August 3, 2015

Mr. Andrew Fan, PE US EPA Region III, 3LC20 1650 Arch Street Philadelphia, PA 19103-2029

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Blvd. Baltimore, MD 21230

Re: COKE OVEN AREA INTERIM MEASURES PROGRESS REPORT 2ND QUARTER 2015

Dear Mr. Fan and Ms. Brown:

On behalf of Sparrows Point Terminal, LLC and Sparrows Point, LLC, enclosed please find the Coke Oven Area Interim Measures Progress Report for the second quarter of 2015 completed for the Sparrows Point Terminal site. This report was distributed electronically on August 3, 2015 in accordance with the reporting requirements outlined in the US EPA Interim Measures Progress Report frequency letter dated March 26, 2013. Please advise if paper copies are required for your use and we will distribute accordingly.

The report summarizes implementation progress for the interim measures (IMs) that have been developed to address identified environmental conditions at the Coke Oven Area through June 30, 2015. Please contact me at (314) 620-3056 should questions arise during your review of the enclosed progress report.

Sincerely,

James Calenda

James Calenda Project Manager

Enclosure

FORMER COKE OVEN AREA INTERIM MEASURES PROGRESS REPORT

(Second Quarter 2015)

Prepared for

SPARROWS POINT TERMINAL, LLC AND SPARROWS POINT LLC 1600 SPARROWS POINT BOULEVARND SPARROWS POINT MD 21219

August 3, 2015

Introduction

This document presents operational data and monitoring information collected in the 2nd quarter of 2015 for Interim Measures (IMs) that have been installed to address identified environmental conditions at the former Coke Oven Area (COA) Special Study Area at the Sparrows Point Terminal site located in Sparrows Point, Maryland. This progress report summarizes IM performance including data collected from the 2nd quarter of 2015 and is submitted in accordance with reporting requirements outlined in correspondence received from US EPA on March 26, 2013. The following designations are applied in this document to identify the operating IM "Cells" (**Figure 1**) at the COA:

- Cell 1: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the Former Benzol Processing Area,
- Cell 2: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the shallow groundwater zone, groundwater pump and treat (GW P&T) system in the intermediate zone, Former Coal Basin Area,
- Cell 3: AS/SVE System in "Cove" Area,
- Cell 5: Dual Phase Extraction (DPE) system for the shallow zone, "Turning Basin" side of former Coke Oven Area,
- Cell 6: Light Non-Aqueous Phase Liquid (LNAPL) Recovery at the Former Benzol Processing Area.

As of the end of the second quarter 2015, Cells 1, 2, 3, 5 and 6 are operational. However, the GW P&T component of Cell 2 is currently out of service waiting on replacement heating element parts for the catalytic oxidizer that were damaged by a presumed electrical surge from a lightning strike. Repairs and return to service is anticipated to occur in August.

Groundwater and soil gas sampling were conducted during the second quarter of 2015 to assess current conditions and removal efficiencies of the operating IM systems. The results of these sampling events, including trending graphs from IM startup, are detailed in this report. LNAPL removal continued at Cell 6 without interruption. Additional detail on the design, operation and groundwater monitoring for these systems is provided in this progress report.

Cell 1: Prototype AS/SVE System in the Former Benzol Processing Area

Cell 1 consists of an AS/SVE system installed to remove volatile hydrocarbons that is coupled with vapor destruction via an electric catalytic oxidation (CATOX) unit. **Figure 2** shows the system layout of Cell 1 and locations of the major design components including the air sparging wells, vapor collection trenches and groundwater monitoring wells.

2nd Quarter 2015 Operational Performance

Operational performance of Cell 1 during this reporting period is summarized in **Table 1**. In summary, the CATOX unit operated for 636 hours (29.1 %) during this reporting period. The system at Cell 1 continues to operate on a pulsing schedule; where the system is in recovery or on mode for one day and then turned off to let the area rebound for two or three days. This practice was implemented during the first quarter 2013 to improve recovery of hydrocarbons from the subsurface. Operations continue to be in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the May 20, 2011 modified permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

The hydrocarbon removal rate was calculated to be approximately 0.00239 pounds per operating hour (estimated quarterly total of 1.518 pounds). **Table 1** also includes a cumulative summary of operational performance since system startup on August 3, 2010. In total, Cell 1 has destroyed approximately 12,451 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister each month and submitted to Pace Analytical Services, Inc. in Minneapolis, Minnesota for analysis by US EPA Method TO-15. The average influent soil gas hydrocarbon concentration of the three samples taken throughout the third quarter was 5,493 micrograms per cubic meter (ug/m³) as summarized in **Table 2**.

Hydrocarbon removal calculations were based on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples collected throughout the second quarter are representative of hydrocarbon concentrations for the entire quarter. This assumption is based on the fact that the same air sparge wells (AS-1 thru AS-8) and extraction wells (V-1 thru V-6) were online when the system was operational.

Recovery concentrations in the influent soil gases were lower this quarter than would be expected based on existing groundwater concentrations. An operational review of the system was completed and indicated that additional maintenance is required for the soil gas recovery piping system. This maintenance is planned to be completed in the upcoming 3rd quarter.

2nd Quarter 2015 Groundwater Monitoring Results

Groundwater samples were collected on June 9 & 10, 2015 from the following wells; the location of the wells are shown on Figure 2:

- CO93-PZM (former BP-MW-09, upgradient of Cell 1),
- CO18-PZM006 (upgradient of Cell 1 at edge of berm), and
- CO02-PZM006 (downgradient of Cell 1).

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 3**. These data indicate benzene is the most prevalent volatile organic compound (VOC) constituent. Since system startup in August 2010, a decreasing total VOC concentration trend is documented at the wells monitored for system performance as illustrated in **Figure 4**. The identified trend for these monitoring wells will continue to be monitored and assessed during system operation in future months.

Cell 2: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the Shallow Groundwater Zone, Groundwater Pump and Treat (GW P&T) System in the Intermediate Groundwater Zone, Former Coal Basin Area

Cell 2 consists of an AS/SVE system coupled with vapor destruction via an electric catalytic oxidation (CATOX) unit for volatile hydrocarbon groundwater treatment in the shallow zone and a pump and treat system for recovery of groundwater and volatile hydrocarbon treatment from the intermediate zone. The system design plans were approved by US EPA in correspondence received on September 10, 2013 and began full scale operation in October 2014. **Figure 5** shows the system layout of Cell 2 and locations of the major design components including the air sparging wells, vapor collection trenches, intermediate groundwater recovery wells, groundwater injection wells and groundwater monitoring well locations.

AS/SVE System

The delivery and recovery systems for the shallow AS/SVE system include the use of air sparge points and a horizontal vapor extraction trench. Eight (8) air sparge points along a 500 feet long stretch were installed near the shore line of Cell 2. Details of the air sparge zone and recovery trench include the following:

- Air sparge zone: 8 2-inch diameter AS points @ approximately 56 ft spacing, center to center (C-C)
 - Installed to 15 ft -17 ft bgs (bottom of slag fill)
 - Bottom 2 ft of each point to be screened with 20-slot screen
- Recovery trench
 - 500 ft of horizontal, 4-inch diameter perforated pipe (or 20-slot screen) installed to a total depth (TD) of 5 ft
 - o 5 vertical 4-inch risers spaced every 100 ft, C-C
 - Top 2 ft is a clay cap
 - Geotextile fabric @ 2 ft bgs (under clay)
 - Granular screened slag backfill from 2 ft -5 ft
 - Horizontal recover piping located approximately 3 ft bgs (above water table)

GW P&T System

The pump and treat groundwater system includes a low profile air stripper that then utilizes an oxidizer to destroy all VOC vapors generated prior to exhausting to the atmosphere. The design groundwater flow is for a maximum of 40 gallons per minute (gpm). The oxidizer is sized to handle up to a 600 cubic feet per minute air flow. The recovery and re-injection systems include the use

of six groundwater recovery wells and six groundwater injection wells. The six recovery wells are installed along a 500 feet long stretch near the shore line of Cell 2.

- 6 4-inch diameter GW RWs @ approximately 83 ft spacing, C-C
 - Installed to 40-45 ft bgs (intermediate sand zone)
 - Bottom 15 ft of each RW screened with 20-slot screen
 - An electric pump in each RW, resting approximately 7-10 ft above the bottom of the well
- Recovered GW Treatment
 - Enters low profile air stripper
 - Off-gas sent to Electric Oxidizer for destruction
 - Treated groundwater pumped to six-6 inch diameter re-injection wells screened from 5 to 15 feet in depth for recirculation in shallow GW zone

2nd Quarter 2015 Operational Performance

AS/SVE System

Operational performance of the AS/SVE System at Cell 2 during this reporting period is summarized in **Table 4**. In summary, the CATOX unit operated for 1224 hours (56%) during this reporting period. The system at Cell 2 is operated on a continuous schedule during this reporting quarter to determine the initial performance of the system. The system was out of service from 6/2 to 7/1 due to electrical issues with the heating elements. On 7/1/2015, a replacement breaker panel was installed to prevent future electrical issues associated with the heating elements. Operations were in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

The hydrocarbon removal rate was calculated to be approximately 0.010 pounds per operating hour (estimated quarterly total of 12.55 pounds). **Table 4** also includes a cumulative summary of operational performance since system startup in October 2014. In total, the AS/SVE system at Cell 2 has destroyed approximately 232.05 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister and submitted to Pace Analytical Services, Inc. in Minneapolis, Minnesota for analysis by US EPA Method TO-15. The average influent soil gas hydrocarbon concentration was 18,257 micrograms per cubic meter (ug/m³) as summarized in **Table 5**.

Hydrocarbon removal calculations were based on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples

collected throughout the second quarter are representative of hydrocarbon concentrations for the entire quarter. This assumption is based on the fact that the same air sparge wells and extraction wells were online when the system was operational.

GW P&T System Evaluation

The Cell 2 groundwater pump and treat system was evaluated with regard to: 1) the water levels measured in the various water bearing zones, and 2) the effectiveness of this system with respect to the mass of volatile hydrocarbons removed from groundwater.

Groundwater Level Monitoring

Groundwater-level measurements were manually measured in June 2015 for fourteen (14) groundwater wells that have been installed to evaluate the Cell 2 system. A summary of the installation specifications of the wells has been included as **Table 6**; water level measurements (depth to water and water elevation) are presented in **Table 7**. The locations of the monitoring wells are shown on **Figure 5**.

The groundwater elevation data are graphically presented as groundwater elevation contour maps in **Figures 6** and **7**. **Figures 6** and **7** represent the second quarter 2015 data for the shallow and intermediate water bearing zones. The intermediate water bearing zone is pumped and is therefore also referred to as the intermediate pumping zone. The shallow water bearing zone (water table) includes piezometers screened to depths of approximately 15-feet below ground surface; the intermediate water bearing zone includes piezometers screened from approximately 30- to 50-foot depths. The water level results for each of these zones are discussed below.

Shallow Water Table Zone

Figure 6 presents the groundwater elevation contour map for the shallow water table zone, corresponding to the June 2015 time period when the underlying zone (intermediate pumping zone) was being pumped and groundwater was being re-injected into the shallow zone through the six injection wells. The data for the shallow groundwater zone exhibit the possible influence of the reinjection zone as higher groundwater elevations are noticed in this area. This area is also higher in elevation so data from additional time periods will be required to confirm this feature.

Intermediate Pumping Zone

Figure 7 presents groundwater elevations within the intermediate pumping zone during the June 2015 time period. The data indicates significant drawdown surrounding the six pumping wells (CO43- CO48) that comprise the groundwater recovery system. This system is maintaining a broad zone of influence extending from the pumping wells.

Evaluation of Pump and Treat System Effectiveness

A total of 1,367,152 gallons of water were extracted from the Cell 2 Area pumping wells and treated during the second quarter of 2015. The average pumping rate for the pump and treat system was 15,023 gpd, or 10.4 gpm.

Operations were in conformance with the manufacturer's specifications at all times that stripped hydrocarbons were discharged through the CaTOX unit to the atmosphere in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014. In addition, treated groundwater discharges were in compliance with discharge permit conditions outlined in Discharge Permit 11-DP-3746 issued to Sparrows Point LLC on May 6, 2013. These pumping rates appear to effectively capture the most impacted groundwater beneath Cell 2, as revealed by **Figure 9** discussed in the following section.

A total of 1,465 lbs of benzene, toluene and xylene compounds (btex) and 29.8 lbs of naphthalene were removed and treated during the second quarter of 2015. This total is shown graphically in **Figure 3**. The following table presents data for influent and effluent (treated) groundwater.

Field_ID	Analysis	Units	8-Apr	10-Apr	6-May	15-May	4-Jun	15-Jun	Quarter Average
GWPT Cell 2 INFLUENT	Benzene	ug/L	180000	180000	160000	47000	41000	53000	110,166
GWPT Cell 2 INFLUENT	Toluene	ug/L	19000	17000	17000	4600	4400	5500	11250
GWPT Cell 2 INFLUENT	Total Xylenes	ug/L	5300	4800	4800	980	900	9400	4363.33
GWPT Cell 2 INFLUENT	Naphthalene	ug/L	1900	2000	1700	1300	1200	8100	2700
GWPT Cell 2									
EFFLUENT GWPT Cell 2	Benzene	ug/L	74	75	0	69	6	0	37
EFFLUENT	Toluene	ug/L	0	0	0	9	0	0	1.5
GWPT Cell 2 EFFLUENT	Total Xylenes	ug/L	0	0	0	0	0	0	0
GWPT Cell 2 EFFLUENT	Naphth	ug/L	160	110	78	120	58	0	88

The pump and treat system is removing significant amounts of volatile hydrocarbons from groundwater within the intermediate water bearing zone at the current pumping rates, and it is controlling groundwater flow and associated migration within the intermediate water bearing zone.

2nd Quarter 2014 Groundwater Monitoring Results

Groundwater samples were collected in June 2015 from the following wells; the well locations are shown on **Figure 5**. Exception to the wells sampled in June are noted for wells CO37-PZM003. CO37-PZM003 was not sampled due to the presence of free product first identified in November 2014 that is discussed further below.

- CO27- PZM012 shallow zone
- CO27-PZM046 intermediate zone
- CO36-PZM008 shallow zone
- CO36-PZM043 intermediate zone
- CO37-PZM003 shallow zone
- CO37-PZM038 intermediate zone
- CO38-PZM006 shallow zone
- CO38-PZM043- intermediate zone
- CO39-PZM007– shallow zone
- CO39-PZM042- intermediate zone
- CO40-PZM008- shallow zone
- CO41-PZM 001- shallow zone
- CO41-PZM 036- intermediate zone
- CO42-PZM004 shallow zone

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 8**. These data indicate benzene is the most prevalent volatile organic compound (VOC) constituent. The VOC concentrations for the 2015 sampling events are shown for the groundwater wells monitored for system performance in **Figure 8A** and **8B**.

Shallow zone groundwater with the exception of groundwater monitored atCO41-PZM001 has remained at consistent VOC levels since the first sampling event in 3rd quarter 2014. CO41-PZM001 in the previous quarters had VOC concentration totals ranging from 162,483 ug/L in March 2015 to 214,165 ug/L in November 2014. The VOC concentration total for this 2nd quarter 2015 showed a significant drop to 17,907 ug/L. As hydraulic connections between the shallow and intermediate zones are presumed to be present in the area of CO-41, this decrease may be associated with the pumping and removal of groundwater from the intermediate zone.

Figure 9 presents a plan view of the concentration of VOCs in the intermediate zone from analytical results from the June 2015 monitoring event. To date, although slight decreases are noted, there are no significant increases or decreases to historical trends in the intermediate zone. These wells will continue to be monitored to assess possible trends associated with operation of the interim measure

Light non-aqueous product (LNAPL) was encountered in well CO37-PZM003 in the shallow groundwater zone in November 2014. This well was bailed on a bi-weekly basis throughout the second quarter of 2015. Three (3) gallons of product was bailed from this well during the quarter. The amount of LNAPL has decreased, but still a small to trace amount remains. The well will continue to be monitored on a weekly basis going forward to determine the extent of continued presence of LNAPL.

Cell 3: AS/SVE System in the "Cove" Area

Cell 3 consists of an AS/SVE system coupled with vapor destruction via an electric CATOX unit. **Figure 1** shows the location of the Cell 3 AS/SVE treatment area at the COA. The major design components are described in the Cell 3 final design report (*Coke Oven Area Interim Measures Cell 3 "Cove" Area Air Sparge/Soil Vapor Extraction System Design*), submitted to US EPA on March 1, 2011.

2nd Quarter 2015 Operational Performance

Operational performance of Cell 3 during this reporting period is summarized in **Table 9**. In summary, the CATOX unit operated for 636 hours (29.1%) during the second quarter of 2015. The system at Cell 3 continues to operate on a pulsing schedule; where the system is in recovery or on mode for one day and then turned off to let the area rebound for two or three days. This practice was implemented to improve recovery of hydrocarbons from the subsurface. Operations continue to be in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the May 20, 2011 modified permitto-construct conditions.

The hydrocarbon removal rate was calculated to be approximately 0.035 pounds per operating hour (estimated quarterly total of 21.42 pounds). **Table 9** also includes a cumulative summary of operational performance since system startup on June 24, 2011. In total, Cell 3 has destroyed approximately 1485.2 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister and submitted to Pace Analytical Services. The average influent soil gas hydrocarbon concentration of the three samples taken throughout the third quarter was 64,253 ug/m³ as summarized in **Table 10**.

Hydrocarbon removal calculations were based entirely on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples collected throughout the second quarter are representative of hydrocarbon concentrations for the entire second quarter of 2015. This assumption is based on the fact that the same air sparge wells (AS-2 thru AS-12) and extraction wells (V-2 thru V-4) were online when the system was operational. Operations at this Cell will continue to be evaluated in the future to improve system recovery rates.

2nd Quarter 2015 Groundwater Monitoring

Groundwater samples were collected in June 2015 from the following wells (Figure 10):

- CO101-PZM (downgradient of Cell 3),
- CO102-PZM (upgradient of Cell 3),
- CO103-PZM (upgradient of Cell 3), and
- CO30-PZM015 (downgradient of Cell 3).

The groundwater samples were submitted to Pace Analytical for the analyses shown in **Table 11**. These data indicate that benzene is the most prevalent VOC constituent. Since system startup on June 24, 2011, a generally inconclusive VOC concentration trend is documented, as illustrated in **Figure 11**. The VOC concentrations at CO103-PZM showed similar results from the previous quarter. Results from the last 3 quarters for CO103-PZM closely reflect historical concentrations for this well; therefore it is currently interpreted that an increasing trend is not apparent in this well as potentially defined in the 3rd quarter of 2014. Groundwater will continue to be monitored and assessed during system operation in future months.

Cell 5: Dual Phase Extraction (DPE) System for the Shallow Zone, "Turning Basin" side of Former Coke Oven Area

Cell 5 consists of a dual phase (vapor and water) system (DPE) with a low profile air stripper followed by vapor phase granular activated carbon (VGAC) for removal and treatment of vapor and dissolved volatile hydrocarbons in the shallow groundwater zone. The system design plans were approved by US EPA in correspondence received on September 10, 2013 and began full scale operation in October 2014. **Figure 12** shows the system layout of Cell 5 and locations of the major design components including the dual phase recovery points, treatment system, groundwater injection wells and groundwater monitoring well locations.

The recovery and re-injection systems include the use of dual phase (soil vapor and groundwater) recovery wells and six groundwater re-injection wells. Twelve (12) recovery wells were installed along an approximate 500 feet long stretch downgradient of the most recent 10,000 ug/L isocontour line for naphthalene (between the naphthalene source area and the eastern shore line along the Turning Basin).

- 12 1.5-inch diameter DPE RWs @ approximately 42 ft spacing, C-C
 - Installed to 15-17 ft bgs (to bottom of shallow slag)
 - o Bottom 2 ft of each RW screened with 20-slot screen
 - Vapor recovery perforations located between 10-12 ft bgs
- Recovered GW and vapor Treatment
 - Enters MS knockout tank to separate air and water phases
 - Water sent to low profile air stripper
 - Off-gas sent to VGAC for capture
 - Treated groundwater pumped to six-6 inch diameter re-injection wells screened from 5 to 15 feet in depth for recirculation in shallow GW zone

2nd Quarter 2015 Operational Performance

The Cell 5 DPE system was evaluated with regard to: 1) the water levels measured in the various water bearing zones, and 2) the effectiveness of this system with respect to the mass of volatile hydrocarbons removed from groundwater.

Groundwater Level Monitoring

Groundwater-level measurements were manually measured in June 2015 for nine (9) groundwater wells that have been installed in the shallow groundwater zone to evaluate the Cell 5 system. A summary of the installation specifications of the wells has been included as

Table 6; water level measurements (depth to water and water elevation) are presented in**Table 12**. The locations of the monitoring wells are shown on Figure 12.

The groundwater elevation data are graphically presented as groundwater elevation contour maps in **Figure 13.** The shallow water bearing zone (water table) includes piezometers screened to depths of approximately 15-feet below ground surface. The data from June 2015 for the shallow groundwater zone are inconclusive as to the influence of the groundwater recovery points on the capture and movement of groundwater. Data from additional time periods will be required to confirm the presence of a capture zone for the shallow groundwater from this system. Some slight mounding may be present in the reinjection zone although additional data and monitoring appears to be required at this location as well.

Evaluation of Pump and Treat System Effectiveness

A total of 1,610,589 gallons of water were extracted from the Cell 5 Area dual phase extraction wells and treated during the second quarter of 2015. The average recovery rate for the DPE system was around 17,698 gpd (12.2 gpm).

Operations were in conformance with the manufacturer's specifications at all times that stripped hydrocarbons were discharged to the atmosphere in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

Several improvements were made to the system in May 2015. An aeration blower was installed inside of the inlet tank and two liquid phase carbon tanks were installed as the last phase before the treated water is reinjected. These additions have proven effective returning cleaner effluent samples with little or no detection of naphthalene, as can be seen in the table below.

A total of 72.5 pounds (lbs) of benzene, toluene and xylene compounds (btex) and naphthalene were removed and treated during the second quarter of 2015. This total is shown graphically in **Figure 3**. The following table presents data for influent and effluent (treated) groundwater.

Field_ID	Analysis	Units	8-Apr	10-Apr	6-May	15-May	4-Jun	15-Jun	Quarter Average
GWPT Cell 5 INFLUENT	Benzene	ug/L	410	440	390	390	210	630	412
GWPT Cell 5 INFLUENT	Toluene	ug/L	250	290	260	250	130	360	257
GWPT Cell 5 INFLUENT	Total Xylenes	ug/L	323	350	323	336	183	520	339
GWPT Cell 5 INFLUENT	Naphthalene	ug/L	4300	4800	4300	4400	3600	5800	4533
GWPT Cell 5 EFFLUENT	Benzene	ug/L	0	0	0	0	0	0	0
GWPT Cell 5 EFFLUENT	Toluene	ug/L	0	0	0	0	0	0	0
GWPT Cell 5 EFFLUENT	Total Xylenes	ug/L	0	0	0	0	0	0	0
GWPT Cell 5 EFFLUENT	Naphthalene	ug/L	470	460	150	140	100	0	220

The DPE system is removing volatile hydrocarbons from groundwater within the shallow water bearing zone at the current recovery rates. The system has shown continual improvement in performance since the first few quarters of operation, mostly attributed to the recent additions mentioned earlier.

2nd Quarter 2015 Groundwater Monitoring Results

Groundwater samples were collected in June 2015 from the following shallow zone monitoring wells; the well locations are shown on **Figure 12**.

- CO23- PZM008
- CO24-PZM007
- CO26-PZM007

- CO55-PZM000
- CO56-PZP001
- CO57-PZP002
- CO58-PZM001
- CO59-PZP002
- CO60-PZP001

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 13**. These data indicate naphthalene is the most prevalent hydrocarbon constituent. The naphthalene concentrations for the 2014-2015 sampling events are shown for the groundwater wells monitored for system performance as illustrated in **Figure 14A** and **14B**. **Figure 14A** presents shallow groundwater naphthalene concentration trends for wells presumed to be upgradient of the treatment system. No apparent trends are present in the analytical data. This presumed upgradient set of wells will continue to be monitored to further assess possible trends associated with operation of the interim measure in future quarters.

Figure 14B presents shallow groundwater naphthalene concentrations for downgradient wells between the treatment system and the shoreline. Wells CO57-PZP002 and CO58-PZM001 lie within this zone. Both have displayed decreasing concentrations of naphthalene since the September 2014 sampling event. Naphthalene in CO57-PZP002 has decreased from 18.6 ug/L naphthalene in September 2014, to "ND" in November 2014 and March 2015, to 3.0 ug/L of naphthalene in June 2015. Naphthalene in CO58-PZM001 has decreased from 1,940 ug/L in September 2014 to 1,520 ug/L in June 2015. Figure 15 presents a plan view of the concentration of naphthalene in the shallow zone from analytical results from the June 2015 monitoring event

Cell 6: LNAPL Extraction at the Former Benzol Processing Area

The Cell 6 LNAPL monitoring and recovery system was monitored weekly during the second quarter of 2015. **Table 14** summarizes; 1) LNAPL occurrence and recovery observed in monitoring wells for this Cell during the reporting period, 2) the start date of extraction from recovery wells and 3) cumulative LNAPL recovered since the beginning of the interim measure. **Figure 16** illustrates the well locations. An estimated 849 gallons (6,218 pounds) of LNAPL were recovered during the second quarter 2015, bringing the total recovered LNAPL to 13,159 gallons (96,409 pounds) as of June 31, 2015.. Well BP-MW-10 did not produce measurable amounts of LNAPL. LNAPL was recovered from wells in the Cell 6 area as shown below.

	Previous	LNAPL Recovery (gal/lbs)					
Well	Well	2 nd Qtr 2015	Total				
	Identifier	(gal/lbs)	thru 2 nd Qtr 2015 (gal/lbs)				
CO99-PZMxxx	RW-04	101/740	1,375/10,068				
CO89-PZMxxx	BP-MW-05	197.5/1,447	9,196/67,377				
CO92-PZMxxx	BP-MW-08	168/1,231	1,494/10,941				
CO95-PZMxxx	BP-MW-11	351/2,572	1,006/7,370				
CO97-PZMxxx	RW-02	0/0	0.8/6				
CO98-PZMxxx	RW-03	31/227	86.8/636				
CO96-PZMxxx	RW-01	0/0	1.3/10				
	TOTAL	849/6,218	13,159/96,409				

The LNAPL was recovered from the following wells:

LNAPL thicknesses during the reporting period are summarized below (wells are not listed if LNAPL was not present):

- CO99-PZM formerly RW-04: (1.38 ft),
- CO89-PZM formerly BP-MW-05: (1.01 ft),
- CO92-PZM formerly BP-MW-08: (0.39 ft),
- CO95-PZM formerly BP-MW-11: (0.62 ft),
- CO98-PZM formerly RW-03: (0.13 ft),
- CO96-PZM formerly RW-01: (0.15 ft),
- CO97-PZM formerly RW-02 (0.00 ft)

No LNAPL was observed in wells RW-05, BP-MW-06, BP-MW-07, BP-MW-09, BP-MW-10 or CO19-PZM004. For all wells in which LNAPL accumulated, **Table 15** provides well-specific details concerning the measured depths to LNAPL, the water table, and calculated LNAPL thicknesses.

TABLES

Table 1Summary of Operation ConditionsCell 1: Prototype AS/SVE System in Former Benzol Processing AreaFormer Coke Oven Area Interim Remedial MeasuresSparrows Point, LLC

Cell 1 Second Quarter 2015 Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total CATOX Operating Time (April 1, 2015 - June 30, 2015)	hours	636
Overall CATOX Operational Time	%	29.1%
Estimated Total Hydrocarbons Destroyed	pounds	1.518
Estimated Hydrocarbon Removal Rate	pounds/hour	0.00239

Cell 1 Cumulative Summary of Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total ICE/CATOX Operating Time (August 3, 2010 - June 30, 2015)	hours	22,516
Overall CATOX Operational Time	%	60.7%
Estimated Total Hydrocarbons Destroyed	pounds	12,451
Estimated Hydrocarbon Removal Rate	pounds/hour	0.55

Table 2

Summary of Soil Gas Analytical Results (Second Quarter 2015) Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

	Sample ID	CATOX Influent
	Date	Q2 2015
	Time	
	Dilution Factor	
Analyte	Units	
TO-15 Volatile Organics		
Acetone	ug/m ³	ND
Benzene	ug/m ³	4,377
Bromoform	ug/m ³	ND
2-Butanone (MEK)	ug/m ³	ND
Carbon disulfide	ug/m ³	ND
Carbon tetrachloride	ug/m ³	ND
Chlorobenzene	ug/m ³	ND
Chloroethane	ug/m ³	ND
Chloroform	ug/m ³	ND
1,1-Dichloroethane	ug/m ³	ND
1,2-Dichloroethane	ug/m ³	ND
1,1-Dichloroethene	ug/m ³	ND
trans-1,2-Dichloroethene	ug/m ³	ND
1,2-Dichloropropane	ug/m ³	ND
cis-1,3-Dichloropropene	ug/m ³	ND
trans-1,3-Dichloropropene	ug/m ³	ND
Ethylbenzene	ug/m ³	ND
2-Hexanone	ug/m ³	ND
Methylene Chloride	ug/m ³	ND
4-Methyl-2-pentanone (MIBK)	ug/m ³	ND
1,1,2,2-Tetrachloroethane	ug/m ³	ND
Tetrachloroethene	ug/m ³	ND
Toluene	ug/m ³	524
1,1,1-Trichloroethane	ug/m ³	ND
1,1,2-Trichloroethane	ug/m ³	ND
Trichloroethene	ug/m ³	ND
Vinyl chloride	ug/m ³	ND
m&p-Xylene	ug/m ³	448
o-Xylene	ug/m ³	145
Total Volatile Organics	ug/m ³	5,493

Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter) BOLD = Analyte detected

ug/m³ = micro grams per cubic meter

ND = Analyte not detected above laboratory reporting limit

Table 3

Summary of Groundwater Analytical Results (Second Quarter 2015) Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

New Sample ID	CO02-PZM006	CO18-PZM006	CO93-PZMxxx		
Former Sample ID	CO02-PZM006	CO18-PZM006	BP-MW-09		
Date		6/10/2015	6/9/2015	6/9/2015	
Analyte	Units	1			
Volatile Organics					
1,1,1,2-Tetrachloroethane	μg/L	ND	ND	ND	
1,1,1-Trichloroethane	μg/L	ND	ND	ND	
1,1,2,2-Tetrachloroethane	μg/L	ND	ND	ND	
1,1,2-Trichloroethane	μg/L	ND	ND	ND	
1,1-Dichloroethane	μg/L	ND	ND	ND	
1,1-Dichloroethene	μg/L	ND	ND	ND	
1,2,3-Trichloropropane	μg/L	ND	ND	ND	
1,2-Dibromo-3-chloropropane	μg/L	ND	ND	ND	
1,2-Dibromoethane (EDB)	μg/L	ND	ND	ND	
1,2-Dichlorobenzene	μg/L	ND	ND	ND	
1,2-Dichloroethane	μg/L	ND	ND	ND	
1,2-Dichloropropane	μg/L	ND	ND	ND	
1,4-Dichlorobenzene	μg/L	ND	ND	ND	
2-Butanone (MEK)	μg/L	ND	ND	ND	
2-Hexanone	μg/L	ND	ND	ND	
4-Methyl-2-pentanone (MIBK)	μg/L	ND	ND	ND	
Acetone	μg/L	ND	72.8	ND	
Acrylonitrile	μg/L	ND	ND	ND	
Benzene	μg/L	168,000	13,200	302,000	
Bromochloromethane	μg/L	ND	ND	ND	
Bromodichloromethane	μg/L	ND	ND	ND	
Bromoform	μg/L	ND	ND	ND	
Bromomethane	μg/L	ND	ND	ND	
Carbon disulfide	μg/L	ND	ND	12.3	
Carbon tetrachloride	μg/L	ND	ND	ND	
Chlorobenzene	μg/L	ND	ND	16.4	
Chloroethane	μg/L	ND	ND	ND	
Chloroform	μg/L	ND	ND	ND	
Chloromethane	μg/L	ND	ND	ND	
Dibromochloromethane	μg/L	ND	ND	ND	
Dibromomethane	μg/L	ND	ND	ND	
Ethylbenzene	μg/L	374	ND	2,970	
Iodomethane	μg/L	ND	ND	ND	
Methyl-tert-butyl ether	μg/L	ND	ND	ND	
Methylene Chloride	μg/L	ND	6.1	6.3	
Styrene	μg/L	11.7	ND	1,550	
Tetrachloroethene	μg/L	ND	ND	ND	
Toluene	μg/L	156	237	51,800	
Trichloroethene	μg/L	ND	ND	ND	
Trichlorofluoromethane	μg/L	ND	ND	ND	
Vinyl acetate	μg/L	ND	ND	ND	
Vinyl chloride	μg/L	ND	ND	ND	
Xylene (Total)	μg/L	753	380	37,000	
cis-1,2-Dichloroethene	μg/L	ND	ND	ND	
cis-1,3-Dichloropropene	μg/L	ND	ND	ND	
trans-1,2-Dichloroethene	μg/L	ND	ND	ND	
trans-1,3-Dichloropropene	μg/L	ND	ND	ND	
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	
Total Volatile Organics	μg/L	169,295	13,896	395,355	
Semi-Volatiles					

Semi-Volatiles				
Naphthalene	μg/L	373	33.8	1,880

Notes:

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

 μ g/L = Micrograms per liter

Table 4Summary of Operation ConditionsCell 2 AS/SVE SystemFormer Coke Oven Area Interim Remedial MeasuresSparrows Point, LLC

Cell 2 Second Quarter 2015 Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total CATOX Operating Time (April 1 - June 30, 2015)	hours	1,224
Overall CATOX Operational Time	%	56.0%
Estimated Total Hydrocarbons Destroyed	pounds	12.55
Estimated Hydrocarbon Removal Rate	pounds/hour	0.010

Cell 2 Cumulative Summary of Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total ICE/CATOX Operating Time (October 1, 2014 - June 30, 2015)	hours	4,656
Overall CATOX Operational Time	%	71.1%
Estimated Total Hydrocarbons Destroyed	pounds	232.05
Estimated Hydrocarbon Removal Rate	pounds/hour	0.050

Table 5 Summary of Soil Gas Analytical Results (Second Quarter 2015) Cell 2 AS/SVE System Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

	Sample ID	CATOX Influent
	Date	Q2 2015
	Time	[×]
	Dilution Factor	
Analyte	Units	
TO-15 Volatile Organics		
Acetone	ug/m ³	ND
Benzene	ug/m ³	11,000
Bromoform	ug/m ³	ND
2-Butanone (MEK)	ug/m ³	ND
Carbon disulfide	ug/m ³	ND
Carbon tetrachloride	ug/m ³	ND
Chlorobenzene	ug/m ³	ND
Chloroethane	ug/m ³	ND
Chloroform	ug/m ³	ND
1,1-Dichloroethane	ug/m ³	ND
1,2-Dichloroethane	ug/m ³	11
1,1-Dichloroethene	ug/m ³	ND
trans-1,2-Dichloroethene	ug/m ³	ND
1,2-Dichloropropane	ug/m ³	ND
cis-1,3-Dichloropropene	ug/m ³	ND
trans-1,3-Dichloropropene	ug/m ³	ND
Ethylbenzene	ug/m ³	192
2-Hexanone	ug/m ³	ND
Methylene Chloride	ug/m ³	ND
4-Methyl-2-pentanone (MIBK)	ug/m ³	ND
1,1,2,2-Tetrachloroethane	ug/m ³	ND
Tetrachloroethene	ug/m ³	ND
Toluene	ug/m ³	5,433
1,1,1-Trichloroethane	ug/m ³	ND
1,1,2-Trichloroethane	ug/m ³	ND
Trichloroethene	ug/m ³	ND
Vinyl chloride	ug/m ³	ND
m&p-Xylene	ug/m ³	1,124
o-Xylene	ug/m ³	497
Total Volatile Organics	ug/m ³	18,257

Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter)

BOLD = Analyte detected

 $ug/m^3 = micro grams per cubic meter$

ND = Analyte not detected above laboratory reporting limit

Table 6Cell 2 and Cell 5 Monitoring Well Data

Location Designation	Monitoring Well Designation	Monitoring Well Temporary Identification	Installation Method	Date Installed	Well Use	Northing	Easting	Top of Casing Elevation	Protective Cover Type	Well Total Depth	Riser Length	Screen Length		Seal Interval	Grout Interval
Designation	CO36-PZM008	Cell 2 - MW1 (S)	Hollow Stem Auger	3/2014 - 5/2014	Monitoring Well	563212.31	1454571.76	6.94	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO36	CO36-PZM043	Cell 2 - MW8 (I)	Hollow Stem Auger	3/2014 - 5/2014	ě	563214.49	1454578.37	6.92	Steel Riser	50.00	30.00	20.00	28-50	27-28	0-27
	CO30-1 ZM043 CO37-PZM003	Cell 2 - MW3 (I) Cell 2 - MW2 (S)	Hollow Stem Auger	3/2014 - 5/2014		563268.52	1455158.69	12.34	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-27
CO37	CO37-PZM038	Cell 2 - MW9 (I)	Hollow Stem Auger	3/2014 - 5/2014	ě	563268.50	1455154.68	12.12	Steel Riser	50.00	30.00	20.00	28-50	27-28	0-27
	CO38-PZM006	Cell 2 - MW3 (S)	Hollow Stem Auger	3/2014 - 5/2014	Č –	563078.80	1454743.79	6.75	Steel Riser	13.00	3.00	10.00	2-13	1-2	0-27
CO38	CO38-PZM000	Cell 2 - MW10 (I)	Hollow Stem Auger		ĕ	563078.33	1454737.75	6.65	Steel Riser	50.00	30.00	20.00	28-50	27-28	0-1
	CO39-PZM007	Cell 2 - MW10 (I) Cell 2 - MW4 (S)	Hollow Stem Auger			563141.66	1455095.70	7.75	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO39	CO39-PZM042	Cell 2 - MW11 (I)	Hollow Stem Auger	3/2014 - 5/2014	Č –	563140.07	1455089.80	7.91	Steel Riser	50.00	30.00	20.00	28-50	27-28	0-27
CO40	CO40-PZM008	Cell 2 - MW1 (I)	Hollow Stem Auger	3/2014 - 5/2014		563039.41	1455081.70	7.47	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
	CO41-PZM001	Cell 2 - MW6 (S)	Hollow Stem Auger	3/2014 - 5/2014	<u> </u>	562873.18	1454953.00	13.57	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO41	CO41-PZM001 CO41-PZM036	Cell 2 - MW12 (I)	Hollow Stem Auger	3/2014 - 5/2014	Monitoring Well	562865.34	1454950.75	13.6	Steel Riser	50.00	30.00	20.00	28-50	27-28	0-27
CO42	CO42-PZM004	Cell 2 - MW12 (I) Cell 2 - MW7 (S)	Hollow Stem Auger	3/2014 - 5/2014	ě	563177.72	1455458.51	10.83	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO43	CO43-PZM048	Cell 2 - GW Extraction Well 1	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563202.59	1454621.23	1.96	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO45	CO44-PZM048	Cell 2 - GW Extraction Well 2	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563206.63	1454719.44	1.73	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO45	CO45-PZM047	Cell 2 - GW Extraction Well 2 Cell 2 - GW Extraction Well 3	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563218.62	1454818.73	2.68	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO46	CO46-PZM047	Cell 2 - GW Extraction Well 4	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563226.70	1454918.44	3.08	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO47	CO47-PZM046	Cell 2 - GW Extraction Well 5	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563234.85	1455018.95	3.85	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO48	CO48-PZM044	Cell 2 - GW Extraction Well 6	Hollow Stem Auger	3/2014 - 5/2014	Groundwater Extraction	563243.86	1455117.45	5.55	Steel Riser	50.00	35.00	15.00	33-50	32-33	0-32
CO49	CO49-PZM	Cell 2 - RIW 1	Hollow Stem Auger	3/2014 - 5/2014		563045.26	1455174.13	6.52	Steel Riser	50.00	35.00	15.00	55-50	52-55	0-52
CO50	CO50-PZM	Cell 2 - RIW 2	Hollow Stem Auger			563049.45	1455224.48	7.71	Steel Riser						
CO51	CO51-PZM	Cell 2 - RIW 3	Hollow Stem Auger	3/2014 - 5/2014	2	563056.05	1455281.11	7.58	Steel Riser						
CO52	CO52-PZM	Cell 2 - RIW 4	Hollow Stem Auger	3/2014 - 5/2014	2	563066.70	1455325.29	7.92	Steel Riser						i – – – – – – – – – – – – – – – – – – –
CO53	CO52-PZM	Cell 2 - RIW 5	Hollow Stem Auger	3/2014 - 5/2014	Reinjection Well	563078.31	1455365.17	7.77	Steel Riser						i – – – – – – – – – – – – – – – – – – –
CO54	CO54-PZM	Cell 2 - RIW 6	Hollow Stem Auger	3/2014 - 5/2014	Reinjection Well	563103.41	1455423.30	7.84	Steel Riser						
CO55	CO55-PZM000	Cell 5 - MW1 (S)	Hollow Stem Auger	3/2014 - 5/2014	~	561434.42	1457585.90	15.1	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO56	CO56-PZP001	Cell 5 - MW2 (S)	Hollow Stem Auger	3/2014 - 5/2014	ě	561668.41	1457790.05	15.92	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO57	CO57-PZP002	Cell 5 - MW3 (S)	Hollow Stem Auger	3/2014 - 5/2014		561122.52	1457530.00	16.59	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO58	CO58-PZM001	Cell 5 - MW4 (S)	Hollow Stem Auger	3/2014 - 5/2014		561331.31	1457989.13	14.31	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO59	CO59-PZP002	Cell 5 - MW5 (S)	Hollow Stem Auger	3/2014 - 5/2014	Č –	561446.98	1457308.79	16.75	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO60	CO60-PZP001	Cell 5 - MW6 (S)	Hollow Stem Auger	3/2014 - 5/2014	ĕ	561872.55	1457913.36	15.83	Steel Riser	15.00	5.00	10.00	3-15	2-3	0-2
CO61	CO61-PZM007	Cell 5 - DPE Well 1	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561330.96	1457592.28	10.26	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO62	CO62-PZM007	Cell 5 - DPE Well 2	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561357.45	1457625.28	9.66	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO63	CO63-PZM007	Cell 5 - DPE Well 3	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561382.08	1457657.57	10.29	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO64	CO64-PZM006	Cell 5 - DPE Well 4	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561407.02	1457691.78	11.16	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO65	CO65-PZM005	Cell 5 - DPE Well 5	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561431.95	1457724.23	11.6	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO66	CO66-PZM005	Cell 5 - DPE Well 6	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561458.25	1457755.59	11.57	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO67	CO67-PZM006	Cell 5 - DPE Well 7	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561503.24	1457809.88	11.2	Steel Riser	17.00	15.00		13-17	12-13	4-12
CO68	CO68-PZM005	Cell 5 - DPE Well 8	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561537.61	1457830.32	12.03	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO69	CO69-PZM005	Cell 5 - DPE Well 9			Groundwater and Vapor Extraction		1457852.16	11.92	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO70	CO70-PZM005	Cell 5 - DPE Well 10			Groundwater and Vapor Extraction		1457867.42	12.28	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO71	CO71-PZM006	Cell 5 - DPE Well 11			Groundwater and Vapor Extraction		1457886.12	11.33	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO72	CO72-PZM005	Cell 5 - DPE Well 12	Hollow Stem Auger	3/2014 - 5/2014	Groundwater and Vapor Extraction	561694.20	1457904.22	11.96	Steel Riser	17.00	15.00	2.00	13-17	12-13	4-12
CO73	CO73-PZM007	Cell 5 - RIW 1	Hollow Stem Auger	3/2014 - 5/2014	Reinjection Well	561813.02	1457253.88	11.03	Steel Riser	18.00	3.00	15.00	2-18	1-2	0-1
CO74	CO74-PZM007	Cell 5 - RIW 2	Hollow Stem Auger			561830.95	1457262.00	10.84	Steel Riser	18.00	3.00	15.00	2-18	1-2	0-1
CO75	CO75-PZM006	Cell 5 - RIW 3	Hollow Stem Auger	3/2014 - 5/2014	Reinjection Well	561831.95	1457277.07	10.07	Steel Riser	16.00	6.00	10.00	5-16	4-5	0-4
CO76	CO76-PZM006	Cell 5 - RIW 4	Hollow Stem Auger		*	561838.34	1457290.97	10.09	Steel Riser	16.00	6.00	10.00	5-16	4-5	0-4
CO77	CO77-PZM006	Cell 5 - RIW 5	Hollow Stem Auger			561840.78	1457353.41	10.39	Steel Riser	16.00	6.00	10.00	5-16	4-5	0-4
CO78	CO78-PZM006	Cell 5 - RIW 6	Hollow Stem Auger	3/2014 - 5/2014	Reinjection Well	561835.90	1457409.46	9.89	Steel Riser	16.00	6.00	10.00	5-16	4-5	0-4

Table 7

Cell 2 Monitoring Well Groundwater Elevations

				Well Depth	3/12/	2015	6/9/2	2015
Well ID	Temporary Well ID	Top of PVC Elevation (ft)	Aquifer	from Ground Surface (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)
CO27-PZM012		5.12	S	17.00	4.85	0.27	4.24	0.88
CO27-PZM046		5.17	Ι	51.00	8.25	-3.08	6.92	-1.75
CO36-PZM008	Cell 2 - MW1 (S)	6.94	S	15.00	7.21	-0.27	6.23	0.71
CO36-PZM043	Cell 2 - MW8 (I)	6.92	Ι	50.00	8.21	-1.29	6.95	-0.03
CO37-PZM003	Cell 2 - MW2 (S)	12.34	S	15.00	NM	NM	NM	NM
CO37-PZM038	Cell 2 - MW9 (I)	12.12	Ι	50.00	12.51	-0.39	12.23	-0.11
CO38-PZM006	Cell 2 - MW3 (S)	6.75	S	13.00	6.55	0.20	5.94	0.81
CO38-PZM043	Cell 2 - MW10 (I)	6.65	Ι	50.00	7.65	-1.00	6.71	-0.06
CO39-PZM007	Cell 2 - MW4 (S)	7.75	S	15.00	5.58	2.17	5.70	2.05
CO39-PZM042	Cell 2 - MW11 (I)	7.91	Ι	50.00	8.94	-1.03	7.48	0.43
CO40-PZM008	Cell 2 - MW5 (S)	7.47	S	15.00	6.38	1.09	5.81	1.66
CO41-PZM001	Cell 2 - MW6 (S)	13.57	S	15.00	12.56	1.01	11.92	1.65
CO41-PZM036	Cell 2 - MW12 (I)	13.6	Ι	50.00	14.22	-0.62	13.18	0.42
CO42-PZM004	Cell 2 - MW7 (S)	10.83	S	15.00	6.53	4.30	6.55	4.28
CO43-PZM048	Cell 2 - GW Extraction Well 1	1.96	Ι	50.00	NM	NM	NM	NM
CO44-PZM048	Cell 2 - GW Extraction Well 2	1.73	Ι	50.00	NM	NM	NM	NM
CO45-PZM047	Cell 2 - GW Extraction Well 3	2.68	Ι	50.00	NM	NM	NM	NM
CO46-PZM047	Cell 2 - GW Extraction Well 4	3.08	Ι	50.00	NM	NM	NM	NM
CO47-PZM046	Cell 2 - GW Extraction Well 5	3.85	Ι	50.00	NM	NM	NM	NM
CO48-PZM044	Cell 2 - GW Extraction Well 6	5.55	Ι	50.00	NM	NM	NM	NM

Notes

I = Intermediate depth wells S = Water table well NA = No survey available

NM = Not Measured

Table 8 Summary of Groundwater Analytical Results (Second Quarter 2015) Cell 2 Former Coke Oven Area Interim Remedial Measures

Sparrows Point, LLC

New Sample ID		CO27-PZM012	CO27-PZM046	CO36-PZM008	CO36-PZM043	CO37-PZM038	CO37-PZM003	CO38-PZM043	CO38-PZM006	CO39-PZM007	CO39-PZM042	CO40-PZM008	CO41-PZM001	CO41-PZM036	CO42-PZM004
Former Sample ID		CO27-PZM012	CO27-PZM046	Cell 2-MW1 (S)	Cell2-MW8 (I)	Cell2-MW9 (I)	Cell2-MW2 (S)	Cell2-MW10 (I)	Cell2-MW3 (S)	Cell2-MW4 (S)	Cell2-MW11 (I)	Cell2-MW5 (S)	Cell2-MW6 (S)	Cell2-MW12 (I)	Cell2-MW7 (S)
Date	-	6/8/2015	6/8/2015	6/8/2015	6/8/2015	6/11/2015	NS	6/8/2015	6/8/2015	6/8/2015	6/8/2015	6/9/2015	6/9/2015	6/9/2015	6/9/2015
Analyte	Units														1
Volatile Organics															
1,1,1,2-Tetrachloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	μg/L	8,340	413,000	27,300	26,500	35,900	NS	7.4	13,100	336	52,600	6,590	76,200	428,000	650
Bromochloromethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	10
Carbon disulfide	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	μg/L μg/L	95.8	773	88.4	71.5	423	NS	ND	127	2.3	466	73.1	990	1.260	103
Iodomethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	1.1
Methyl-tert-butyl ether	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	6.3	ND	6	6.4	NS	ND	ND	ND	5.7	ND	ND	6.6	1
Styrene	μg/L μg/L	110	6.5 347	22.1	12.8	616	NS	ND	97.9	1.2	701	105	ND	416	100
Tetrachloroethene	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L μg/L	2,720	63,500	5,610	4,410	15,800	NS	1.3	1,890	24.5	18,200	1,910	42,600	138.000	1,310
Trichloroethene	μg/L μg/L	2,720 ND	03,500 ND	ND	4,410 ND	ND	NS	ND	1,890 ND	24.5 ND	ND	ND	42,600 ND	138,000 ND	1,310 ND
Trichlorofluoromethane	μg/L μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND			ND	ND	ND		ND		ND
Vinyl acetate Vinyl chloride	μg/L μg/L	ND	ND	ND	ND	ND	NS NS	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND
		793				3,340	NS	ND	838	13.5	3,580	849	16,300		908
Xylene (Total)	μg/L		12,100	1,630	1,120	/					/		/	30,000	908 ND
cis-1,2-Dichloroethene	μg/L ug/I	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	μg/L	ND	ND	ND ND	ND ND	ND	NS	ND	ND	ND	ND	ND	ND ND	ND	ND ND
trans-1,2-Dichloroethene	µg/L	ND	ND			ND	NS	ND	ND	ND	ND	ND		ND	
trans-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND	NS	ND	ND	ND 279	ND	ND	ND	ND	ND
Total Volatile Organics	μg/L	12,059	489,726	34,651	32,120	56,085	0	9	16,053	378	75,553	9,527	136,090	597,683	3,083
Semi-Volatiles	~	0	44.400	4.600	<u></u>	4 500	212		000	400	4.650	0.000			
Naphthalene	μg/L	937	11,400	1,180	690	1,780	NS	ND	800	489	1,920	8,380	707	282	327

Notes:

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

µg/L = Micrograms per liter

Table 9Summary of Operation ConditionsCell 3: AS/SVE System in the "Cove" AreaFormer Coke Oven Area Interim Remedial MeasuresSparrows Point, LLC

Cell 3 Second Quarter 2015 Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total CATOX Operating Time (April 1, 2015 - June 30, 2015)	hours	636
Overall CATOX Operational Time	%	29.1%
Estimated Total Hydrocarbons Destroyed	pounds	21.427
Estimated Hydrocarbon Removal Rate	pounds/hour	0.033691

Cell 3 Cumulative Summary of Estimated Hydrocarbon Recovery

Parameter	Units	Quantity
Total ICE/CATOX Operating Time (August 3, 2010 - June 30, 2015)	hours	17,051
Overall CATOX Operational Time	%	66.8%
Estimated Total Hydrocarbons Destroyed	pounds	1,485.2
Estimated Hydrocarbon Removal Rate	pounds/hour	0.09

Table 10

Summary of Soil Gas Analytical Results (Second Quarter 2015) Cell 3: AS/SVE System in the "Cove" Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

	Sample ID	CATOX Influent
	Date	Q2 2015
	Time	2-2010
	Dilution Factor	
Analyte	Units	
TO-15 Volatile Organics	C IIII	
Acetone	ug/m ³	ND
Benzene	ug/m ³	56,200
Bromoform	ug/m ³	ND
2-Butanone (MEK)	ug/m ³	1
Carbon disulfide	ug/m ³	2
Carbon tetrachloride	ug/m ³	ND
Chlorobenzene	ug/m ³	ND
Chloroethane	ug/m ³	ND
Chloroform	ug/m ³	ND
1,1-Dichloroethane	ug/m ³	ND
1,2-Dichloroethane	ug/m ³	ND
1,1-Dichloroethene	ug/m ³	ND
trans-1,2-Dichloroethene	ug/m ³	ND
1,2-Dichloropropane	ug/m ³	ND
cis-1,3-Dichloropropene	ug/m ³	ND
trans-1,3-Dichloropropene	ug/m ³	ND
Ethylbenzene	ug/m ³	34
2-Hexanone	ug/m ³	ND
Methylene Chloride	ug/m ³	ND
4-Methyl-2-pentanone (MIBK)	ug/m ³	ND
1,1,2,2-Tetrachloroethane	ug/m ³	ND
Tetrachloroethene	ug/m ³	ND
Toluene	ug/m ³	5,447
1,1,1-Trichloroethane	ug/m ³	ND
1,1,2-Trichloroethane	ug/m ³	ND
Trichloroethene	ug/m ³	25
Vinyl chloride	ug/m ³	ND
m&p-Xylene	ug/m ³	1,716
o-Xylene	ug/m ³	829
Total Volatile Organics	ug/m ³	64,253

Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter) **BOLD** = Analyte detected

 $ug/m^3 = micro grams per cubic meter$

ND = Analyte not detected above laboratory reporting limit

Table 11Summary of Groundwater Analytical Results (Second Quarter 2015)Cell 3: Prototype AS/SVE System in the "Cove" AreaFormer Coke Oven Area Interim Remedial MeasuresSparrows Point, LLC

New Sample ID		CO30-PZM015	CO101-PZM	CO102-PZM	CO103-PZM	CO104-PZM
Former Sample ID		CO30-PZM015	MW-CELL 3-1	MW-CELL 3-2	MW-CELL 3-3	MW-CELL 3-4
Date		6/9/2015	6/9/2015	6/10/2015	6/10/2015	6/9/2015
Analyte	Units					
Volatile Organics	•					
1,1,1,2-Tetrachloroethane	μg/L	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	μg/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	μg/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	μg/L	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	μg/L	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	μg/L	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	μg/L	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	μg/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND
2-Butanone (MEK)	μg/L	ND	ND	ND	ND	ND
2-Hexanone	μg/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	μg/L	ND	ND	ND	ND	ND
Acetone	μg/L	ND	ND	ND	ND	ND
Acrylonitrile	μg/L	ND	ND	ND	ND	ND
Benzene	µg/L	67,900	15,600	23,400	50,900	31.1
Bromochloromethane	μg/L	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND
Bromomethane	μg/L	7.8	ND	ND	ND	3.8
Carbon disulfide	μg/L	ND	ND	ND	ND	ND
Carbon tetrachloride	μg/L	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	ND	ND	ND	ND	ND
Chloroethane	μg/L	ND	ND	ND	ND	ND
Chloroform	μg/L	ND	ND	ND	ND	ND
Chloromethane	μg/L	ND	ND	ND	ND	ND
Dibromochloromethane	μg/L	ND	ND	ND	ND	ND
Dibromomethane	μg/L	ND	ND	ND	ND	ND
Ethylbenzene	μg/L	107	22	25.4	94.2	ND
Iodomethane	μg/L	ND	ND	ND	ND	1
Methyl-tert-butyl ether	μg/L	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	1	1	6	ND	ND
Styrene	μg/L	25.2	8.1	8.9	16.3	ND
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND
Toluene	μg/L	4,930	1,310	1,190	3,920	7
Trichloroethene	μg/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	μg/L	ND	ND	ND	ND	ND
Vinyl acetate	μg/L	ND	ND	ND	ND	ND
Vinyl chloride	μg/L	ND	ND	ND	ND	ND
Xylene (Total)	μg/L	1,630	270	285	1,490	6
cis-1,2-Dichloroethene	μg/L	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	μg/L	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	ND	ND
Total Volatile Organics	μg/L	74,601	17,211	24,915	56,421	49

Semi-Volatiles						
Naphthalene	μg/L	3,320	1,120	1,340	5,880	26

Notes:

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

 μ g/L = Micrograms per liter

Table 12Cell 5Monitoring Well Groundwater Elevations

					12/22/2014		1/16/	/2014	3/17/	/2014	6/10/2015	
Well ID	Temporary Well ID	Top of PVC Elevation (ft)	Aquifer	Well Depth from PVC (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)						
CO23-PZM008		11.17	S	19.00	15.05	-3.88	15.41	-4.24	15	-3.83	9.85	1.32
CO24-PZM007		15.95	S	19.00	15.12	0.83	15.47	0.48	15.51	0.44	14.03	1.92
CO26-PZM007		12.76	S	20.00	15.26	-2.5	15.39	-2.63	14.87	-2.11	11.55	1.21
CO55-PZM000	Cell 5 - MW1 (S)	15.10	S	15.00	14.55	0.55	14.95	0.15	14.53	0.57	13.87	1.23
CO56-PZP001	Cell 5 - MW2 (S)	15.92	S	15.00	15.40	0.52	15.75	0.17	15.30	0.62	14.72	1.20
CO57-PZP002	Cell 5 - MW3 (S)	16.59	S	15.00	15.42	1.17	15.33	1.26	14.65	1.94	14.76	1.83
CO58-PZM001	Cell 5 - MW4 (S)	14.31	S	15.00	13.90	0.41	14.20	0.11	13.72	0.59	13.18	1.13
CO59-PZP002	Cell 5 - MW5 (S)	16.75	S	15.00	16.15	0.60	16.54	0.21	16.07	0.68	15.46	1.29
CO60-PZP001	Cell 5 - MW6 (S)	15.83	S	15.00	15.33	0.50	15.68	0.15	15.22	0.61	14.60	1.23

Notes

I = Intermediate depth wells S = Water table well NA = No survey available NM = Not Measured

Table 13 Summary of Groundwater Analytical Results (Second Quarter 2015) Cell 5 DPE Groundwate Pump and Treat System Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

New Sample ID		CO23-PZM008	CO24-PZM007	CO26-PZM007	CO55-PZM000	CO56-PZP001	CO57-PZP002	CO58-PZM001	CO59-PZP002	CO60-PZP001
Former Sample ID		CO23-PZM008	CO24-PZM007	CO26-PZM007	Cell5-MW1 (S)	Cell5-MW2 (S)	Cell5-MW3 (S)	Cell5-MW4 (S)	Cell5-MW5 (S)	Cell5-MW6 (S)
Date		6/10/2015	6/10/2015	6/10/2015	6/10/2015	6/11/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015
Time		16:03	10:52	NS	NS	14:25	13:19	13:46	15:06	14:25
Analyte	Units				•					•
Volatile Organics										
1,1,1,2-Tetrachloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,1-Dichloroethene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,2-Dichloropropane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
2-Butanone (MEK)	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
2-Hexanone	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Acetone	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Acrylonitrile	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Benzene	μg/L	531	4.8	NS	NS	639	9.7	195	389	467
Bromochloromethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Bromomethane	μg/L	ND	ND	NS	NS	ND	10.8	8.2	8.7	ND
Carbon disulfide	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Carbon tetrachloride	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Chloroethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Chloroform	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Chloromethane	μg/L	ND	ND	NS	NS	ND	5.7	ND	4.8	ND
Dibromochloromethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Dibromomethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Ethylbenzene	μg/L	22.2	7.2	NS	NS	21.4	ND	11.2	20.4	14.3
Iodomethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	6.6	ND	NS	NS	6.5	1	1.1	1.2	6.8
Styrene	μg/L	10.7	1.3	NS	NS	79.7	ND	24.2	19.5	47.2
Tetrachloroethene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Toluene	μg/L	276	4.2	NS	NS	360	ND	56	241	228
Trichloroethene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Trichlorofluoromethane	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Vinyl acetate	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Vinyl chloride	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Xylene (Total)	μg/L	383	17	NS	NS	432	ND	182	321	290
cis-1,2-Dichloroethene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	NS	NS	ND	ND	ND	ND	ND
Semi-Volatiles	10									
Naphthalene	μg/L	1,370	2,810	NS	NS	4,390	3	1,520	451	2,420
Total Volatile Organics	μg/L	2,600	2,845	110	110	5,929	31	1,998	1,457	3,473

Notes:

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

 $\mu g/L = Micrograms$ per liter

Table 14 LNAPL Occurrence and Recovery Cell 6: LNAPL Recovery System in Former Benzol Processing Area

Former Coke Oven Area Interim Remedial Measures

Sparrows Point, LLC

Well ID	Former Well ID	LNAPL Occurrence During Second Quarter 2015 (ft)	Total LNAPL	Recovery Period		Total LNAPL wered	Estimate LNAPL Recovered During Second Quarter 2015		
		Quarter 2015 (II)	Begin	End	(gal)	(lbs) (a)	(gal)	(lbs) (a)	
CO99-PZMxxx	RW-04	1.38	23-Jul-10	On-going (b)	1,375	10,068	101	740	
CO89-PZMxxx	BP-MW-05	1.01	28-Jan-10	On-going (b)	9,196	67,377	197.5	1,447	
CO92-PZMxxx	BP-MW-08	0.39	8-Sep-10	On-going (b)	1,494	10,941	168	1,231	
CO95-PZMxxx	BP-MW-11	0.62	23-Jul-10	On-going (b)	1006	7,370	351	2,572	
CO97-PZMxxx	RW-02	trace	28-Jan-11	On-going (c)	0.8	6	0	0	
CO98-PZMxxx	RW-03	0.13	24-Nov-10	On-going (c)	86.8	636	31	227	
CO96-PZMxxx	RW-01	0.15	28-Oct-11	On-going (c)	1.3	10	0	0	
CO94-PZMxxx	BP-MW-10	0.05	na	na	0	0	0	0	
CO91-PZMxxx	BP-MW-07	0.05	na	na	0	0	0	0	
CO90-PZMxxx	BP-MW-06	0	na	na	0	0	0	0	
CO100-PZMxxx	RW-05	0	na	na	0	0	0	0	
CO93-PZMxxx	BP-MW-09	0	na	na	0	0	0	0	
CO19-PZM004	CO19-PZM004	0	na	na	0	0	0	0	
				Total Recovery:	13,159	96,409	849	6,218	

Notes:

(a) Weight is calculated based on average BP-MW-05 and BP-MW-08 oil density of 0.878 grams per cubic centimeter, measured by EA (2009) by ASTM Method D1481

(b) Skimmer

(c) Bailing

(d) Cumulative recovery volumes are calculated using an estimated recovery from 12/28/11 to 1/18/12 as well as 5/24/12 to 6/22/12.

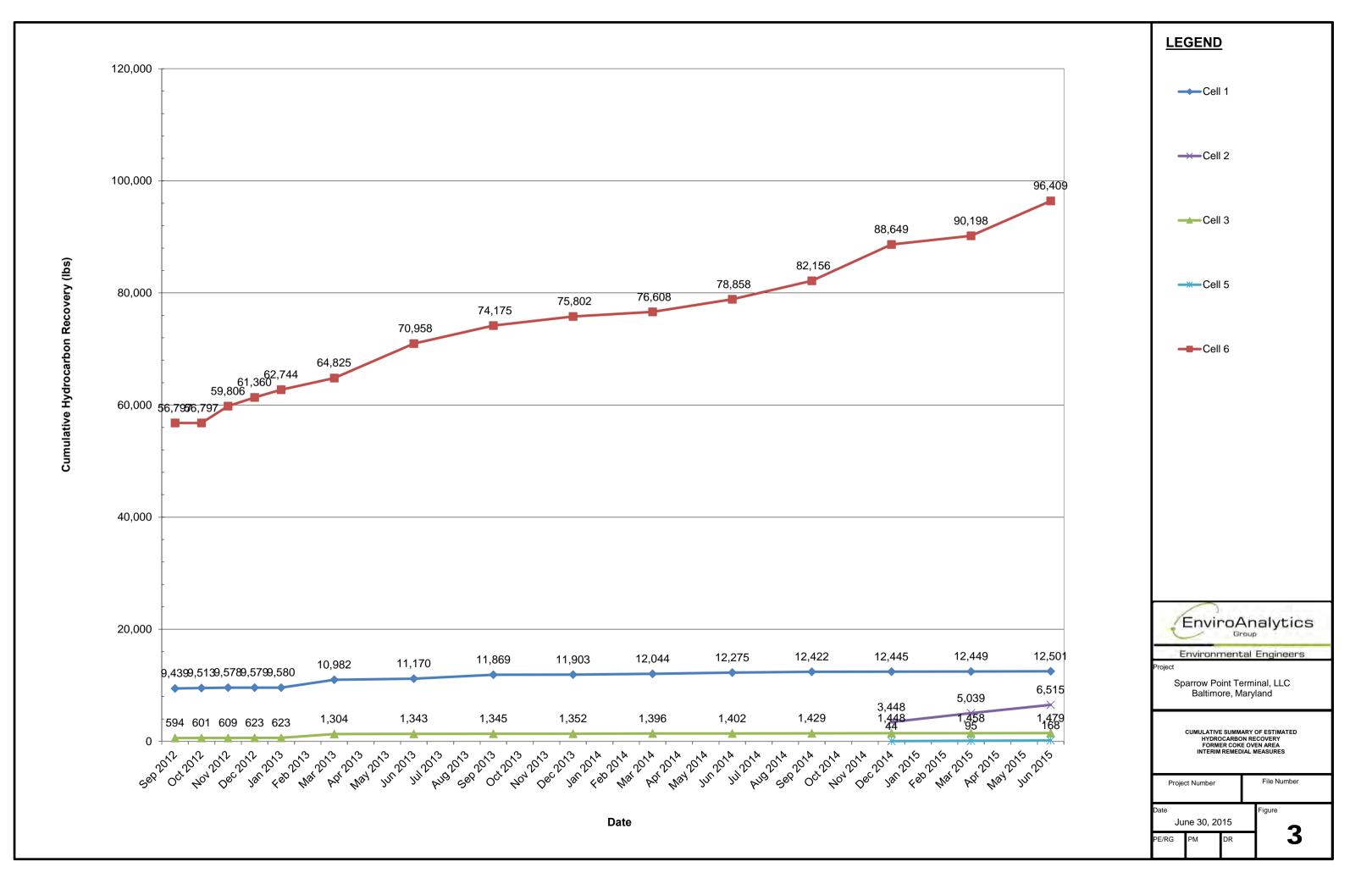
Table 15 Depths (feet) to Water and LNAPL Cell 6: LNAPL Recovery System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

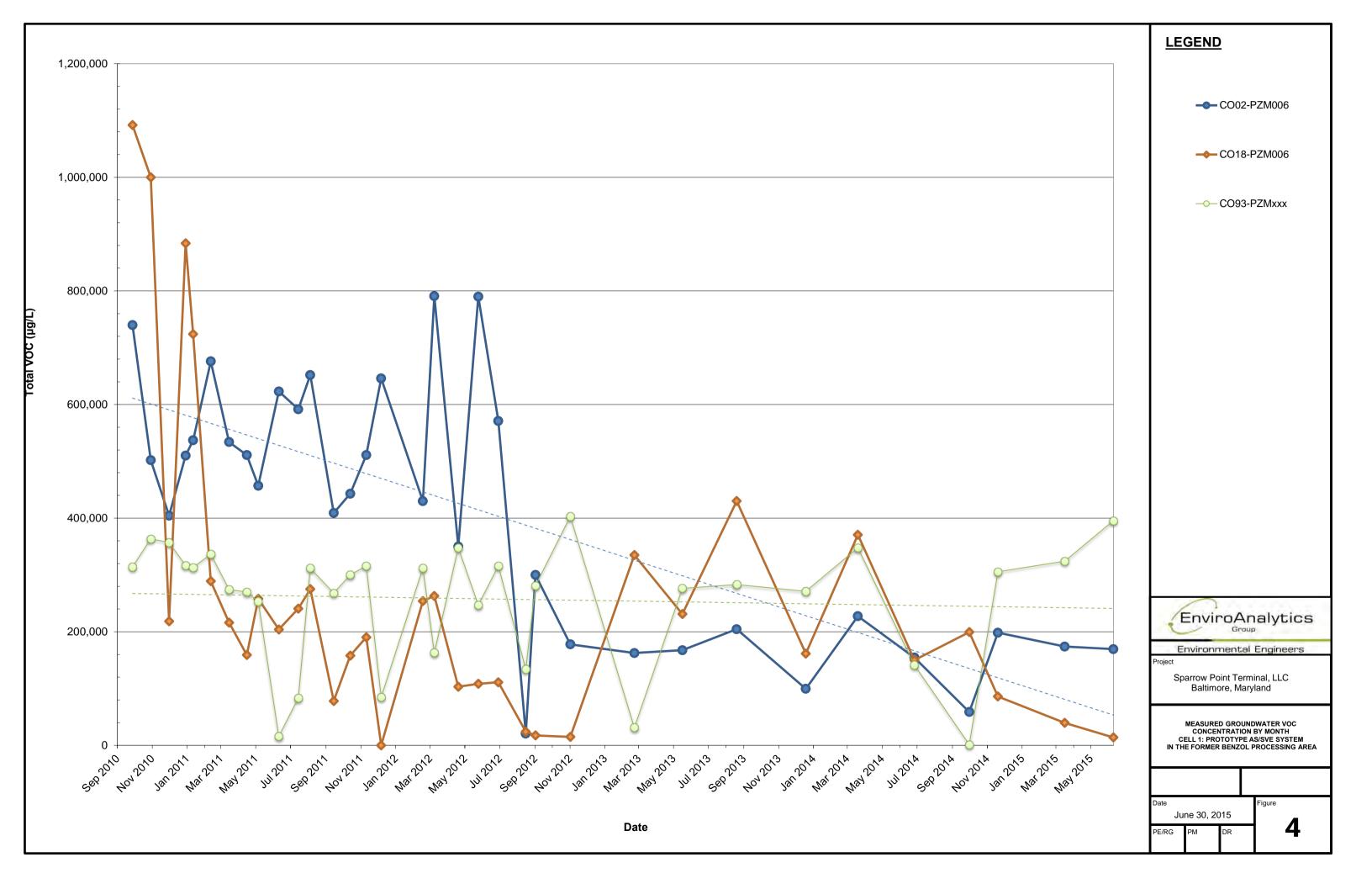
		CO89-PZM			CO90-PZM			CO91-PZM		
Date	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	
	LNAPL	Water	Thickness	LNAPL	Water	Thickness	LNAPL	Water	Thickness	
6/24/2015	9.79	10.8	1.01	10.03	10.03	0	10.51	10.56	0.05	
		CO92-PZM			CO93-PZM			CO94-PZM		
Date	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	
	LNAPL	Water	Thickness	LNAPL	Water	Thickness	LNAPL	Water	Thickness	
6/24/2015	10.82	11.21	0.39	10	10	0	7.85	7.9	0.05	
		CO95-PZM			CO96-PZM			CO97-PZM		
Date	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	
	LNAPL	Water	Thickness	LNAPL	Water	Thickness	LNAPL	Water	Thickness	
6/24/2015	11.5	12.12	0.62	10.85	11.00	0.15	10.42	10.42	0	
				•				•		
		CO98-PZM			CO99-PZM		CO100-PZM			
Date	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	Depth to	Depth to	LNAPL	
	LNAPL	Water	Thickness	LNAPL	Water	Thickness	LNAPL	Water	Thickness	
						1.00	0.52	0.52	0	
6/24/2015	7.87	8	0.13	8.12	9.5	1.38	9.53	9.53	(
6/24/2015	7.87	8	0.13	8.12	9.5	1.38	9.53	9.53		
6/24/2015		8 CO19-PZM004		8.12	9.5	1.38	9.53	9.53	0	
6/24/2015 Date				8.12	9.5	1.38	9.53	9.53	0	
	(CO19-PZM004	l .	8.12	9.5	1.38	9.53	9.53	0	

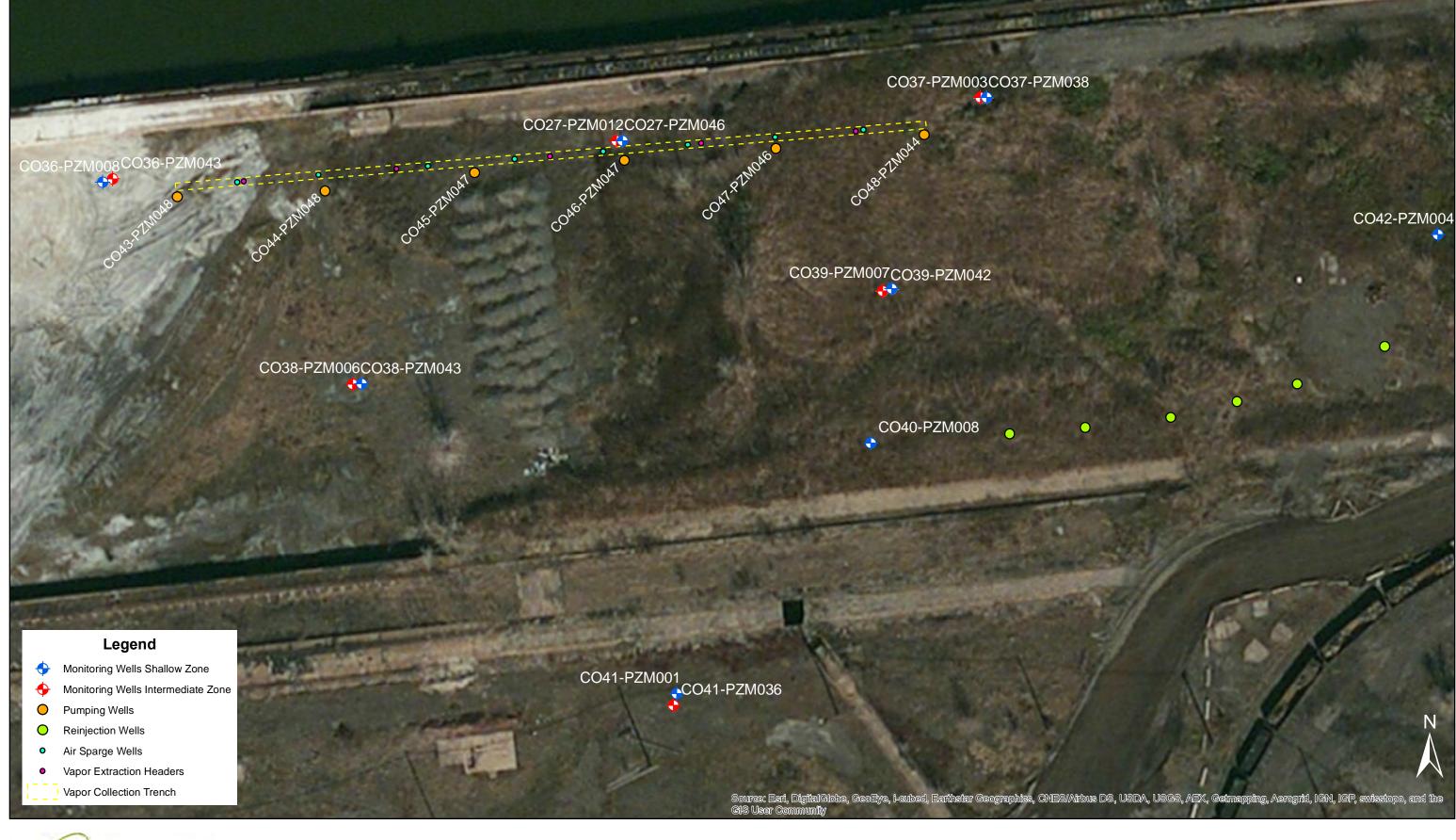
FIGURES

Former Coke Oven Area Interim Measures Cell Locations

Figure 1

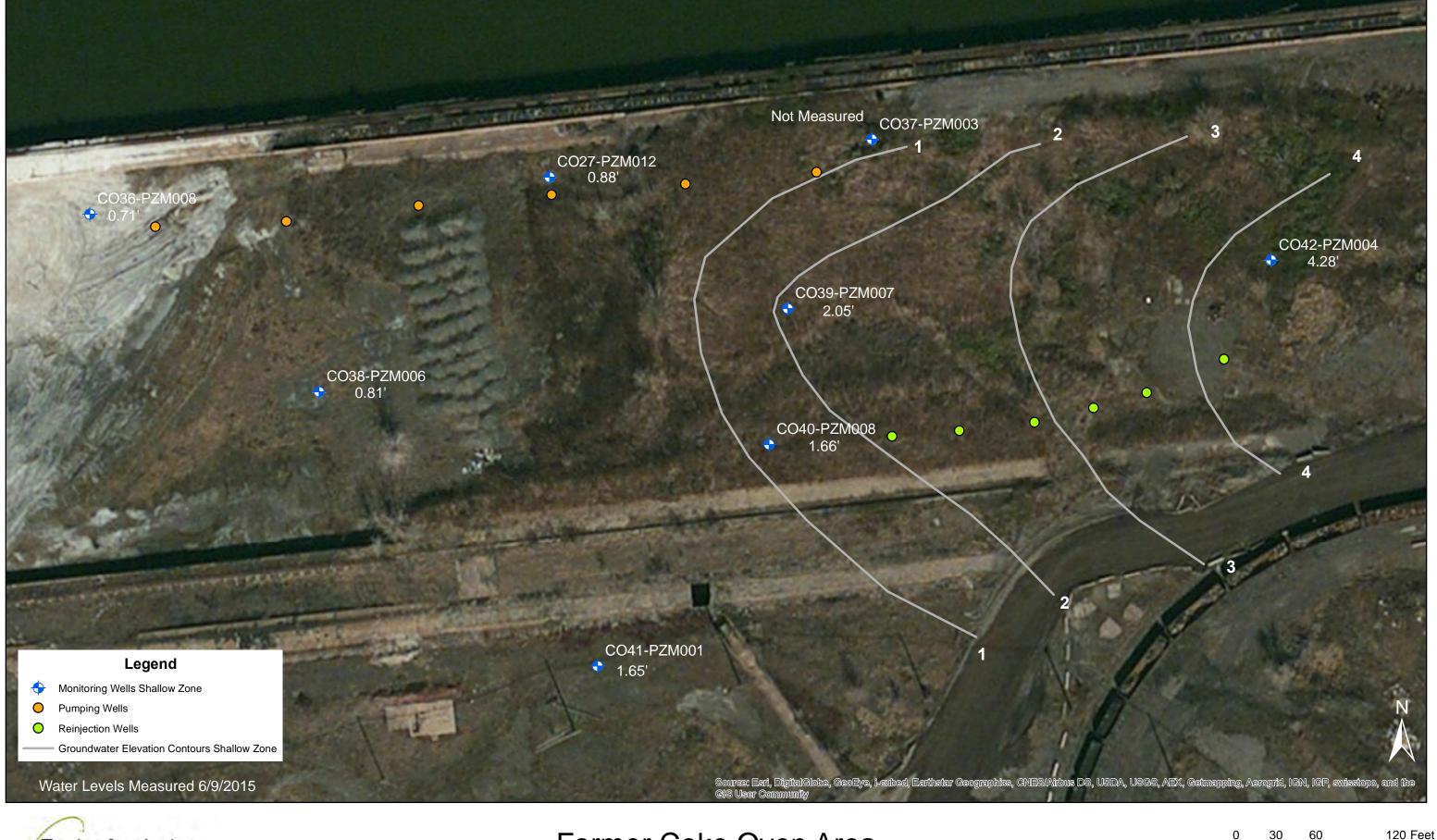





Former Coke Oven Area Cell 1 System Layout

Environmental Engineers

0 25 50 100 Feet

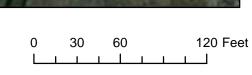


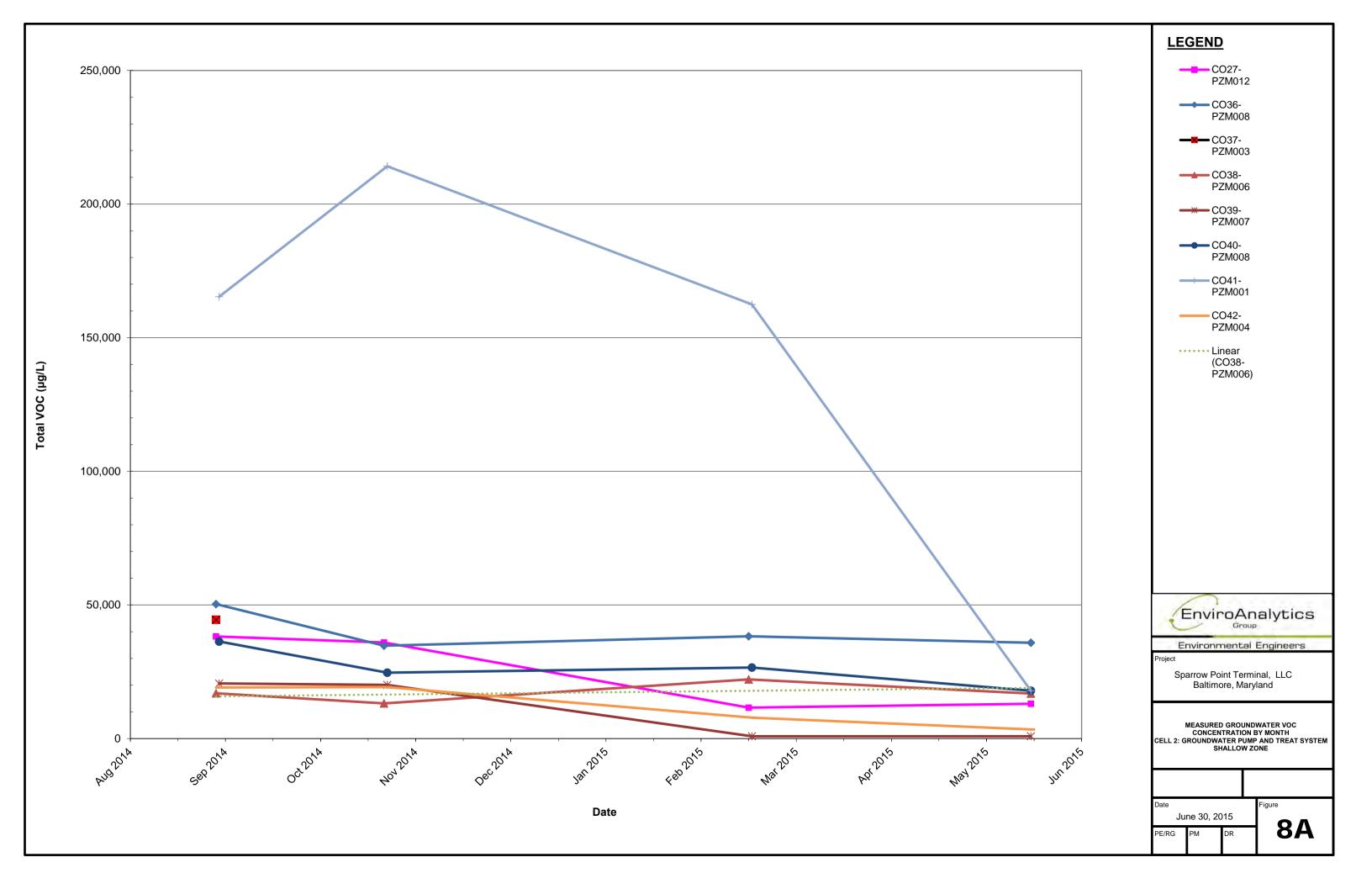
Former Coke Oven Area Cell 2 System Layout

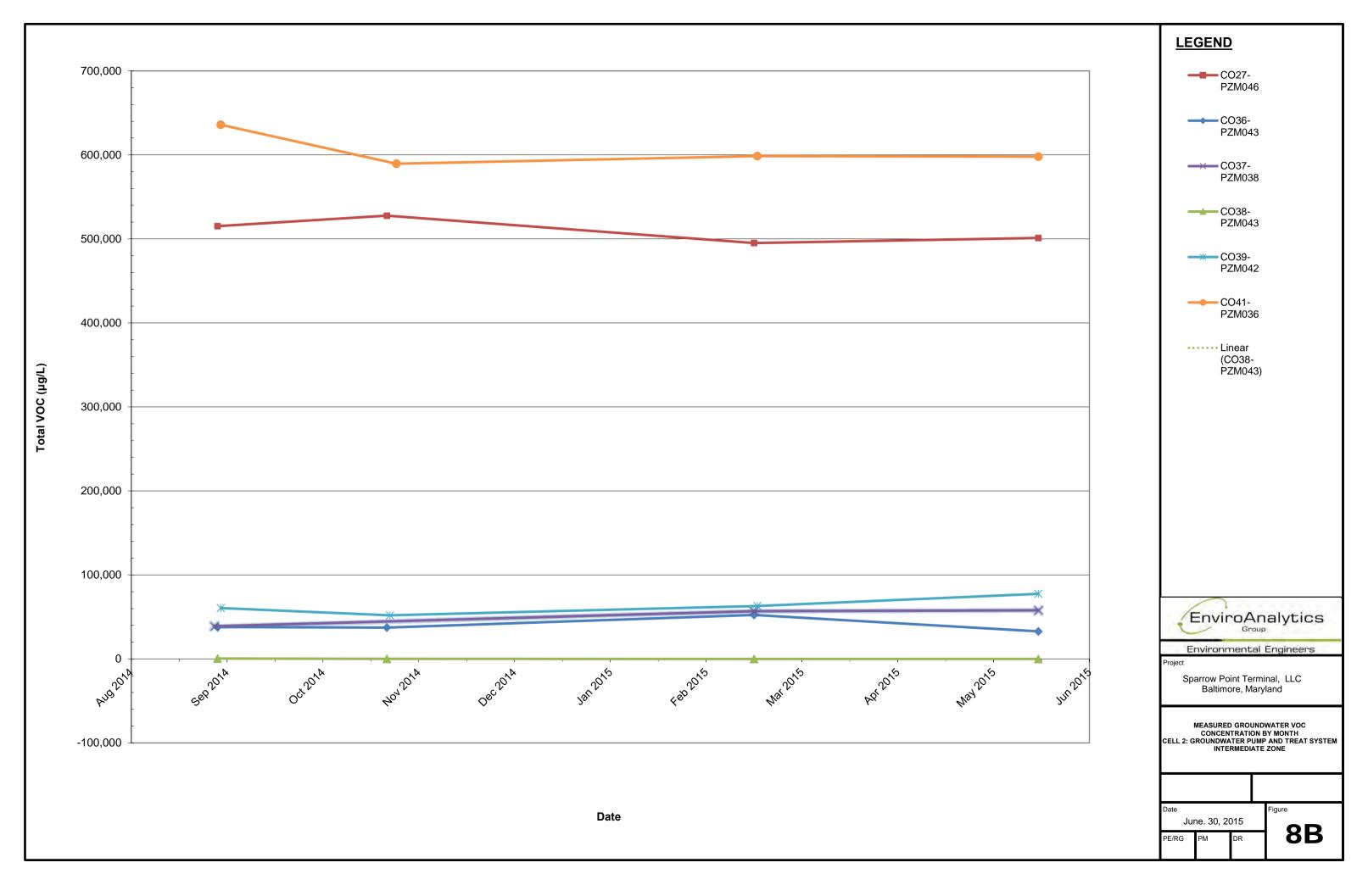
Environmental Engineers

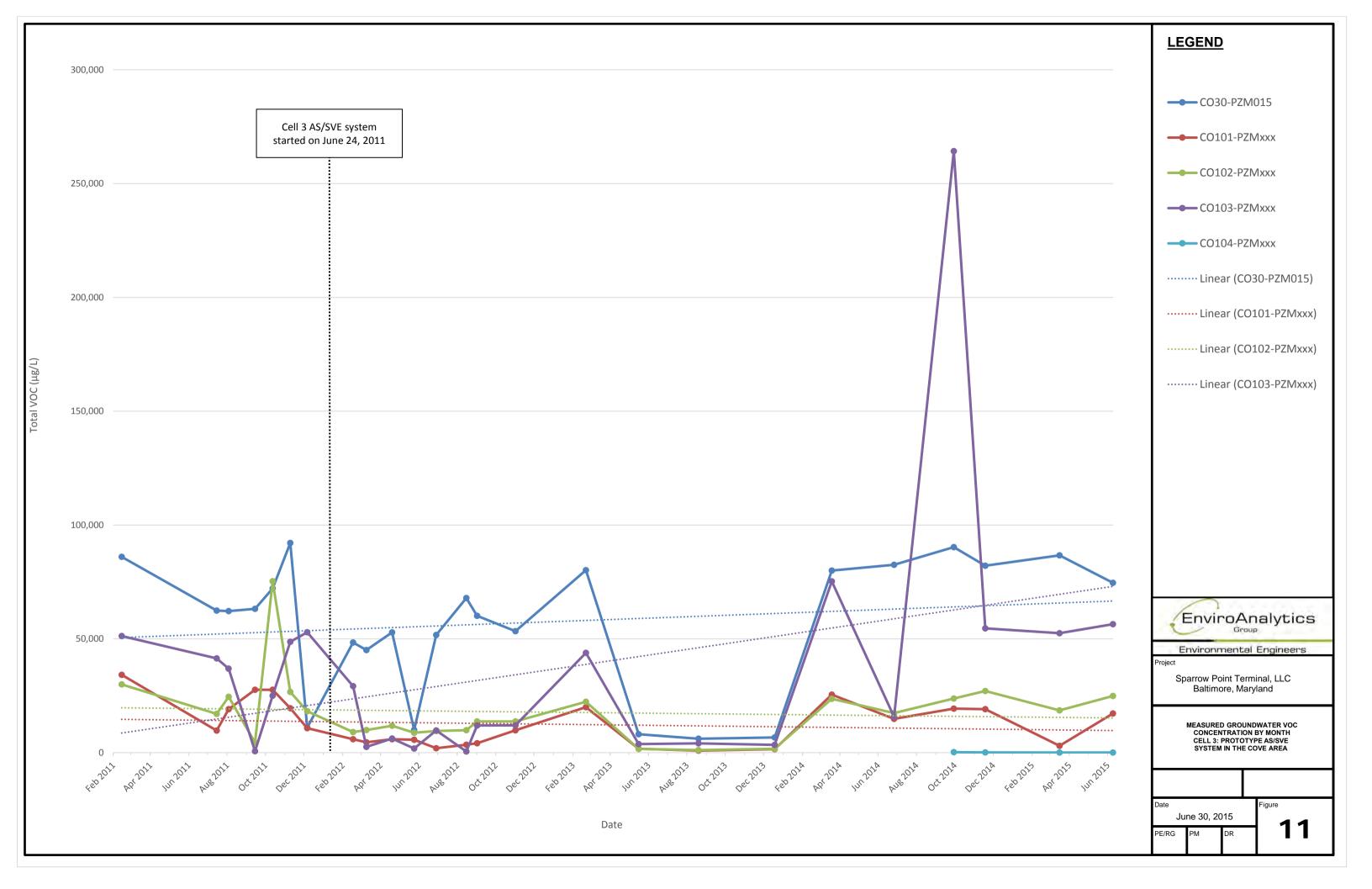
0 25 50 100 Feet

Former Coke Oven Area Cell 2 Groundwater Elevation Contours Shallow Zone



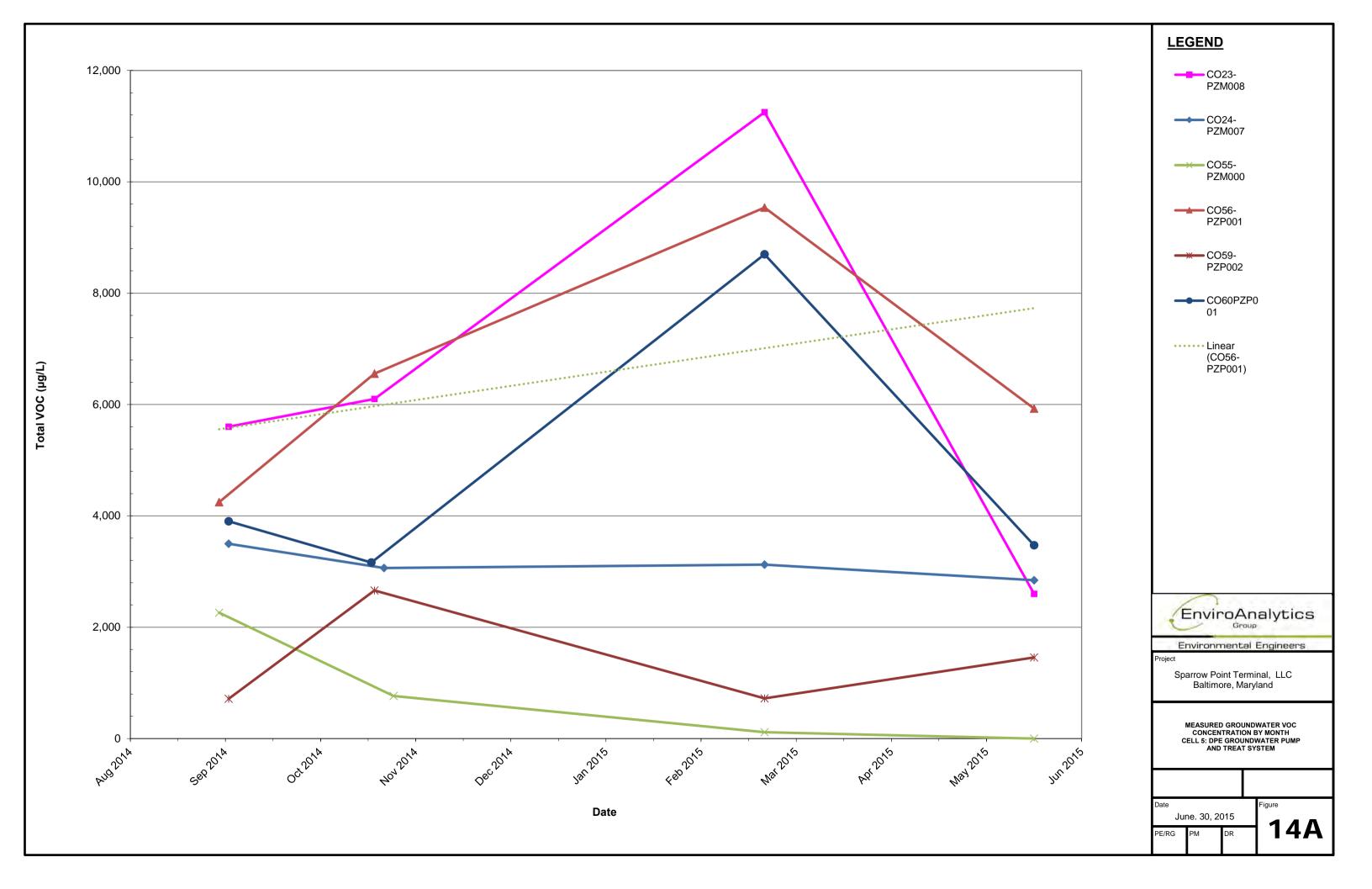


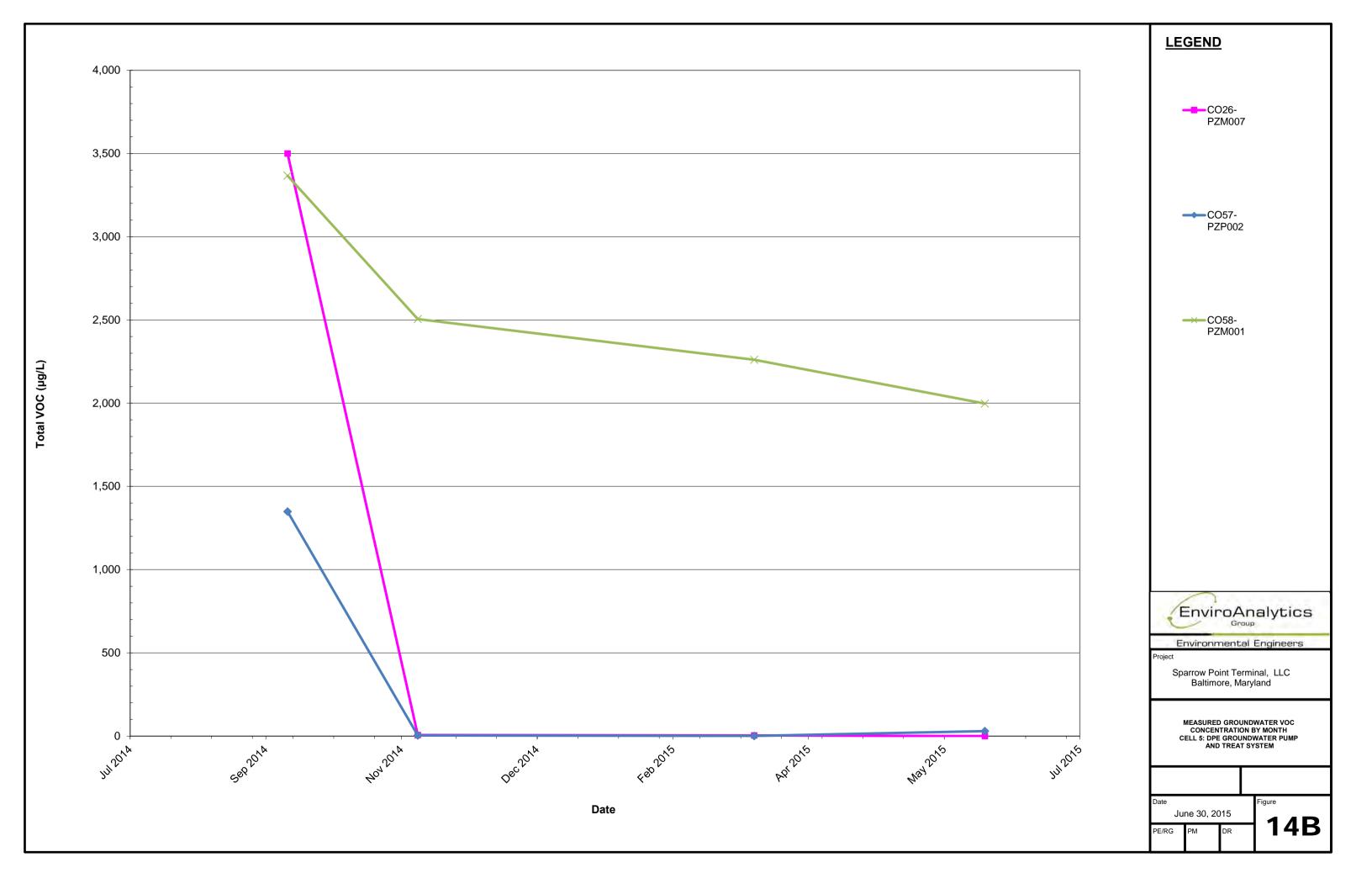

Former Coke Oven Area Cell 2 Groundwater Elevation Contours Intermediate Zone



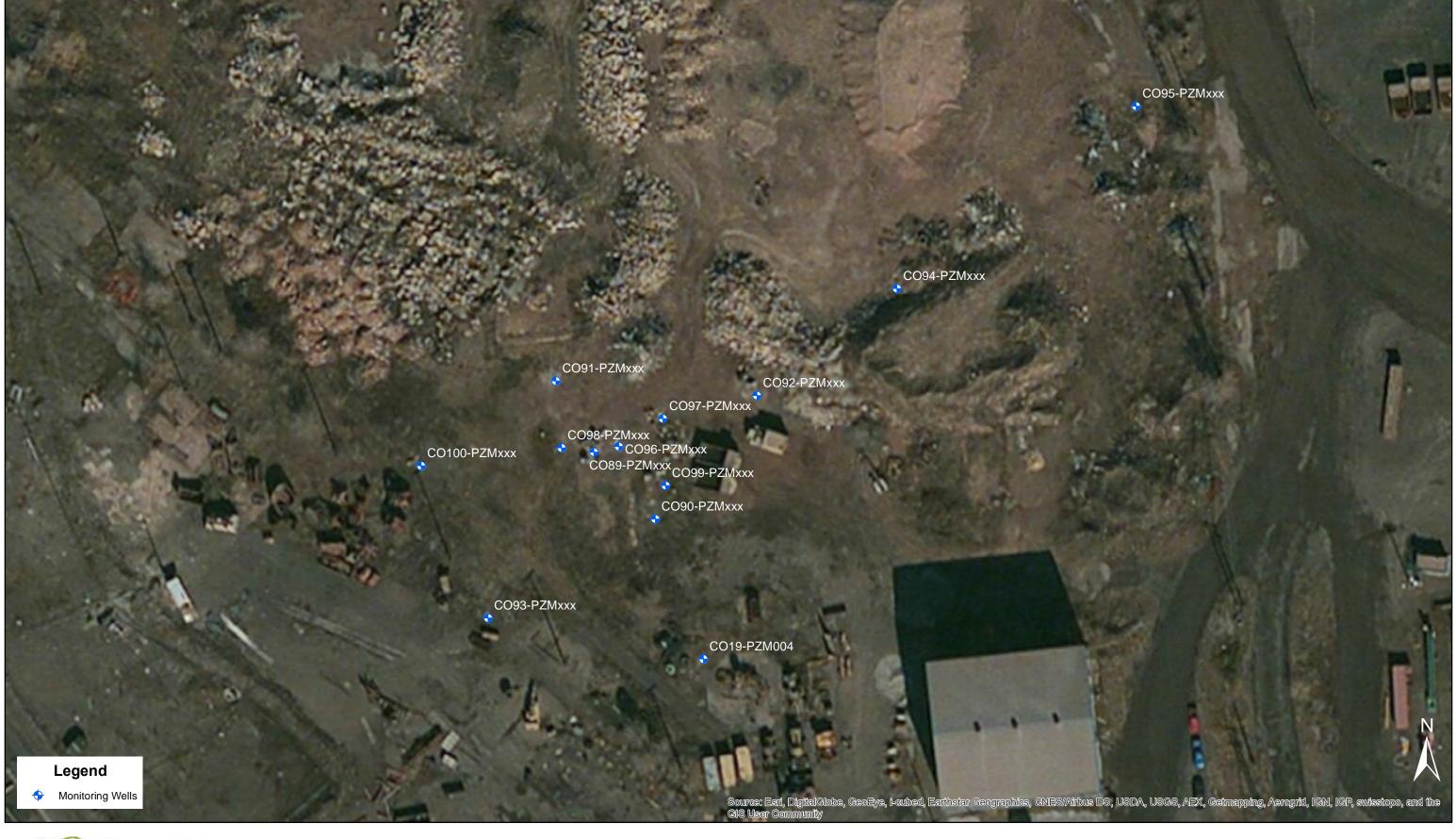
Former Coke Oven Area Cell 2 Benzene Concentrations Intermediate Zone 0 30 60 120 Feet

Former Coke Oven Area Cell 3 System Layout




Former Coke Oven Area Cell 5 System Layout

Former Coke Oven Area Cell 5 Groundwater Elevations Shallow Zone



Cell 5 Naphthalene Concentrations Shallow Zone

Former Coke Oven Area Cell 6 Well Locations 0 25 50 100 Feet