	
Adjusted Level of Significance	0.038	95% CLT UCL	130658.01
Adjusted Chi Square Value	424.75653	95% Jackknife UCL	131253.29
		95% Standard Bootstrap UCL	130524.35
Anderson-Darling Test Statistic	0.9419834	•	131612.57
Anderson-Darling 5% Critical Value	0.7413933	·	130648.45
Kolmogorov-Smirnov Test Statistic	0.2072714	I I	130215
Kolmogorov-Smirnov 5% Critical Value	0.1937011	I I	130425
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	149827.97
		97.5% Chebyshev(Mean, Sd) UCL	163149.96

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	189318.41
95% Approximate Gamma UCL	132849.31	3370 Chebyshev(Mean, 30) OCL	103310.41
95% Adjusted Gamma UCL	134010.08		
Potential UCL to Use		Use 95% Student's-t UCL	131253.29
		or 95% Modified-t UCL	131237.64
Magnesium(ug/L)			
General Statistics			
Number of Valid Observations	20	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	191000	Minimum of Log Data	12.160029
Maximum	506000	Maximum of Log Data	13.134292
Mean		Mean of log Data	12.688501
Median		SD of log Data	0.3519328
SD	117377.75		
Coefficient of Variation	0.3420098		
Skewness	0.2717173		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.8419076	Shapiro Wilk Test Statistic	0.8639976
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	388583.62	95% H-UCL	401521.53
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	463657.35
95% Adjusted-CLT UCL	388075.53	97.5% Chebyshev (MVUE) UCL	515615.83
95% Modified-t UCL	388849.4	99% Chebyshev (MVUE) UCL	617678.22
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	7.554807	Data do not follow a Discernable Distribution (0.05)	
Theta Star	45428.03		
MLE of Mean	343200		
MLE of Standard Deviation	124863.53		
nu star	302.19228		
Approximate Chi Square Value (.05)	262.92335	Nonparametric Statistics	
Adjusted Level of Significance	0.038	95% CLT UCL	386371.59
Adjusted Chi Square Value	260.03303		388583.62
		95% Standard Bootstrap UCL	384802.54
Anderson-Darling Test Statistic	1.1559713	•	392469.64
Anderson-Darling 5% Critical Value	0.7426205	·	387078.52
Kolmogorov-Smirnov Test Statistic	0.2150482	·	385100
Kolmogorov-Smirnov 5% Critical Value	0.1939927	I I	387950
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	457605.68
		97.5% Chebyshev(Mean, Sd) UCL	507109.11

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	604349.01
95% Approximate Gamma UCL	394458.66		
95% Adjusted Gamma UCL	398843.14		
Potential UCL to Use		Use 95% Student's-t UCL	388583.62
		or 95% Modified-t UCL	388849.4
Magnesium, Dissolved(ug/L)			
General Statistics			
Number of Valid Observations	20	Number of Distinct Observations	20
Raw Statistics		Log-transformed Statistics	
Minimum	185000	Minimum of Log Data	12.128111
Maximum		Maximum of Log Data	13.066851
Mean		Mean of log Data	12.678131
Median		SD of log Data	0.3324804
SD	106649.01		
Coefficient of Variation	0.3161844		
Skewness	0.1172158		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.8504862	Shapiro Wilk Test Statistic	0.865661
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	378535.4	95% H-UCL	390980.76
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	449254.36
95% Adjusted-CLT UCL	377193.43	97.5% Chebyshev (MVUE) UCL	497437.01
95% Modified-t UCL	378639.57	99% Chebyshev (MVUE) UCL	592082.48
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	8.5722611	Data do not follow a Discernable Distribution (0.05)	
Theta Star	39347.845		
MLE of Mean	337300		
MLE of Standard Deviation	115204.29		
nu star	342.89045		
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.038		376525.55
Adjusted Chi Square Value	297.88471		378535.4
Anderson Darling Task Chatistic	1 0704512	95% Standard Bootstrap UCL	375384.26
Anderson-Darling Test Statistic	1.0794513		379770.87
Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic	0.7418349 0.2259058		376286.6 374700
Kolmogorov-Smirnov 18st Statistic Kolmogorov-Smirnov 5% Critical Value	0.2259058	·	374700
Data not Gamma Distributed at 5% Significance Level	0.1000-00	95% Chebyshev(Mean, Sd) UCL	441248.59
		97.5% Chebyshev(Mean, Sd) UCL	486227.23

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	574579.06
95% Approximate Gamma UCL	384264.56		
95% Adjusted Gamma UCL	388260.77		
Potential UCL to Use		Use 95% Student's-t UCL	378535.4
		or 95% Modified-t UCL	378639.57
Manganese(ug/L)			
General Statistics			
Number of Valid Observations	20	Number of Distinct Observations	19
Raw Statistics		Log-transformed Statistics	
Minimum	11.9	Minimum of Log Data	2.4765384
Maximum	106	Maximum of Log Data	4.6634391
Mean	61.24	Mean of log Data	3.9494573
Median	57.4	SD of log Data	0.674914
SD	28.975587		
Coefficient of Variation	0.4731481		
Skewness	-0.245184		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.9474459	Shapiro Wilk Test Statistic	0.8212544
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	72.44329	95% H-UCL	91.731949
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	109.2707
95% Adjusted-CLT UCL	71.517679	97.5% Chebyshev (MVUE) UCL	128.72707
95% Modified-t UCL	72.384088	99% Chebyshev (MVUE) UCL	166.94534
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	2.737147	Data appear Normal at 5% Significance Level	
Theta Star	22.373661		
MLE of Mean	61.24		
MLE of Standard Deviation	37.015713		
nu star	109.48588		
Approximate Chi Square Value (.05)	86.334718	Nonparametric Statistics	
Adjusted Level of Significance	0.038	95% CLT UCL	71.897234
Adjusted Chi Square Value	84.711005	95% Jackknife UCL	72.44329
		95% Standard Bootstrap UCL	71.732758
Anderson-Darling Test Statistic	0.8819278	· ·	72.139692
Anderson-Darling 5% Critical Value	0.7471681	·	71.718363
Kolmogorov-Smirnov Test Statistic	0.1985884	·	71.41
Kolmogorov-Smirnov 5% Critical Value	0.1949594	I I	70.815
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	89.481909
		97.5% Chebyshev(Mean, Sd) UCL	101.7022

Assuming (Gamma Distri	bution	

95% Approximate Gamma UCL 95% Adjusted Gamma UCL

 99% Chebyshev(Mean, Sd) UCL
 125.70661

 77.661867
 79.150464

Potential UCL to Use

Use 95% Student's-t UCL

G	General UCL Statistics for Data Sets	with Non-Detects	
User Selected Options			
From File C	:\Documents and Settings\sharper\De	esktop\prel-proUCL_v3.2.wst	
Full Precision C	DN		
Confidence Coefficient 9	5%		
Number of Bootstrap Operations			2000
Calcium(mg/Kg)			
General Statistics			
Number of Valid Observations	57	Number of Distinct Observations	51
Raw Statistics		Log-transformed Statistics	
Minimum	534	Minimum of Log Data	6.2803958
Maximum	242000	Maximum of Log Data	12.396693
Mean	122600.42	Mean of log Data	11.383358
Median	138000	SD of log Data	1.1845131
SD	63701.866		
Coefficient of Variation	0.5195893		
Skewness	-0.32346		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.1157331	Lilliefors Test Statistic	0.2213858
Lilliefors Critical Value	0.1173536	Lilliefors Critical Value	0.1173536
Data appear Normal at 5% Significance	Level	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	136712.36	95% H-UCL	268786.27
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	320810.81
95% Adjusted-CLT UCL	136092.64	97.5% Chebyshev (MVUE) UCL	384499.49
95% Modified-t UCL	136652.11	99% Chebyshev (MVUE) UCL	509603.57
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.5719774	Data appear Normal at 5% Significance Level	
Theta Star	77991.21		
MLE of Mean	122600.42		
MLE of Standard Deviation	97784.228		
nu star	179.20542		
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.0457895		136478.9
Adjusted Chi Square Value	148.53642	95% Jackknife UCL	136712.36
		95% Standard Bootstran LICI	126266 42

95% Standard Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL

97.5% Chebyshev(Mean, Sd) UCL

3.3202424 95% Bootstrap-t UCL

0.7667786 95% Hall's Bootstrap UCL

0.1198241 95% BCA Bootstrap UCL

0.1955594 95% Percentile Bootstrap UCL

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data not Gamma Distributed at 5% Significance Level 136266.43

136579.95

136155.57

136360.25

136194.39

159378.71

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	206552.67
95% Approximate Gamma UCL	147213.77		
95% Adjusted Gamma UCL	147914.3		
Potential UCL to Use		Use 95% Student's-t UCL	136712.36
Chromium (VI)(mg/Kg)			
General Statistics			
Number of Valid Observations	70	Number of Distinct Observations	66
Raw Statistics		Log-transformed Statistics	
Minimum	0.28	Minimum of Log Data	-1.272966
Maximum	6710	Maximum of Log Data	8.8113542
Mean		Mean of log Data	3.1154966
Median	18.65	SD of log Data	2.7767736
SD	1506.2481		
Coefficient of Variation	2.4387024		
Skewness	2.7035049		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.4370217	Lilliefors Test Statistic	0.1059966
Lilliefors Critical Value	0.1058973	Lilliefors Critical Value	0.1058973
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	917.79804	95% H-UCL	3110.2433
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	2910.8803
95% Adjusted-CLT UCL	975.92737	97.5% Chebyshev (MVUE) UCL	3805.9795
95% Modified-t UCL	927.49363	99% Chebyshev (MVUE) UCL	5564.2287
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.2192657	Data do not follow a Discernable Distribution (0.05)	
Theta Star	2816.8714		
MLE of Mean	617.64329		
MLE of Standard Deviation	1319.023		
nu star	30.697199		
Approximate Chi Square Value (.05)	19.041751	Nonparametric Statistics	
Adjusted Level of Significance	0.0465714	95% CLT UCL	913.76807
Adjusted Chi Square Value	18.848486		917.79804
		95% Standard Bootstrap UCL	905.67541
Anderson-Darling Test Statistic	6.2753538	•	1024.2726
Anderson-Darling 5% Critical Value	0.9012328		958.49715
Kolmogorov-Smirnov Test Statistic	0.2855268	·	941.187
Kolmogorov-Smirnov 5% Critical Value	0.1174957	I I	998.26186
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	1402.3806
Assuming Gamma Distribution		97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1741.9371 2408.93

95% Approximate Gamma UCL 95% Adjusted Gamma UCL

Potential UCL to Use

995.70247 1005.912

Use 99% Chebyshev (Mean, Sd) UCL

		Use 33% Chebysnev (Mean, Su) UCL	2408.93
lron(mg/Kg)			
General Statistics			
Number of Valid Observations	57	Number of Distinct Observations	56
Raw Statistics		Log-transformed Statistics	
Minimum	3570	Minimum of Log Data	8.1803209
Maximum	129000	Maximum of Log Data	11.767568
Mean	29842.632	Mean of log Data	9.8996521
Median	17800	SD of log Data	0.9005964
SD	29449.279		
Coefficient of Variation	0.9868191		
Skewness	1.8103713		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.2261038	Lilliefors Test Statistic	0.0953269
Lilliefors Critical Value	0.1173536	Lilliefors Critical Value	0.1173536
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	36366.559	95% H-UCL	39056.826
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	47321.118
95% Adjusted-CLT UCL	37258.053	97.5% Chebyshev (MVUE) UCL	54990.917
95% Modified-t UCL	36522.448	99% Chebyshev (MVUE) UCL	70056.75
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	1.3194609	Data appear Lognormal at 5% Significance Level	
Theta Star	22617.291		
MLE of Mean	29842.632		
MLE of Standard Deviation	25979.982		
nu star	150.41855		
Approximate Chi Square Value (.05)	123.07055	Nonparametric Statistics	
Adjusted Level of Significance	0.0457895	95% CLT UCL	36258.634
Adjusted Chi Square Value	122.43076	95% Jackknife UCL	36366.559
		95% Standard Bootstrap UCL	36197.283
Anderson-Darling Test Statistic	1.289789	95% Bootstrap-t UCL	37765.849
Anderson-Darling 5% Critical Value	0.7710267	95% Hall's Bootstrap UCL	37267.297
Kolmogorov-Smirnov Test Statistic	0.1532759	95% Percentile Bootstrap UCL	36267.719
Kolmogorov-Smirnov 5% Critical Value	0.1203235	95% BCA Bootstrap UCL	37211.228
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	46845.181
		97.5% Chebyshev(Mean, Sd) UCL	54202.197
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	68653.632
95% Approximate Gamma UCL	36474.083		
95% Adjusted Gamma UCL	36664.686		

Potential UCL to Use

Use 95% H-UCL

57 Number of Distinct Observations

Log-transformed Statistics

Assuming Lognormal Distribution

95% Chebyshev (MVUE) UCL

95% Standard Bootstrap UCL

95% Percentile Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

97.5% Chebyshev(Mean, Sd) UCL

95% Hall's Bootstrap UCL

1.1254653 Data Follow Appr. Gamma Distribution at 5% Significance Level

793.84753 97.5% Chebyshev (MVUE) UCL

764.04867 99% Chebyshev (MVUE) UCL

Data Distribution

103.13926 Nonparametric Statistics

102.55546 95% Jackknife UCL

1.0479699 95% Bootstrap-t UCL

0.1208416 95% BCA Bootstrap UCL

0.0457895 95% CLT UCL

56.6 Minimum of Log Data

4060 Maximum of Log Data

600.04386 Mean of log Data

713.285

1.1887214

2.8720788

533.15183 600.04386 565.60983 128.30304

0.7755264

0.1084045

746.44177 750.69088

429 SD of log Data

39056.826

57

4.036009 8.3089383

5.9148328

0.9774909

807.87517

981.51492

1150.8339

1483.4283

755.44454 758.05858

759.91475

809.24153

850.77387

757.97018

795.32105

1011.8591

1190.0519 1540.0772

Manganese(mg/Kg)

General Statistics

Number of Valid Observations

Raw Statistics

Minimum Maximum Mean Median SD Coefficient of Variation Skewness

Relevant UCL Statistics

Normal Distribution Test	Lognormal Distribution Test	
Lilliefors Test Statistic	0.2356498 Lilliefors Test Statistic	0.0683898
Lilliefors Critical Value	0.1173536 Lilliefors Critical Value	0.1173536
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	

758.05858 95% H-UCL

Assuming Normal Distribution

95% Student's-t UCL
95% UCLs (Adjusted for Skewness)
95% Adjusted-CLT UCL
95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected)
Theta Star
MLE of Mean
MLE of Standard Deviation
nu star
Approximate Chi Square Value (.05)
Adjusted Level of Significance
Adjusted Chi Square Value

Anderson-Darling Test Statistic Anderson-Darling 5% Critical Value Kolmogorov-Smirnov Test Statistic Kolmogorov-Smirnov 5% Critical Value Data follow Appr. Gamma Distribution at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL	
95% Adjusted Gamma UCL	

Page 4 c	of 5
----------	------

Potential UCL to Use		Use 95% Approximate Gamma UCL	746.44177
Vanadium(mg/Kg)			
General Statistics			
Number of Valid Observations	57	Number of Distinct Observations	53
Raw Statistics		Log-transformed Statistics	
Minimum	10.6	Minimum of Log Data	2.360854
Maximum	1210	Maximum of Log Data	7.0983756
Mean	179.1807	Mean of log Data	4.3274679
Median	49.7	SD of log Data	1.2807023
SD	253.66112		
Coefficient of Variation	1.4156721		
Skewness	1.960248		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic	0.3252513	Lilliefors Test Statistic	0.1752169
Lilliefors Critical Value	0.1173536	Lilliefors Critical Value	0.1173536
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	235.3745	95% H-UCL	278.15112
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	325.31114
95% Adjusted-CLT UCL	243.76605	97.5% Chebyshev (MVUE) UCL	393.49564
95% Modified-t UCL	236.82841	99% Chebyshev (MVUE) UCL	527.4309
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.6764906	Data do not follow a Discernable Distribution (0.05)	
Theta Star	264.868		
MLE of Mean	179.1807		
MLE of Standard Deviation	217.8514		
nu star	77.119924		
Approximate Chi Square Value (.05)	57.890455	Nonparametric Statistics	
Adjusted Level of Significance	0.0457895	95% CLT UCL	234.44488
Adjusted Chi Square Value	57.458617	95% Jackknife UCL	235.3745
		95% Standard Bootstrap UCL	234.57794
Anderson-Darling Test Statistic	4.3751854	95% Bootstrap-t UCL	248.8576
Anderson-Darling 5% Critical Value	0.7968919	95% Hall's Bootstrap UCL	249.12261
Kolmogorov-Smirnov Test Statistic	0.2284698	95% Percentile Bootstrap UCL	236.21053
Kolmogorov-Smirnov 5% Critical Value	0.1229912	95% BCA Bootstrap UCL	239.97368
Data not Gamma Distributed at 5% Significance Level		95% Chebyshev(Mean, Sd) UCL	325.63202
		97.5% Chebyshev(Mean, Sd) UCL	389.00162
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	513.47893
95% Approximate Gamma UCL	238.69915		
95% Adjusted Gamma UCL	240.49312		
Potential UCL to Use		Use 97.5% Chebyshev (Mean, Sd) UCL	389.00162

	General UCL Statistics for Data Sets	with Non-Detects	
User Selected Options			
	C:\Documents and Settings\sharper\De	sktop/prei-proUCL2.wst	
	95%		
Number of Bootstrap Operations	3 0 76		2000
			2000
Hexavalent Chromium(ug/L)			
General Statistics			
Number of Valid Data	27	Number of Detected Data	9
Number of Distinct Detected Data	9	Number of Non-Detect Data	18
		Percent Non-Detects	66.67%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	10	Log Statistics Not Avaliable	
Maximum Detected	1000		
Mean of Detected	354.33333		
Mean of Detected	354.33333		
Mean of Detected	354.33333		
Maximum Non-Detect	5		
Note: Data have multiple DLs - Use of K		Number treated as Non-Detect	18
For all methods (except KM, DL/2, and F		Number treated as Detected	9
Observations < Largest ND are treated a	as NDs	Single DL Non-Detect Percentage	66.67%
Observations < Largest ND are treated a Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re	alues in this data ugh bootstrap may be performed on t		66.67%
Warning: There are only 9 Detected V Note: It should be noted that even tho	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions	his data set	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even tho the resulting calculations may not be re	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions	his data set	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate	his data set	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even those the resulting calculations may not be re- It is recommended to have 10-15 or mo-	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only	his data set and meaningful results.	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo- UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only	66.67%
Warning: There are only 9 Detected V Note: It should be noted that even those the resulting calculations may not be re- It is recommended to have 10-15 or ma UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available	66.67% N/A
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution	
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean SD	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829 a Level	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution	
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or ma UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean	alues in this data ugh bootstrap may be performed on t eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829 e Level 119.31481	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution	
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean SD	alues in this data ugh bootstrap may be performed on the eliable enough to draw conclusions pre distinct observations for accurate Values Only 0.8898535 0.829 a Level 119.31481 256.02956 203.35558	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution	
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Me Mean	alues in this data ugh bootstrap may be performed on the eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829 a Level 119.31481 256.02956 203.35558 thod -248.3855	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution DL/2 Substitution Method	N/A
Warning: There are only 9 Detected V Note: It should be noted that even thor the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Me Mean SD	alues in this data ugh bootstrap may be performed on the bliable enough to draw conclusions bre distinct observations for accurate Values Only 0.8898535 0.829 b Level 119.31481 256.02956 203.35558 thod -248.3855 563.08674	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution DL/2 Substitution Method	N/A
Warning: There are only 9 Detected V Note: It should be noted that even thou the resulting calculations may not be re- It is recommended to have 10-15 or mo UCL Statistics Normal Distribution Test with Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Normal at 5% Significance Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Me Mean	alues in this data ugh bootstrap may be performed on the eliable enough to draw conclusions ore distinct observations for accurate Values Only 0.8898535 0.829 a Level 119.31481 256.02956 203.35558 thod -248.3855	his data set and meaningful results. Lognormal Distribution Test with Detected Values Only Not Available Assuming Lognormal Distribution DL/2 Substitution Method	N/A

Gamma Distribution Test with Detected Values Only Gamma Statistics Not Available **Data Distribution Test with Detected Values Only** Data appear Normal at 5% Significance Level

Potential UCLs to Use

95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL

Nonparametric Statistics

211.3659 Kaplan-Meier (KM) Method	
240.74074 Mean	124.77778
SD	248.70365
SE of Mean	50.76642
95% KM (t) UCL	211.3659
95% KM (z) UCL	208.28111
95% KM (jackknife) UCL	197.66546
95% KM (bootstrap t) UCL	249.69568
95% KM (BCA) UCL	281.85185
95% KM (Percentile Bootstrap) UCL	240.74074
95% KM (Chebyshev) UCL	346.06347
97.5% KM (Chebyshev) UCL	441.81397
99% KM (Chebyshev) UCL	629.89728

Note: DL/2 is not a recommended method.

G	eneral UCL Statistics for Data Sets	with Non-Detects	
User Selected Options			
		esktop\prel-proUCL_v3.1_STW_PRI_update.wst	
)FF		
	5%		0000
Number of Bootstrap Operations			2000
HexavalentChromium(ug/L)			
General Statistics			
Number of Valid Data	111	Number of Detected Data	106
Number of Distinct Detected Data	55	Number of Non-Detect Data	5
Number of Missing Values	7	Percent Non-Detects	4.50%
Raw Statistics		Log-transformed Statistics	
Minimum Detected		Log Statistics Not Avaliable	
Maximum Detected	57000		
Mean of Detected	16889		
Mean of Detected	16889		
Mean of Detected	16889		
Maximum Non-Detect	5 A Method is recommended		F
Note: Data have multiple DLs - Use of KN		Number treated as Non-Detect Number treated as Detected	5
For all methods (except KM, DL/2, and R			106 4.50%
Observations < Largest ND are treated a	s NDS	Single DL Non-Detect Percentage	4.50%
UCL Statistics			
Normal Distribution Test with Detected	Values Only	Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.161	Not Available	
5% Lilliefors Critical Value	0.0861		
Data not Normal at 5% Significance Lev	rel		
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	N/A
Mean	16129		
SD 95% DL/2 (t) UCL	14296 18380		
Maximum Likelihood Estimate(MLE) Met	hod	Log ROS Method	N/A
Mean	15789	-	
SD	14759		
95% MLE (t) UCL	18113		
95% MLE (Tiku) UCL	18029		
Gamma Distribution Test with Detected	Values Only	Data Distribution Test with Detected Values Only	
Gamma Statistics Not Available		Data do not follow a Discernable Distribution (0.05)	
Potential UCLs to Use		Nonparametric Statistics	

Potential UCLs to Use 97.5% KM (Chebyshev) UCL Nonparametric Statistics 24605 Kaplan-Meier (KM) Method

Mean	16130
SD	14231
SE of Mean	1357
95% KM (t) UCL	18381
95% KM (z) UCL	18362
95% KM (jackknife) UCL	18380
95% KM (bootstrap t) UCL	18593
95% KM (BCA) UCL	18204
95% KM (Percentile Bootstrap) UCL	18370
95% KM (Chebyshev) UCL	22045
97.5% KM (Chebyshev) UCL	24605
99% KM (Chebyshev) UCL	29633

Note: DL/2 is not a recommended method.

TrivalentChromium(ug/L)

General Statistics

Number of Valid Data	110 Number of Detected Data	53
Number of Distinct Detected Data	38 Number of Non-Detect Data	57
Number of Missing Values	8 Percent Non-Detects	51.82%

Log-transformed Statistics

Raw Statistics

Minimum Detected	20 Log Statistics Not Avaliable
Maximum Detected	10000
Mean of Detected	2039
Mean of Detected	2039
Mean of Detected	2039
Maximum Non-Detect	0

UCL Statistics

Normal Distribution Test with Detected Values Only
Lilliefors Test Statistic
5% Lilliefors Critical Value
Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL

Gamma Distribution Test with Detected Values Only

Gamma Statistics Not Available

Lognormal Distribution Test with Detected Values Only

0.215 Not Available

0.122

982.6

2018

1302

-517.3

3381

17.51

161

Assuming Lognormal Distribution

	DL/2 Substitution Method	N/A
6		
3		
2		
	Log ROS Method	N/A
3		
ļ		

Data Distribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Potential UCLs to Use
95% KM (t) UCL

Nonparametric Statistics

1313 Kaplan-Meier (KM) Method 992.9 Mean SD 2003 SE of Mean 192.8 95% KM (t) UCL 1313 95% KM (z) UCL 1310 95% KM (jackknife) UCL 1307 95% KM (bootstrap t) UCL 1376 95% KM (BCA) UCL 1362 95% KM (Percentile Bootstrap) UCL 1324 95% KM (Chebyshev) UCL 1834 97.5% KM (Chebyshev) UCL 2197 99% KM (Chebyshev) UCL 2912

Note: DL/2 is not a recommended method.

	neral UCL Statistics for Data Sets	with Non-Detects	
User Selected Options From File C:\L	Documents and Sattings/sharper/Dr	ackton/aral aral ICL v2 2 wat	
Full Precision ON	Documents and Settings\sharper\De	esktop/pre-prooce_v3.z.wst	
Confidence Coefficient 95%			
Number of Bootstrap Operations	0		2000
			2000
Calcium(mg/Kg)			
General Statistics			
Number of Valid Observations	203	Number of Distinct Observations	181
Raw Statistics		Log-transformed Statistics	
Minimum	102	Minimum of Log Data	4.6249728
Maximum	272000	Maximum of Log Data	12.513557
Mean	101776.86	Mean of log Data	10.191854
Median	89100	SD of log Data	2.3958482
SD	91827.211		
Coefficient of Variation	0.9022405		
Skewness	0.2721011		
Relevant UCL Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Lilliefors Test Statistic		Lilliefors Test Statistic	0.2062347
Lilliefors Critical Value		Lilliefors Critical Value	0.062185
Data not Normal at 5% Significance Level	I	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	112426.8		864456.16
95% UCLs (Adjusted for Skewness)		95% Chebyshev (MVUE) UCL	1043697.1
95% Adjusted-CLT UCL	112509.47	97.5% Chebyshev (MVUE) UCL	1302106.6
95% Modified-t UCL	112447.31	99% Chebyshev (MVUE) UCL	1809702.1
Gamma Distribution Test		Data Distribution	
k star (bias corrected)		Data do not follow a Discernable Distribution (0.05)	
Theta Star	214688.29		
MLE of Mean	101776.86		
MLE of Standard Deviation	147818.47		
nu star	192.47164		
Approximate Chi Square Value (.05)		Nonparametric Statistics	
Adjusted Level of Significance	0.0488177		112377.95
Adjusted Chi Square Value	161.17433		112426.8
		95% Standard Bootstrap UCL	112207.55
Anderson-Darling Test Statistic	10.940015		113011.33
Anderson-Darling 5% Critical Value	0.82629	•	112741.8
Kolmogorov-Smirnov Test Statistic	0.1803568	•	111820.28
Kolmogorov-Smirnov 5% Critical Value	0.0671525	•	112714.51
Data not Gamma Distributed at 5% Signifi		95% Chebyshev(Mean, Sd) UCL	129870

97.5% Chebyshev(Mean, Sd) UCL

Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	165903.87
95% Approximate Gamma UCL	121388.29		100000.07
95% Adjusted Gamma UCL	121540.19		
	121040.10		
Potential UCL to Use		Use 99% Chebyshev (Mean, Sd) UCL	165903.87
Chromium (VI)(mg/Kg)			
General Statistics			
Number of Valid Data	301	Number of Detected Data	293
Number of Distinct Detected Data	235	Number of Non-Detect Data	8
		Percent Non-Detects	2.66%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.28	Minimum Detected	-1.272966
Maximum Detected	41800	Maximum Detected	10.640652
Mean of Detected	1683.7178	Mean of Detected	3.6172107
SD of Detected	4015.4041	SD of Detected	3.3810303
Minimum Non-Detect	0.22	Minimum Non-Detect	-1.514128
Maximum Non-Detect	0.94	Maximum Non-Detect	-0.061875
Note: Data have multiple DLs - Use of KM Method is recomm	ended	Number treated as Non-Detect	46
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	255
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	15.28%
UCL Statistics			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.3435052	Lilliefors Test Statistic	0.1302854
5% Lilliefors Critical Value	0.0517607	5% Lilliefors Critical Value	0.0517607
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1638.9757	Mean	3.483609
SD	3970.7774	SD	3.4341544
95% DL/2 (t) UCL	2016.6024	95% H-Stat (DL/2) UCL	24656.217
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	1160.4813	Mean in Log Scale	3.4329836
SD		SD in Log Scale	3.5277802
95% MLE (t) UCL		Mean in Original Scale	1638.9705
95% MLE (Tiku) UCL		SD in Original Scale	3970.7796
		95% Percentile Bootstrap UCL	2040.001
		95% BCA Bootstrap UCL	2113.1038
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.194283	Data do not follow a Discernable Distribution (0.05)	

k star (bias corrected) Theta Star nu star Data Distribution Test with Detected Values Only 0.194283 Data do not follow a Discernable Distribution (0.05) 8666.3144 113.84986

A-D Test Statistic	20.992653 Nonparametric Statistics	
5% A-D Critical Value	0.9319165 Kaplan-Meier (KM) Method	
K-S Test Statistic	0.9319165 Mean	1638.9788
5% K-S Critical Value	0.0589359 SD	3964.1747
Data not Gamma Distributed at 5% Significance Level	SE of Mean	228.88215
	95% KM (t) UCL	2016.6226
Assuming Gamma Distribution	95% KM (z) UCL	2015.4564
Gamma ROS Statistics using Extrapolated Data	95% KM (jackknife) UCL	2016.6051
Minimum	1E-09 95% KM (bootstrap t) UCL	2121.4761
Maximum	41800 95% KM (BCA) UCL	2033.0597
Mean	1638.9679 95% KM (Percentile Bootstrap) UCL	2040.7462
Median	13.1 95% KM (Chebyshev) UCL	2636.653
SD	3970.7807 97.5% KM (Chebyshev) UCL	3068.3474
k star	0.1707385 99% KM (Chebyshev) UCL	3916.3274
Theta star	9599.2894	
Nu star	102.78455 Potential UCLs to Use	
AppChi2	80.391664 97.5% KM (Chebyshev) UCL	3068.3474
95% Gamma Approximate UCL	2095.4981	
95% Adjusted Gamma UCL	2097.9656	
Note: DL/2 is not a recommended method.		

lron(mg/Kg)

General Statistics		
Number of Valid Observations	204 Number of Distinct Observations	172
Raw Statistics	Log-transformed Statistics	
Minimum	242 Minimum of Log Data	5.4889377
Maximum	164000 Maximum of Log Data	12.007622
Mean	47258.539 Mean of log Data	9.9812114
	5	
Median	18950 SD of log Data	1.4524129
SD	50771.856	
Coefficient of Variation	1.0743425	
Skewness	0.9350381	

Relevant UCL Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Lilliefors Test Statistic	0.2567177 Lilliefors Test Statistic	0.1069092
Lilliefors Critical Value	0.0620324 Lilliefors Critical Value	0.0620324
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	

Assuming Normal Distribution

95% Student's-t UCL
95% UCLs (Adjusted for Skewness)
95% Adjusted-CLT UCL
95% Modified-t UCL

Gamma Distribution Test

Assuming Lognormal Distribution

53132.373	95% H-UCL	80589.809
	95% Chebyshev (MVUE) UCL	99526.549
53354.226	97.5% Chebyshev (MVUE) UCL	116015.3
53171.158	99% Chebyshev (MVUE) UCL	148404.25

Data Distribution

Honeywell Dundalk Marine Terminal, Total Soil (0-10 feet) ProUCL Output

k star (bias corrected)	0.7555412 Data do not follow a Discernable Distribution (0.05)	
Theta Star	62549.255	
MLE of Mean	47258.539	
MLE of Standard Deviation	54368.984	
nu star	308.26081	
Approximate Chi Square Value (.05)	268.58756 Nonparametric Statistics	
Adjusted Level of Significance	0.0488235 95% CLT UCL	53105.568
Adjusted Chi Square Value	268.3269 95% Jackknife UCL	53132.373
	95% Standard Bootstrap UCL	52971.942
Anderson-Darling Test Statistic	5.2746223 95% Bootstrap-t UCL	53208.768
Anderson-Darling 5% Critical Value	0.7955732 95% Hall's Bootstrap UCL	53356.937
Kolmogorov-Smirnov Test Statistic	0.1283776 95% Percentile Bootstrap UCL	53391.466
Kolmogorov-Smirnov 5% Critical Value	0.0656906 95% BCA Bootstrap UCL	53709.392
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	62753.296
	97.5% Chebyshev(Mean, Sd) UCL	69457.889
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	82627.765
95% Approximate Gamma UCL	54239.13	
95% Adjusted Gamma UCL	54291.82	

Potential UCL to Use

Manganese(mg/Kg)

General Statistics		
Number of Valid Observations	204 Number of Distinct Observations	178
Raw Statistics	Log-transformed Statistics	
Minimum	3.4 Minimum of Log Data	1.2237754
Maximum	4060 Maximum of Log Data	8.3089383
Mean	552.45897 Mean of log Data	5.4804984
Median	300.5 SD of log Data	1.5894427
SD	580.60895	

1.050954

1.7598103

Relevant UCL Statistics

Coefficient of Variation

Skewness

Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL
95% UCLs (Adjusted for Skewness)
95% Adjusted-CLT UCL
95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected)

Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

Lognormal Distribution Test

0.1754522 Lilliefors Test Statistic 0.0620324 Lilliefors Critical Value

Use 97.5% Chebyshev (Mean, Sd) UCL

619.63005 95% H-UCL	1147.2925
95% Chebyshev (MVUE) UCL	1430.3526
624.67532 97.5% Chebyshev (MVUE) UCL	1687.0745
620.46482 99% Chebyshev (MVUE) UCL	2191.3551

Data Distribution

0.7143326 Data do not follow a Discernable Distribution (0.05)

0.1156336

0.0620324

Theta Star	773.39179	
MLE of Mean	552.45897	
MLE of Standard Deviation	653.65681	
nu star	291.4477	
Approximate Chi Square Value (.05)	252.90473 Nonparametric Statistics	
Adjusted Level of Significance	0.0488235 95% CLT UCL	619.32352
Adjusted Chi Square Value	252.65197 95% Jackknife UCL	619.63005
	95% Standard Bootstrap UCL	617.52
Anderson-Darling Test Statistic	2.536305 95% Bootstrap-t UCL	624.01561
Anderson-Darling 5% Critical Value	0.799037 95% Hall's Bootstrap UCL	627.94724
Kolmogorov-Smirnov Test Statistic	0.101409 95% Percentile Bootstrap UCL	622.07074
Kolmogorov-Smirnov 5% Critical Value	0.0658544 95% BCA Bootstrap UCL	630.20525
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	729.65151
	97.5% Chebyshev(Mean, Sd) UCL	806.32287
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	956.9289
95% Approximate Gamma UCL	636.65436	
95% Adjusted Gamma UCL	637.29128	

Potential UCL to Use

Vanadium(mg/Kg)

General Statistics

Number of Valid Observations

Raw Statistics	Log-transformed Statistics	
Minimum	1.47 Minimum of Log Data 0.3	3852624
Maximum	1630 Maximum of Log Data 7.3	3963353
Mean 33	82.89858 Mean of log Data 4.5	5926693
Median	51.65 SD of log Data 1.8	8362252
SD 5	10.92868	
Coefficient of Variation 1.	.3343708	
Skewness	1.077866	

Relevant UCL Statistics

Normal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL

Gamma Distribution Test

k star (bias corrected) Theta Star

Data Distribution 0.4691518 Data do not follow a Discernable Distribution (0.05)

Data not Lognormal at 5% Significance Level

Use 97.5% Chebyshev (Mean, Sd) UCL

204 Number of Distinct Observations

Lognormal Distribution Test

Assuming Lognormal Distribution

95% Chebyshev (MVUE) UCL

444.62308 97.5% Chebyshev (MVUE) UCL

442.45822 99% Chebyshev (MVUE) UCL

0.3098593 Lilliefors Test Statistic

0.0620324 Lilliefors Critical Value

442.0083 95% H-UCL

816.15079

806.32287

181

0.1525916 0.0620324

781.32561

981.62475

1180.6947

MLE of Mean	382.89858	
MLE of Standard Deviation	559.01966	
nu star	191.41392	
Approximate Chi Square Value (.05)	160.4072 Nonparametric Statistics	
Adjusted Level of Significance	0.0488235 95% CLT UCL	441.73855
Adjusted Chi Square Value	160.20713 95% Jackknife UCL	442.0083
	95% Standard Bootstrap UCL	440.97186
Anderson-Darling Test Statistic	12.275884 95% Bootstrap-t UCL	442.16284
Anderson-Darling 5% Critical Value	0.8275075 95% Hall's Bootstrap UCL	445.34531
Kolmogorov-Smirnov Test Statistic	0.2183488 95% Percentile Bootstrap UCL	443.18647
Kolmogorov-Smirnov 5% Critical Value	0.0670749 95% BCA Bootstrap UCL	444.37289
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL	538.82582
	97.5% Chebyshev(Mean, Sd) UCL	606.29566
Assuming Gamma Distribution	99% Chebyshev(Mean, Sd) UCL	738.8271
95% Approximate Gamma UCL	456.91288	
95% Adjusted Gamma UCL	457.48348	

Potential UCL to Use

Use 97.5% Chebyshev (Mean, Sd) UCL