

May 1, 2015

Mr. Andrew Fan, PE US EPA Region III, 3LC20 1650 Arch Street Philadelphia, PA 19103-2029

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Blvd. Baltimore, MD 21230

**Re:** COKE OVEN AREA INTERIM MEASURES PROGRESS REPORT 1<sup>ST</sup> QUARTER 2015

Dear Mr. Fan and Ms. Brown:

On behalf of Sparrows Point Terminal, LLC and Sparrows Point, LLC, enclosed please find the Coke Oven Area Interim Measures Progress Report for the first quarter of 2015 completed for the Sparrows Point Terminal site. This report was distributed electronically on May 1, 2015 in accordance with the reporting requirements outlined in the US EPA Interim Measures Progress Report frequency letter dated March 26, 2013. Please advise if paper copies are required for your use and we will distribute accordingly.

The report summarizes implementation progress for the interim measures (IMs) that have been developed to address identified environmental conditions at the Coke Oven Area through March 31, 2015. Please contact me at (314) 620-3056 should questions arise during your review of the enclosed progress report.

Sincerely,

James Calenda

Project Manager

James Calenda

Enclosure

# FORMER COKE OVEN AREA INTERIM MEASURES PROGRESS REPORT

(First Quarter 2015)

#### Prepared for

SPARROWS POINT TERMINAL, LLC AND
SPARROWS POINT LLC
1600 SPARROWS POINT BOULEVARND
SPARROWS POINT MD 21219

**April 30, 2015** 



#### Introduction

This document presents operational data and monitoring information collected in the 1st quarter of 2015 for Interim Measures (IMs) that have been installed to address identified environmental conditions at the former Coke Oven Area (COA) Special Study Area at the Sparrows Point Terminal site located in Sparrows Point, Maryland. This progress report summarizes IM performance including data collected from the 1<sup>st</sup> quarter of 2015 and is submitted in accordance with reporting requirements outlined in correspondence received from US EPA on March 26, 2013. The following designations are applied in this document to identify the operating IM "Cells" (Figure 1) at the COA:

- Cell 1: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the Former Benzol Processing Area,
- Cell 2: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the shallow groundwater zone, groundwater pump and treat (GW P&T) system in the intermediate zone, Former Coal Basin Area,
- Cell 3: AS/SVE System in "Cove" Area,
- Cell 5: Dual Phase Extraction (DPE) system for the shallow zone, "Turning Basin" side of former Coke Oven Area,
- Cell 6: Light Non-Aqueous Phase Liquid (LNAPL) Recovery at the Former Benzol Processing Area.

As of the end of the first quarter 2015, Cells 1, 2, 3, 5 and 6 are operational. Groundwater and soil gas sampling were conducted during the first quarter of 2015 to assess current conditions and removal efficiencies of the operating IM systems. The results of these sampling events, including trending graphs from IM startup, are detailed in this report. LNAPL removal continued at Cell 6 without interruption. Additional detail on the design, operation and groundwater monitoring for these systems is provided in this progress report.

#### Cell 1: Prototype AS/SVE System in the Former Benzol Processing Area

Cell 1 consists of an AS/SVE system installed to remove volatile hydrocarbons that is coupled with vapor destruction via an electric catalytic oxidation (CATOX) unit. **Figure 2** shows the system layout of Cell 1 and locations of the major design components including the air sparging wells, vapor collection trenches and groundwater monitoring wells.

#### **1st Quarter 2015 Operational Performance**

Operational performance of Cell 1 during this reporting period is summarized in **Table 1**. In summary, the CATOX unit operated for 408 hours (18.5 %) during this reporting period. The system at Cell 1 continues to operate on a pulsing schedule; where the system is in recovery or on mode for one day and then turned off to let the area rebound for two or three days. This practice was implemented during the first quarter 2013 to improve recovery of hydrocarbons from the subsurface. Operations continue to be in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the May 20, 2011 modified permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

The hydrocarbon removal rate was calculated to be approximately 0.009 pounds per operating hour (estimated quarterly total of 3.86 pounds). **Table 1** also includes a cumulative summary of operational performance since system startup on August 3, 2010. In total, Cell 1 has destroyed approximately 12,449 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister and submitted to Pace Analytical Services, Inc. in Minneapolis, Minnesota for analysis by US EPA Method TO-15. The average influent soil gas hydrocarbon concentration of the three samples taken throughout the third quarter was 37,712 micrograms per cubic meter (ug/m³) as summarized in **Table 2**.

Hydrocarbon removal calculations were based on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples collected throughout the third quarter are representative of hydrocarbon concentrations for the entire quarter. This assumption is based on the fact that the same air sparge wells (AS-1 thru AS-8) and extraction wells (V-1 thru V-6) were online when the system was operational. Recovery concentrations in the influent soil gases were lower this quarter and this trend will be monitored in future quarters.

#### 1st Quarter 2015 Groundwater Monitoring Results

Groundwater samples were collected on March 16, 2015 from the following wells; the location of the wells are shown on Figure 2:

- New well designation (former BP-MW-09, upgradient of Cell 1),
- CO18-PZM006 (upgradient of Cell 1 at edge of berm), and
- CO02-PZM006 (downgradient of Cell 1).

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 3**. These data indicate benzene is the most prevalent volatile organic compound (VOC) constituent. Since system startup in August 2010, a decreasing total VOC concentration trend is documented at the wells monitored for system performance as illustrated in **Figure 4**. The identified trend for these monitoring wells will continue to be monitored and assessed during system operation in future months.

# Cell 2: Air Sparge/Soil Vapor Extraction (AS/SVE) System in the Shallow Groundwater Zone, Groundwater Pump and Treat (GW P&T) System in the Intermediate Groundwater Zone, Former Coal Basin Area

Cell 2 consists of an AS/SVE system coupled with vapor destruction via an electric catalytic oxidation (CATOX) unit for volatile hydrocarbon groundwater treatment in the shallow zone and a pump and treat system for recovery of groundwater and volatile hydrocarbon treatment from the intermediate zone. The system design plans were approved by US EPA in correspondence received on September 10, 2013 and began full scale operation in October 2014. **Figure 5** shows the system layout of Cell 2 and locations of the major design components including the air sparging wells, vapor collection trenches, intermediate groundwater recovery wells, groundwater injection wells and groundwater monitoring well locations.

#### AS/SVE System

The delivery and recovery systems for the shallow AS/SVE system include the use of air sparge points and a horizontal vapor extraction trench. Eight (8) air sparge points along a 500 feet long stretch were installed near the shore line of Cell 2. Details of the air sparge zone and recovery trench include the following:

- Air sparge zone: 8 2-inch diameter AS points @ approximately 56 ft spacing, center to center
   (C-C)
  - Installed to 15 ft -17 ft bgs (bottom of slag fill)
  - o Bottom 2 ft of each point to be screened with 20-slot screen
- Recovery trench
  - o 500 ft of horizontal, 4-inch diameter perforated pipe (or 20-slot screen) installed to a total depth (TD) of 5 ft
  - o 5 vertical 4-inch risers spaced every 100 ft, C-C
  - o Top 2 ft is a clay cap
  - Geotextile fabric @ 2 ft bgs (under clay)
  - o Granular screened slag backfill from 2 ft -5 ft
  - Horizontal recover piping located approximately 3 ft bgs (above water table)

#### **GW P&T System**

The pump and treat groundwater system includes a low profile air stripper that then utilizes an oxidizer to destroy all VOC vapors generated prior to exhausting to the atmosphere. The design groundwater flow is for a maximum of 40 gallons per minute (gpm). The oxidizer is sized to handle up to a 600 cubic feet per minute air flow. The recovery and re-injection systems include the use

of six groundwater recovery wells and six groundwater injection wells. The six recovery wells are installed along a 500 feet long stretch near the shore line of Cell 2.

- 6 4-inch diameter GW RWs @ approximately 83 ft spacing, C-C
  - o Installed to 40-45 ft bgs (intermediate sand zone)
  - o Bottom 15 ft of each RW screened with 20-slot screen
  - o An electric pump in each RW, resting approximately 7-10 ft above the bottom of the well
- Recovered GW Treatment
  - o Enters low profile air stripper
  - o Off-gas sent to Electric Oxidizer for destruction
  - Treated groundwater pumped to six-6 inch diameter re-injection wells screened from 5 to 15 feet in depth for recirculation in shallow GW zone

#### 1<sup>st</sup> Quarter 2015 Operational Performance

#### **AS/SVE System**

Operational performance of the AS/SVE System at Cell 2 during this reporting period is summarized in **Table 4**. In summary, the CATOX unit operated for 1584 hours (71.7%) during this reporting period. The system at Cell 2 is operated on a continuous schedule during this reporting quarter to determine the initial performance of the system. Operations were in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

The hydrocarbon removal rate was calculated to be approximately 0.032 pounds per operating hour (estimated quarterly total of 50.4 pounds). **Table 4** also includes a cumulative summary of operational performance since system startup in October 2014. In total, the AS/SVE system at Cell 2 has destroyed approximately 219.5 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister and submitted to Pace Analytical Services, Inc. in Minneapolis, Minnesota for analysis by US EPA Method TO-15. The average influent soil gas hydrocarbon concentration was 56,634 micrograms per cubic meter (ug/m³) as summarized in **Table 5**.

Hydrocarbon removal calculations were based on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples collected throughout the fourth quarter are representative of hydrocarbon concentrations for

the entire quarter. This assumption is based on the fact that the same air sparge wells and extraction wells were online when the system was operational.

#### **GW P&T System Evaluation**

The Cell 2 groundwater pump and treat system was evaluated with regard to: 1) the water levels measured in the various water bearing zones, and 2) the effectiveness of this system with respect to the mass of volatile hydrocarbons removed from groundwater.

#### **Groundwater Level Monitoring**

Groundwater-level measurements were manually measured in March 2015 for fourteen (14) groundwater wells that have been installed to evaluate the Cell 2 system. A summary of the installation specifications of the wells has been included as **Table 6**; water level measurements (depth to water and water elevation) are presented in **Table 7**. The locations of the monitoring wells are shown on **Figure 5**.

The groundwater elevation data are graphically presented as groundwater elevation contour maps in **Figures 6** and **7**. **Figures 6** and **7** represent the fourth quarter 2014 data for the shallow and intermediate water bearing zones. The intermediate water bearing zone is pumped and is therefore also referred to as the intermediate pumping zone. The shallow water bearing zone (water table) includes piezometers screened to depths of approximately 15-feet below ground surface; the intermediate water bearing zone includes piezometers screened from approximately 30- to 50-foot depths. The water level results for each of these zones are discussed below.

#### Shallow Water Table Zone

**Figure 6** presents the groundwater elevation contour map for the shallow water table zone, corresponding to the March 2015 time period when the underlying zone (intermediate pumping zone) was being pumped and groundwater was being re-injected into the shallow zone through the six injection wells. The data for the shallow groundwater zone exhibit the possible influence of the reinjection zone as higher groundwater elevations are noticed in this area. This area is also higher in elevation so data from additional time periods will be required to confirm this feature.

#### Intermediate Pumping Zone

**Figure 7** presents groundwater elevations within the intermediate pumping zone during the March 2015 time period. The data indicates significant drawdown surrounding the six pumping wells (CO43- CO48) that comprise the groundwater recovery system. This system is maintaining a broad zone of influence extending from the pumping wells.

#### **Evaluation of Pump and Treat System Effectiveness**

A total of 770,235 gallons of water were extracted from the Cell 2 Area pumping wells and treated during the first quarter of 2015. The average pumping rate for the pump and treat system was 10,767 gpd, or 8 gpm. Cell 2 experienced a significant decrease of 5,000 gpd less than the previous quarter due to shutdowns to protect the system during extremely cold temperatures, most notably during the month of February.

Operations were in conformance with the manufacturer's specifications at all times that stripped hydrocarbons were discharged through the CaTOX unit to the atmosphere in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014. In addition, treated groundwater discharges were in compliance with discharge permit conditions outlined in Discharge Permit 11-DP-3746 issued to Sparrows Point LLC on May 6, 2013. These pumping rates appear to effectively capture the most impacted groundwater beneath Cell 2, as revealed by **Figure 9** discussed in the following section.

A total of 1,541 lbs of benzene, toluene and xylene compounds (btex) and 12 lbs of naphthalene were removed and treated during the first quarter of 2015. This total is shown graphically in **Figure 3**. The following table presents data for influent and effluent (treated) groundwater.

| Field ID                | Analysis         | Units | 14-Jan  | 20 Jan  | 12-Feb | 25-Feb  | 23-Mar  | 24-Mar  | Quarter<br>Average |
|-------------------------|------------------|-------|---------|---------|--------|---------|---------|---------|--------------------|
| GWPT Cell 2<br>INFLUENT | Benzene          | ug/L  | 360,000 | 180,000 | 99,000 | 280,000 | 190,000 | 190,000 | 216,500            |
| GWPT Cell 2<br>INFLUENT | Toluene          | ug/L  | 19,000  | 14,000  | 8,400  | 21,000  | 22,000  | 21,000  | 17,566             |
| GWPT Cell 2<br>INFLUENT | Total<br>Xylenes | ug/L  | 3,400   | 2,400   | 1,400  | 3,900   | 5,700   | 5,500   | 3,716              |
| GWPT Cell 2<br>INFLUENT | Naphth           | ug/L  | 2,000   | 1,800   | 1,100  | 1,900   | 2,400   | 3,000   | 2,033              |
|                         |                  |       |         |         |        |         |         |         |                    |
| GWPT Cell 2<br>EFFLUENT | Benzene          | ug/L  | 100     | 24      | 140    | 280     | 140     | 0       | 114                |
| GWPT Cell 2<br>EFFLUENT | Toluene          | ug/L  | 0       | 0       | 16     | 31      | 0       | 0       | 7.8                |

| GWPT Cell 2<br>EFFLUENT | Total<br>Xylenes | ug/L | 0   | 0  | 0  | 0   | 0   | 0   | 0   |
|-------------------------|------------------|------|-----|----|----|-----|-----|-----|-----|
| GWPT Cell 2             |                  |      |     |    |    |     |     |     |     |
| EFFLUENT                | Naphth           | ug/L | 120 | 74 | 23 | 250 | 170 | 130 | 128 |

The pump and treat system is removing significant amounts of volatile hydrocarbons from groundwater within the intermediate water bearing zone at the current pumping rates, and it is controlling groundwater flow and associated migration within the intermediate water bearing zone.

#### 1st Quarter 2015 Groundwater Monitoring Results

Groundwater samples were collected in March 2015 from the following wells; the well locations are shown on **Figure 5**. Exception(s) to the wells sampled in March are noted for wells CO37-PZM003. CO37-PZM003 was not sampled due to the presence of free product first identified in November 2014 that is discussed further below.

- CO27- PZM012 shallow zone
- CO27-PZM046 intermediate zone
- CO36-PZM008 shallow zone
- CO36-PZM043 intermediate zone
- CO37-PZM003 shallow zone
- CO37-PZM038 intermediate zone
- CO38-PZM006 shallow zone
- CO38-PZM043- intermediate zone
- CO39-PZM007- shallow zone
- CO39-PZM042- intermediate zone
- CO40-PZM008- shallow zone
- CO41-PZM 001- shallow zone
- CO41-PZM 036- intermediate zone
- CO42-PZM004 shallow zone

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 8**. These data indicate benzene is the most prevalent volatile organic compound (VOC) constituent. The VOC concentrations for the 2015 sampling events are shown for the groundwater wells monitored for system performance in **Figure 8A** and **8B**. These wells will continue to be monitored to assess possible trends associated with operation of the interim measure. **Figure 9** presents a plan view of the concentration of benzene in the intermediate zone from analytical results from the March 2015 monitoring event.

Light non-aqueous product (LNAPL) was encountered in well CO37-PZM003 in the shallow groundwater zone in November 2014. This well was bailed on a weekly basis throughout the first quarter of 2015 and over 5 gallons of product was recovered. The well will continue to be monitored on a weekly basis going forward to determine the extent of continued presence of LNAPL.

#### Cell 3: AS/SVE System in the "Cove" Area

Cell 3 consists of an AS/SVE system coupled with vapor destruction via an electric CATOX unit. **Figure 1** shows the location of the Cell 3 AS/SVE treatment area at the COA. The major design components are described in the Cell 3 final design report (*Coke Oven Area Interim Measures Cell 3 "Cove" Area Air Sparge/Soil Vapor Extraction System Design*), submitted to US EPA on March 1, 2011.

#### 1<sup>st</sup> Quarter 2015 Operational Performance

Operational performance of Cell 3 during this reporting period is summarized in **Table 9**. In summary, the CATOX unit operated for 384 hours (26.4%) during the first quarter of 2015. The system at Cell 3 continues to operate on a pulsing schedule; where the system is in recovery or on mode for one day and then turned off to let the area rebound for two or three days. This practice was implemented to improve recovery of hydrocarbons from the subsurface. Operations continue to be in conformance with the manufacturer's specifications at all times that soil gases were collected in accordance with the May 20, 2011 modified permit-to-construct conditions.

The hydrocarbon removal rate was calculated to be approximately 0.049 pounds per operating hour (estimated quarterly total of 18.8 pounds). **Table 9** also includes a cumulative summary of operational performance since system startup on June 24, 2011. In total, Cell 3 has destroyed approximately 1463.8 pounds of recovered hydrocarbons as shown graphically in **Figure 3**.

Soil gas samples were collected for laboratory analysis to monitor CATOX unit performance. One untreated soil gas sample was collected in a Suma Canister and submitted to Pace Analytical Services. The average influent soil gas hydrocarbon concentration of the three samples taken throughout the third quarter was 93,564 ug/m³ as summarized in **Table 10**.

Hydrocarbon removal calculations were based entirely on the analytical results and the average daily field-measured influent flow rates. The mass removal calculations assume that the samples collected throughout the third quarter are representative of hydrocarbon concentrations for the entire first quarter of 2015. This assumption is based on the fact that the same air sparge wells (AS-2 thru AS-12) and extraction wells (V-2 thru V-4) were online when the system was operational. Operations at this Cell will continue to be evaluated in the future to improve system recovery rates.

#### 1st Quarter 2015 Groundwater Monitoring

Groundwater samples were collected in March 2015 from the following wells (Figure 10):

- MW-CELL3-1 (downgradient of Cell 3),
- MW-CELL3-2 (upgradient of Cell 3),
- MW-CELL3-3 (upgradient of Cell 3), and
- CO30-PZM015 (downgradient of Cell 3).

The groundwater samples were submitted to Pace Analytical for the analyses shown in **Table 11**. These data indicate that benzene is the most prevalent VOC constituent. Since system startup on June 24, 2011, a generally inconclusive VOC concentration trend is documented, as illustrated in **Figure 11**. The VOC concentrations at MW-CELL3-3 (CO103-PZM) showed similar results from the previous quarter. The analysis conducted in the 3<sup>rd</sup> quarter of 2014 showed an unusually high concentration for this well. November 2014 and March 2015 results continue to more closely reflect the historical concentrations for MW-Cell3-3. This result and associated trends for these monitoring wells will continue to be monitored and assessed during system operation in future months.

### Cell 5: Dual Phase Extraction (DPE) System for the Shallow Zone, "Turning Basin" side of Former Coke Oven Area

Cell 5 consists of a dual phase (vapor and water) system (DPE) with a low profile air stripper followed by vapor phase granular activated carbon (VGAC) for removal and treatment of vapor and dissolved volatile hydrocarbons in the shallow groundwater zone. The system design plans were approved by US EPA in correspondence received on September 10, 2013 and began full scale operation in October 2014. **Figure 12** shows the system layout of Cell 5 and locations of the major design components including the dual phase recovery points, treatment system, groundwater injection wells and groundwater monitoring well locations.

The recovery and re-injection systems include the use of dual phase (soil vapor and groundwater) recovery wells and six groundwater re-injection wells. Twelve (12) recovery wells were installed along an approximate 500 feet long stretch downgradient of the most recent 10,000 ug/L isocontour line for naphthalene (between the naphthalene source area and the eastern shore line along the Turning Basin).

- 12 1.5-inch diameter DPE RWs @ approximately 42 ft spacing, C-C
  - o Installed to 15-17 ft bgs (to bottom of shallow slag)
  - o Bottom 2 ft of each RW screened with 20-slot screen
  - O Vapor recovery perforations located between 10-12 ft bgs
- Recovered GW and vapor Treatment
  - Enters MS knockout tank to separate air and water phases
  - o Water sent to low profile air stripper
  - o Off-gas sent to VGAC for capture
  - Treated groundwater pumped to six-6 inch diameter re-injection wells screened from 5 to 15 feet in depth for recirculation in shallow GW zone

#### 1<sup>st</sup> Quarter 2015 Operational Performance

The Cell 5 DPE system was evaluated with regard to: 1) the water levels measured in the various water bearing zones, and 2) the effectiveness of this system with respect to the mass of volatile hydrocarbons removed from groundwater.

#### **Groundwater Level Monitoring**

Groundwater-level measurements were manually measured in March 2015 for nine (9) groundwater wells that have been installed in the shallow groundwater zone to evaluate the Cell 5 system. A summary of the installation specifications of the wells has been included as

**Table 6**; water level measurements (depth to water and water elevation) are presented in **Table 12**. The locations of the monitoring wells are shown on **Figure 12**.

The groundwater elevation data are graphically presented as groundwater elevation contour maps in **Figure 13**. The shallow water bearing zone (water table) includes piezometers screened to depths of approximately 15-feet below ground surface. The data from March 2014 for the shallow groundwater zone are inconclusive as to the influence of the groundwater recovery points on the capture and movement of groundwater. Data from additional time periods will be required to confirm the presence of a capture zone for the shallow groundwater from this system. Some slight mounding may be present in the reinjection zone although additional data and monitoring appears to be required at this location as well.

#### **Evaluation of Pump and Treat System Effectiveness**

A total of 907,782 gallons of water were extracted from the Cell 5 Area dual phase extraction wells and treated during the first quarter of 2015. The average recovery rate for the DPE system was around 13,824 gpd. This system experienced some icing within some of the extraction lines during the quarter and was non-operational for several days. Improvements have since been put into place to prevent freezing issues.

Operations were in conformance with the manufacturer's specifications at all times that stripped hydrocarbons were discharged to the atmosphere in accordance with the March 24, 2014 permit-to-construct conditions as reflected in the Permit to Operate issued to Sparrows Point LLC on December 8, 2014.

A total of 50.8 pounds (lbs) of benzene, toluene and xylene compounds (btex) and naphthalene were removed and treated during the first quarter of 2015. This total is shown graphically in **Figure 3**. The following table presents data for influent and effluent (treated) groundwater.

|             |          |       |        |        |        |        |        |        | Quarter |
|-------------|----------|-------|--------|--------|--------|--------|--------|--------|---------|
| Field_ID    | Analysis | Units | 14-Jan | 20-Jan | 25-Feb | 28-Feb | 12-Mar | 24-Mar | Average |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| INFLUENT    | Benzene  | ug/L  | 400    | 600    | 360    | 490    | 460    | 440    | 458     |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| INFLUENT    | Toluene  | ug/L  | 210    | 650    | 220    | 290    | 290    | 280    | 323     |
| GWPT Cell 5 | Total    |       |        |        |        |        |        |        | 260     |
| INFLUENT    | Xylenes  | ug/L  | 190    | 280    | 180    | 250    | 330    | 330    | 260     |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| INFLUENT    | Naphth   | ug/L  | 5700   | 8200   | 6300   | 2900   | 6400   | 6300   | 5967    |
|             |          |       |        |        |        |        |        |        |         |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| EFFLUENT    | Benzene  | ug/L  | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| EFFLUENT    | Toluene  | ug/L  | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| GWPT Cell 5 | Total    |       |        |        |        |        |        |        |         |
| EFFLUENT    | Xylenes  | ug/L  | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| GWPT Cell 5 |          |       |        |        |        |        |        |        |         |
| EFFLUENT    | Naphth   | ug/L  | 230    | 320    | 580    | 85     | 470    | 500    | 364     |

The DPE system is removing volatile hydrocarbons from groundwater within the shallow water bearing zone at the current recovery rates. Improved performance is expected in the future as the system improves in operation.

#### 1<sup>st</sup> Quarter 2015 Groundwater Monitoring Results

Groundwater samples were collected in March 2015 from the following shallow zone monitoring wells; the well locations are shown on **Figure 12**.

- CO23- PZM008
- CO24-PZM007
- CO26-PZM007
- CO55-PZM000
- CO56-PZP001
- CO57-PZP002
- CO58-PZM001
- CO59-PZP002
- CO60-PZP001

The groundwater samples were submitted to Pace Analytical Services, Inc., located in Greensburg, Pennsylvania for the analyses shown in **Table 13**. These data indicate naphthalene is the most prevalent hydrocarbon constituent. The naphthalene concentrations for the 2014-

2015 sampling events are shown for the groundwater wells monitored for system performance as illustrated in **Figure 14A** and **14B**. **Figure 14A** presents shallow groundwater naphthalene concentration trends for wells presumed to be upgradient of the treatment system, **Figure 14B** presents shallow groundwater naphthalene concentrations for downgradient wells between the treatment system and the shoreline. **Figure 15** presents a plan view of the concentration of naphthalene in the shallow zone from analytical results from the March 2015 monitoring event. These wells will continue to be monitored to assess possible trends associated with operation of the interim measure in future quarters.

#### Cell 6: LNAPL Extraction at the Former Benzol Processing Area

The Cell 6 LNAPL monitoring and recovery system was monitored weekly during the first quarter of 2015. **Table 14** summarizes; 1) LNAPL occurrence and recovery observed in monitoring wells for this Cell during the reporting period, 2) the start date of extraction from recovery wells and 3) cumulative LNAPL recovered since the beginning of the interim measure. **Figure 16** illustrates the well locations. An estimated 212 gallons (1,550 pounds) of LNAPL were recovered during the first quarter 2015, bringing the total recovered LNAPL to 12,311 gallons (90,198 pounds) as of March 31, 2015. Additional skimmer pump systems were installed in wells BP-MW-10, BP-MW-11 and RW-3 in October 2014. Well BP-MW-10 did not produce measurable amounts of LNAPL. LNAPL was recovered from wells in the Cell 6 area as shown below.

The LNAPL was recovered from the following wells:

|             | Previous   | LNAPL Recovery (gal/lbs) |                               |  |  |
|-------------|------------|--------------------------|-------------------------------|--|--|
| Well        | Well       |                          | Total                         |  |  |
|             | Identifier | 1st Qtr 2015             | thru 1 <sup>st</sup> Qtr 2015 |  |  |
| CO99-PZMxxx | RW-04      | 26 / 191                 | 1,274/9336                    |  |  |
| CO89-PZMxxx | BP-MW-05   | 110/806                  | 8,998/65,930                  |  |  |
| CO92-PZMxxx | BP-MW-08   | 26/191                   | 1,326/9,710                   |  |  |
| CO95-PZMxxx | BP-MW-11   | 22/161                   | 655/4,798                     |  |  |
| CO97-PZMxxx | RW-02      | 0/0                      | 0.8/6                         |  |  |
| CO98-PZMxxx | RW-03      | 27.5/202                 | 55.8/409                      |  |  |
| CO96-PZMxxx | RW-01      | 0/0                      | 1.3/10                        |  |  |
|             | TOTAL      |                          |                               |  |  |

LNAPL thicknesses during the reporting period are summarized below (wells are not listed if LNAPL was not present):

- RW-04 (2.11 ft),
- BP-MW-05 (1.3 ft),
- BP-MW-08 (3.7 ft),
- BP-MW-11 (4.15 ft),
- RW-03 (1.3 ft),
- RW-01 (0.15 ft),
- RW-02 (0.07 ft),

No LNAPL was observed in wells RW-05, BP-MW-06, BP-MW-07, BP-MW-09, BP-MW-10 or CO19-PZM004. For all wells in which LNAPL accumulated, **Table 15** provides well-specific details concerning the measured depths to LNAPL, the water table, and calculated LNAPL thicknesses.

### **TABLES**

#### Table 1

#### **Summary of Operation Conditions**

#### Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

#### **Cell 1 First Quarter 2015 Estimated Hydrocarbon Recovery**

| Parameter                                               | Units       | Quantity |
|---------------------------------------------------------|-------------|----------|
| Total CATOX Operating Time (January 1 - March 31, 2015) | hours       | 408      |
| Overall CATOX Operational Time                          | %           | 18.5%    |
| Estimated Total Hydrocarbons Destroyed                  | pounds      | 3.866    |
| Estimated Hydrocarbon Removal Rate                      | pounds/hour | 0.00947  |

#### Cell 1 Cumulative Summary of Estimated Hydrocarbon Recovery

| Parameter                                                        | Units       | Quantity |
|------------------------------------------------------------------|-------------|----------|
| Total ICE/CATOX Operating Time (August 3, 2010 - March 31, 2015) | hours       | 21,888   |
| Overall CATOX Operational Time                                   | %           | 62.7%    |
| Estimated Total Hydrocarbons Destroyed                           | pounds      | 12,449   |
| Estimated Hydrocarbon Removal Rate                               | pounds/hour | 0.57     |

Table 2
Summary of Soil Gas Analytical Results (First Quarter 2015)
Cell 1: Prototype AS/SVE System in Former Benzol Processing Area
Former Coke Oven Area Interim Remedial Measures
Sparrows Point, LLC

|                             | Sample ID         | CATOX Influent |
|-----------------------------|-------------------|----------------|
|                             | Date              | Q1 2015        |
|                             | Time              |                |
|                             | Dilution Factor   |                |
| Analyte                     | Units             |                |
| TO-15 Volatile Organics     |                   |                |
| Acetone                     | ug/m <sup>3</sup> | 12             |
| Benzene                     | ug/m <sup>3</sup> | 29,700         |
| Bromoform                   | ug/m <sup>3</sup> | 0              |
| 2-Butanone (MEK)            | ug/m <sup>3</sup> | 3              |
| Carbon disulfide            | ug/m <sup>3</sup> | 0              |
| Carbon tetrachloride        | ug/m <sup>3</sup> | 0              |
| Chlorobenzene               | ug/m <sup>3</sup> | 0              |
| Chloroethane                | ug/m <sup>3</sup> | 0              |
| Chloroform                  | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethane          | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloroethane          | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethene          | ug/m <sup>3</sup> | 0              |
| trans-1,2-Dichloroethene    | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloropropane         | ug/m <sup>3</sup> | 0              |
| cis-1,3-Dichloropropene     | ug/m <sup>3</sup> | 0              |
| trans-1,3-Dichloropropene   | ug/m <sup>3</sup> | 0              |
| Ethylbenzene                | ug/m <sup>3</sup> | 28             |
| 2-Hexanone                  | ug/m <sup>3</sup> | 0              |
| Methylene Chloride          | ug/m <sup>3</sup> | 0              |
| 4-Methyl-2-pentanone (MIBK) | ug/m <sup>3</sup> | 0              |
| 1,1,2,2-Tetrachloroethane   | ug/m <sup>3</sup> | 0              |
| Tetrachloroethene           | ug/m <sup>3</sup> | 0              |
| Toluene                     | ug/m <sup>3</sup> | 1,635          |
| 1,1,1-Trichloroethane       | ug/m <sup>3</sup> | 0              |
| 1,1,2-Trichloroethane       | ug/m <sup>3</sup> | 0              |
| Trichloroethene             | ug/m <sup>3</sup> | 0              |
| Vinyl chloride              | ug/m <sup>3</sup> | 0              |
| m&p-Xylene                  | ug/m <sup>3</sup> | 975            |
| o-Xylene                    | ug/m <sup>3</sup> | 360            |
| Total Volatile Organics     | ug/m <sup>3</sup> | 32,712         |
|                             |                   | *              |

#### Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter)

 $\boldsymbol{BOLD} = Analyte\ detected$ 

ug/m<sup>3</sup> = micro grams per cubic meter

ND = Analyte not detected above laboratory reporting limit

#### Table 3

## Summary of Groundwater Analytical Results (First Quarter 2015) Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

| New Sample ID               | CO02-PZM006 | CO18-PZM006 | CO93-PZMxxx |           |
|-----------------------------|-------------|-------------|-------------|-----------|
| Former Sample ID            |             | CO02-PZM006 | CO18-PZM006 | BP-MW-09  |
| Date                        |             | 3/25/2015   | 3/25/2015   | 3/25/2015 |
| Analyte                     | Units       |             |             |           |
| Volatile Organics           |             |             |             |           |
| 1,1,1,2-Tetrachloroethane   | μg/L        | ND          | ND          | ND        |
| 1,1,1-Trichloroethane       | μg/L        | ND          | ND          | ND        |
| 1,1,2,2-Tetrachloroethane   | μg/L        | ND          | ND          | ND        |
| 1,1,2-Trichloroethane       | μg/L        | ND          | ND          | ND        |
| 1,1-Dichloroethane          | μg/L        | ND          | ND          | ND        |
| 1,1-Dichloroethene          | μg/L        | ND          | ND          | ND        |
| 1,2,3-Trichloropropane      | μg/L        | ND          | ND          | ND        |
| 1,2-Dibromo-3-chloropropane | μg/L        | ND          | ND          | ND        |
| 1,2-Dibromoethane (EDB)     | μg/L        | ND          | ND          | ND        |
| 1,2-Dichlorobenzene         | μg/L        | ND          | ND          | ND        |
| 1,2-Dichloroethane          | μg/L        | ND          | ND          | ND        |
| 1,2-Dichloropropane         | μg/L        | ND          | ND          | ND        |
| 1,4-Dichlorobenzene         | μg/L        | ND          | ND          | ND        |
| 2-Butanone (MEK)            | μg/L        | ND          | ND          | ND        |
| 2-Hexanone                  | μg/L        | ND          | ND          | ND        |
| 4-Methyl-2-pentanone (MIBK) | μg/L        | ND          | ND          | ND        |
| Acetone                     | μg/L        | ND          | 74.5        | ND        |
| Acrylonitrile               | μg/L        | ND          | ND          | ND        |
| Benzene                     | μg/L        | 170000      | 38300       | 236000    |
| Bromochloromethane          | μg/L        | ND          | ND          | ND        |
| Bromodichloromethane        | μg/L        | ND          | ND          | ND        |
| Bromoform                   | μg/L        | ND          | ND          | ND        |
| Bromomethane                | μg/L        | ND          | ND          | ND        |
| Carbon disulfide            | μg/L        | ND          | ND          | 9.5       |
| Carbon tetrachloride        | μg/L        | ND          | ND          | ND        |
| Chlorobenzene               | μg/L        | ND          | ND          | 16.2      |
| Chloroethane                | μg/L        | ND          | ND          | ND        |
| Chloroform                  | μg/L        | ND          | ND          | ND        |
| Chloromethane               | μg/L        | ND          | ND          | ND        |
| Dibromochloromethane        | μg/L        | ND          | ND          | ND        |
| Dibromomethane              | μg/L        | ND          | ND          | ND        |
| Ethylbenzene                | μg/L        | 394         | 10.6        | 2690      |
| Iodomethane                 | μg/L        | ND          | ND          | ND        |
| Methyl-tert-butyl ether     | μg/L        | ND          | ND          | ND        |
| Methylene Chloride          | μg/L        | ND          | ND          | ND        |
| Styrene                     | μg/L        | 22.8        | ND          | 1930      |
| Tetrachloroethene           | μg/L        | ND          | ND          | ND        |
| Toluene                     | μg/L        | 1540        | 560         | 49100     |
| Trichloroethene             | μg/L        | ND          | ND          | ND        |
| Trichlorofluoromethane      | μg/L        | ND          | ND          | ND        |
| Vinyl acetate               | μg/L        | ND          | ND          | ND        |
| Vinyl chloride              | μg/L        | ND          | ND          | ND        |
| Xylene (Total)              | μg/L        | 1840        | 592         | 34600     |
| cis-1,2-Dichloroethene      | μg/L        | ND          | ND          | ND        |
| cis-1,3-Dichloropropene     | μg/L        | ND          | ND          | ND        |
| trans-1,2-Dichloroethene    | μg/L        | ND          | ND          | ND        |
| trans-1,3-Dichloropropene   | μg/L        | ND          | ND          | ND        |
| trans-1,4-Dichloro-2-butene | μg/L        | ND          | ND          | ND        |
| Total Volatile Organics     | μg/L        | 173,797     | 39,537      | 324,346   |

| Semi-Volatiles |      |     |      |      |
|----------------|------|-----|------|------|
| Naphthalene    | μg/L | 599 | 78.4 | 5740 |

Notes:

Bold = Analyte Detected

 $ND = Analyte \ not \ detected \ above \ laboratory \ reporting \ limit$ 

 $\mu g/L = Micrograms \ per \ liter$ 

# Table 4 Summary of Operation Conditions Cell 2 AS/SVE System Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

#### **Cell 2 Fourth Quarter 2014 Estimated Hydrocarbon Recovery**

| Parameter                                               | Units       | Quantity |
|---------------------------------------------------------|-------------|----------|
| Total CATOX Operating Time (January 1 - March 31, 2015) | hours       | 1,584    |
| Overall CATOX Operational Time                          | %           | 71.7%    |
| Estimated Total Hydrocarbons Destroyed                  | pounds      | 50.40    |
| Estimated Hydrocarbon Removal Rate                      | pounds/hour | 0.032    |

#### **Cell 2 Cumulative Summary of Estimated Hydrocarbon Recovery**

| Parameter                                                         | Units       | Quantity |
|-------------------------------------------------------------------|-------------|----------|
| Total ICE/CATOX Operating Time (October 1, 2014 - March 31, 2015) | hours       | 3,432    |
| Overall CATOX Operational Time                                    | %           | 78.6%    |
| Estimated Total Hydrocarbons Destroyed                            | pounds      | 219.50   |
| Estimated Hydrocarbon Removal Rate                                | pounds/hour | 0.032    |

## Table 5 Summary of Soil Gas Analytical Results (First Quarter 2015) Cell 2 AS/SVE System

#### Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

|                                | Sample ID         | CATOX Influent |
|--------------------------------|-------------------|----------------|
|                                | Date              | Q1 2015        |
|                                | Time              |                |
|                                | Dilution Factor   |                |
| Analyte                        | Units             |                |
| TO-15 Volatile Organics        |                   |                |
| Acetone                        | ug/m <sup>3</sup> | 4              |
| Benzene                        | ug/m <sup>3</sup> | 40,863         |
| Bromoform                      | ug/m <sup>3</sup> | 0              |
| 2-Butanone (MEK)               | ug/m <sup>3</sup> | 0              |
| Carbon disulfide               | ug/m <sup>3</sup> | 7              |
| Carbon tetrachloride           | ug/m <sup>3</sup> | 0              |
| Chlorobenzene                  | ug/m <sup>3</sup> | 0              |
| Chloroethane                   | ug/m <sup>3</sup> | 0              |
| Chloroform                     | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethane             | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloroethane             | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethene             | ug/m <sup>3</sup> | 0              |
| trans-1,2-Dichloroethene       | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloropropane            | ug/m <sup>3</sup> | 0              |
| cis-1,3-Dichloropropene        | ug/m <sup>3</sup> | 0              |
| trans-1,3-Dichloropropene      | ug/m <sup>3</sup> | 0              |
| Ethylbenzene                   | ug/m <sup>3</sup> | 626            |
| 2-Hexanone                     | ug/m <sup>3</sup> | 1              |
| Methylene Chloride             | ug/m <sup>3</sup> | 2              |
| 4-Methyl-2-pentanone (MIBK)    | ug/m <sup>3</sup> | 0              |
| 1,1,2,2-Tetrachloroethane      | ug/m <sup>3</sup> | 2              |
| Tetrachloroethene              | ug/m <sup>3</sup> | 0              |
| Toluene                        | ug/m <sup>3</sup> | 10,553         |
| 1,1,1-Trichloroethane          | ug/m <sup>3</sup> | 0              |
| 1,1,2-Trichloroethane          | ug/m <sup>3</sup> | 0              |
| Trichloroethene                | ug/m <sup>3</sup> | 0              |
| Vinyl chloride                 | ug/m <sup>3</sup> | 0              |
| m&p-Xylene                     | ug/m <sup>3</sup> | 3,280          |
| o-Xylene                       | ug/m <sup>3</sup> | 1,295          |
| <b>Total Volatile Organics</b> | ug/m <sup>3</sup> | 56,634         |

#### Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter)

 $\boldsymbol{BOLD} = Analyte\ detected$ 

ug/m<sup>3</sup> = micro grams per cubic meter

ND = Analyte not detected above laboratory reporting limit

Table 6
Cell 2 and Cell 5 Monitoring Well Data

| Location<br>Designation | Monitoring Well Designation | Monitoring Well Temporary<br>Identification | Installation Method Date Insta | led Well Use                         | Northing  | Easting    | Top of Casing<br>Elevation | Protective<br>Cover Type | Well Total<br>Depth |       | Screen<br>Length | Filter Pack<br>Interval | Seal<br>Interval | Grout<br>Interval |
|-------------------------|-----------------------------|---------------------------------------------|--------------------------------|--------------------------------------|-----------|------------|----------------------------|--------------------------|---------------------|-------|------------------|-------------------------|------------------|-------------------|
| CO36                    | CO36-PZM008                 | Cell 2 - MW1 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563212.31 | 1454571.76 | 6.94                       | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO30                    | CO36-PZM043                 | Cell 2 - MW8 (I)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563214.49 | 1454578.37 | 6.92                       | Steel Riser              | 50.00               | 30.00 | 20.00            | 28-50                   | 27-28            | 0-27              |
| CO37                    | CO37-PZM003                 | Cell 2 - MW2 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563268.52 | 1455158.69 | 12.34                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO37                    | CO37-PZM038                 | Cell 2 - MW9 (I)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563268.50 | 1455154.68 | 12.12                      | Steel Riser              | 50.00               | 30.00 | 20.00            | 28-50                   | 27-28            | 0-27              |
| CO38                    | CO38-PZM006                 | Cell 2 - MW3 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563078.80 | 1454743.79 | 6.75                       | Steel Riser              | 13.00               | 3.00  | 10.00            | 2-13                    | 1-2              | 0-1               |
| CO36                    | CO38-PZM043                 | Cell 2 - MW10 (I)                           | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563078.33 | 1454737.75 | 6.65                       | Steel Riser              | 50.00               | 30.00 | 20.00            | 28-50                   | 27-28            | 0-27              |
| CO39                    | CO39-PZM007                 | Cell 2 - MW4 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563141.66 | 1455095.70 | 7.75                       | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO39                    | CO39-PZM042                 | Cell 2 - MW11 (I)                           | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563140.07 | 1455089.80 | 7.91                       | Steel Riser              | 50.00               | 30.00 | 20.00            | 28-50                   | 27-28            | 0-27              |
| CO40                    | CO40-PZM008                 | Cell 2 - MW5 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563039.41 | 1455081.70 | 7.47                       | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO41                    | CO41-PZM001                 | Cell 2 - MW6 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 562873.18 | 1454953.00 | 13.57                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO41                    | CO41-PZM036                 | Cell 2 - MW12 (I)                           | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 562865.34 | 1454950.75 | 13.6                       | Steel Riser              | 50.00               | 30.00 | 20.00            | 28-50                   | 27-28            | 0-27              |
| CO42                    | CO42-PZM004                 | Cell 2 - MW7 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 563177.72 | 1455458.51 | 10.83                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO43                    | CO43-PZM048                 | Cell 2 - GW Extraction Well 1               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563202.59 | 1454621.23 | 1.96                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO44                    | CO44-PZM048                 | Cell 2 - GW Extraction Well 2               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563206.63 | 1454719.44 | 1.73                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO45                    | CO45-PZM047                 | Cell 2 - GW Extraction Well 3               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563218.62 | 1454818.73 | 2.68                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO46                    | CO46-PZM047                 | Cell 2 - GW Extraction Well 4               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563226.70 | 1454918.44 | 3.08                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO47                    | CO47-PZM046                 | Cell 2 - GW Extraction Well 5               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563234.85 | 1455018.95 | 3.85                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO48                    | CO48-PZM044                 | Cell 2 - GW Extraction Well 6               | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater Extraction           | 563243.86 | 1455117.45 | 5.55                       | Steel Riser              | 50.00               | 35.00 | 15.00            | 33-50                   | 32-33            | 0-32              |
| CO49                    | CO49-PZM                    | Cell 2 - RIW 1                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563045.26 | 1455174.13 | 6.52                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO50                    | CO50-PZM                    | Cell 2 - RIW 2                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563049.45 | 1455224.48 | 7.71                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO51                    | CO51-PZM                    | Cell 2 - RIW 3                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563056.05 | 1455281.11 | 7.58                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO52                    | CO52-PZM                    | Cell 2 - RIW 4                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563066.70 | 1455325.29 | 7.92                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO53                    | CO53-PZM                    | Cell 2 - RIW 5                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563078.31 | 1455365.17 | 7.77                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO54                    | CO54-PZM                    | Cell 2 - RIW 6                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 563103.41 | 1455423.30 | 7.84                       | Steel Riser              |                     |       |                  |                         |                  |                   |
| CO55                    | CO55-PZM000                 | Cell 5 - MW1 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 561434.42 | 1457585.90 | 15.1                       | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO56                    | CO56-PZP001                 | Cell 5 - MW2 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 561668.41 | 1457790.05 | 15.92                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO57                    | CO57-PZP002                 | Cell 5 - MW3 (S)                            | Hollow Stem Auger 3/2014 - 5/  | Monitoring Well                      | 561122.52 | 1457530.00 | 16.59                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO58                    | CO58-PZM001                 | Cell 5 - MW4 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 561331.31 | 1457989.13 | 14.31                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO59                    | CO59-PZP002                 | Cell 5 - MW5 (S)                            | Hollow Stem Auger 3/2014 - 5/  | 014 Monitoring Well                  | 561446.98 | 1457308.79 | 16.75                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO60                    | CO60-PZP001                 | Cell 5 - MW6 (S)                            | Hollow Stem Auger 3/2014 - 5/  | <u> </u>                             | 561872.55 | 1457913.36 | 15.83                      | Steel Riser              | 15.00               | 5.00  | 10.00            | 3-15                    | 2-3              | 0-2               |
| CO61                    | CO61-PZM007                 | Cell 5 - DPE Well 1                         | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater and Vapor Extraction | 561330.96 | 1457592.28 | 10.26                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO62                    | CO62-PZM007                 | Cell 5 - DPE Well 2                         | ŭ                              | 014 Groundwater and Vapor Extraction |           | 1457625.28 | 9.66                       | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO63                    | CO63-PZM007                 | Cell 5 - DPE Well 3                         | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater and Vapor Extraction | 561382.08 | 1457657.57 | 10.29                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO64                    | CO64-PZM006                 | Cell 5 - DPE Well 4                         | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater and Vapor Extraction | 561407.02 | 1457691.78 | 11.16                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO65                    | CO65-PZM005                 | Cell 5 - DPE Well 5                         |                                | 014 Groundwater and Vapor Extraction |           | 1457724.23 | 11.6                       | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO66                    | CO66-PZM005                 | Cell 5 - DPE Well 6                         | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater and Vapor Extraction | 561458.25 | 1457755.59 | 11.57                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO67                    | CO67-PZM006                 | Cell 5 - DPE Well 7                         |                                | 014 Groundwater and Vapor Extraction |           | 1457809.88 | 11.2                       | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO68                    | CO68-PZM005                 | Cell 5 - DPE Well 8                         | ĕ                              | 014 Groundwater and Vapor Extraction |           | 1457830.32 | 12.03                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO69                    | CO69-PZM005                 | Cell 5 - DPE Well 9                         |                                | 014 Groundwater and Vapor Extraction |           | 1457852.16 | 11.92                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO70                    | CO70-PZM005                 | Cell 5 - DPE Well 10                        |                                | 014 Groundwater and Vapor Extraction |           | 1457867.42 | 12.28                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO71                    | CO71-PZM006                 | Cell 5 - DPE Well 11                        | Hollow Stem Auger 3/2014 - 5/  | 014 Groundwater and Vapor Extraction | 561654.51 | 1457886.12 | 11.33                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO72                    | CO72-PZM005                 | Cell 5 - DPE Well 12                        |                                | 014 Groundwater and Vapor Extraction | 561694.20 | 1457904.22 | 11.96                      | Steel Riser              | 17.00               | 15.00 | 2.00             | 13-17                   | 12-13            | 4-12              |
| CO73                    | CO73-PZM007                 | Cell 5 - RIW 1                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 561813.02 | 1457253.88 | 11.03                      | Steel Riser              | 18.00               | 3.00  | 15.00            | 2-18                    | 1-2              | 0-1               |
| CO74                    | CO74-PZM007                 | Cell 5 - RIW 2                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 561830.95 | 1457262.00 | 10.84                      | Steel Riser              | 18.00               | 3.00  | 15.00            | 2-18                    | 1-2              | 0-1               |
| CO75                    | CO75-PZM006                 | Cell 5 - RIW 3                              | Hollow Stem Auger 3/2014 - 5/  |                                      | 561831.95 | 1457277.07 | 10.07                      | Steel Riser              | 16.00               | 6.00  | 10.00            | 5-16                    | 4-5              | 0-4               |
| CO76                    | CO76-PZM006                 | Cell 5 - RIW 4                              | Hollow Stem Auger 3/2014 - 5/  |                                      | 561838.34 | 1457290.97 | 10.09                      | Steel Riser              | 16.00               | 6.00  | 10.00            | 5-16                    | 4-5              | 0-4               |
| CO77                    | CO77-PZM006                 | Cell 5 - RIW 5                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 561840.78 | 1457353.41 | 10.39                      | Steel Riser              | 16.00               | 6.00  | 10.00            | 5-16                    | 4-5              | 0-4               |
| CO78                    | CO78-PZM006                 | Cell 5 - RIW 6                              | Hollow Stem Auger 3/2014 - 5/  | 014 Reinjection Well                 | 561835.90 | 1457409.46 | 9.89                       | Steel Riser              | 16.00               | 6.00  | 10.00            | 5-16                    | 4-5              | 0-4               |

Table 7 Cell 2 **Monitoring Well Groundwater Elevations** 

|             |                               |                              |         | Well Depth                  | 3/12/                           | 2015                          |
|-------------|-------------------------------|------------------------------|---------|-----------------------------|---------------------------------|-------------------------------|
| Well ID     | Temporary Well ID             | Top of PVC<br>Elevation (ft) | Aquifer | from Ground<br>Surface (ft) | Depth to<br>Groundwater<br>(ft) | Groundwater<br>Elevation (ft) |
| CO27-PZM012 |                               | 5.12                         | S       | 17.00                       | 4.85                            | 0.27                          |
| CO27-PZM046 |                               | 5.17                         | I       | 51.00                       | 8.25                            | -3.08                         |
| CO36-PZM008 | Cell 2 - MW1 (S)              | 6.94                         | S       | 15.00                       | 7.21                            | -0.27                         |
| CO36-PZM043 | Cell 2 - MW8 (I)              | 6.92                         | I       | 50.00                       | 8.21                            | -1.29                         |
| CO37-PZM003 | Cell 2 - MW2 (S)              | 12.34                        | S       | 15.00                       |                                 | NM                            |
| CO37-PZM038 | Cell 2 - MW9 (I)              | 12.12                        | I       | 50.00                       | 12.51                           | -0.39                         |
| CO38-PZM006 | Cell 2 - MW3 (S)              | 6.75                         | S       | 13.00                       | 6.55                            | 0.20                          |
| CO38-PZM043 | Cell 2 - MW10 (I)             | 6.65                         | I       | 50.00                       | 7.65                            | -1.00                         |
| CO39-PZM007 | Cell 2 - MW4 (S)              | 7.75                         | S       | 15.00                       | 5.58                            | 2.17                          |
| CO39-PZM042 | Cell 2 - MW11 (I)             | 7.91                         | I       | 50.00                       | 8.94                            | -1.03                         |
| CO40-PZM008 | Cell 2 - MW5 (S)              | 7.47                         | S       | 15.00                       | 6.38                            | 1.09                          |
| CO41-PZM001 | Cell 2 - MW6 (S)              | 13.57                        | S       | 15.00                       | 12.56                           | 1.01                          |
| CO41-PZM036 | Cell 2 - MW12 (I)             | 13.6                         | I       | 50.00                       | 14.22                           | -0.62                         |
| CO42-PZM004 | Cell 2 - MW7 (S)              | 10.83                        | S       | 15.00                       | 6.53                            | 4.30                          |
| CO43-PZM048 | Cell 2 - GW Extraction Well 1 | 1.96                         | I       | 50.00                       | NM                              | NM                            |
| CO44-PZM048 | Cell 2 - GW Extraction Well 2 | 1.73                         | I       | 50.00                       | NM                              | NM                            |
| CO45-PZM047 | Cell 2 - GW Extraction Well 3 | 2.68                         | I       | 50.00                       | NM                              | NM                            |
| CO46-PZM047 | Cell 2 - GW Extraction Well 4 | 3.08                         | I       | 50.00                       | NM                              | NM                            |
| CO47-PZM046 | Cell 2 - GW Extraction Well 5 | 3.85                         | I       | 50.00                       | NM                              | NM                            |
| CO48-PZM044 | Cell 2 - GW Extraction Well 6 | 5.55                         | I       | 50.00                       | NM                              | NM                            |

#### Notes

$$\begin{split} I &= Intermediate \ depth \ wells \ S = Water \ table \ well \\ NA &= No \ survey \ available \end{split}$$

NM = Not Measured

# Table 8 Summary of Groundwater Analytical Results (First Quarter 2015) Cell 2 Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

| New Sample ID                                            |              | CO27-PZM012 | CO27-PZM046 | CO36-PZM008    | CO36-PZM043   | CO37-PZM038   | CO37-PZM003   | CO38-PZM043    | CO38-PZM006   | CO39-PZM007   | CO39-PZM042    | CO40-PZM008   | CO41-PZM001   | CO41-PZM036    | CO42-PZM004   |
|----------------------------------------------------------|--------------|-------------|-------------|----------------|---------------|---------------|---------------|----------------|---------------|---------------|----------------|---------------|---------------|----------------|---------------|
| Former Sample ID                                         |              | CO27-PZM012 | CO27-PZM046 | Cell 2-MW1 (S) | Cell2-MW8 (I) | Cell2-MW9 (I) | Cell2-MW2 (S) | Cell2-MW10 (I) | Cell2-MW3 (S) | Cell2-MW4 (S) | Cell2-MW11 (I) | Cell2-MW5 (S) | Cell2-MW6 (S) | Cell2-MW12 (I) | Cell2-MW7 (S) |
| Date                                                     | 1            | 3/12/2015   | 3/12/2015   | 3/12/2015      | 3/12/2015     | 3/12/2015     | NS            | 3/12/2015      | 3/12/2015     | 3/13/2015     | 3/13/2015      | 3/13/2015     | 3/13/2015     | 3/13/2015      | 3/13/2015     |
| Analyte                                                  | Units        |             |             |                |               |               |               |                |               |               |                |               |               |                | <u> </u>      |
| Volatile Organics                                        | 1            |             | T           | · 1            | <u> </u>      | T             |               |                | <u> </u>      | T             |                | T             | 1             | T              |               |
| 1,1,1,2-Tetrachloroethane                                | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,1,1-Trichloroethane                                    | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,1,2,2-Tetrachloroethane                                | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,1,2-Trichloroethane                                    | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,1-Dichloroethane                                       | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,1-Dichloroethene                                       | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2,3-Trichloropropane                                   | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2-Dibromo-3-chloropropane                              | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2-Dibromoethane (EDB)                                  | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2-Dichlorobenzene                                      | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2-Dichloroethane                                       | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,2-Dichloropropane                                      | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 1,4-Dichlorobenzene                                      | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 2-Butanone (MEK)                                         | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 2-Hexanone                                               | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| 4-Methyl-2-pentanone (MIBK)                              | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Acetone                                                  | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Acrylonitrile                                            | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Benzene                                                  | μg/L         | 8280        | 403000      | 30200          | 41500         | 32800         | NS            | 10.3           | 16500         | 424           | 41700          | 8910          | 98600         | 428000         | 1390          |
| Bromochloromethane                                       | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Bromodichloromethane                                     | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Bromoform                                                | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Bromomethane                                             | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Carbon disulfide                                         | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Carbon tetrachloride                                     | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Chlorobenzene                                            | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Chloroethane                                             | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Chloroform                                               | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Chloromethane                                            | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Dibromochloromethane                                     | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Dibromomethane                                           | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Ethylbenzene                                             | μg/L         | 73.2        | 853         | 72.1           | 104           | 346           | NS            | 8.2            | 123           | 2.7           | 340            | 87.7          | 1010          | 1210           | 218           |
| Iodomethane                                              | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Methyl-tert-butyl ether                                  | μg/L<br>μg/L | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Methylene Chloride                                       | μg/L         | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Styrene                                                  | μg/L         | 47.4        | 216         | 14.2           | 20.6          | 585           | NS            | ND             | 126           | 1.2           | 552            | 128           | 95.5          | 328            | 201           |
| Tetrachloroethene                                        | μg/L         | ND          | ND ND       | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Toluene                                                  | μg/L         | 1920        | 56800       | 5960           | 7950          | 15000         | NS            | 2.2            | 3610          | 38.6          | 15700          | 2930          | 45700         | 141000         | 3020          |
| Trichloroethene                                          | μg/L<br>μg/L | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Trichlorofluoromethane                                   | μg/L<br>μg/L | ND          | ND<br>ND    | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Vinyl acetate                                            | μg/L<br>μg/L | ND          | ND          | ND             | ND            | ND            | NS            | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| Vinyl chloride                                           | μg/L<br>μg/L | ND<br>ND    | ND          | ND             | ND            | ND            | NS<br>NS      | ND             | ND            | ND<br>ND      | ND             | ND            | ND            | ND             | ND            |
| Xylene (Total)                                           | μg/L<br>μg/L | 661         | 13400       | 1460           | 1770          | 2880          | NS            | 3              | 961           | 18.4          | 2820           | 901           | 16400         | 27700          | 2160          |
| cis-1,2-Dichloroethene                                   | μg/L<br>μg/L | ND          | ND          | ND             | ND            | ND            | NS<br>NS      | ND             | ND            | ND            | ND             | ND            | ND            | ND             | ND            |
| cis-1,3-Dichloropropene                                  | μg/L<br>μg/L | ND<br>ND    | ND<br>ND    | ND<br>ND       | ND<br>ND      | ND<br>ND      | NS<br>NS      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      |
| trans-1,2-Dichloroethene                                 | μg/L<br>μg/L | ND<br>ND    | ND<br>ND    | ND<br>ND       | ND<br>ND      | ND<br>ND      | NS<br>NS      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      |
| -                                                        |              | ND<br>ND    | ND<br>ND    | ND<br>ND       | ND<br>ND      | ND<br>ND      | NS<br>NS      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      |
| trans-1,3-Dichloropropene<br>trans-1,4-Dichloro-2-butene | μg/L         | ND<br>ND    | ND<br>ND    | ND<br>ND       | ND<br>ND      | ND<br>ND      | NS<br>NS      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND      | ND<br>ND       | ND<br>ND      |
| Total Volatile Organics                                  | μg/L         | 10982       | 474269      | 37706          | 51345         | 51611         | 0             |                | 21320         | 485           | 61112          | 12957         | 161806        | 598238         | 6989          |
| Total volume Organics                                    | μg/L         | 10982       | 4/4/09      | 37/00          | 51345         | 51011         | U             | 24             | 41340         | 465           | 01112          | 1295/         | 101800        | 378438         | 0789          |

Note

Semi-Volatiles
Naphthalene

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

μg/L

NS

 $\mu g/L = Micrograms \ per \ liter$ 

#### Table 9

# Summary of Operation Conditions Cell 3: AS/SVE System in the "Cove" Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

#### Cell 3 First Quarter 2015 Estimated Hydrocarbon Recovery

| Parameter                                               | Units       | Quantity |
|---------------------------------------------------------|-------------|----------|
| Total CATOX Operating Time (January 1 - March 31, 2015) | hours       | 384      |
| Overall CATOX Operational Time                          | %           | 17.8%    |
| Estimated Total Hydrocarbons Destroyed                  | pounds      | 18.839   |
| Estimated Hydrocarbon Removal Rate                      | pounds/hour | 0.049060 |

#### Cell 3 Cumulative Summary of Estimated Hydrocarbon Recovery

| Parameter                                                     | Units       | Quantity |
|---------------------------------------------------------------|-------------|----------|
| Total ICE/CATOX Operating Time (August 3, 2010 - March, 2015) | hours       | 16,415   |
| Overall CATOX Operational Time                                | %           | 70.3%    |
| Estimated Total Hydrocarbons Destroyed                        | pounds      | 1,463.8  |
| Estimated Hydrocarbon Removal Rate                            | pounds/hour | 0.09     |

#### Table 10 Summary of Soil Gas Analytical Results (First Quarter 2015) Cell 3: AS/SVE System in the "Cove" Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

|                             | g ,I              | CATIONA        |
|-----------------------------|-------------------|----------------|
|                             | Sample ID         | CATOX Influent |
|                             | Date              | Q1 2015        |
|                             | Time              |                |
|                             | Dilution Factor   |                |
| Analyte                     | Units             |                |
| TO-15 Volatile Organics     | 2                 |                |
| Acetone                     | ug/m <sup>3</sup> | 34             |
| Benzene                     | ug/m³             | 79,750         |
| Bromoform                   | ug/m <sup>3</sup> | 0              |
| 2-Butanone (MEK)            | ug/m <sup>3</sup> | 5              |
| Carbon disulfide            | ug/m <sup>3</sup> | 7              |
| Carbon tetrachloride        | ug/m <sup>3</sup> | 0              |
| Chlorobenzene               | ug/m <sup>3</sup> | 0              |
| Chloroethane                | ug/m <sup>3</sup> | 0              |
| Chloroform                  | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethane          | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloroethane          | ug/m <sup>3</sup> | 0              |
| 1,1-Dichloroethene          | ug/m <sup>3</sup> | 0              |
| trans-1,2-Dichloroethene    | ug/m <sup>3</sup> | 0              |
| 1,2-Dichloropropane         | ug/m <sup>3</sup> | 0              |
| cis-1,3-Dichloropropene     | ug/m <sup>3</sup> | 0              |
| trans-1,3-Dichloropropene   | ug/m <sup>3</sup> | 0              |
| Ethylbenzene                | ug/m <sup>3</sup> | 86             |
| 2-Hexanone                  | ug/m <sup>3</sup> | 0              |
| Methylene Chloride          | ug/m <sup>3</sup> | 0              |
| 4-Methyl-2-pentanone (MIBK) | ug/m <sup>3</sup> | 0              |
| 1,1,2,2-Tetrachloroethane   | ug/m <sup>3</sup> | 0              |
| Tetrachloroethene           | ug/m <sup>3</sup> | 0              |
| Toluene                     | ug/m <sup>3</sup> | 11,030         |
| 1,1,1-Trichloroethane       | ug/m <sup>3</sup> | 0              |
| 1,1,2-Trichloroethane       | ug/m <sup>3</sup> | 0              |
| Trichloroethene             | ug/m <sup>3</sup> | 0              |
| Vinyl chloride              | ug/m <sup>3</sup> | 0              |
| m&p-Xylene                  | ug/m <sup>3</sup> | 1,790          |
| o-Xylene                    | ug/m <sup>3</sup> | 863            |
| Total Volatile Organics     | ug/m <sup>3</sup> | 93,564         |
| Na4aa.                      |                   |                |

#### Notes:

VOC concentrations are averages derived from the 3 monthly influent air samples taken during the quarter (one sample taken each month of the quarter)

 $\boldsymbol{BOLD} = Analyte\ detected$ 

ug/m<sup>3</sup> = micro grams per cubic meter

ND = Analyte not detected above laboratory reporting limit

#### Table 11 Summary of Groundwater Analytical Results (First Quarter 2015)

### Cell 3: Prototype AS/SVE System in the "Cove" Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

| New Sample ID               |              | CO30-PZM015 | CO30-PZM060 | CO101-PZM   | CO102-PZM   | CO103-PZM   | CO104-PZM   |
|-----------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Former Sample ID            |              | CO30-PZM015 | CO30-PZM060 | MW-CELL 3-1 | MW-CELL 3-2 | MW-CELL 3-3 | MW-CELL 3-4 |
| Date                        |              | 3/16/2015   | 3/16/2015   | 3/16/2015   | 3/16/2015   | 3/16/2015   | 3/16/2015   |
| Analyte                     | Units        |             |             |             |             |             |             |
| Volatile Organics           |              |             |             |             |             |             |             |
| 1,1,1,2-Tetrachloroethane   | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1,1-Trichloroethane       | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1,2,2-Tetrachloroethane   | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1,2-Trichloroethane       | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1-Dichloroethane          | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,1-Dichloroethene          | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2,3-Trichloropropane      | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dibromo-3-chloropropane | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dibromoethane (EDB)     | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1.2-Dichlorobenzene         | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dichloroethane          | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,2-Dichloropropane         | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 1,4-Dichlorobenzene         | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Butanone (MEK)            | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 2-Hexanone                  | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| 4-Methyl-2-pentanone (MIBK) | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Acetone (MIDIT)             | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Acrylonitrile               | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Benzene                     | μg/L         | 79500       | 10.8        | 2240        | 17200       | 47300       | 55.1        |
| Bromochloromethane          | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Bromodichloromethane        | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Bromoform                   | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Bromomethane                | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Carbon disulfide            | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Carbon tetrachloride        | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Chlorobenzene               | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Chloroethane                | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Chloroform                  | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Chloromethane               | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Dibromochloromethane        | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Dibromomethane              | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Ethylbenzene                | μg/L         | 96.8        | ND          | 18.6        | 22.5        | 80          | ND          |
| Iodomethane                 | μg/L         | ND          | ND          | ND          | ND ND       | ND          | ND          |
| Methyl-tert-butyl ether     | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Methylene Chloride          | μg/L         | ND          | ND          | ND          | ND          | ND          | ND          |
| Styrene                     | μg/L<br>μg/L | 24.4        | ND          | 6.3         | 5.7         | 14.6        | ND          |
| Tetrachloroethene           | μg/L<br>μg/L | ND ND       | ND          | ND          | ND          | ND          | ND          |
| Toluene                     | μg/L<br>μg/L | 5650        | 1.7         | 500         | 1100        | 3710        | 6.3         |
| Trichloroethene             | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Trichlorofluoromethane      | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Vinyl acetate               | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Vinyl chloride              | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| Xylene (Total)              | μg/L<br>μg/L | 1420        | ND          | 233         | 253         | 1340        | 3.3         |
| cis-1,2-Dichloroethene      | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| cis-1,3-Dichloropropene     | μg/L<br>μg/L | ND<br>ND    | ND          | ND          | ND          | ND          | ND          |
| trans-1,2-Dichloroethene    | μg/L<br>μg/L | ND<br>ND    | ND          | ND          | ND          | ND          | ND          |
| trans-1,3-Dichloropropene   | μg/L<br>μg/L | ND          | ND          | ND          | ND          | ND          | ND          |
| trans-1,4-Dichloro-2-butene | μg/L<br>μg/L | ND<br>ND    | ND          | ND          | ND          | ND          | ND          |
| Total Volatile Organics     | μg/L<br>μg/L | 86,691      | 13          | 2,998       | 18,581      | 52,445      | 65          |
| Total volatile Organics     | μg/L         | 00,091      | 13          | 4,770       | 10,501      | 34,443      | 05          |

| Semi-Volatiles |      |       |   |       |       |        |    |
|----------------|------|-------|---|-------|-------|--------|----|
| Naphthalene    | μg/L | 7,050 | 5 | 4,680 | 1,370 | 11,000 | 43 |

Notes:

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

 $\mu g/L = Micrograms \ per \ liter$ 

Table 12 Cell 5 **Monitoring Well Groundwater Elevations** 

|             |                      |                              |         |                             | 12/22                           | /2014                         | 1/16/                           | /2014                         | 3/17/                           | 2014                          |
|-------------|----------------------|------------------------------|---------|-----------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| Well ID     | Temporary Well<br>ID | Top of PVC<br>Elevation (ft) | Aquifer | Well Depth<br>from PVC (ft) | Depth to<br>Groundwater<br>(ft) | Groundwater<br>Elevation (ft) | Depth to<br>Groundwater<br>(ft) | Groundwater<br>Elevation (ft) | Depth to<br>Groundwater<br>(ft) | Groundwater<br>Elevation (ft) |
| CO23-PZM008 |                      | 15.76                        | S       | 19.00                       | 15.05                           | 0.71                          | 15.41                           | 0.35                          | 15                              | 0.76                          |
| CO24-PZM007 |                      | 15.95                        | S       | 19.00                       | 15.12                           | 0.83                          | 15.47                           | 0.48                          | 15.51                           | 0.44                          |
| CO26-PZM007 |                      | 14.89                        | S       | 20.00                       | 15.26                           | -0.37                         | 15.39                           | -0.5                          | 14.87                           | 0.02                          |
| CO55-PZM000 | Cell 5 - MW1 (S)     | 15.1                         | S       | 15.00                       | 14.55                           | 0.55                          | 14.95                           | 0.15                          | 14.53                           | 0.57                          |
| CO56-PZP001 | Cell 5 - MW2 (S)     | 15.92                        | S       | 15.00                       | 15.40                           | 0.52                          | 15.75                           | 0.17                          | 15.30                           | 0.62                          |
| CO57-PZP002 | Cell 5 - MW3 (S)     | 16.59                        | S       | 15.00                       | 15.42                           | 1.17                          | 15.33                           | 1.26                          | 14.65                           | 1.94                          |
| CO58-PZM001 | Cell 5 - MW4 (S)     | 14.31                        | S       | 15.00                       | 13.90                           | 0.41                          | 14.20                           | 0.11                          | 13.72                           | 0.59                          |
| CO59-PZP002 | Cell 5 - MW5 (S)     | 16.75                        | S       | 15.00                       | 16.15                           | 0.60                          | 16.54                           | 0.21                          | 16.07                           | 0.68                          |
| CO60-PZP001 | Cell 5 - MW6 (S)     | 15.83                        | S       | 15.00                       | 15.33                           | 0.50                          | 15.68                           | 0.15                          | 15.22                           | 0.61                          |

#### Notes

 $I = Intermediate \ depth \ wells \ S = Water \ table \ well \\ NA = No \ survey \ available$ 

NM = Not Measured

Table 13
Summary of Groundwater Analytical Results (First Quarter 2015)
Cell 5 DPE Groundwate Pump and Treat System
Former Coke Oven Area Interim Remedial Measures
Sparrows Point, LLC

| New Sample ID               |       | CO23-PZM008 | CO24-PZM007 | CO26-PZM007 | CO55-PZM000   | CO56-PZP001   | CO57-PZP002   | CO58-PZM001   | CO59-PZP002   | CO60-PZP001   |
|-----------------------------|-------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Former Sample ID            |       | CO23-PZM008 | CO24-PZM007 | CO26-PZM007 | Cell5-MW1 (S) | Cell5-MW2 (S) | Cell5-MW3 (S) | Cell5-MW4 (S) | Cell5-MW5 (S) | Cell5-MW6 (S) |
| Date                        |       | 3/17/2015   | 3/17/2015   | 3/17/2015   | 3/17/2015     | 3/17/2015     | 3/17/2015     | 3/17/2015     | 3/17/2015     | 3/17/2015     |
| Time                        |       | 16:03       | 10:52       | 15:05       | 12:00         | 14:25         | 13:19         | 13:46         | 15:06         | 14:25         |
| Analyte                     | Units |             |             |             |               |               |               |               |               |               |
| Volatile Organics           | 1 7   | 1770        | 1770        | 1775        | 710           | 1770          | 1770          | 1770          | 170           |               |
| 1,1,1,2-Tetrachloroethane   | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1,1-Trichloroethane       | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1,2,2-Tetrachloroethane   | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1,2-Trichloroethane       | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethane          | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,1-Dichloroethene          | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2,3-Trichloropropane      | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dibromo-3-chloropropane | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dibromoethane (EDB)     | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dichlorobenzene         | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dichloroethane          | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,2-Dichloropropane         | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 1,4-Dichlorobenzene         | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 2-Butanone (MEK)            | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 2-Hexanone                  | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| 4-Methyl-2-pentanone (MIBK) | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Acetone                     | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Acrylonitrile               | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Benzene                     | μg/L  | 2900        | 4.9         | ND          | 18.1          | 549           | ND            | 220           | 106           | 500           |
| Bromochloromethane          | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Bromodichloromethane        | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Bromoform                   | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Bromomethane                | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Carbon disulfide            | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Carbon tetrachloride        | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Chlorobenzene               | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Chloroethane                | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Chloroform                  | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Chloromethane               | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Dibromochloromethane        | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Dibromomethane              | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Ethylbenzene                | μg/L  | ND          | 7           | ND          | ND            | 20.4          | ND            | 11.1          | 5.8           | 11.5          |
| Iodomethane                 | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Methyl-tert-butyl ether     | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Methylene Chloride          | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Styrene                     | μg/L  | ND          | ND          | ND          | ND            | 81.8          | ND            | 21.6          | 4.3           | 74.2          |
| Tetrachloroethene           | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Toluene                     | μg/L  | 1100        | 4.4         | ND          | 10.1          | 345           | 1.1           | 68.2          | 62.7          | 202           |
| Trichloroethene             | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Trichlorofluoromethane      | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Vinyl acetate               | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Vinyl chloride              | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Xylene (Total)              | μg/L  | 950         | 16.6        | ND          | 7.4           | 401           | ND            | 190           | 92.4          | 270           |
| cis-1,2-Dichloroethene      | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| cis-1,3-Dichloropropene     | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| trans-1,2-Dichloroethene    | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| trans-1,3-Dichloropropene   | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| trans-1,4-Dichloro-2-butene | μg/L  | ND          | ND          | ND          | ND            | ND            | ND            | ND            | ND            | ND            |
| Semi-Volatiles              |       |             |             |             |               |               |               |               |               |               |
| Naphthalene                 | μg/L  | 6,300       | 3,090       | 3.8         | 78            | 8,140         | ND            | 1,750         | 451           | 7,640         |
| Total Volatile Organics     | μg/L  | 11,250      | 3,123       | 3.8         | 113           | 9,537         | 1             | 2,261         | 722           | 8,698         |

Note

Bold = Analyte Detected

ND = Analyte not detected above laboratory reporting limit

 $\mu g/L = Micrograms \ per \ liter$ 

### Table 14 LNAPL Occurrence and Recovery

#### Cell 6: LNAPL Recovery System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures

#### **Sparrows Point, LLC**

| Well ID      | Former Well ID | LNAPL Occurrence<br>During First Quarter | Total LNAPL 1 | tal LNAPL Recovery Period |        | Fotal LNAPL<br>vered | Estimate LNAPL Recovered<br>During First Quarter 2015 |           |
|--------------|----------------|------------------------------------------|---------------|---------------------------|--------|----------------------|-------------------------------------------------------|-----------|
|              |                | 2015 (ft)                                | Begin         | End                       | (gal)  | (lbs) (a)            | (gal)                                                 | (lbs) (a) |
| CO99-PZMxxx  | RW-04          | 2.11                                     | 23-Jul-10     | On-going (b)              | 1,274  | 9,336                | 26                                                    | 191       |
| CO89-PZMxxx  | BP-MW-05       | 1.3                                      | 28-Jan-10     | On-going (b)              | 8,998  | 65,930               | 110                                                   | 806       |
| CO92-PZMxxx  | BP-MW-08       | 3.7                                      | 8-Sep-10      | On-going (b)              | 1,326  | 9,710                | 26                                                    | 191       |
| CO95-PZMxxx  | BP-MW-11       | 4.15                                     | 23-Jul-10     | On-going (b)              | 655    | 4,798                | 22                                                    | 161       |
| CO97-PZMxxx  | RW-02          | 0.07                                     | 28-Jan-11     | On-going (c)              | 0.8    | 6                    | 0                                                     | 0         |
| CO98-PZMxxx  | RW-03          | 1.3                                      | 24-Nov-10     | On-going (c)              | 55.8   | 409                  | 27.5                                                  | 202       |
| CO96-PZMxxx  | RW-01          | 0.15                                     | 28-Oct-11     | On-going (c)              | 1.3    | 10                   | 0                                                     | 0         |
| CO94-PZMxxx  | BP-MW-10       | 0                                        | na            | na                        | 0      | 0                    | 0                                                     | 0         |
| CO91-PZMxxx  | BP-MW-07       | 0                                        | na            | na                        | 0      | 0                    | 0                                                     | 0         |
| CO90-PZMxxx  | BP-MW-06       | none                                     | na            | na                        | 0      | 0                    | 0                                                     | 0         |
| CO100-PZMxxx | RW-05          | none                                     | na            | na                        | 0      | 0                    | 0                                                     | 0         |
| CO93-PZMxxx  | BP-MW-09       | none                                     | na            | na                        | 0      | 0                    | 0                                                     | 0         |
| CO19-PZM004  | CO19-PZM004    | none                                     | na            | na                        | 0      | 0                    | 0                                                     | 0         |
|              |                |                                          |               | Total Recovery:           | 12,311 | 90,198               | 212                                                   | 1,550     |

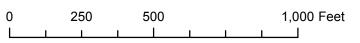
#### Notes:

- (a) Weight is calculated based on average BP-MW-05 and BP-MW-08 oil density of 0.878 grams per cubic centimeter, measured by EA (2009) by ASTM Method D1481
- (b) Skimmer
- (c) Bailing
- (d) Cumulative recovery volumes are calculated using an estimated recovery from 12/28/11 to 1/18/12 as well as 5/24/12 to 6/22/12.

#### Table 15

#### Depths (feet) to Water and LNAPL

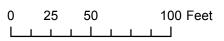
#### Cell 6: LNAPL Recovery System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Sparrows Point, LLC

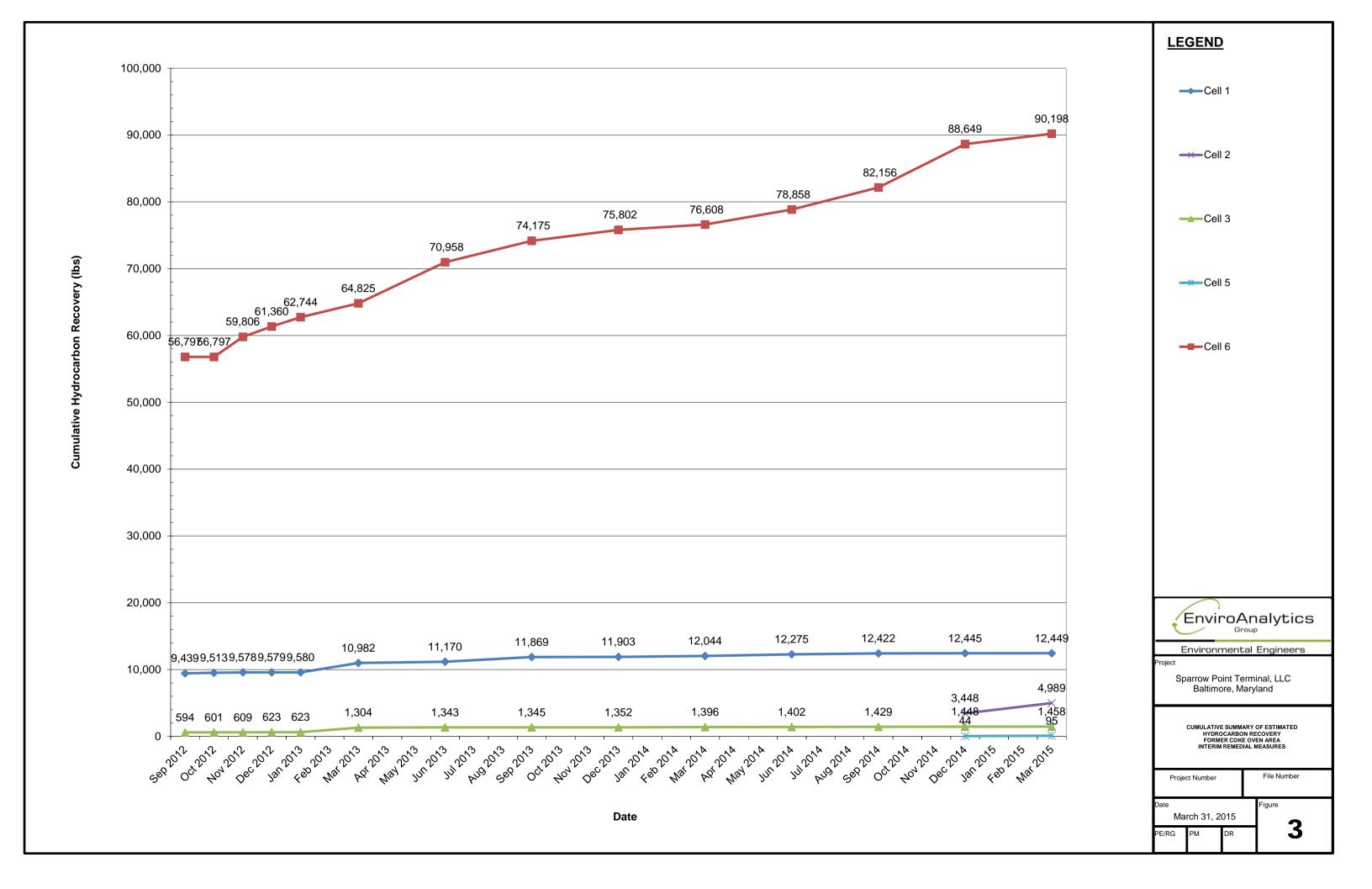

|           |          | CO89-PZM                |           |          | CO90-PZM |           |          | CO91-PZM  |           |
|-----------|----------|-------------------------|-----------|----------|----------|-----------|----------|-----------|-----------|
| Date      | Depth to | Depth to                | LNAPL     | Depth to | Depth to | LNAPL     | Depth to | Depth to  | LNAPL     |
|           | LNAPL    | Water                   | Thickness | LNAPL    | Water    | Thickness | LNAPL    | Water     | Thickness |
| 3/11/2015 | 10.40    | 11.85                   | 1.45      | 9.01     | 9.01     | 0         | 10.30    | 10.30     |           |
|           |          |                         |           |          |          |           |          |           |           |
|           |          | CO92-PZM                |           |          | CO93-PZM |           |          | CO94-PZM  |           |
| Date      | Depth to | Depth to                | LNAPL     | Depth to | Depth to | LNAPL     | Depth to | Depth to  | LNAPL     |
|           | LNAPL    | Water                   | Thickness | LNAPL    | Water    | Thickness | LNAPL    | Water     | Thickness |
| 3/11/2015 | 11.05    | 14.75                   | 3.7       | 10.13    | 10.13    | 0         | 7.15     | 7.15      |           |
|           |          |                         |           |          |          |           |          |           |           |
|           |          | CO95-PZM                |           |          | CO96-PZM |           |          | CO97-PZM  |           |
| Date      | Depth to | Depth to                | LNAPL     | Depth to | Depth to | LNAPL     | Depth to | Depth to  | LNAPL     |
| Dute      | LNAPL    | Water                   | Thickness | LNAPL    | Water    | Thickness | LNAPL    | Water     | Thickness |
| 3/11/2015 | 10.2     | 14.35                   | 4.15      | 10.65    | 10.80    | 0.15      | 8.15     | 8.22      | 0.        |
|           |          |                         |           |          |          |           |          |           |           |
|           |          |                         |           |          |          |           |          |           |           |
|           |          | CO98-PZM                |           |          | CO99-PZM |           |          | CO100-PZM |           |
| Date      | Depth to | Depth to                | LNAPL     | Depth to | Depth to | LNAPL     | Depth to | Depth to  | LNAPL     |
|           | LNAPL    | Water                   | Thickness | LNAPL    | Water    | Thickness | LNAPL    | Water     | Thickness |
| 3/11/2015 | 8.75     | 10.05                   | 1.3       | 8.60     | 10.71    | 2.11      | 8.4      | 8.4       |           |
|           |          |                         |           |          |          |           | •        |           |           |
|           | ·        |                         |           |          |          |           |          |           |           |
|           | ·        |                         |           |          |          |           |          |           |           |
|           | (        | CO19-PZM004             | ı         |          |          |           |          |           |           |
| Date      | Depth to | CO19-PZM004<br>Depth to | LNAPL     |          |          |           |          |           |           |
| Date      |          |                         |           |          |          |           |          |           |           |

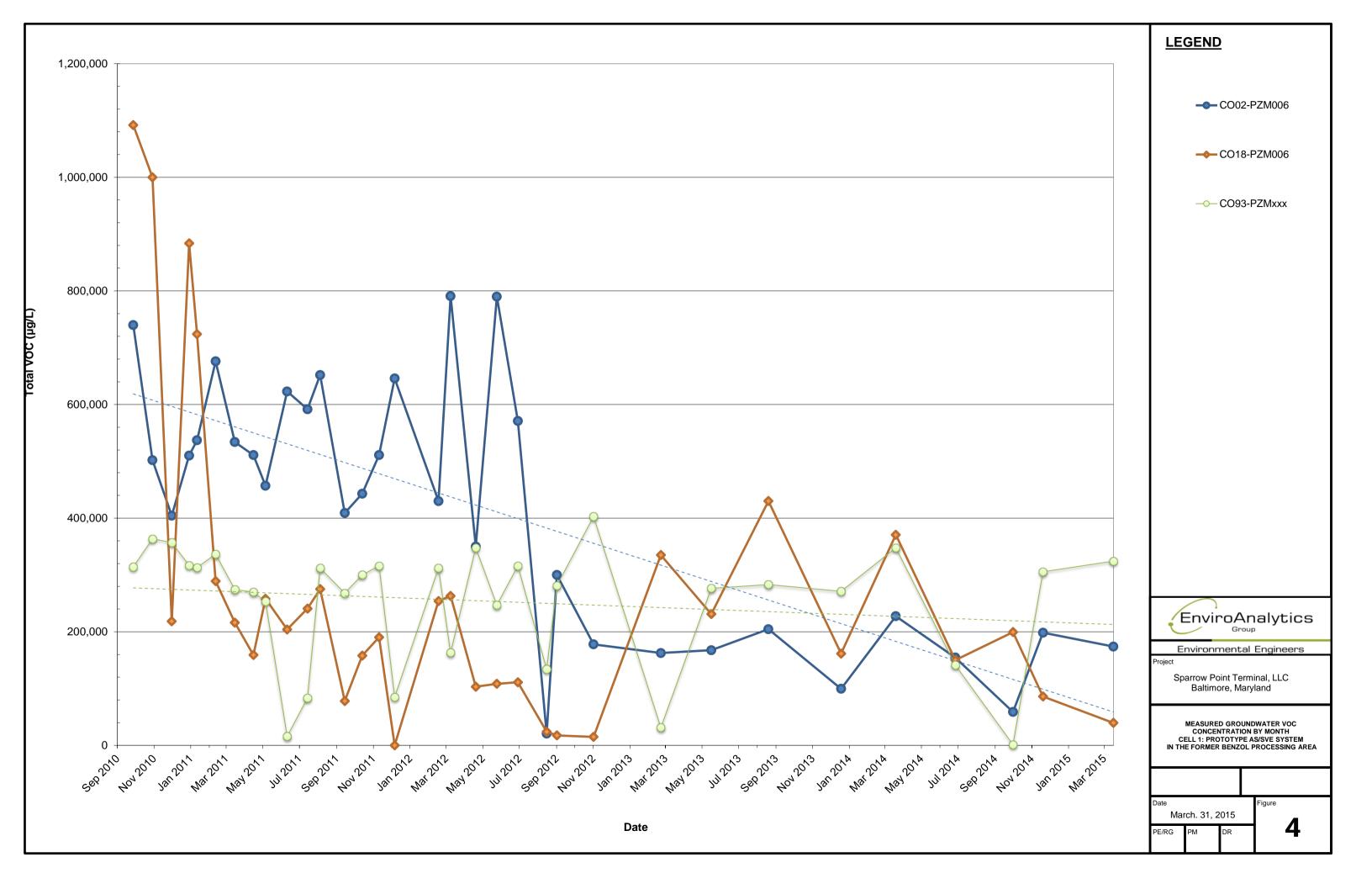
### **FIGURES**






Former Coke Oven Area Interim Measures Cell Locations






Former Coke Oven Area Cell 1 System Layout

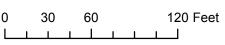








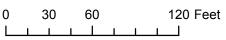


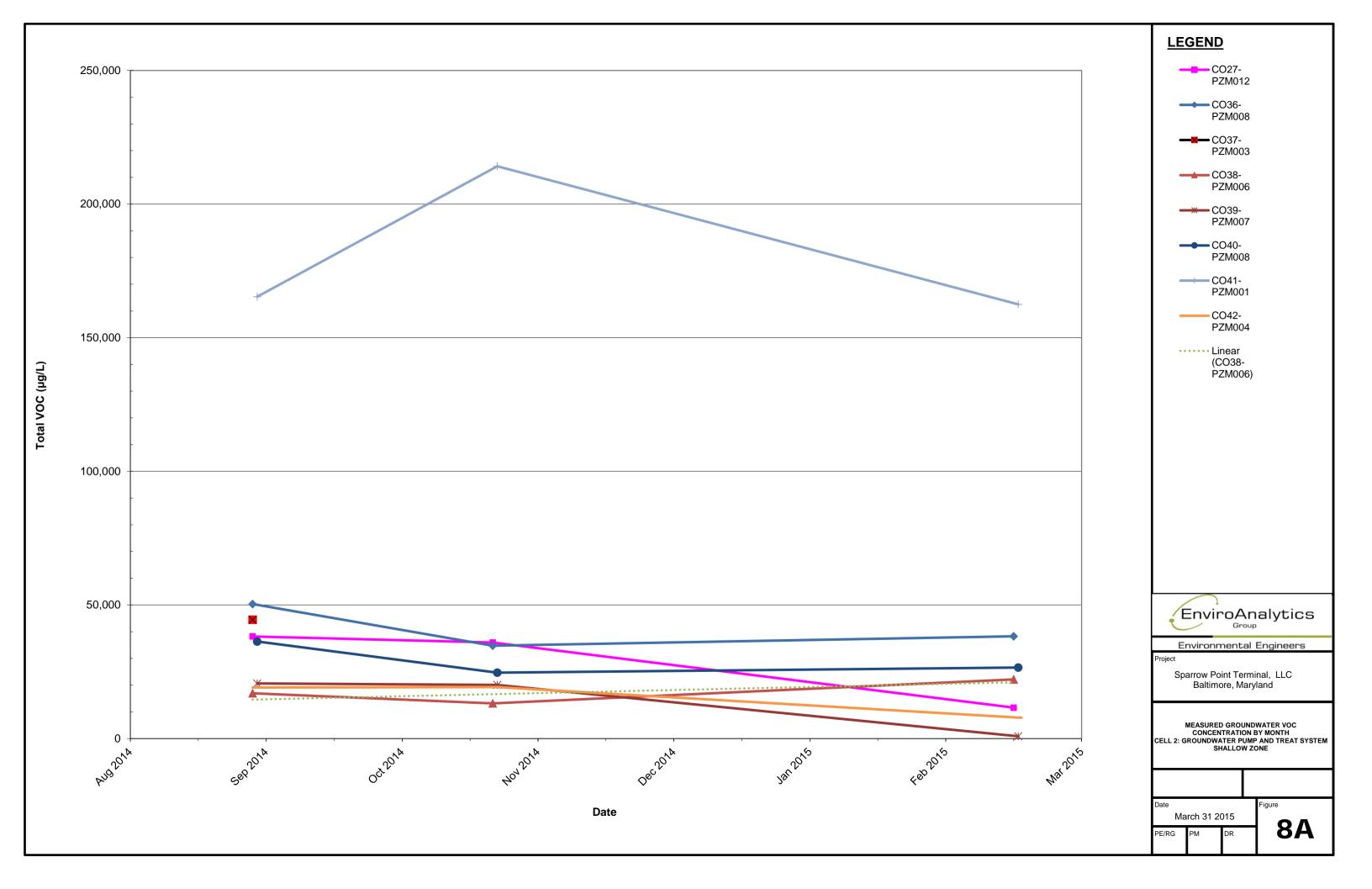

Former Coke Oven Area Cell 2 System Layout

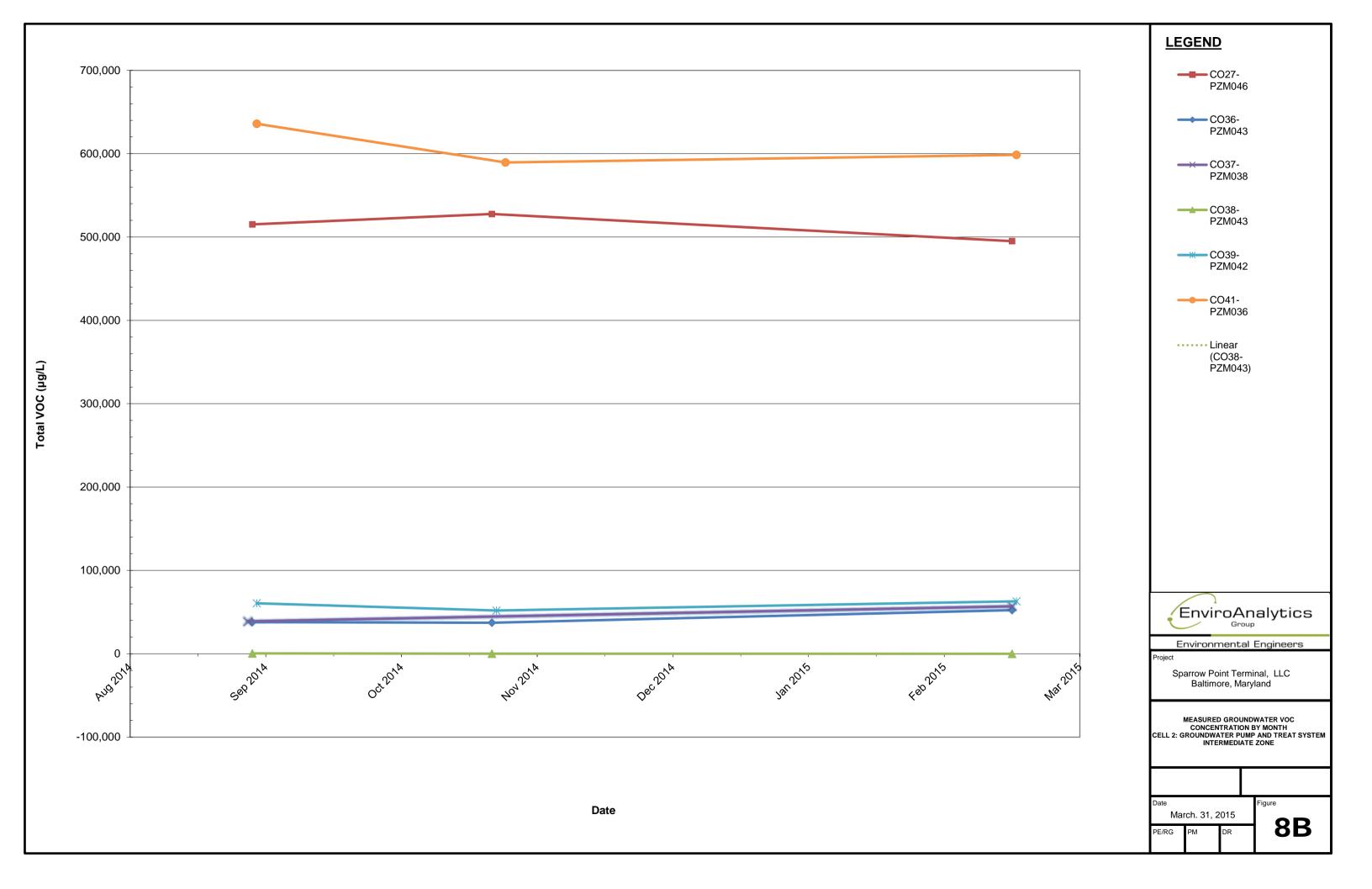







Former Coke Oven Area
Cell 2 Groundwater Elevation Contours Shallow Zone

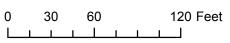





Former Coke Oven Area
Cell 2 Groundwater Elevation Contours Intermediate Zone

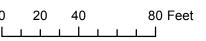


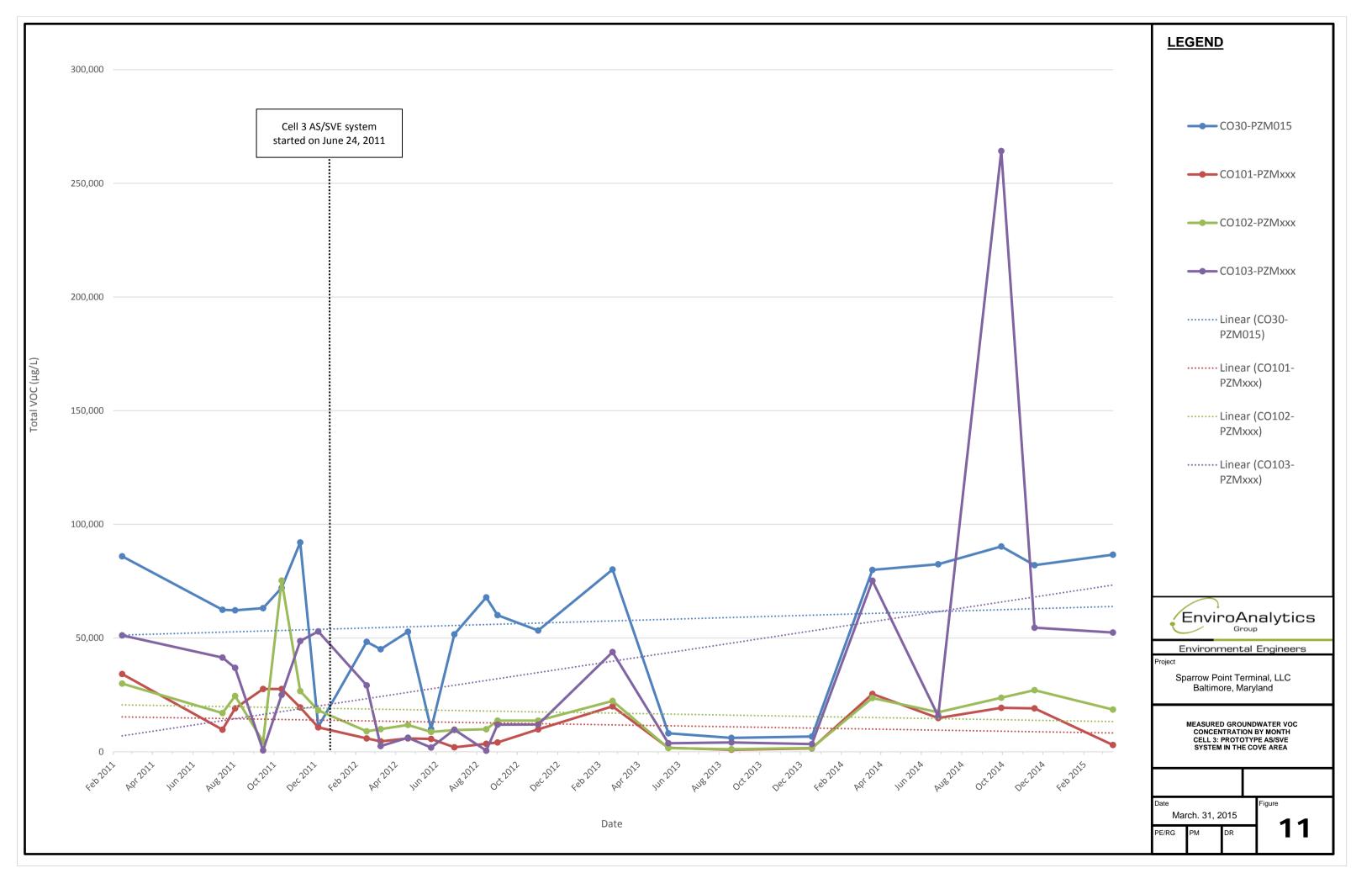








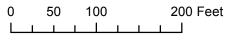


Former Coke Oven Area
Cell 2 Benzene Concentrations Intermediate Zone







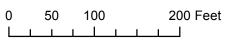

Former Coke Oven Area Cell 3 System Layout

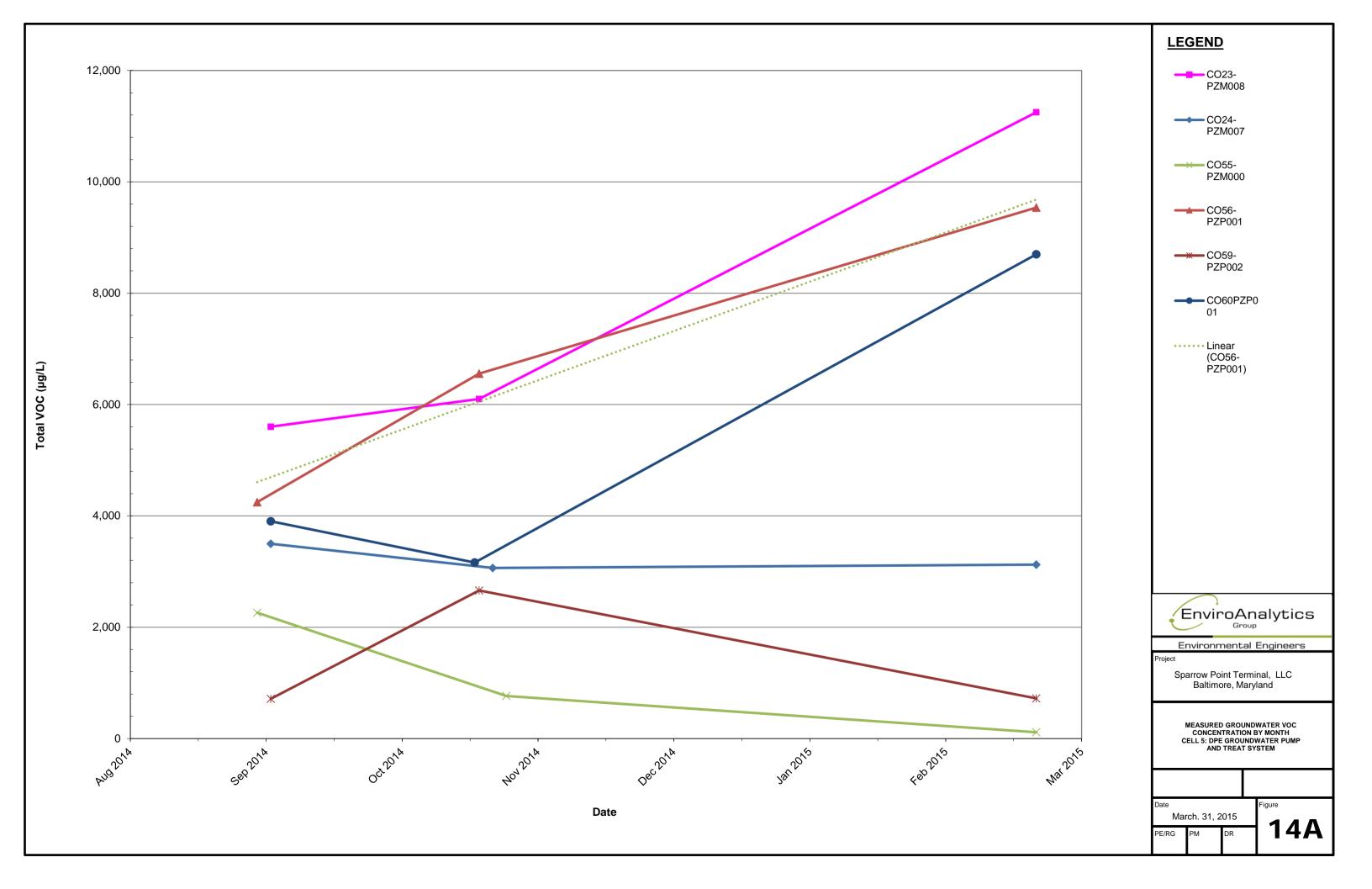


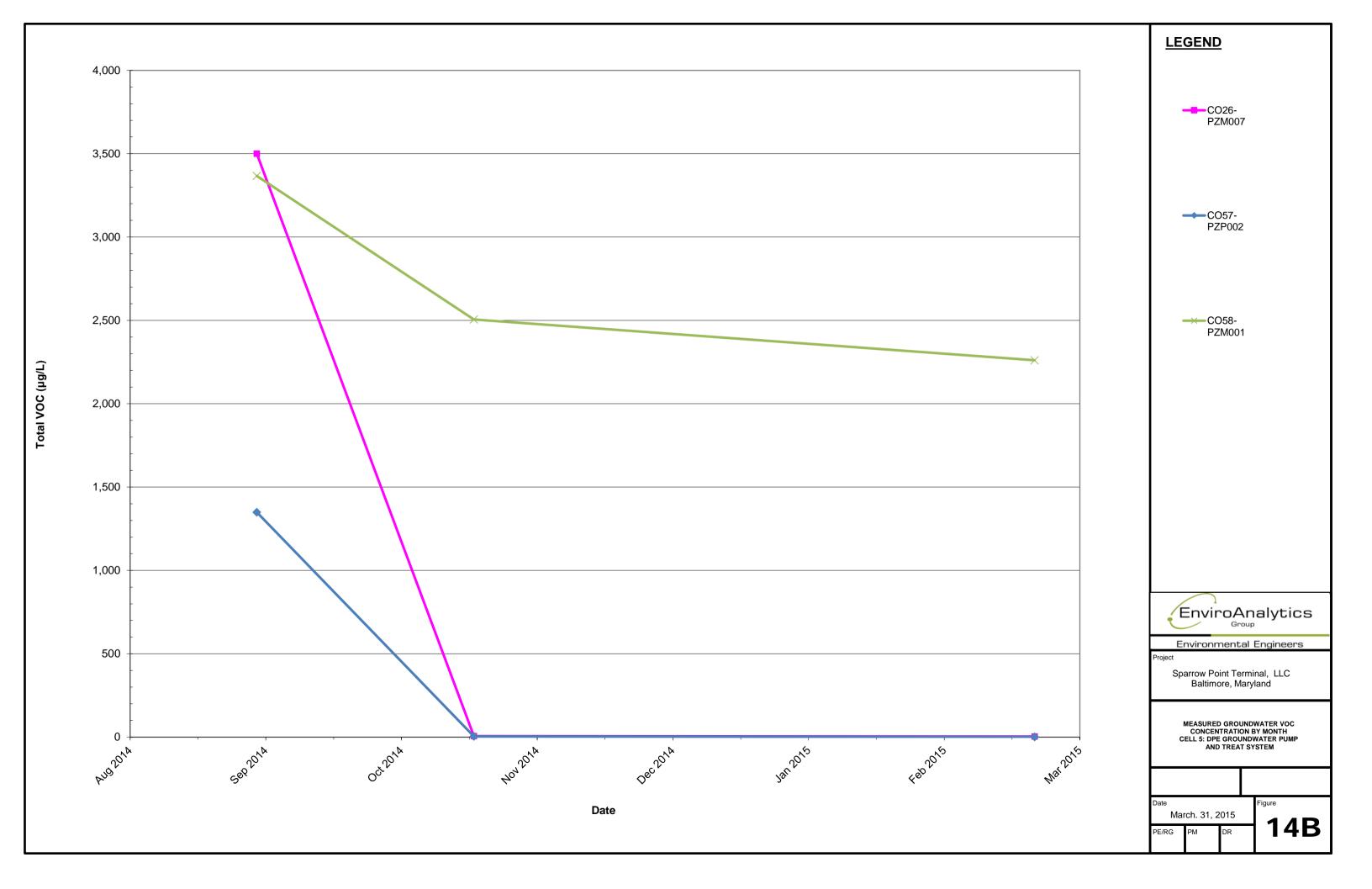








Former Coke Oven Area Cell 5 System Layout

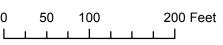





Former Coke Oven Area
Cell 5 Groundwater Elevation Contours Shallow Zone

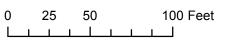












Former Coke Oven Area
Cell 5 Naphthalene Concentrations Shallow Zone







Former Coke Oven Area Cell 6 Well Locations

