COKE OVEN AREA INTERIM MEASURES PROGRESS REPORT (THROUGH SEPTEMBER 2010)

Prepared for

Severstal-Sparrows Point, LLC Sparrows Point, Maryland

October 29, 2010

URS Corporation 200 Orchard Ridge Drive, Suite 101 Gaithersburg, MD 20878 Project no. 15302307

Introduction

In accordance with US EPA's September 2, 2010 letter, this document is the first progress report that summarizes implementation progress for the United States Environmental Protection Agency (US EPA)-approved interim measures (IMs) that have been developed to address identified environmental conditions at the Coke Oven Area (COA) Special Study Area at the Severstal Sparrows Point Facility located in Sparrows Point, Maryland. This progress report summarizes IM progress through September 30, 2010.

For mutual ease of understanding, and as agreed during the June 3, 2010 teleconference with US EPA, the following designations are applied in this document to the six (6) IM "Cells" (**Figure** 1) at the COA:

- Cell 1: Prototype Air Sparge/Soil Vapor Extraction (AS/SVE) System in the Former Benzol Processing Area,
- Cell 2: AS/SVE and Dual Phase Groundwater Extraction System in Former Coal Storage Area,
- Cell 3: AS/SVE System in "Cove" Area,
- Cell 4: In-Situ Anaerobic Bio-treatment Area in Coal Tar Area,
- Cell 5: Groundwater Extraction at the Turning Basin Area, and
- Cell 6: LNAPL Recovery at the Former Benzol Processing Area.

As of September 30, 2010, Cell 1 and Cell 6 are operational and Cell 4 is undergoing baseline groundwater chemistry evaluation. All three Cells are addressed in this progress report. Cell 4 groundwater analytical results and initial "Bio-Trap" evaluation are also addressed in this progress report. The other Cells are in various stages of evaluation, design, and under permitting considerations by Maryland Department of the Environment (MDE).

Cell 1: Prototype AS/SVE System in the Former Benzol Processing Area

US EPA's March 2, 2010 letter approved the air sparge/soil vapor extraction (AS/SVE) interim measure for Cell 1, as originally proposed by Severstal. This cell consists of a prototype IM, which includes AS/SVE coupled with vapor destruction via an internal combustion engine (ICE). Design of this system includes air sparging groundwater wells and vapor collection trenches as shown schematically on **Figure 2**.

Construction of the prototype Cell 1 AS/SVE system began in May 2010 and was substantially completed by July 23, 2010 when preliminary startup/shakedown of the system was initiated. Several days of initial system testing were completed and the prototype startup/shakedown began on August 2, 2010.

Figure 3 shows the system layout of Cell 1, which consists of the following major components:

- Three (3) generally parallel and interconnected vapor collection trenches approximately 500 feet long and 60 feet apart, fitted with perforated 4-inch DR-17 high-density polyethylene (HDPE) pipe. Fifteen (15) vertical extraction risers are connected to a common suction header,
- Sixteen (16) air sparge wells located between the trenches,
- At-grade, 4-inch DR-17 HDPE sparge and suction headers fitted with control valves for 2-inch DR-17 HDPE sparge and suction laterals,
- One (1) ICE unit for extraction vacuum and vapor destruction, which is equipped with an integral Becker KDT series air compressor for sparge air, and
- Perimeter slag berm for system demarcation and protection from vehicular traffic.

Vapor collection trench installation photographs are shown on **Figure 4**. The ICE unit and overview of completed Cell 1 are shown on **Figure 5**.

Operational performance of Cell 1 during this reporting period is summarized in **Table 1**. In summary, the ICE operated just over half the time during this reporting period. This level of performance is typical during startup/shakedown conditions, which prevailed during essentially the entire period. The ICE catalytic converter has been providing hydrocarbon destruction efficiency greater than 95%.

Soil gas and ICE exhaust gas samples were collected on a monthly basis (at a minimum) to evaluate system performance. Calibrated field instruments (e.g., photoionization detector [PID]) and ICE system-calculated vapor concentrations were also used to evaluate system performance. The untreated soil gas samples were collected in Tedlar[®] bags and the ICE exhaust samples collected in 6-liter SUMMA canisters. All gas samples were submitted to TestAmerica Laboratories, Inc. Knoxville, Tennessee laboratory for analysis by US EPA Method TO-15. These data are summarized in **Table 2**.

From **Table 2**, influent soil gas hydrocarbon concentrations varied from a low of 343.6 parts per million by volume (ppmv) on August 26 to 9,720 ppmv on September 2, 2010. Hydrocarbon removal rates, based on these data, ranged from approximately 0.2 to 4.5 pounds per hour.

Groundwater samples were collected on a monthly basis; once on July 7 and 8 before system startup and twice after startup on August 25 and September 27, 2010 from the following wells:

- BP-MW-09 (upgradient of Cell 1),
- CO18-PZM006 (within Cell 1 at edge of berm), and
- CO02-PZM006 (downgradient of Cell 1).

The groundwater samples were submitted to Analytical Laboratory Services, Inc. of Middletown, Pennsylvania for the analyses summarized in **Table 3**. The data of **Table 3** indicate benzene is the most prevalent volatile organic compound (VOC) constituent and there appears to be no significant concentration trend in either upgradient well BP-MW-09 or downgradient well CO02-PZM006. An increasing benzene trend over the two-month sampling period in well CO18-PZM006 is apparent from the limited data. Subsequent groundwater sampling data should enable further comparison of water quality trends.

Severstal is continuing to operate the prototype system and is evaluating measures to maximize hydrocarbon concentration in the extracted soil gas in order to maximize hydrocarbon recovery and destruction. These measures include:

- Performing tests to assess trench vapor capture effectiveness,
- Varying sparge air and vapor extraction locations using different configurations than previously tested,
- Varying sparge air volume and pressure at levels different than previously applied.

Cell 4: In-Situ Anaerobic Bio-treatment Area in Coal Tar Area

US EPA's March 2, 2010 letter approved the in-situ bio-treatment concept for Cell 4, as originally proposed by Severstal. In July 2010, baseline groundwater data and a microbial conditions evaluation using Bio-Trap[®] Samplers (Bio-Traps) were performed as the first steps to developing a preliminary conceptual design.

The groundwater samples were collected on July 9, 2010 from OBS-6, OBS-7 and EXT-2 (**Figure 6**) and submitted to Analytical Laboratory Services, Inc. of Middletown, Pennsylvania for the analyses summarized in **Table 4**. The data of **Table 4** indicate naphthalene is the most prevalent VOC constituent at 2,180, 8,120 and 8,930 micrograms per liter (μ g/L) in OBS-7, EXT-2 and OBS-6, respectively.

On July 12, 2010, Bio-Traps were deployed in OBS-6 and OBS-7 to evaluate subsurface conditions to define in-situ bio-treatment conditions and to provide data to support the design of the amendments needed for in-situ bio-treatment. The traps were left in the wells until August 16, 2010 and sent to Microbial Insights Laboratories for analysis located in Rockford, Tennessee.

Via Phospholipids Fatty Acids (PLFAs) analysis and monitoring in-situ transformation of isotopically labeled benzene and naphthalene, the Bio-Traps have enabled answering these questions which, collectively, address the issue of in-situ bio-remediation viability:

- 1. Who are the predominant microbes at our Site *in this discrete time frame*?
- 2. Are on-Site microbes capable of breaking down (degrading) benzene and naphthalene?
- 3. If yes, then which specific microbes are responsible for the degradation?
- 4. What is the metabolic status of these degrading microbes?

The remaining Cell 4 findings discussion is organized into these subsections: Summary, Site Geochemistry, Naphthalene PLFA Results, and Benzene PLFA Results.

Summary

- OBS-6 is under the influence of iron-reducing conditions; OBS-7 is under the influence of sulfate-reducing conditions,
- Both benzene and naphthalene were degraded in both observation wells,
- Benzene and naphthalene degraders in both observation wells reported significantly enriched levels of 13C in their biomass, confirming the biological breakdown of each contaminant in each observation well,
- Neither benzene nor naphthalene appear to be fully mineralized to carbon dioxide in either observation well,
- The dominant benzene and naphthalene-degrading population in each observation well is composed of Proteobacteria, a group of microbes known for their ability to degrade a wide range of contaminants, survive a wide range of environments, and adjust quickly to changes in their environment,
- None of the target-compound degrading Proteobacteria appear to be experiencing environmental stresses such as an exposure to toxic levels of compounds, and
- In-situ biological degradation of Site constituents of concern appears to be a viable and appropriate approach at this Site.

Site Geochemistry

Observation well OBS-6 is primarily under the influence of iron-reducing conditions. This is based on oxidation-reduction potential (ORP) values as well as groundwater concentrations of ferric iron, ferrous iron, nitrate, and sulfate. The dissolved oxygen (DO) concentration measured during well purging (4.90 mg/L) indicates otherwise, however, such field-measured DO values are commonly relatively unreliable. Thus, the conclusion that this observation well is dominated by iron-reduction is based on the preponderance of the evidence available. Unlike OBS-6, OBS-7 is primarily under the influence of sulfate-reducing conditions. This is based on agreeing ORP values, DO concentrations, and groundwater concentrations of ferric iron, ferrous iron, nitrate, and sulfate.

Nitrate concentrations are significantly depleted in both observation wells, to the degree of being below detection levels. The same is reported for phosphorous. Both observation wells report moderate ferric and ferrous iron concentrations as well as substantial sulfate concentrations.

Typically, there is an expected pattern of plume natural attenuation and contaminant concentrations. Higher contaminants are located within the plume core, and are typically associated with a lower energy-yielding metabolic process than what is found at the plume periphery. The lower contaminant concentrations located away from the plume's center are commonly accompanied with higher energy-yielding metabolic processes. This is why the natural attenuation of a contaminant plume is more active at the plume's periphery and works inward towards the plume core. At Cell 4, substantially higher concentrations of organic constituents occur in OBS-6 compared to OBS-7, however, the higher energy-yielding microbial process (iron-reduction) also occurs in OBS-6. This may be a result of these two wells being relatively close to one another, such that neither benefits from a 'periphery' advantage.

PLFA-SIP (Stable Isotope Probe) Analyses, Benzene:

Prior to inception of these analyses, approximately 1.11 milligrams (mg) of benzene was loaded into each Bio-Sep[®] bead. After 35 days of in-situ incubation, an average of 0.64 mg/bead remained. Thus, the Bio-Traps experienced an average benzene loss of 43% in both OBS-6 and OBS-7. Both observation wells demonstrated a moderately sized, indigenous microbial community. An average of 7.58×10^4 and 1.05×10^5 cells per bead were reported in OBS-6 and OBS-7, respectively. This population size is common for a site with multiple contaminants present. Of this population, 1.01×10^2 and 2.02×10^2 cells reported 13C-enriched biomass in OBS-6 and OBS-7, respectively. This incorporation of 13C into the indigenous is absolute proof of in-situ degradation, and resulted in an average PLFA del value of 137 and 32 % $_0$ (OBS-6 and OBS-7, respectively). In comparison, PLFA molecules formed from the metabolism of nonisotopically enriched compounds have an average del between -20 and -30% $_0$. A higher (more positive) PLFA del number translates to greater incorporation of the enriched compound into microbial biomass. Since both observation wells demonstrated a similar loss of compound and a roughly similar indigenous microbial population, it appears that the population in OBS-6 is incorporating significantly greater amounts of the degraded compound into its biomass than is the population in OBS-7. Neither population appears to be mineralizing the benzene to carbon dioxide. This is reflected in the del 13C for the detected dissolved inorganic carbon (DIC), which ranged from - 27 to -24. These values are no different than what would be expected if the microbes had degraded non-enriched benzene.

As expected, the indigenous microbial community responsible for benzene degradation in both observation wells is primarily composed of Proteobacteria (as determined by the percentage of monoenoic PLFAs). This class of microbes is composed of both aerobic and anaerobic bacteria that are reputed for their ability to consume a wide range of complex compounds including aromatic and polyaromatic hydrocarbons. The Proteobacteria in the sampled wells are likely dominated by anaerobic forms. The Proteobacteria are also recognized for their ability to quickly and successfully adjust to new and changing environments. The second most prevalent class of PLFAs in the samples was the normal-saturated (Nsats). These PLFAs, although found in all microbes, signify a low level of microbial community diversity when present in large amounts. Although the Nsat PLFAs ranged below 20% of the total, they were present in moderate amounts (14.4 and 18.8%), reaffirming the remaining PLFA data that suggests that community diversity is somewhat low. This pattern is commonly seen at contaminated sites, and suggests that selective pressures (the presence of the contaminant) have removed a wide range of indigenous microbes, leaving behind those best capable of surviving the impacted environment. The remaining PLFAs were from Eukaryotes (likely fungi) and were present in low amounts (5.5 to 6.3%). Again, this fits with a well-established pattern often observed at contaminated sites.

None of the Bio-Traps reported a colonizing population that demonstrated either slowed growth or decreased cellular permeability. This means that there is no indication that the indigenous Proteobacterial population is feeling the effects of any environmental stresses. When this information is coupled with Site geochemistry, it appears that the two observation wells are inhabited by healthy microbial populations that are actively degrading benzene under iron-reducing and sulfate-reducing conditions.

PLFA-SIP Analyses, Naphthalene:

Prior to inception of these analyses, approximately 0.54 mg of naphthalene was loaded into each Bio-Sep® bead. After 35 days of in-situ incubation, between 0.30 and 0.46 mg/bead remained. Thus, the Bio-Traps in OBS-6 experienced a 15% loss of compound while OBS-7 demonstrated a 44% loss. The reduced degradation in OBS-6 may be a result of the significantly higher naphthalene concentrations in the area of this observation well, as natural contaminant degradation typically occurs from areas of lower concentration inward towards areas of higher concentrations.

The colonizing microbial population within each Bio-Sep® bead reached an average size of 7.41 $\times 10^4$ and 4.19 $\times 10^4$ cells per bead. A substantial portion of this population demonstrated incorporation of the 13C isotope into its biomass. Approximately 2.44 $\times 10^2$ and 7.69 $\times 10^1$ cells per bead showed 13C enrichment in OBS-6 and OBS-7, respectively. This incorporation of 13C into the indigenous is absolute proof of in-situ degradation, and resulted in an average PLFA del value of 24 and 100% (OBS-6 and OBS-7, respectively). In comparison, PLFA molecules formed from the metabolism of non-isotopically enriched compounds have an average del between -20 and -30%. A higher (more positive) PLFA del number translates to greater incorporation of the enriched compound into microbial biomass.

Both observation wells demonstrated a similar loss of naphthalene and a roughly similar indigenous microbial population size. It appears that the population in OBS-7 is incorporating significantly greater amounts of the degraded compound into its biomass than is the population in OBS-6. Neither population appears to be mineralizing the naphthalene to carbon dioxide. This is reflected in the del 13C for the DIC, which ranged from -19 to -21. These values are no different than what would be expected if the microbes had degraded non-enriched naphthalene.

The indigenous microbial community responsible for naphthalene degradation in both wells is primarily composed of Proteobacteria (57.5 and 67.1%, OBS-7 and OBS-6, respectively). As stated above, this class of microbes is composed of both aerobic and anaerobic bacteria that are reputed for their ability to consume a wide range of complex compounds including aromatic and polyaromatic hydrocarbons. Site Proteobacteria are dominated by anaerobic forms. Proteobacteria are also recognized for their ability to quickly and successfully adjust to new and

changing environments – a positive trait for a remediation site. As with the benzene baited Bio-Traps, the second most prevalent class of PLFA in the naphthalene samples were the Nsats (19 and 23.5%). This suggests that a low level of microbial community diversity is present in the sampled observation wells. This pattern is commonly seen at contaminated sites, and suggests that selective pressures (the presence of the various contaminants) have selected for those microbes best capable of surviving the impacted environment. The remaining PLFAs were from Eukaryotes (likely fungi). Again, this fits with a well-established pattern often observed at contaminated sites. It should be noted that a significantly higher percentage of Eukaryotes were identified from the naphthalene-baited Bio-Traps than those baited with benzene. This is not unexpected – fungi are known for their ability to break large, complex, multi-ringed compounds such as naphthalene, whereas benzene is a simple enough compound for bacteria to be the most common degraders.

None of the naphthalene-baited Bio-Traps reported a colonizing population that demonstrated either slowed growth or decreased cellular permeability. This means that there is no indication that the indigenous Proteobacterial population is feeling the effects of any environmental stresses. Similarly with the benzene-degrading microbial population, it appears that the two observation wells are inhabited by healthy microbial populations that are actively degrading naphthalene under iron-reducing and sulfate-reducing conditions.

Planned Actions – Cell 4

Severstal is moving forward toward designing, installing, and operating the planned in-situ enhanced anaerobic bioremediation system at Cell 4. Planned activities include:

- 1. Design and install a groundwater re-circulation system to deliver bionutrients to the subsurface.
- Supplement the depleted nutrients that are necessary to support general microbial activities, including nitrate and phosphorous. Commercially available bionutrients (such as VB591 from BioNutra Tech) are being evaluated.
- 3. Monitor the progress of target compound degradation and microbial activities by sampling and analyzing groundwater as necessary.

Cell 6: LNAPL Extraction at the Former Benzol Processing Area

This progress report for Cell 6 IM activities addresses the time period from the start-up of Cell 6 IM activities (January 2010) through October 15, 2010. Major activities are summarized below, followed by a discussion of pertinent issues.

- Existing site assessment data (EA, 2009) were reviewed to identify the optimum location to install an automatic oil skimmer,
- Based on this review, in January 2010 an automated oil skimmer and 500-gallon storage tank were installed at BP-MW-05, an existing 2-inch diameter monitoring well using a solar-powered and nitrogen gas-powered, automatic light non-aqueous phase liquid (LNAPL) recovery system,
- Two (2) new 4-inch-diameter recovery wells were installed (RW-1 and RW-2 [Figure 7]) in late May 2010 and redeveloped in mid-June 2010,
- In late July, a new oil skimmer and 500-gallon tank were installed at existing wells BP-MW-08 and BP-MW-11,
- In early September three (3) new 4-inch diameter recovery wells (RW-3, RW-4 and RW-5) were installed, the oil skimmer and storage tank at BP-MW-11 were moved to RW-04 due to low production from BP-MW-11), and recovered LNAPL contained in the Cell 6 storage tanks was disposed off-Site by a permitted waste management facility,
- The recovery systems have undergone approximately weekly monitoring and maintenance since January, and
- From January through October 15, a total of 1,668 gallons of LNAPL has been recovered, primarily from well BP-MW-05.

New Recovery Wells, RW-1 and RW-2

RW-1 is located approximately 15 feet northeast of BP-MW-05, the most productive LNAPL well. The RW-1 location was selected to increase the likelihood of encountering additional LNAPL. Surprisingly, significant LNAPL has not entered RW-1. From June through August, only trace LNAPL has been measured. A drill rig was mobilized to the well in mid-June to redevelop RW-1 in an attempt to increase LNAPL in-flow. Development had no obvious immediate effect. Beginning in mid-August, LNAPL increased thickness ranged between 3 and

Coke Oven Area Interim Remedial Measures Progress Report

4 inches. This contrasts with about 3 feet of LNAPL in BP-MW-05 despite continual skimming of LNAPL from BP-MW-05 (the skimming rate is adjusted to maintain LNAPL in the well because its presence increases LNAPL flow into the well). Six inches of LNAPL was observed in RW-1 in October, immediately following several days of very heavy rain. Upon removal of any accumulated LNAPL in RW-1, LNAPL only very slowly re-enters the well over several days.

RW-2 is located approximately 50 feet northeast of BP-MW-05. At the time of drilling RW-2 it was presumed that LNAPL would occur in RW-1 and therefore RW-2 would help define the northeastward LNAPL extent. LNAPL occurrence in RW-2 has been even less than that observed in RW-1. Only trace LNAPL has been observed.

Observations involving recovery wells RW-1 and RW-2 indicate that the abundant LNAPL occurrence at BP-W-05 may be localized.

New Recovery Wells, RW-3, RW-4 and RW-5

These wells were installed in early September, 2010. The rationale for the RW-3 location is the same as discussed for RW-1, expect the area of interest was west of BP-MW-05 (in the inferred groundwater flow direction based on prior site assessments). At the time of drilling RW-3 it was presumed that LNAPL would occur in RW-3 and, therefore, RW-5 would help define the westward LNAPL extent. Also, RW-5 is located close to an underground storm drain, suggesting that the subsurface conditions might be more favorable for LNAPL occurrence (assuming subsurface ground disturbance during storm drain construction). Only trace LNAPL occurrence has been observed in RW-3 and RW-5 (and expression is the observation of about 3 inches of LNAPL observed in RW-3 on October 15.

Observations involving recovery wells RW-3 and RW-5 indicate that the abundant LNAPL occurrence at BP-MW-05 may be localized.

Old facility drawings were considered when selecting the RW-4 location. The drawings show a sump southeast of BP-MW-05, which became the selected location for RW-4. Recoverable LNAPL occurs in RW-4. The overall LNAPL recovery rate from RW-4 has averaged about 3.5 gallons per day (gpd), compared to about 5.6 gpd for the greatest LNAPL producing well (BP-MW-05). It is possible that LNAPL occurrence in RW-4 is unrelated to the mapped sump. No unique subsurface conditions were observed during drilling.

Oil Skimmer Locations

In January, LNAPL occurrence/recovery data (EA, 2009) for BP-MW-05, BP-MW-08, and BP-MW-11 were evaluated for the purpose of positioning the first oil skimmer (**Table 5**). Based on the predicted LNAPL recovery rates, an oil skimmer and 500-gallon storage tank were installed at BP-MW-05 in January. Two (2) additional oil skimmers were subsequently mobilized to the site to service BP-MW-11 and RW-4. The oil skimmer at BP-MW-11 was subsequently moved to BP-MW-08 due to negligible LNAPL production from BP-MW-11.

LNAPL Occurrence and Recovery

Table 6 summarizes LNAPL occurrence and recovery observed during the reporting period. The wells are presented in **Table 6** in the order of decreasing LNAPL occurrence/recovery. The following three (3) wells afford viable LNAPL recovery and, therefore, are fitted with oil skimmers:

- BP-MW-05,
- RW-4, and
- BP-MW-08.

Initially an oil skimmer was at BP-MW-11, however, due to negligible LNAPL production the unit was moved to BP-MW-08 in September. Long-term average LNAPL recovery rates for individual wells have varied from 0.2 to 5.6 gallons per day. The greatest amount of LNAPL has been recovered from BP-MW-05 (1,467 gallons). Total recovered LNAPL for Cell 6 has been is 1,668 gallons.

Depth to Water and Screened Intervals

Across the Site, the depth to the water table typically ranges from about 8 to 11 feet below ground surface (bgs). The new 4-inch diameter recovery wells (RW-1 through RW-5) have tenfoot long screen intervals with screen tops at about 4 to 5 feet bgs. **Attachment A** presents the boring logs and well construction diagrams for RW-1 through RW-5.

Planned Actions – Cell 6

Severstal will continue to operate the existing LNAPL recovery systems and make periodic adjustments to the pumps and other components to maximize product recovery.

References

EA Engineering, Science, and Technology, Inc. (EA), 2009, *Site Assessment for the Proposed Coke Point Dredged Material Containment Facility at Sparrows Point*, prepared for Maryland Port Administration. TABLES

Table 1Summary of Operating ConditionsCell 1: Prototype AS/SVE System in Former Benzol Processing AreaFormer Coke Oven Area Interim Remedial MeasuresSeverstal Sparrows Point, LLC

Parameter	Units	Quantity
Total ICE Operating Time (August 3 - September 30, 2010)	hours	721
Overall ICE Operational Time	%	51.0
Estimated Total Hydrocarbons Destroyed	pounds	203
Estimated Range of Hydrocarbon Removal Rate	pounds/hour	0.2 - 4.5

Table 2 Summary of Soil Gas Analytical Results Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

	Sample ID	ICE Influent	ICE Exhaust	ICE Influent	ICE Influent	ICE Influent	ICE Influent	ICE Exhaust
	Date	8/16/2010	8/16/2010	8/26/2010	9/2/2010	9/2/2010	9/16/2010	9/16/2010
	Time	11:31	11:35	12:00	10:05	13:05	10:30	10:30
Dili	ution Factor	111967.32	9549.88	21086.57	116720.56	534140.55	67339.82	4629.1
Analyte	Units							
TO-15 Volatile Organics								
trans-1,3-Dichloropropene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Acetone	ppb		< 48,000 U	< 110,000 U	< 580,000 U	< 2, 700,000 U	< 340,000 U	< 23,000 U
Ethylbenzene	ppb		< 1,900 U	4,600	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
2-Hexanone	ppb		< 4,800 U	< 11,000 U	< 58,000 U	< 270,000 U	< 34,000 U	< 2,300 U
Methylene Chloride	ppb		< 4,800 U	< 11,000 U	< 58,000 U	< 270,000 U	< 34,000 U	< 2,300 U
Benzene	ppb	660,000	240,000	190,000	1,000,000	7,900,000	1,400,000	69,000
1,1,2,2-Tetrachloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Tetrachloroethene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Toluene	ppb		36,000	85,000	290,000	1,400,000	260,000	7,900
1,1,1-Trichloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
1,1,2-Trichloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Trichloroethene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	160,000	< 13,000 U	< 930 U
Vinyl Chloride	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
o-Xylene	ppb		< 1,900 U	15,000	27,000	< 110,000 U	16,000	< 930 U
m-Xylene & p-Xylene	ppb		4,700	49,000	100,000	260,000	61,000	1,600
2-Butanone(MEK)	ppb		< 9,500 U	< 21,000 U	< 120,000 U	< 530,000 U	< 67,000 U	< 4,600 U
4-Methyl-2-pentanone (MIBK)	ppb		< 4,800 U	< 11,000 U	< 58,000 U	< 270,000 U	< 34,000 U	< 2,300 U
Bromoform	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Carbon Disulfide	ppb		< 4,800 U	< 11,000 U	< 58,000 U	< 270,000 U	< 34,000 U	< 2,300 U
Carbon tetrachloride	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Chlorobenzene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Chloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Chloroform	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
1,1-Dichloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
1,2-Dichloroethane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
1,1-Dichloroethene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
trans-1,2-Dichloroethene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
1,2-Dichloropropane	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
cis-1,3-Dichloropropene	ppb		< 1,900 U	< 4,200 U	< 23,000 U	< 110,000 U	< 13,000 U	< 930 U
Total Volatile Organics	ppb	660,000	276,000	343,600	1,417,000	9,720,000	1,737,000	78,500
Other Hydrocarbons								
Methane	%				0.21	0.23	< 0.19 U	< 0.18 U

Notes: <Blank>

= Not measured = Analyte detected

BOLD ppb

%

</U

= Analyte not detected above corresponding Reporting Limit

= parts per billion

= Percent

Table 3 Summary of Groundwater Analytical Results Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

Bergins Constrations Constrations Constrations Constrations Constrations Constrations Constrations Value Constrations Value						0000	rstal Sparrows Po	, LLO			
Parker Unitable Unitable <thunitable< th=""> Unitable <t< th=""><th></th><th>Sample ID</th><th>CO016-PZM006</th><th>CO-15-PZM005</th><th>CO02-PZM006</th><th>CO02-PZM006</th><th>CO02-PZM006</th><th>CO18-PZM006</th><th>CO18-PZM006</th><th>CO18-PZM006</th><th>BP-MW-09</th></t<></thunitable<>		Sample ID	CO016-PZM006	CO-15-PZM005	CO02-PZM006	CO02-PZM006	CO02-PZM006	CO18-PZM006	CO18-PZM006	CO18-PZM006	BP-MW-09
View Component Up / All			7/7/2010	7/8/2010	7/7/2010	8/25/2010	9/27/2010	7/8/2010	8/25/2010	9/27/2010	7/8/2010
Improvime NO. 17.64 17.75 17.67 17.67 17.67 17.60 17.60 17.60 17.80 <		Units									
pi Denomination Control matrix (Sum Action (Sum Ac		dog C	17.64	17.76	10.67	10.46	20.08	19.00	01.46	00.00	10.01
Opp Inf 338 211 538 138 138 148 143 <td></td>											
Table Table Co. Table Co. Table Co. Table Co. Co. Ander Orgenise apt. -160.00 -150.00 150.00 -150.00 -150.0											
CO Part 6.21 0.30 6.65 0.22 0.20 0.44 0.300 0.300 Decree pld 0.700 0.300 45.000 47.000	Conductivity	mS/cm	0.772	0.654	0.900	1.220	1.130	0.869	1.520	1.750	1.840
Vesite Grayatic -											
Neine jul, <500 U <500 U <td></td> <td>mg/L</td> <td>0.21</td> <td>0.00</td> <td>0.00</td> <td>0.45</td> <td>0.00</td> <td>0.00</td> <td>0.44</td> <td>0.00</td> <td>0.00</td>		mg/L	0.21	0.00	0.00	0.45	0.00	0.00	0.44	0.00	0.00
Banase jul. 17.000 872.000 872.000 872.000 872.000 872.000 920.000 1010.000 920.000 Barrolon jul. 4.50		ua/l	< 50 0 LL	< 5.000 LL	< 50 0 LL	< 5.000 LL	< 50 0 LL	< 5 000 LL	< 5 000 LL	< 50.0	< 5.000 LL
Brenchm jpL -650 U -650 U <td></td>											
SALators ad. < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < 50.0 < < < 50.0 < < < < < 50.0 < < < < < < < < < < < < < < < < < < <											
Galob Testinging DAL < 5.80 U	2-Butanone					< 5,000 U					< 5,000 U
Oblessmen pjL < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80 < 6.80<											
Choosenare (p):											
Chargen (p) 4 - 50 U 4											
1: Dottoreture bp/D 4.50 U 4											
12.bbitosofthme upL c 50 U c 500 U <td></td>											
Inst1.2.Detrospendene ipil. < 50 U < 20 U		μg/L									
12-Discriptionspace ip1L <											
Bail-Boltstrompone Bull < 50 U < 20 U <											
nma-1.3 Dickingspane pl. < 5.0 U											
Enyloname μμL 438 1.270 715 786 780 1.860 4000 3400 3420 Atelanore μL 2550U <2550U											
Zheanne opt < < < < < < < < < < < < <td></td>											
Kethylere Choide jgL < 5.0 U			< 25.0 U	< 2,500 U		< 2,500 U		< 2,500 U	< 2,500 U	< 25.0 U	< 2,500 U
11.12 c 50.0 c 50.0 </td <td></td>											
11.2.2.Franchingemen ipiL < 5.0 U											
Transmission Up1. < 5.0 U											
Toluene upL 80,200 72,900 82,200 72,800 60,000 77,100 91,000 75,700 65,800 60,300 11,11 2,870 450.0 < 50.0											
Sylence, Total pb/L 2.870 9.270 7.510 6.100 6.200 14.100 8.680 5.960 95.300 11.1.Trichtorestane pb/L < 5.00											
1,1,2-Traibroachane ip0, ip0, ip0, ip0, ip0, ip0, ip0, ip0,	Xylenes, Total	µg/L									
Tichbroethene ypL < 5.0 U											
Ving/Chronie IpU < 50 U < 50											
Semi-Voluties											
Acenaphthyne yull 11.0 3.4 3.7 1.5 Anthracene yull <1.4 U		1×9/ =	0.0 0	2000 0	0.00	0000	0.00	00000	10000	0.00	00000
Anthracene j0L <14.U 3.5 1.7 < < 2.0 Benzojalprene µgL <1.4.U		μg/L	11.0	3.4	3.7			< 1.4 U			1.5
Benzolajanthacene jul. <1.4 U <1.4 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$											
Bercolphiloranthene µg/L < 1.4 U < 2.8 U < 2.8 U											
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
Burybersylphenal µg/L < 2.8 U < 7.5 U											
4-Chirors-3-methylphenol µg/L < 7.5 U											
Bis/2-Chioroethox/methane g/L < 2.8 U											
Bis/2-Chiorosteryljether ig/L <2.8 U	, , , , , , , , , , , , , , , , , , , ,										
Bis/2-Chloroisopropylether µg/L < 2.8 U 2-Chloronaphthalene µg/L < 2.8 U											
2-Chlorophenol µg/L < 7.5 U < 7.6 U < 7.6 U < 7.5 U											
4-Chlorophenyl-phenylether µg/L < 2.8 U											
Chrysene µg/L < 1.4 U < 1.2 U < 2.8 U 2.4 Dichorobenzidine µg/L											
m,pCresol µg/L 43.3 64.7 97.6 120 92.1 o-Cresol µg/L 46.1 62.4 79.2 162 55.6 Di-n-Butylphthalate µg/L < 2.8 U											
o-Cresol µg/L 46.1 62.4 79.2 162 55.6 Di-n-Butylphthalate µg/L < 2.8 U											
Din-Butylphthalate µg/L < 2.8 U < 2.9 U < 2.8 U < 2.8 U < 2.8 U Din-Octylphthalate µg/L < 7.5 U											
Diberz(a,h)anthracene µg/L < 1.4 U < 1.2 U <ht></ht>	Di-n-Butylphthalate		< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U
Dibenzofuran µg/L 5.6 7.4 4.1 < 2.8 U < 3.1 1,2-Dichlorobenzene µg/L <2.8 U											
1,2-Dichlorobenzene µg/L < 2.8 U											
1,3-Dichlorobenzene µg/L < 2.8 U											
1,4-Dichlorobenzene µg/L < 2.8 U < 2.9 U < 2.8 U < 2.8 U < 2.8 U 3,3-Dichlorobenzidine µg/L < 15.1 U											
3.3-Dichlorobenzidine µg/L < 15.1 U < 15.1 U < 15.2 U < 15.1 U <td></td>											
Diethylphthalate µg/L < 7.5 U < 7.6 U < 7.5 U < 7.6 U < 7.5 U			< 15.1 U	< 15.1 U	< 15.2 U			< 15.1 U			
3,3'-Dimethylbenzidine μg/L < 7.5 U < 7.6 U < 7.5 U <td></td> <td>μg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		μg/L									
2,4-Dimethylphenol µg/L 20.0 30.4 52.1 49.8 45.2 Dimethylphthalate µg/L <7.5 U											
Dimethylphthalate µg/L < 7.5 U < 7.6 U < 7.5 U < 7.5 U 2,4-Dinitrophenol µg/L < 15.1 U											
2,4-Dinitrophenol µg/L < 15.1 U < 15.1 U < 15.2 U < 15.1 U < 15.1 U < 15.2 U < 15.1 U											

	BP-MW-09	BP-MW-09
	8/25/2010	9/27/2010
1		
	18.76	20.45
_	11.32 -261	11.68
-	2.270	-380 2.000
	3.8	1.5
	1.70	0.00
<	: 5,000 U	< 50.0 U
2	04,000	221,000
	< 500 U	< 5.0 U
<	: 5,000 U	< 50.0 U
	< 500 U < 500 U	< 5.0 U < 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
-	< 500 U < 500 U	< 5.0 U < 5.0 U
	2,630	2,580
<	2,500 U	< 25.0 U
	2,500 U	< 25.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
-	< 500 U	< 5.0 U
	81,100	54,100
	40,700 < 500 U	36,300 < 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U
	< 500 U	< 5.0 U

Table 3 Summary of Groundwater Analytical Results Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

						•					
	Sample ID	CO016-PZM006	CO-15-PZM005	CO02-PZM006	CO02-PZM006	CO02-PZM006	CO18-PZM006	CO18-PZM006	CO18-PZM006	BP-MW-09	Τ
	Date	7/7/2010	7/8/2010	7/7/2010	8/25/2010	9/27/2010	7/8/2010	8/25/2010	9/27/2010	7/8/2010	
Analyte	Units										
Semi-Volatiles											
2,6-Dinitrotoluene	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Т
Bis(2-Ethylhexyl)phthalate	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Т
Fluoranthene	μg/L	< 1.4 U	3.8	3.0			< 1.4 U			2.1	Τ
Fluorene	μg/L	7.9	11.4	8.5			5.5			6.8	Τ
Hexachlorobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	
Hexachlorobutadiene	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Τ
Hexachlorocyclopentadiene	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	Τ
Hexachloroethane	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Т
Indeno(1,2,3-cd)pyrene	μg/L	< 1.4 U	< 1.4 U	< 1.4 U			< 1.4 U			< 1.4 U	Τ
Isophorone	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Τ
2-Methyl-4,6-dinitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	Τ
2-Methylnaphthalene	μg/L	20.0	19.2	11.5			12.4			19.0	T
Naphthalene	μg/L	386	744	518			715			1,260	T
Nitrobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	Τ
2-Nitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	T
4-Nitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	Τ
Pentachloroethane	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	
Pentachlorophenol	µg/L	< 15.1 U	< 15.1 U	< 15.2 U			< 15.1 U			< 15.1 U	
Phenanthrene	μg/L	6.7	15.6	10.2			2.8			8.3	Γ
Phenol	μg/L	72.1	64.2	97.1			167			115	T
Pyrene	μg/L	< 1.4 U	1.9	1.6			< 1.4 U			< 1.4 U	T
Pyridine	μg/L	21.5	98.6	228			238			24.3	T
1,2,4-Trichlorobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.9 U			< 2.8 U			< 2.8 U	T
2,4,5-Trichlorophenol	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	Τ
2,4,6-Trichlorophenol	μg/L	< 7.5 U	< 7.5 U	< 7.6 U			< 7.5 U			< 7.5 U	
Wet Chemistry											
Ferrous Iron	mg/L	< 0.10 U	0.22	0.11			3.90			< 0.10 U	
Nitrate-N	mg/L	< 0.20 U	< 0.20 U	< 0.20 U			< 0.20 U			< 0.20 U	
Nitrate/Nitrite-N	mg/L	< 0.20 U	< 0.20 U	< 0.20 U			< 0.20 U			< 0.20 U	
Nitrite-N	mg/L	< 0.20 U	< 0.20 U	< 0.20 U			< 0.20 U			< 0.20 U	
Phosphorous, Total	mg/L	< 0.10 U	< 0.10 U	0.11			0.14			< 0.10 U	
Sulfate	mg/L	75.1	160	408			372			116	
Metals											
Ferric Iron	mg/L	0.12	0.10	0.15			< 0.10 U			0.14	
Aluminum, Total	mg/L	0.43	< 0.11 U	< 0.11 U			< 0.11 U			0.99	
Antimony, Total	mg/L	< 0.030 U	< 0.030 U	< 0.030 U			< 0.030 U			< 0.030 U	
Arsenic, Total	mg/L	< 0.0090 U	0.036	0.018			0.048			0.023	
Barium, Total	mg/L	0.065	0.039	0.074			0.040			0.095	
Beryllium, Total	mg/L	< 0.0044 U	< 0.0044 U	< 0.0044 U			< 0.0044 U			< 0.0044 U	
Cadmium, Total	mg/L	< 0.0022 U	< 0.0022 U	< 0.0022 U			< 0.0022 U			< 0.0022 U	1
Calcium, Total	mg/L	81.2	76.0	164			192.0			203	1
Chromium, Total	mg/L	< 0.0060 U	< 0.0060 U	< 0.0060 U			< 0.0060 U			< 0.0060 U	4
Cobalt, Total	mg/L	< 0.0060 U	< 0.0060 U	< 0.0060 U			< 0.0060 U			< 0.0060 U	4
Copper, Total	mg/L	< 0.011 U	< 0.011 U	< 0.011 U			< 0.011 U			< 0.011 U	4
Iron, Total	mg/L	0.12	0.32	0.26			3.9			0.14	4
Lead, Total	mg/L	< 0.0067 U	0.011	< 0.0067 U			0.014			< 0.0067 U	_
Magnesium, Total	mg/L	< 0.11 U	27.3	39.0			38.2			0.61	4
Manganese, Total	mg/L	0.0084	0.31	0.33			0.72			0.019	∔
Nickel, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U			< 0.022 U			< 0.022 U	4
Potassium, Total	mg/L	34.6	17.4	18.3			13.0			16.3	4
Selenium, Total	mg/L	< 0.022 U	0.022	< 0.022 U			0.028			< 0.022 U	4
Silver, Total	mg/L	< 0.0044 U	< 0.0044 U	< 0.0044 U			< 0.0044 U			< 0.0044 U	4
Sodium, Total	mg/L	77.8	81.0	79.2			59.5			136	1
Thallium, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U			< 0.022 U			< 0.022 U	1
Vanadium, Total	mg/L	0.45	0.0079	< 0.0060 U			0.015			< 0.0060 U	\downarrow
Zinc, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U			0.051	<u> </u>	<u> </u>	< 0.022 U	
Notes:											

Notes:

<Blank> = Not measured Bold = Analyte Detected deg C = Degree Celcius mg/L mS/cm = milligrams per liter = Microsiemens per Centimeter mV NA = Millivolts = Standard not available or not currently established NTU = Nephelometric Turbidity Units ORP = Oxidation Reduction Potential std units = Standard units </U = Analyte not detected above corresponding Reporting Limit μg/L = micrograms per liter

3333555	BP-MW-09 8/25/2010	BP-MW-09 9/27/2010
		[
[

Table 4 Summary of Groundwater Analytical Results Cell 4: In-Situ Anaerobic Bio-Treatment System in Coal Tar Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

Date 79/2010 79/2010 79/2010 Water Quality Parameters Imperature deg C 20.85 17.23 16.40 pH ist durits 10.67 11 10.35 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92 0.91 0.91 0.92 0.92 0.92 0.91 0.92 0.93 0.92 0.92 0.93<					
Analyte Units Image and the set of the se		Sample ID	OBS-6	EXT-2	OBS-7
Water Quality Parameters Properature deg C 20.85 17.23 16.40 pH std units 10.67 11 10.35 ORP mV -169 -182 -298 Conductivity mS/cm 2.800 3.190 1.320 Turbidity NTU 0.0 0.0 0.0 DO mg/L 4.90 1.46 0.00 Volatile Organics	Ameliate		7/9/2010	7/9/2010	7/9/2010
Temperature deg C. 20.85 17.23 16.40 pH std units 10.67 11 10.35 ORP mV -169 -182 -298 Conductivity mS/cm 2.800 3.190 1.320 Turbidity NTU 0.0 0.0 0.0 DO mg/L 4.90 1.46 0.00 Volatile Organics		Units			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		deg C	20.85	17.23	16.40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c} Conductivity \\ mS/cm & 2.800 & 3.190 & 1.320 \\ Turbidity \\ NTU & 0.0 & 0.0 & 0.0 \\ Old \\ DO & mg/L & 4.90 & 1.46 & 0.00 \\ \hline \\ Volatile Organics \\ Acetone & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ \hline \\ Benzene & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ \hline \\ Benzene & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ \hline \\ Carbon Disulfide & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Carbon Disulfide & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Carbon Disulfide & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Carbon Tetracholnide & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Chiorobenzene & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Chiorobenzene & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ Chiorobentane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1-Dichloroethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.2-Dichloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug/L & <50.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug/L & <20.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug/L & <20.0 U & <50.0 U & <50.0 U \\ 1.1.2-2-Tetrachloropethane & \mug$					
Turbitity NTU 0.0 0.0 0.0 DO mg/L 4.90 1.46 0.00 Volatile Organics					
DO Img/L 4.90 1.46 0.00 Volatile Organics					
Volatile Organics $\mu g/L$ < 50.0 U < 50.0 U < 50.0 U Acetone $\mu g/L$ 1,510 999 798 Bromoform $\mu g/L$ < 50.0 U	,	-			
Acetone $\mu g/L$ < 50.0 U	-	iiig/L	4.50	1.40	0.00
Benzene µg/L 1,510 999 798 Bromoform µg/L < 5.0 U		ua/l	< 50 0 U	< 50.0 U	< 50.0 U
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{l cl} Carbon Disulfide \mu g/L < 5.0 U < 25.0 U < 1.1.1-Trichloroethane \mu g/L < 5.0 U < 5.0 U $					
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Carbon Disulfide				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbon Tetrachloride		< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	μg/L	< 5.0 U	< 5.0 U	< 5.0 U
1,1-Dichloroethane $\mu g/L$ < 5.0 U < 5.0 U < 5.0 U 1,2-Dichloroethane $\mu g/L$ < 5.0 U	Chloroethane	µg/L	< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloroform	μg/L	< 5.0 U	< 5.0 U	< 5.0 U
1,2-Dichloroethane $\mu g/L$ < 5.0 U	1,1-Dichloroethane		< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					< 5.0 U
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,1-Dichloroethene	μg/L	< 5.0 U		< 5.0 U
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	trans-1,2-Dichloroethene		< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$				< 5.0 U	< 5.0 U
Ethylbenzene $\mu g/L$ < 5.0 U < 5.0 U < 88.3 2-Hexanone $\mu g/L$ < 25.0 U	cis-1,3-Dichloropropene		< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		μg/L	< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methylene Chloride		< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		μg/L	< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		μg/L	< 5.0 U		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, ,				
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$		µg/L	< 5.0 U	< 5.0 U	< 5.0 U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{l lllllllllllllllllllllllllllllllllll$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>,</i> ,				
$\begin{array}{l lllllllllllllllllllllllllllllllllll$		µg/L			
2-Chloronaphthalene μg/L < 2.8 U < 2.8 U < 2.8 U 2-Chlorophenol μg/L < 7.5 U		ug/L			
2-Chlorophenol μg/L < 7.5 U < 7.5 U < 7.5 U 4-Chlorophenyl-phenylether μg/L < 2.8 U					
4-Chlorophenyl-phenylether μg/L < 2.8 U < 2.8 U < 2.8 U Chrysene μg/L < 1.4 U					
Chrysene μg/L < 1.4 U < 1.4 U < 1.4 U m,p-Cresol μg/L 202 191 192					
m,p-Cresol µg/L 202 191 192					
	·				
100 III III					
Di-n-Butylphthalate µg/L < 2.8 U < 2.8 U < 2.8 U					
Di-n-Octylphthalate $\mu g/L$ < 7.5 U < 7.5 U < 7.5 U					
Dibenz(a,h)anthracene $\mu g/L$ < 1.4 U < 1.4 U < 1.4 U					
Dibenzofuran μg/L 81.0 97.4 16.6					
1,2-Dichlorobenzene μg/L < 2.8 U < 2.8 U < 2.8 U					
1,3-Dichlorobenzene μg/L < 2.8 U < 2.8 U < 2.8 U					
1,4-Dichlorobenzene μg/L < 2.8 U < 2.8 U < 2.8 U					
3,3-Dichlorobenzidine μg/L < 15.1 U < 15.1 U < 15.1 U					
2,4-Dichlorophenol μg/L < 7.5 U < 7.5 U < 7.5 U					
Diethylphthalate μg/L < 7.5 U < 7.5 U < 7.5 U					
3,3'-Dimethylbenzidine μg/L < 7.5 U < 7.5 U < 7.5 U		μg/L	< 7.5 U	< 7.5 U	< 7.5 U
2,4-Dimethylphenol μg/L < 15.1 U 140 90.1	2,4-Dimethylphenol	μg/L	< 15.1 U	140	90.1
Dimethylphthalate μg/L < 7.5 U < 7.5 U < 7.5 U	Dimethylphthalate	μg/L	< 7.5 U		< 7.5 U
2,4-Dinitrophenol μg/L < 15.1 U < 15.1 U < 15.1 U					
2,4-Dinitrotoluene µg/L < 2.8 U < 2.8 U < 2.8 U	2,4-Dinitrotoluene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U

Table 4 Summary of Groundwater Analytical Results Cell 4: In-Situ Anaerobic Bio-Treatment System in Coal Tar Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

	0	000 0		000 7
	Sample ID Date	OBS-6 7/9/2010	EXT-2 7/9/2010	OBS-7 7/9/2010
Analyte	Units	1/9/2010	1/9/2010	1/9/2010
Semi-Volatiles	Units			
2.6-Dinitrotoluene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
Bis(2-Ethylhexyl)phthalate	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
Fluoranthene	μg/L	10.6	12.0	1.5
Fluorene	μg/L	74.0	90.4	16.4
Hexachlorobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
Hexachlorobutadiene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
Hexachlorocyclopentadiene	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
Hexachloroethane	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
Indeno(1,2,3-cd)pyrene	μg/L	< 1.4 U	< 1.4 U	< 1.4 U
Isophorone	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
2-Methyl-4,6-dinitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
2-Methylnaphthalene	μg/L	327	510	80.0
Naphthalene	μg/L	8,930	8,120	2,180
Nitrobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
2-Nitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
4-Nitrophenol	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
Pentachloroethane	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
Pentachlorophenol	μg/L	< 15.1 U	< 15.1 U	< 15.1 U
Phenanthrene	μg/L	71.0	86.1	16.2
Phenol	μg/L	102	155	126
Pyrene	μg/L	5.8	6.5	< 1.4 U
Pyridine	μg/L	237	168	39.5
1,2,4-Trichlorobenzene	μg/L	< 2.8 U	< 2.8 U	< 2.8 U
2,4,5-Trichlorophenol	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
2,4,6-Trichlorophenol	μg/L	< 7.5 U	< 7.5 U	< 7.5 U
Wet Chemistry		0.40	0.00	0.40
Ferrous Iron Nitrate-N	mg/L	0.18 < 0.20 U	0.22 < 0.20 U	0.19 < 0.20 U
Nitrate/Nitrite-N	mg/L mg/L	< 0.20 0 0.44	< 0.20 U	< 0.20 U
Nitrite-N	mg/L	0.44	< 0.20 U	< 0.20 U
Phosphorous, Total	mg/L	< 0.10 U	< 0.10 U	< 0.20 U
Sulfate	mg/L	581	549	335
Metals	ing/E	001	010	000
Ferric Iron	mg/L	0.26	0.19	0.29
Aluminum, Total	mg/L	< 0.11 U	< 0.11 U	< 0.11 U
Antimony, Total	mg/L	< 0.030 U	< 0.030 U	< 0.030 U
Arsenic, Total	mg/L	< 0.0090 U	< 0.0090 U	< 0.0090 U
Barium, Total	mg/L	0.094	0.079	0.039
Beryllium, Total	mg/L	< 0.0044 U	< 0.0044 U	< 0.0044 U
Cadmium, Total	mg/L	< 0.0022 U	< 0.0022 U	< 0.0022 U
Calcium, Total	mg/L	345	333	176
Chromium, Total	mg/L	< 0.0060 U	< 0.0060 U	< 0.0060 U
Cobalt, Total	mg/L	< 0.0060 U	< 0.0060 U	< 0.0060 U
Copper, Total	mg/L	< 0.011 U	< 0.011 U	< 0.011 U
Iron, Total	mg/L	0.44	0.41	0.48
Lead, Total	mg/L	< 0.0067 U	< 0.0067 U	< 0.0067 U
Magnesium, Total	mg/L	< 0.11 U	< 0.11 U	< 0.11 U
Manganese, Total	mg/L	0.014	< 0.0060 U	0.015
Nickel, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U
Potassium, Total	mg/L	31.0	26.4	20.8
Selenium, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U
Silver, Total	mg/L	< 0.0044 U	< 0.0044 U	< 0.0044 U
Sodium, Total	mg/L	126	123	93.9
Thallium, Total	mg/L	< 0.022 U	< 0.022 U	< 0.022 U
Vanadium, Total Zinc, Total	mg/L	0.68 < 0.022 U	0.68	0.91 < 0.022 U
,	mg/L	< 0.022 U	< 0.022 U	< 0.022 0
Notes:				
<blank></blank>	= Not mea	sured		

=	Not	measured	

= Analyte Detected = Degree Celcius

= milligrams per liter

= Microsiemens per Centimeter

= Millivolts

= Standard not available or not currently established

= Nephelometric Turbidity Units = Oxidation Reduction Potential

= Standard units

ORP std units </U μg/L

Bold deg C

mg/L

NA NTU

mS/cm mV

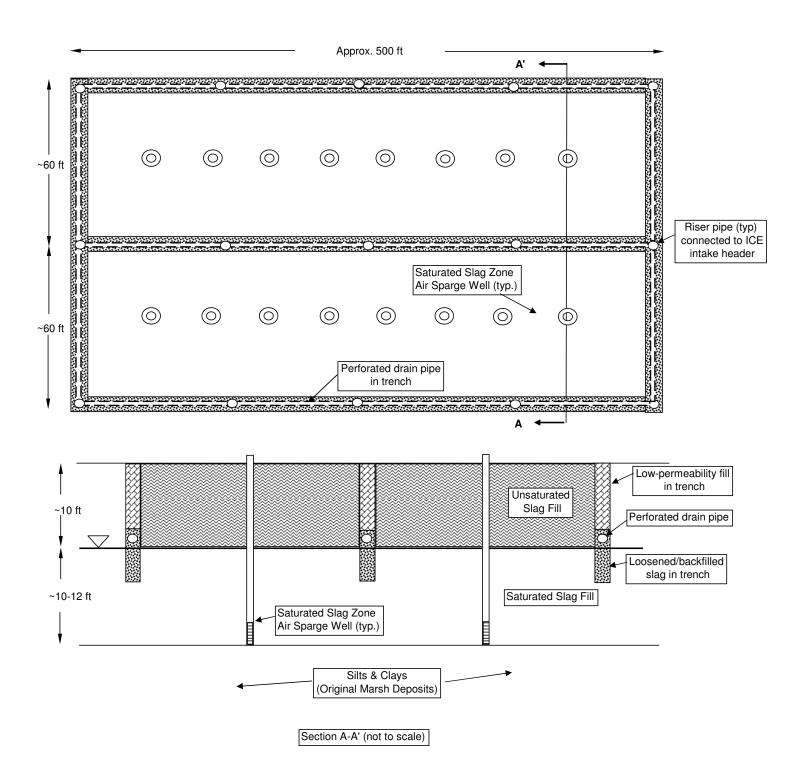
- = Analyte not detected above corresponding Reporting Limit
- = micrograms per liter

Table 5

LNAPL Measurements Made by EA (2009) Cell 6: LNAPL Recovery System at the Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

Well	Floating LNAPL Thickness (ft) ^[1]	Predicted LNAPL Recovery Rate (gpd) ^[1]
BP-MW-05	4.1	14.5
BPMW-08	4.5	0.4
BP-MW-11	0.7	0.07

[1] EA, 2009


Table 6LNAPL Occurrence and RecoveryCell 6: LNAPL Recovery System at the Former Benzol Processing AreaFormer Coke Oven Area Interim Remedial MeasuresSeverstal Sparrows Point, LLC

Well	LNAPL LNAPL Recovery Period				Baaran Bata (mal)	
weii	Occurrence (ft)	Begin	End	LNAPL Recovered (gal)	Recovery Rate (gpd)	
BP-MW-05	generally about 3	28-Jan	On-going	1,467	5.6	
RW-04	0.1 to 1.6	23-Jul	On-going	94.7	3.4	
BP-MW-08	trace to 2.9	8-Sep	On-going	98	1.2	
BP-MW-11	trace to 0.3	23-Jul	8-Sep	7.8	0.2	
BP-MW-10	<i>N</i> -10 trace to 0.29		NA	0	NA	
RW-1	generally trace, up to 0.6	NA	NA	0	NA	
RW-2	generally trace, up to 0.5	NA	NA	0	NA	
RW-3	0.16 to 0.23	NA	NA	0	NA	
RW-5	None	NA	NA	0	NA	
BP-MW-07	None	NA	NA	0	NA	
BP-MW-06	None	NA	NA	0	NA	
BP-MW-09	None	None NA NA		0	NA	
CO19-PZM004	None	NA	NA	0	NA	

FIGURES

Figure 2 Schematic Diagram Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

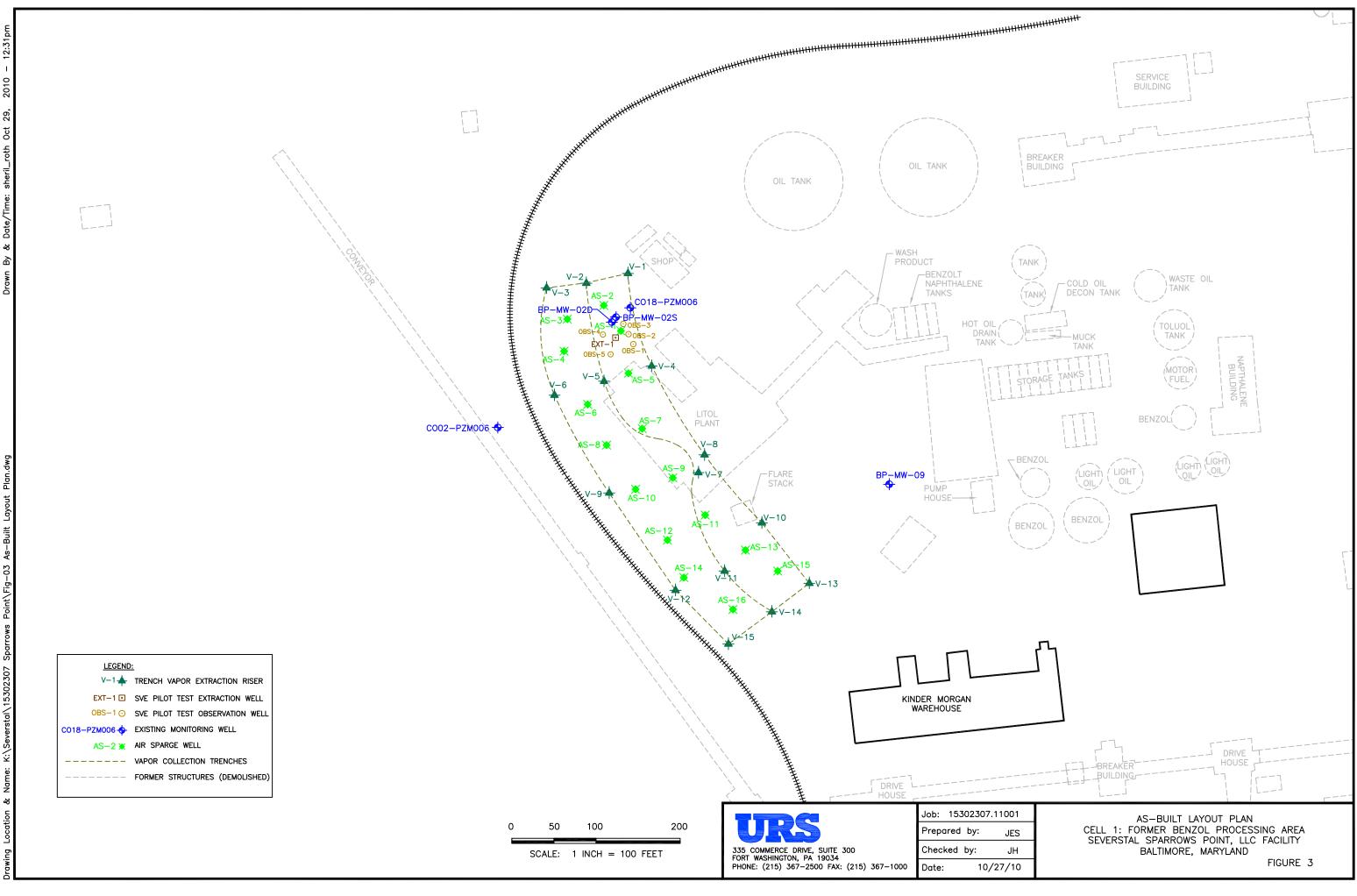


Figure 4 Vapor Collection Trench Construction Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remedial Measures Severstal Sparrows Point, LLC

Figure 4A - Start of Vapor Recovery Trench Construction

Figure 4B - Vapor Collection Trench Components

Figure 5 Internal Combustion Engine and Completed Construction Cell 1: Prototype AS/SVE System in Former Benzol Processing Area Former Coke Oven Area Interim Remdial Measures Severstal Sparrows Point, LLC

Figure 5A - ICE Unit

Figure 5B - Completed Cell 1 Prototype System - Looking Southeast

	CO13 CT	-PZM0 -MW-0	€ 0BS-10 €	ZM008 OBS-6 EXT-2 AS-2 Φ Φ OBS $BS-9$ Φ OBS-7	sta		
0 20 40 80 Feet Image source: World Imagery, ESRI, GeoEye, 2009.							
CLIENT Sparrows Point				N			
LOCATION Baltimore, MD				Å	Figure 6		
TIRS	GIS BY	JK	10/13/10		Existing Coll 4 Walls		
	СНК ВҮ	BE	10/14/10		Existing Cell 4 Wells		
200 Orchard Ridge Drive Gaithersburg, MD 20878	PM	BE	10/14/10	V	G:\Projects\SparrowsPoint\Projects\2010\CokeOven-and-CokePoint-Cell4Closeup_rev.mxd		

	BP-MW-11
	BP-MW-10
RW-5 RW-3 P-MW-05 RW-4 P-MW-05	Image: BP-MW-08 Image: Constraint of the second
BP-MW-09	04
CO17-PZM005 0 50 100 200 Feet Image source: World Imagery, ESRI, GeoEye, 2009.	 LEGEND ● Recent Recovery Well ◆ Maryland Port Admin. Monitoring Well ◆ Severstal Sitewide Assessment Monitoring Well ● LNAPL Boundary Estimated by EASTI (2009)
CLIENT Sparrows Point LOCATION Baltimore, MD GIS BY JK 10/13/10 CHK BY BE 10/14/10 CHK BY BE 10/14/10 CHK BY BE 10/14/10 PM BE 10/14/10	N Figure 7 Cell 6 LNAPL Monitoring and Recovery Wells G:\Projects\SparrowsPoint\Projects\2010\CokeOven-and-CokePoint-Cell6closeup_rev.mxd

ATTACHMENTS

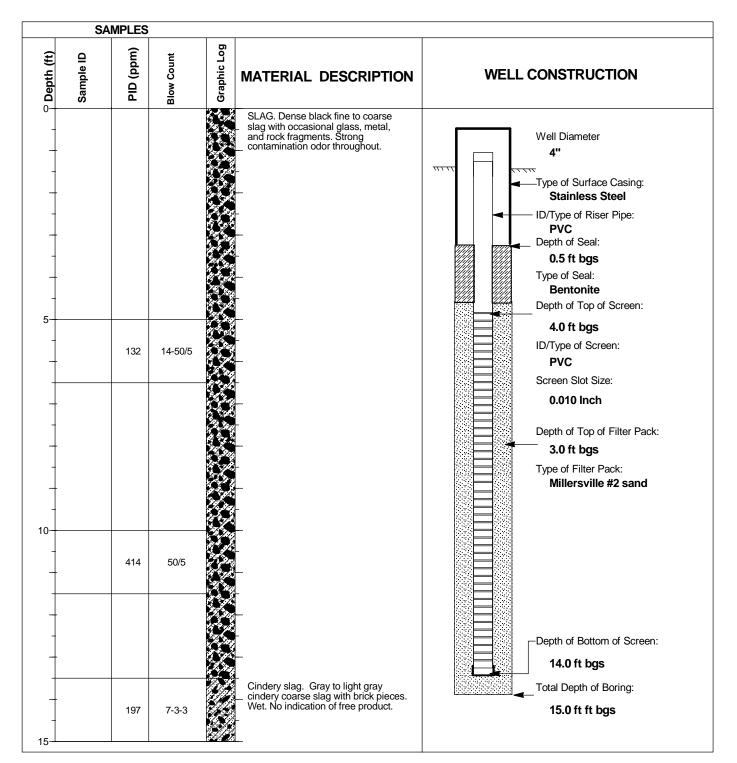
Project: Severstal-Sparrows Point Project Location: Sparrows Point, MD Project Number: 15302058

Cell 6 NAPL Area Boring RW01

Sheet 1 of 1

Date(s) Drilled	05/20/10	Logged By	T. Fox	Client	Severstal Sparrows Point
Location	Cell 6 NAPL Area	Sampler Type	2 in. OD split spoon sampler	Drilling Contractor	Summit Site Services

SA	MPLES				1
^O Depth (ft) Sample ID	PID (ppm)	Blow Count		RIAL DESCRIPTION	WELL CONSTRUCTION
		5/2 -25/0	- - - SLAG. [vel/concrete. Cuttings are light gray, dusty.	Well Diameter 4" Type of Surface Casing: Stainless Steel ID/Type of Riser Pipe: PVC Depth of Seal: 0.5 ft bgs Type of Seal: Bentonite Depth of Top of Screen: 4.0 ft bgs ID/Type of Screen: PVC Screen Slot Size: 0.010 Inch Depth of Top of Filter Pack: 3.0 ft bgs Type of Filter Pack: Millersville #2 sand
	1254 2	25/1-25/1	Free pro	oduct encountered in 13'-14' oon sample.	Depth of Bottom of Screen: 14.0 ft bgs Total Depth of Boring:



Project: Severstal-Sparrows Point Project Location: Sparrows Point, MD Project Number: 15302058

Cell 6 NAPL Area Boring RW02

Sheet 1 of 1

Date(s) Drilled	05/27/10	Logged By	T. Fox	Client	Severstal Sparrows Point
Location	Cell 6 NAPL Area	Sampler Type	2 in. OD split spoon sampler	Drilling Contractor	Summit Site Services

Project: Severstal-Sparrows Point Project Location: Sparrows Point, MD Project Number: 15302058				Cell 6 NAI	PL Area Sheet 1	a Boring RW03 of 1
Date(s) Drilled	09/07/10	Logged By	J. McGraw		Client	Severstal Sparrows Point
Location	Cell 6 NAPL Area	Sampler Type	N/A		Drilling Contractor	Summit Site Services

SAN	IPLES		
Depth (ft) Sample ID	PID (ppm) Blow Count Graphic Log	MATERIAL DESCRIPTION	WELL CONSTRUCTION
	9.5	SLAG. Dense black fine to coarse slag with occasional glass, metal, and rock fragments. Strong contamination odor throughout.	Well Diameter 4" Type of Surface Casing: Stainless Steel ID/Type of Riser Pipe: PVC Depth of Seal: 2.0 ft bgs Type of Seal: Bentonite Depth of Top of Screen: PVC Screen Slot Size: 0.10 Inch Depth of Top of Filter Pack: 3.0 ft bgs Type of Filter Pack: Millersville #2 sand

Project: Severstal-Sparrows Point Project Location: Sparrows Point, MD Project Number: 15302058				Cell 6 NAI	PL Area Sheet 1	of 1
Date(s) Drilled	09/08/10	Logged By	J. McGraw		Client	Severstal Sparrows Point
Location	Cell 6 NAPL Area	Sampler Type	N/A		Drilling Contractor	Summit Site Services

SAMF	PLES	1	
Depth (ft) Sample ID	PID (ppm) Blow Count Graphic Log	MATERIAL DESCRIPTION	WELL CONSTRUCTION
	0.0	SLAG. Dense black fine to coarse slag with occasional glass, metal, and rock fragments. Strong contamination odor throughout.	Well Diameter 4" Type of Surface Casing: Stainless Steel ID/Type of Riser Pipe: PVC Depth of Seal: 2.0 ft bgs Type of Scal: Bentonite Depth of Top of Screen: PVC Screen Slot Size: 0.010 Inch Depth of Top of Filter Pack: 3.0 ft bgs Type of Filter Pack: Millersville #2 sand

Project: Severstal-Sparrows Point Project Location: Sparrows Point, MD Project Number: 15302058				Cell 6 NAI	PL Area Sheet 1	a Boring RW05 of 1
Date(s) Drilled	09/07/10	Logged By	J. McGraw		Client	Severstal Sparrows Point
Location	Cell 6 NAPL Area	Sampler Type	N/A		Drilling Contractor	Summit Site Services

SA	MPLES		
Depth (ft) Sample ID	PID (ppm) Blow Count	MATERIAL DESCRIPTION	WELL CONSTRUCTION
	0 30.4 19.0	SLAG. Dense black fine to coarse slag with occasional glass, metal, and rock fragments. Strong contamination odor throughout.	Well Diameter 4" Type of Surface Casing: Stainless Steel ID/Type of Riser Pipe: PVC Depth of Seal: 2.0 ft bgs Type of Seal: Bentonite Depth of Top of Screen: PVC Screen Slot Size: 0.010 Inch Depth of Top of Filter Pack: 3.0 ft bgs Type of Filter Pack: Millersville #2 sand Depth of Bottom of Screen: 15.0 ft bgs Total Depth of Boring: 15.0 ft ft bgs

