PRELIMINARY SUBSURFACE ENVIRONMENTAL SITE ASSESSMENT SOUTHERN MARYLAND OIL S/S-550 2631 ANNAPOLIS ROAD HANOVER, MD 21076

PREPARED BY

ENVIROTECH CONSULTANTS, LLC 2931 WHITTINGTON AVENUE BALTIMORE, MD 21230 (800)874-2313

PREPARED FOR

SOUTHERN MARYLAND OIL 6355 CRAIN HIGHWAY LAPLATA, MD 20646

RESPECTFULLY SUBMITTED

July 3, 2013

DATE

DOUGLAS O. HAMILTON

PRINCIPAL HYDROGEOGLOST

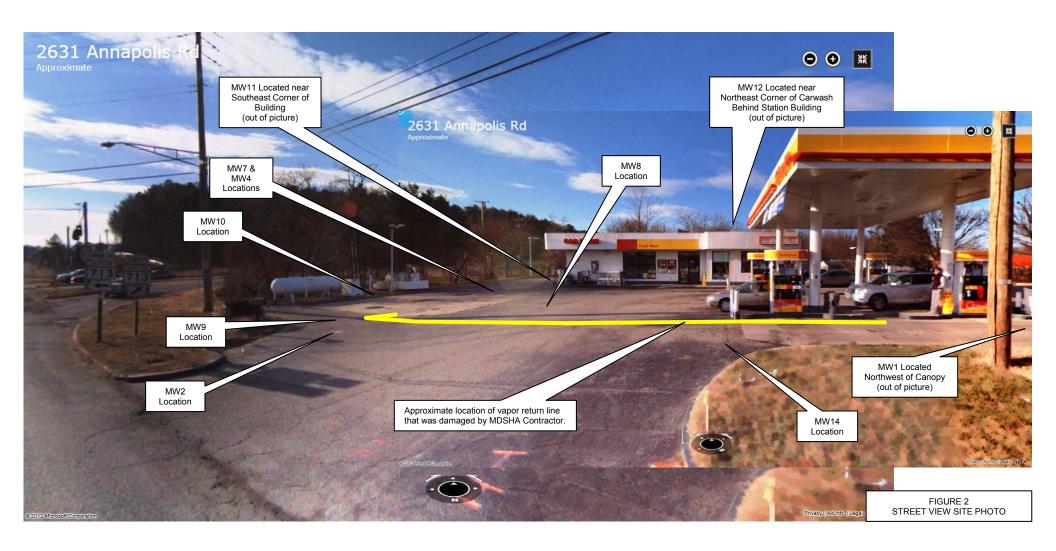
TABLE OF CONTENTS

	SEC	CTION	PAGE
1.0	INTRO	ODUCTION	2
2.0	SITE 8	& AREA DESCRIPTION	2
3.0	SITE I	INVESTIGATION	7
	3.1	INITIAL INVESTIGATION	7
	3.2	EXPANDED SITE ASSESSMENT	9
4.0	REVIE	EW OF RISK FACTORS & IMPLICATIONS FOR REMEDIAL ACTION	IS 22
LIST (OF FIGU	URES	
FIGUE FIGUE FIGUE FIGUE FIGUE FIGUE FIGUE	RE 2: RE 3: RE 4: RE 5: RE 6: RE 7: RE 8:	AREAL PHOTOGRAPHIC MAP STREET VIEW SITE PHOTO TOPOGRAPHIC MAP GEOLOGIC MAP SITE PLAN STRATIGRAPHIC CROSS-SECTION SOIL CORE PHOTOGRAPHS CONTOURED GROUNDWATER ELEVATION MAP CONTOURED BENZENE PLUME MAP	3 4 5 6 8 16 17 19 20
LIST (OF TAB	BLES	
TABLI TABLI		SUMMARY OF SOIL AND GROUNDWATER TESTING RESULTS GEOLOGIC AND WELL CONSTRUCTION LOG(S)	10 11
LIST	OF ATT	TACHMENTS	
	CHMEN CHMEN		_

PRELIMINARY SUBSURFACE ENVIRONMENTAL SITE ASSESSMENT SOUTHERN MARYLAND OIL S/S-550 2631 ANNAPOLIS ROAD HANOVER, MD 21076

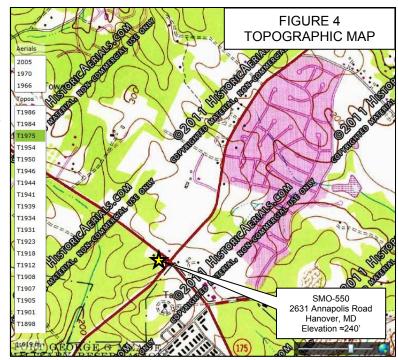
1.0 INTRODUCTION

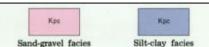
This report has been prepared to serve as the report of findings for a Preliminary Subsurface Environmental Site Assessment performed at the Southern Maryland Oil (SMO) station no. 550 located at 261 Annapolis Road, Hanover, MD. The assessment was performed in response to the need to determine the extent of impact a suspected release of gasoline may have on the local soil and groundwater quality. The release is attributed to a late-2012 breakage of a vapor return line between the southeastern-lying dispenser island and the tankfield. The breakage was caused by a contractor for the Maryland State Highway Administration (MDSHA) who was and continue to upgrade the intersection of Annapolis Road (MD Route 175) and Rockenbach Road (MD Route 713) and cut through the line on the SMO property during underground utility and repaving activities associated with the roadway upgrades.


Per the direction of the Maryland Department of the Environment Oil Control Program (MDE), a sample of the water from the water supply well system was collected on December 6, 2012 and tested for Volatile Organic Compounds (VOCs) per EPA Method 524.2 and MDE Guidelines. The supply well water sample did not contain detectable VOC concentrations. During the early-December 2012 site visit, monitoring wells were observed to be pre-existing at the site, and were gauged to assess for the presence of gasoline product and to confirm depth to groundwater and well depths. Two six identified monitoring wells could not be accessed because of blocked/locked wellhead assemblies; two other wells were gauged to be dry - one at 34.75' below top of casing (or about 35' below grade, MW2) and a second at 11.7' below top of casing (or about 12' below grade, MW5). The latter is believed to be a tankfield monitoring pipe, as were the two monitoring wells that could not be initially accessed (MW3 and MW6). The remaining two wells (MW1 and MW4) were gauged to be approximately 34.5' deep from top of casing (or about 34.75' below grade) and contained groundwater at approximately 26.1' below top of casing (or about 26.25' below grade).

On December 26, 2012, the groundwater in the wells were regauged and sampled per MDE Guidelines. The two wells that could not be access during the early-December 2012 site visit were confirmed to be 13.25' below grade (MW3) and 10' below grade (MW6) and both contained no or very little water (MW6 contained about 0.2' of water suspected to be "bottom cap" water). Consequently, wells identified herein as MW3, MW5 and MW6 (and later described MW13) are tankfield monitoring pipes that do not contain groundwater. MW1 and MW4 were again confirmed to contain groundwater and samples of such were obtained for laboratory testing. Although MW2 is constructed to about 35' depth, the well was dry during both the early and late-December 2012 gauging events.

2.0 SITE & AREA DESCRIPTION


The site is located near Fort Meade, MD in Anne Arundel County on the southwest corner of the intersection of Annapolis Road and Rockenbach Road. To the north, across Annapolis Road and up topographic grade is an Exxon gas station and grass field, which is currently being initially developed as a residential neighborhood. To the east and across the intersection of Annapolis and Rockenbach Roads is a retail strip mall. Southeast of the site and across Rockenbach Road is a forested lot. Southwest of the property includes a Car Doc automotive repair garage (immediately south of the site), a KinderCare preschool (about 730' from the site), and entrance road to the Ridgeview Plaza shopping center that is located west of the site. An area map developed from an aerial photographic map is presented as Figure 1. A street-view photo depicting a section of the front portion of the property is presented as Figure 2.

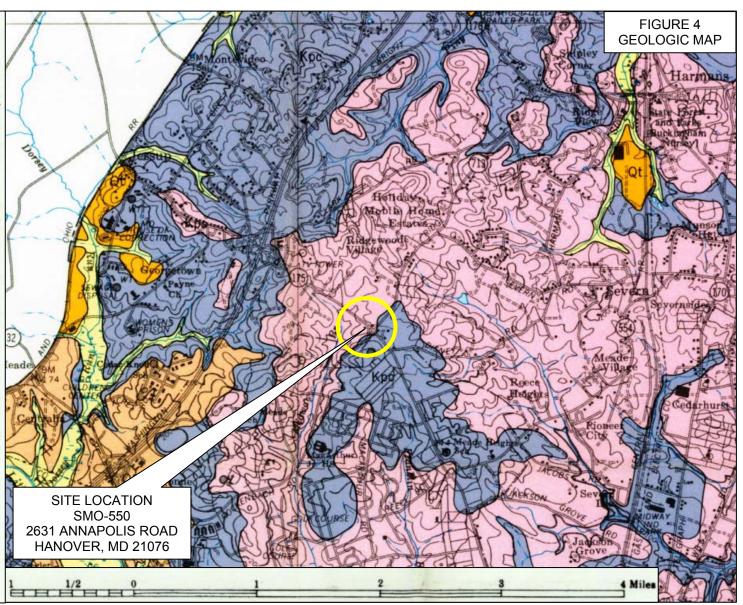


The site is located at about 240' elevation with topography sloping towards the southwest. A temporal stream is located along the eastern property boundary and feeds into a perennial stream (Midway Branch) located about 1165' to the southwest from the site. A topographic map is presented as Figure 3.

The site is mapped by the Maryland Geologic Survey as being underlain by the Potomac Group Sand-Gravel Facies, with a contact between the Sand-Gravel Facies and the Silt-Clay Facies being mapped directly through and parallel with Rockenbach Road. A geologic map is presented as Figure 4.

The surrounding area relies on water supply wells for water service, with sanitary sewers operated by Anne Arundel County. The site's supply well (AA-93-0877) is reported to be constructed in August 1995 to 402' depth (with 2" screen from 387' to 402') and 4" casing to 387' and grout to 160' depth. The static depth to groundwater was reported to be 208' with a pump column set at 245' depth. According to the Water Management Administration (WMA) well database, there is a second well on the property (AA-94-5960) that was not located. This well was reported to have been constructed in December 2000 as an irrigation well to 465' depth (with 4" screen from 440' to 460') and 4" casing to 340' and grout to 340' depth. The depth to groundwater was reported to be 205' with a pump column set at 336' depth. This well could be maintained below grade in a manhole proximate to the car wash and used by the car wash. Two supply wells (AA-81-4854 and AA-81-8514) are located on the Car Doc property immediately downgradient from the site. Both are owned and operated by the Ridgeview Plaza property owner (Ridgeview Plaza, LLC, c/o Renaud Consulting, 8605 Westwood Center Drive, Suite 410, Vienna, VA 22182, 703-404-2346). The large well (AA-81-4854) was constructed July 1985 to 530' depth (with 4" screen from 444' to 485') and 8" casing to 387' and grout to 400' depth. The smaller well (AA-81-8514) was constructed September 1987 to 466' (with 4" screen from 436' to 466') and 6" casing to 436' and grout to 420' depth. The static depth to groundwater in both wells is reported to be 200' with pump columns to 320' and 315' below grade, respectively. The fifth of five, nearby or downgradient wells is located at the KinderCare property at 8050 Rockenbach Road, which is owned and operated by KC Propco, LLC (2601 South Bayshore Drive, 9th Floor, Coconut Grove, FL 33133, and managed by Greenstreet Real Estate Partnership of the same address, 786-464-8348). This well (AA-81-4908) is reported to have been constructed July 1985 to 362' depth (with 2" screen from 356' to 362') and 4" casing to 355' and grout to 23' depth (which may be a typographical error in the WMA well database system). Otherwise, the screened and filter-packed (exposed portion of the well that can accept groundwater) is from 23' to 362' below grade. The static depth to water is 190' with a pump column set to 250' below grade. Both of the Ridgeview wells are located at a lower (downgradient) elevation than the subject site. The KinderCare well is located at about an equal elevation of the subject site.

Potomac Group


Sand-gravel facies

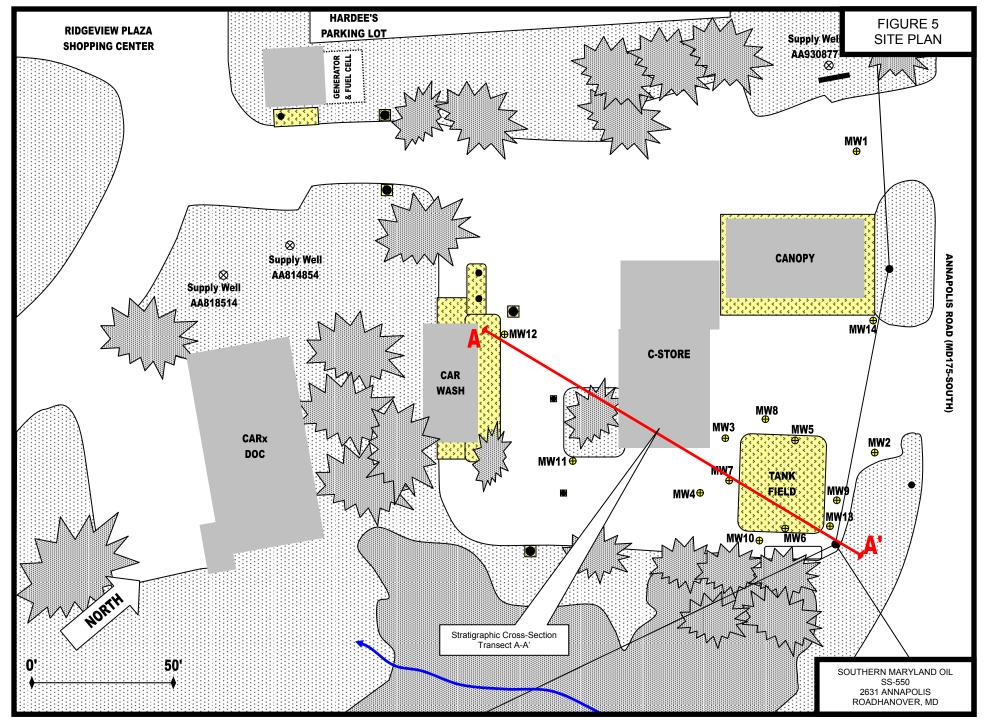
Interbedded quartz sand, pebbly sand, gravel, and subordinate sitcles. Sand wholly quartzose, fine to course-grained, poorly to well-sorted, clean to very muddy. Color white, buff, red-brown, to veri-colored. Pebbles chiefly vein quartz and quartzite with some sandstone and chert interstratified with much subordinate white, buff, gray, or red sill-clay in thin lenticular beds. Sand-gravel cross-bedded or flat-bedded, rarely massive. Fining-upward cycles common. Sill-clay lenses massive or rarely laminated. Fernginous concretions and limonite-cemented pods or ledges common.

Silt-clay facie

Clay, sill, and subordinate fine to medium-grained muddy sand. Color red, tan, gray, buff, or mottled. Sitt-elay generally massive and thick-bedded, compact and "tough"; includes sandy clay, laminated silt-elay, and nearly pure, plastic, kaolinitic clay. Sand lenses typically composed of poorly-sorted quarts sand with much interstitial silt-elay, sand cross-bedded, flat-bedded, or massive, Pebbly in place. Anastomosing ironstone layers and sideritic concretions common.

The outcrop belt of the Potomac Group occupies nearly the entire northern third of Anne Arundel County, and exposures are numerous in road and railway cuts, construction excavations, and stream banks. As here mapped, two lithologic units are recognized: the sand-gravel facies and the silt-clay facies. Couched in terms of the classical Potomac Group stratigraphy, the sand-gravel facies encompasses sandy portions of the Patapsco Formation whereas the silt-clay facies includes both the Arundel Clay and silt-clay in the Patapsco. The present map units were adopted when separation of the Arundel and Patapsco clays proved impractical at the map scale utilized, and secondarily, to facilitate lithologic subscale utilized, and secondarily, to facilitate introogic sub-division of the Patapaco, Previous geologic maps of the County show stream valleys along the Anne Arundel-Howard County boundary occupied by the Patuxent Formation, the lowest unit of the Potomac Group. However, these areas are actually blanketed by Quaternary Alluvium or Terrace De-posits, and are so mapped, Typical Arundel Clay is comprised of "tough" dark-gray to maroon clay; such clays can be seen at a number of localities within the belt of silt-clay facies paralleling the northwestern border of the County. Passing eastward and upsection, Potomac Clay is predominantly red, buff, or red-gray mottled, and contains considerable sand and silt. Moreover, it is frequently interbedded with or grades laterally into lenticular bodies of fine-grained muddy sand, The upper beds of the Potomac Group are primarily sand and minor gravel with thin lenses of white or pale-gray clay. Gravel is always a minor component in the Potomac Group section of the County and is concentrated in the lower portion of the unit. At several places in the upper Potomac sands, notably at Lipins Corner, Elvaton, and Sunnyside School, concentrations of large, opaline-cemented quartzite blocks occur in the soil zone, Based on heavy-mineral assemblages and textural parameters, the blocks appear to be relics from the eroded Magothy Formation and may record a selectivelylithified Magothy shoreline sand, Fossils in the Potomac Group of Anne Arundel County are limited to plant remains (lignitized stems and twigs, leaf and frond impressions, pollen, etc.) and extremely rare dinosaur bones. Pollen zonation by several workers agrees in assigning a mid-early Cretaceous (Aptian-Albian) age to the Potomac Group outcropping in the County. The sediments were deposited in a complex of river floodplain-back swamp environments,

The subject site is developed with a car wash located on the south (rear) portion of the property. Underground sewer piping is located parallel to and south of the station garage and an oil/water separator or washwater recycling tank system is used with the car wash and located underground the northwest corner of the car wash. Additional underground receptors include underground utilities (electric, communication, etc.) along the southern side of Annapolis Road (or north side of the property) and product line and electrical conduits between the tankfield and dispenser islands. A site map is presented as Figure 5.


3.0 SITE INVESTIGATION

3.1 INITIAL INVESTIGATION

As presented in the introduction above, the assessment was performed in response to the need to determine the extent a release of gasoline may have impacted local soil and groundwater quality. The release is attributed to a late-2012, MDSHA contractor breakage of a vapor return line between the southeastern-lying dispenser island and the tankfield. Per the direction of the MDE, a sample of the water from the water supply well system for the site was collected on December 6, 2012 and tested for Volatile Organic Compounds (VOCs) per EPA Method 524.2 and MDE Guidelines. As noted above, this well is screened from 387' to 402' below grade. The supply well water sample did not contain detectable VOC concentrations; however, the water from the well contains very strong sulfur and iron odors.

During the early-December 2012 site visit, monitoring wells were observed to be pre-existing at the site, and were gauged to assess for the presence of gasoline product and to confirm depth to groundwater and well depths. Two of the six identified monitoring wells could not be accessed because of blocked/locked wellhead assemblies; two other wells were gauged to be dry - one at 34.75' below top of casing (or about 35' below grade, MW2) and a second at 11.7' below top of casing (or about 12' below grade, MW5). The latter is believed to be a tankfield monitoring pipe, as were the two monitoring wells that could not be initially accessed (MW3 and MW6). The remaining two wells (MW1 and MW4) were gauged to be approximately 34.5' deep from top of casing (or about 34.75' below grade) and contained groundwater at approximately 26.1' below top of casing (or about 26.25' below grade).

On December 26, 2012, the groundwater in the wells were regauged and sampled per MDE Guidelines. The two wells that could not be access during the early-December 2012 site visit were confirmed to be 13.25' below grade (MW3) and 10' below grade (MW6) and both contained no or very little water (MW6 contained about 0.2' of water suspected to be "bottom cap" water). Consequently, wells identified herein as MW3, MW5 and MW6 (and later described MW13) are tankfield monitoring pipes that do not contain groundwater. MW1 and MW4 were again confirmed to contain groundwater and samples of such were obtained for laboratory testing. Although MW2 is constructed to about 35' depth, the well was dry during both the early and late-December 2012 gauging events. The groundwater sample from MW1 contained 0.35 milligrams per liter (mg/l) Diesel Range Organics (DRO) and no detectable VOCs or Gasoline Range Organics (GRO) concentrations. The groundwater sample from MW4 contained 2.9 mg/l Benzene, 5.131 mg/l Total BTEX, 61 micrograms per liter (μ g/l) MTBE, 5.298 mg/l Total VOCs, 9.9 mg/l GRO and 0.28 mg/l DRO.

Based on the above results, actual groundwater flow could not be determined because only two wells contained measurable groundwater. Review of topographic maps indicated that groundwater flow was most probably to the southwest. The lack of dissolved petroleum concentrations in MW1 showed that the shallow groundwater quality in the western side of the dispenser island was relatively clean. The presence of elevated Benzene and other VOC concentrations in MW4 showed that shallow groundwater was impacted in the apparent downgradient side of the tankfield field. A work plan for conducting a subsurface soil and groundwater assessment was included in a January 8, 2012 Report of Findings, and approved by the MDE in March 2013. Pending receipt of well permits, the expanded site assessment was initiated with the construction of monitoring wells beginning on April 15, 2013.

3.2 EXPANDED SITE ASSESSMENT

The expanded site assessment was initiated with the construction and development of seven additional monitoring wells on April 15-17, 2013. During well construction activities, an additional existing monitoring wells was found beneath a thick layer of dirt proximate to the northeast corner of the tankfield and hereafter is referred to as MW13, and was gauged to be dry at approximately 11' below grade. Before each new monitoring well was constructed, geoprobe drilling methods were used to obtain continuous soil sample cores from grade to borehole completion depth. Selected samples were prepared in plastic zip-lock bags and tested to measure for the presence of VOC vapors using a headspace test and photoionization detector (PID). PID-testing results are listed on Table 1. Stratigraphic descriptions of the respective soil samples are provided in Table 2, along with well construction details for the newer monitoring wells.

After each borehole was completed at depth, hollow stem auger drilling methods were used to redrill the borehole to a larger diameter and accommodate the construction of 4"-diameter wells, except for MW11 and MW14. The latter two wells were constructed as temporary 1"-diameter by 31'-depth monitoring points, each with 15' of well screen. Four of the other new wells (MW7, MW8, MW10 and MW12) were constructed as 4"-diameter wells by approximately 34½' to 34¾' below grade. MW9 was constructed to about 40¾' below grade. These five wells were equipped with 20' of 20-slot well screen, #2 Morie Sand filter pack to at least 2' above the top of screen, at least 2' of bentonite annulus seal and remainder with grout to just below grade. All wells were constructed within steel traffic boxes. The wells were initially gauged and developed using surge block and bailer methods on April 17, 2013 along with the surveying of their relative elevations to 0.01' full-circle/tie-in accuracy. Development water was disposed through a 30-pound capacity portable carbon filter with onsite discharge. A site plan depicting the monitoring well locations is presented as Figure 5, above.

On April 29, 2013, the depths to groundwater in the wells were gauged using an electronic, oil/water interface probe to the nearest 0.01' increment. Gauging of the wells confirmed that perched groundwater conditions prevail at the site. The perched conditions are caused by relatively thin, silty and/or clayey layers in the 25' to 30' depth range. During geoprobe soil sampling activities for the borehole of MW7, located immediately south of the tankfield, liquid-phase gasoline product was observed in the soil sample collected at 25' to 27' with perched water at 27' to 29.5' setting on sandy clay at 29½' to 30' and underlain by 2' of clay to 32' depth, followed by dryer fine-grained sand to at least 35' depth. With additional strong petroleum odors in soil samples collected as shallow as 14' below grade, the well for MW7 was constructed to 34½' below grade. However, gauging of the well showed that the depth to groundwater in the well was approximately 33.6' below grade (33.18' below top of casing, or containing only about 1' of water). Similarly, during the construction of MW8, located immediately west of the tankfield, strong petroleum odors were encountered at 14' to 15', and then from about 28' to 32'. Soil obtained at 26' depth was wet and consisted of sand extending to about 28' that was underlain by clayey sand and sandy silt from 28' to 30' and followed by dryer sand.

TABLE 1
SUMMARY OF SOIL AND GROUNDWATER SAMPLE TESTING RESULTS
SMO S/S-550, 2631 ANNAPOLIS ROAD, HANOVER, MD

Mary 14-15					SMO	S/S-550,	2631 ANI	NAPOLIS	ROAD,	HANOV	ER, MD						
MWY 18-15 OA/15/13 C7 C7 C7 C7 C7 C7 C7 C			Date	Benzene	Toluene			125000000000000000000000000000000000000		0.5	cyclo-	Cumene	3455 571	VOC	GRO	DRO	PID
MWY 12-20 04/15/13 04/15/13 05 05 05 05 05 05 05 0							Micro	grams pe	r Kilogra	mLiter (µ							ppm-
No. No.		MW7 14-15	04/15/13	<7	<7	<7	<14	<7	<7	<7	<7	<7	<14	ND	0.62	<11	33
## WWY 22 - 525 O41/51/3 C								()		Š.							22
MW 10 10 10 10 10 10 10 1	ıı																11
May 8-10-10 Out 15/13	ıı			<5	<5	<5	<10	<5	<5	<5	<5	<5	<10	ND	0.35	<10	
May 19-10 May 19-13 May								-	_						-	_	
No. 1.0					-												
March Marc																	55
NW 22-23 0415/13 5.5 5.6 5.5 10 5.5																	66
WWW 28-25 WWW																	22
Name	ည			<5	<5	<5	<10	<5	<5	<5	<5	<5	<10	ND	0.82	<11	
Name	Ë														_		33
Name	ES														_	\vdash	
Name	22			<510	<510	<510	<1000	<510	<510	<510	<510	<510	<1000	ND	180	<21	
Name	ĭ						,,,,,		1.0								22
Name	S																0
Name	#																33
Name	2			∠E20	-F20	-F20	1200	900	ZE20	-F20	-F20	FOO	12000	14500	1000	100	
Name	N N																
Name	Ś			>400	7400	>400	7800	>400	~ + 00	>+00	>+00	7400	1100	1100	210	49	33
Name	등																99
NWT1 18-20	Ñ	MW9 34-35	04/15/13			Į.	į,										11
Note																_	44
MW11 18.5-20 04/16/13 -5 -5 -5 -5 -5 -5 -5 -				<6	<6	<6	<13	<6	<6	<6	<6	<6	68	68	1.1	<10	
MW11 23-25 04/16/13				-5	-5	-5	<10	-5	-5		-5	-5	<10	ND	<0.10	-11	33
MW11 28-30 04/16/13																	22
MW12 25-26 04/16/13 <5 <5 <5 <5 <10 <5 <5 <5 <5 <5 <5 <5 <														,,,,,			11
NW12 29-30																	11
MW14 13-15																	
MW14 18-20 04/17/13				<5	<5	<5	<10	<5	<5	<5	<5	<5	<10	ND	<0.2	<11	244
MW14 23-25													0				
MW14 27:30																	211
Well Date Benzene Toluene Ethylbenzene Xylenes Xylen				<550	<550	<550	<1100	<550	<550	<550	3900	1600	<1100	5500	800	27	773
Well Date Benzene Toluene Ethylbenzene Xylenes Xylen				<520	<520	<520	<1000	<520	<520	<520	1300	<520	<1000	1300	380	<12	
	\vdash			_								-		1100			244
Name	SULTS	Well	Date	Benzene	Toluene		Xylenes	Xylenes		hexane	cyclo- hexane	Cumene	The second secon	VOC			
MW1	3 RE						ı	Microgran	ns Per L	iter (µg/l)							
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr		MW1															
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	SST																
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	H	MW4														_	-
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	Ë	MW7															1
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	¥																
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	8										REE-PHA						1
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	띮	MW11	04/29/13		4	<1	18	<1	<1	72	54	<1	<10	207			
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	Æ								_								1
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	M																
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	3														_	_	1
Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Elev. T-Apr 29-Apr Elevation Depth Well Well Depth to Water GW Well Water In T-Apr 29-Apr Elevation Depth Well Well Elev. T-Apr 29-Apr Elevation Depth Well Well T-Apr T-Apr	8	Station SW									-						1
Well Elev. 17-Apr 29-Apr Elevation Depth Well Well Elev. 17-Apr 29-Apr Elevation Depth Well Feet (ft) Feet (ft)	g	KinderCare SW	THE RESERVE OF THE PARTY OF THE												_		4
			Well					Water In			Well						
	A ST.	Well	Elev.	17-Apr			Depth	Well	V	/ell	Elev.	17-Apr			Depth	We	ell
	벁띘	NA\A/4	250.04	25 57			24.70	0.05	NAVA/0		250.00	22.00			24.44		0.04
	WA															\vdash	
	S S																
	9 K																4.12
	SR.		258.24	DRY		DRY		DRY	MW12		259.29	26.61	26.98	232.31	34.70		7.72
MW7 258.45 32.76 33.18 225.27 34.10 0.92 MW14 257.61 NA 25.20 232.41 30.30 5.10																	0.34
		MW7	258.45	32.76	33.18	225.27	34.10	0.92	MW14		257.61	NA	25.20	232.41	30.30		5.10

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG Southern Maryland Oil S/S-550, Shell Gas Station Well ID MW7 Address 2631 Annapolis Road, Hanover (Anne Arundel County), MD Diameter 4.00 inches Date 04/15/13 Depth from Grade 34.50 feet Jean Fritz, Advanced Environmental Concepts Screen 20.00 feet Driller ogged Doug Hamilton, Envirotech Consultants, LLC Casing 14.10 feet Depth from Casing 34.10 feet Permit Depth PID Soil Description Well Construction Details 4" asphalt, 3" subbase gravel, tan medium-grained SAND with trace round gravel (fill) to 7.25' PORTLAND-BENTONITE GROUT TO ≈0.5' DEPTH WITH TOP OF CASING CUT ≈0.4' BELOW GRADE Damp clayey SILT HOLE-PLUG Yellow-brown SILT BENTONITE SEAL TO Orange fine-grained SAND 7.5' DEPTH Clayey SAND #2 MORIE SAND TO 12.5' DEPTH 33 Damp, laminated white and black SAND with strong petroleum odor Pea gravel locked-up geoprobe spoon during liner removal, bottom of core soil salvaged. Gray fine-medium grained SAND with petroleum odor. Sandy CLAY at 16' (perched water? on top). Brown/black/white laminated fine-coarse SAND, gray at 22.5' (20-SLOT) Fine-grained SAND with liquid petroleum in core sample at 25' to 27'. 20. Sandy Clay with perched water at 29.5' to 30'. CLAY with sand laminations Fine-grained SAND, wet with petroleum odor.

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG Southern Maryland Oil S/S-550, Shell Gas Station Well ID MW8 Address 2631 Annapolis Road, Hanover (Anne Arundel County), MD Diameter 4.00 inches 04/15/13 Depth from Grade 34.50 feet Screen 20.00 feet Driller Jean Fritz, Advanced Environmental Concepts Logged Doug Hamilton, Envirotech Consultants, LLC Casing 14.11 feet Depth from Casing 34.11 feet Permit Depth Soil Description Well Construction Details 4" asphalt, 3" subbase gravel, yellow medium-grained SAND with gray clay PORTLAND-BENTONITE GROUT TO ≈0.5' DEPTH WITH TOP OF CASING CUT Gray clayey SAND, no odor. ≈0.4' BELOW GRADE 22 HOLE-PLUG Brown-yellow CLAY BENTONITE SEAL TO Brown-red SAND, petroleum odor at 14', band of brown clayey SAND at 7.5' DEPTH 14.5', band of dark gray SAND with strong petroleum odor at 15'. #2 MORIE SAND TO 12.5' DEPTH White SAND 66 Yellow-brown coarse SAND with some gravel. Clayey SAND White SAND with gravel and clay interbeds. (20-SLOT) Red-brown fine-grained SAND, wet at 26'. 99 Laminated, multicolored SAND and Clayey Sand Dark brown sandy SILT, petroleum odor. Coarse SAND with strong petroleum odor. Dark brown SAND, some petroleum odor.

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG Southern Maryland Oil S/S-550, Shell Gas Station Well ID MW9 Address 2631 Annapolis Road, Hanover (Anne Arundel County), MD Diameter 4.00 inches Depth from Grade 40.75 feet Date Jean Fritz, Advanced Environmental Concepts Screen 20.00 feet Driller .ogged Doug Hamilton, Envirotech Consultants, LLC Casing 20.50 feet Depth from Casing 40.50 feet Permit Depth PID Soil Description Well Construction Details 4" asphalt, 3" subbase gravel, tan medium-grained SAND with trace round gravel (fill) to 2.25' PORTLAND-BENTONITE GROUT SILT TO ≈0.5' DEPTH WITH TOP OF CASING CUT ≈0.25' BELOW Fine-grained SAND, laminations at 8' to 10'. GRADE HOLE-PLUG 33 BENTONITE SEAL TO Black/white laminated fine-medium grained SAND, 2"-thick layer of SILT at 7.5' DEPTH 13' with strong petroleum odors. Coarse-grained SAND #2 MORIE SAND TO 12.5' DEPTH 322 CLAY Fine-grained (sugar) SAND, tan/orange, with strong petroleum odor and liquid petroleum in core sample on top of thin clay stringers. Fine-grained SAND with liquid petroleum in core sample at 25' to 27'. SCREEN (20-SLOT) Sandy Clay with perched water at 29.5' to 30'. CLAY with sand laminations Fine-grained SAND, wet with petroleum odor. 99 11

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG Southern Maryland Oil S/S-550, Shell Gas Station Well ID MW10 Address 2631 Annapolis Road, Hanover (Anne Arundel County), MD Diameter 4.00 inches Date Depth from Grade 34.50 feet Jean Fritz, Advanced Environmental Concepts Screen 20.00 feet Driller Logged Doug Hamilton, Envirotech Consultants, LLC Casing 14.20 feet Depth from Casing 34.20 feet Permit Depth PID Soil Description Well Construction Details 4" asphalt, 6" subbase gravel, sandy silt and silty sand FILL, no odor. PORTLAND-BENTONITE GROUT TO ≈0.5' DEPTH WITH TOP OF CASING CUT ≈0.3' BELOW GRADE Silty Sand HOLE-PLUG BENTONITE SEAL TO 7.5' DEPTH #2 MORIE SAND TO 12.5' DEPTH Sugar Sand, gray/tan/white/orange laminations, septic smell to 17.5', low odor 17.5' to 20'. Same. Coarse-graned SAND, wet with liquid petroleum at 25' 66 Fine-grained SAND with ironstone (2"-thick) Brown, coarse-graned SAND

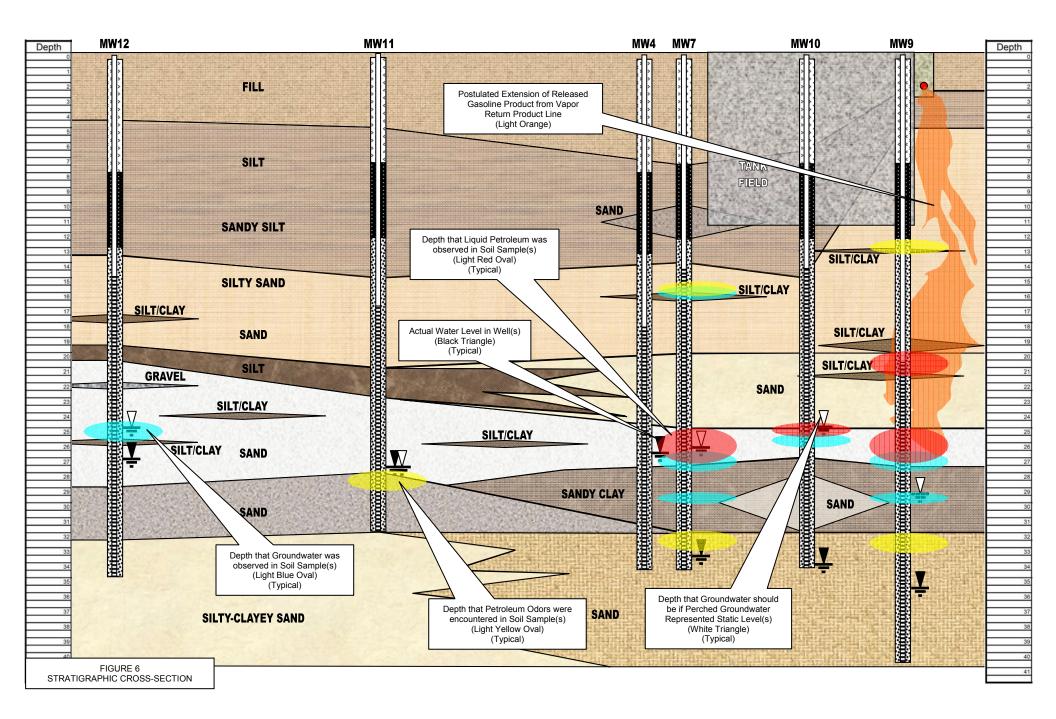
TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG

Site	Sout	hern Maryland Oil S/S-550, Shell Gas Station	Well ID	MW11	
Address	2631	Annapolis Road, Hanover (Anne Arundel County), MD	Diameter		inch
Date	04/1		Depth from Grade		
Driller		Fritz, Advanced Environmental Concepts	Screen	15.00	
Logged	Dou	Hamilton, Envirotech Consultants, LLC	Casing		
Permit		1	Depth from Casing		
Depth	PID	Soil Description		Wel	I Construction Details
3 3	0	4" asphalt, 8" subbase gravel, damp silty sand fill to 5'. Moist SiLT to 9', black cinders 9' to 9.5', moist brown SiLT	G 5' to 12'		PORTLAND- BENTONITE GROUT TO ≈0.5' DEPTH WITH TOP OF CASING CUT
6 7 8	0	INVOIS SILT IN 9 , DIRLY CITIZETS 9 TO 9.5 , THOIST BLOWN SILT	3.3 (0.13).		≈0.3' BELOW GRADE HOLE-PLUG BENTONITE SEAL TO
10 11 12 13	0	Brown/orange clayey Sand, damp.			#2 MORIE SAND TO
14	1				12.5 DEPTH
15	1	Silty-clayey Sand.			
16 17	0	Orange Sand with silt, damp.			
19		White/black/gray SAND			(F
21 22	1	Dense, moist SILT			T x 15' SCREEN (20-SLOT)
23 24	22	Sugar SAND, white/black/brown laminations.			SCREE
25 26		1			* × ×
28		Coarse-grained SAND, gray, some petroleum odor .			* *
30 31	1				
32 33 34	4	Pasty yellow fine-grained Sand.			
35 36 37 38 39 40					
41					

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG

Site So	uthern Maryland Oil S/S-550, Shell Gas Station	Well ID	MW12	
	31 Annapolis Road, Hanover (Anne Arundel County), MD	Diameter		inches
	/15/13	Depth from Grade		
	an Fritz, Advanced Environmental Concepts	Screen		
	rug Hamilton, Envirotech Consultants, LLC	Casing		
ermit Do	ng Hammon, Elivilotech Consultants, ELO	Depth from Casing		
	DI Soil Deseriation	Dopur nom casing		
Deptii Pit			7761	Construction Details
Depth Pli	4" asphalt, 8" subbase gravel, pea gravel and silt to 4.5' Brown, plastic SILT Sandy Silt Orange, very fine-grained SAND and SILT Orange, very fine-grained SAND SILT, Fine-medium grained SAND SILT, dense Fine-grained SAND Sandy Gravel Orange/white laminated medium-grained SAND, wet at 25	5'.		PORTLAND-BENTONITE GROUT TO ≈0.5' DEPTH WIT TOP OF CASING CU ≈0.3' BELOW GRADE HOLE-PLUG BENTONITE SEAL TO 7.5' DEPTH #2 MORIE SAND TO 12.5' DEPTH

TABLE 2 - GEOLOGIC AND WELL CONSTRUCTION LOG Southern Maryland Oil S/S-550, Shell Gas Station Well ID MW14 Address 2631 Annapolis Road, Hanover (Anne Arundel County), MD Diameter 1.00 inch Depth from Grade 30.75 feet Screen 15.00 feet Date 04/17/13 Jean Fritz, Advanced Environmental Concepts Driller Logged Doug Hamilton, Envirotech Consultants, LLC
Permit Casing 15.30 feet Depth from Casing 30.30 feet Well Construction Details Depth PID Soil Description 6" asphalt, 6" subbase gravel, light brown/tan damp SILT PORTLAND-BENTONITE GROUT TO ≈0.5' DEPTH WITH TOP OF CASING CUT Dense CLAY, tan/white/magenta ≈0.4' BELOW GRADE Orange, silty medium-grained Sand with white clay laminations at 12.5' HOLE-PLUG BENTONITE SEAL TO 8' DEPTH #2 MORIE SAND TO White, fine-grained SAND 13' DEPTH Fine-medium grained SAND Gravelly Silt 266 Black/white laminated SAND X 20' SCREEN (20-SLOT) Fine-grained SAND Mottled Sand with some Silt (black/white/brown) Fine-medium grained SAND, black with very strong petroleum odor at 27', orange coarse-sand at 27.5' to 29'. CLAY Black SAND, wet at 31.5' Damp, multi-colored Sand 244


14

The well was constructed to 34½' below grade, and subsequent gauging showed a water level at about 33.7' below grade (33.3' below top of casing, or containing only about 0.8' of water). For MW9, which was constructed immediately down slope of the utility trench line for the vapor return lines that were cut, petroleum vapors were encountered at 13' depth, and then 20' depth with liquid petroleum product observed in soil samples collected from about 23' to 27' that consisted of fine-grained sand to 28' overlying sandy clay from 271/2' to 30' and dense, damp clay from 30' to 32', beneath which was fine-grained sand from 32' to at least 35' below grade. Groundwater was observed in the soil sample collected at 29½ to 30' (setting above the clay) and in the underlying sand at 32' to 35'. The liquid petroleum product was in observed in the soil immediately shallower than the thin lens of (perched) groundwater. MW9 was constructed to 40.75', and subsequent gauging showed a water level at about 35.8' below grade (35.55' below top of casing, or containing about 5' of water). Consequently, the perched water observed at 29½ to 30 was not coincident with the static level recorded deeper at 35¾ below grade. At the time of well development and initial gauging previous to sampling, MW9 did not contain measurable petroleum product. But, after purging the well prior to groundwater sampling, the purge water was observed to contain liquid petroleum. A repeated gauging of the well showed the presence of petroleum in the well, and a sample was not collected. Similar conditions prevail for MW10. Liquid petroleum product was observed in the soil sample collected at 25' below grade setting within coarse-grained sand and setting on silty sand beginning at 27' below grade. The well for MW10 was constructed to 341/2' below grade. Subsequent gauging showed a water level essentially equal to the bottom cap level (only 0.11' of water in the well).

During the soil sampling of MW11, some petroleum odor was encountered in wet coarsegrained sand at about 28' depth that was underlain by pasty sand (moist, clayey-silty sand) from 32' to at least 35' depth. The 1"-diameter well for MW11 was constructed to 32' depth, and subsequent gauging showed a groundwater level at 2734' below grade (27.6' below top of casing with the well containing a little more than 4' of water). Consequently, the water observed at 28' was coincident with the subsequently gauged static groundwater level. MW12 also yielded a static groundwater level that was about coincident with the depth that groundwater was first observed in soil samples. Wet sand was observed at 25' below grade, setting on fine grained sand at 29½ to 32½ and pasty (clayey-silty) sand at 32½ to at least 35. The measured depth to groundwater in MW12 was about 271/4' below grade (27' below top of casing, yielding a water column of about 73/4'). Lastly, MW14, which was constructed as a 1"-diameter well in the general area of the vapor line break, was constructed to 3034' below grade. Petroleum odor and liquid-phase petroleum was noted in wet fine-medium grained sand at 27', setting on damp clay that began at 29' underlain by wet sand from 30' to 31½' and a deeper ½'thick damp silt layer to 32' below grade. PID readings of the soil samples from MW14 were the highest observed in any soil samples tested during well drilling activities.

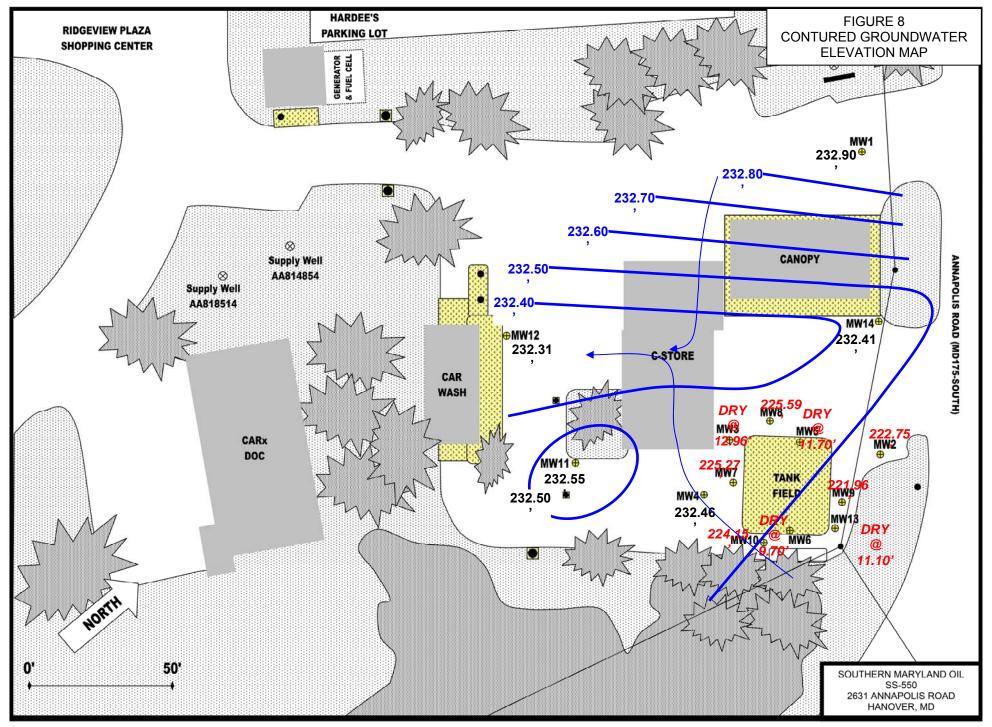
In addition to the monitoring wells constructed in April 2013, older wells MW1 and MW4 were constructed by others to about 34¾ below grade and contained groundwater at about 26.4 and 27.2 below grade, respectively (or about 8.6 and 7.3 of water in the wells). Whereas, older well MW2 was also constructed to a similar depth as MW1 and MW4, but does not contain groundwater. MW3, MW5, MW6 and MW13 are all shallow, tankfield monitoring pipes constructed at depths of about 13′, 12′, 10′ and 11′ below grade, respectively, and do not contain groundwater.

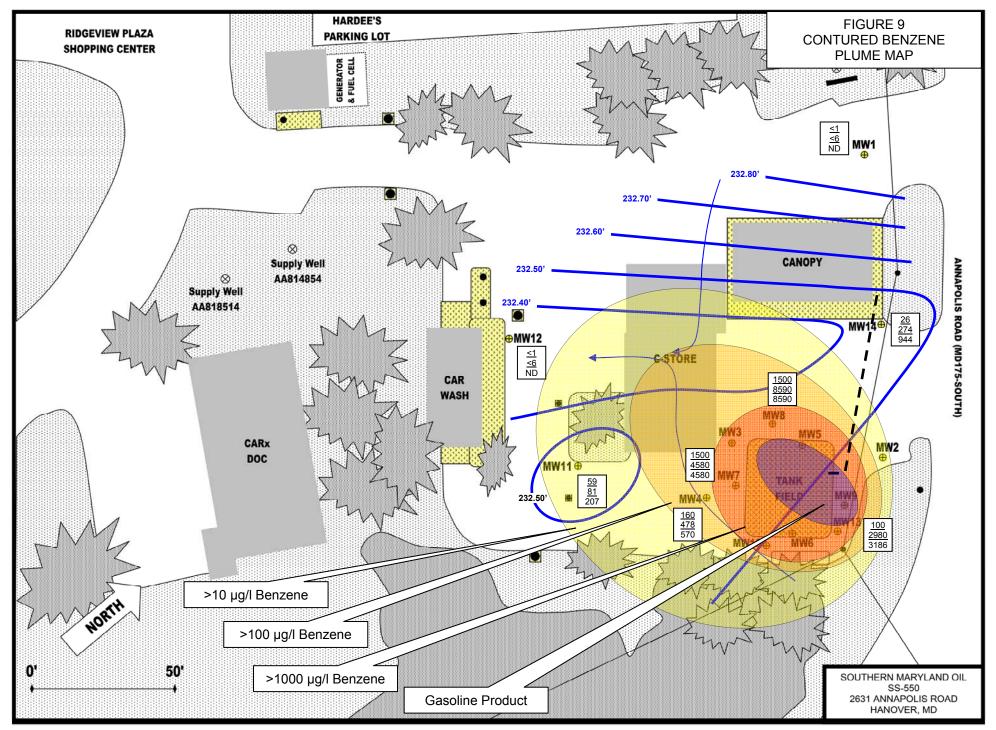

Consequently, although groundwater was observed in soil samples at several well locations at depths between 25' to 30' depth, these water-bearing zones appear to be perched groundwater. A stratigraphic cross-section was developed through a transect from MW12 to MW9 and is presented as Figure 6.

Selected soil samples from the new monitoring well locations were prepared for laboratory testing of VOCs, GRO and DRO per MDE Guidelines. A summary of the soil sample testing results is presented in Table 1, above, and a copy of the report of analysis is provided in Attachment 1. Review of Table 1 shows that the soil sample collected at 14' to 15' and a second at 22½' to 25' depth at MW7 were below MDE Standards. However, as noted above, MW7 contained liquid-phase petroleum-saturated soil at 27' and setting on water-saturated soil to about 29½' depth. The samples collected at 22' to 23' and 30' to 32½' at MW8 similarly were below MDE Standards. Nevertheless, per above, strong petroleum odors were encountered in soil samples collected at 14' to 15' and again at 28' to 32' depth. The two samples from MW9, collected at 13' to 15' and 18' to 19' contained elevated petroleum concentrations, with the shallower sample above MDE Standards. As described previously, a relatively thick section of the soil cores collected from 23' to 27' depth at MW9 contained liquid-phase petroleumsaturated soil in sections of the cores. This well subsequently yielded liquid-phase petroleum product on top of the groundwater in the well. The two soil samples from MW10, collected at 14' to 15' and 18' to 20' depth, from MW11 at 181/2' to 20' and 20' to 22', and from MW12 at 25' to 26' and 29' to 30' were below MDE Standards. However, liquid phase hydrocarbons were observed in soil samples from MW10 at approximately 25' depth.

The samples from MW14, collected at 27' to 30' and 30' to 32' depth contained elevated **GRO** concentrations. which the shallower sample was above MDE Standards. Figure 7 provides photos of selected soil core samples showing the thinly perched petroleumsoaked soil and underlying silt or clay and/or watersaturated sand.

groundwater The samples were also for VOC, GRO and DRO per MDE Guidelines. Table 1 provides a summary of the groundwater testing results, and a copy of the report of analysis is provided Attachment Review of Table 1 shows that the MW1 MW12 water and samples did not contain detectable dissolved petroleum.


In December 2012, a groundwater sample from MW4 contained 2.9 mg/l Benzene, 5.45 mg/l Total BTEX and about 10 mg/l GRO. Per the April 2013 sampling event, MW4's groundwater contained 0.16 mg/l Benzene, 0.57 mg/l Total BTEX and about 3 mg/l GRO, all about an order of magnitude less than what was measured in the December 2012 sample and Benzene representing half as much of the Total BTEX concentration in April 2013 compared to December 2012. The reduction could be a result of well development efforts in mid-April 2013 during monitoring well drilling activities.


The samples from MW8 and MW9 contained about 5 to 8.5 mg/l Total BTEX including 1.5 mg/l Benzene, and MW13's "bottom cap water" (as it was gauged with only 4" of water within the shallow tankfield monitoring pipe) contained about 3.2 mg/l Total BTEX with 0.1 mg/l Benzene. MW11 and MW14's samples were measured to contain about 0.2 mg/l Total BTEX with about 60 µg/l Benzene, and 0.94 mg/l Total BTEX with 26 µg/l Benzene, respectively. MTBE and associated degradation byproducts including TBA and TAME were not detected above detection limits in any of the groundwater samples. A historical release would normally yield some remnant MTBE and/or degradation byproduct concentrations. The proportions of BTEX compounds in MW4's April 2013 groundwater sample are about the same as those in MW7's April 2013 groundwater sample, indicating a common source of petroleum yielding dissolved petroleum to the south side of the tankfield. The BTEX concentrations in MW8 are very similar to that in MW7, but with higher proportions and concentrations of Ethylbenzene and Xylenes, which may indicate that MW8 is closer to the source than MW7 and MW4 (where the latter have higher proportions of the more soluble compounds such as Benzene).

Using the gauging data collected on April 29, 2013, a contoured groundwater elevation map was developed and is presented in Figure 8. Development of the map used on the water elevations measured in MW1, MW4, MW11, MW12 and MW14. The water elevations in MW7, MW8, MW9 and MW10 were not used as these levels are not representative of a laterally continuous water surface. Based on the recorded elevations, overall groundwater flow appears to be to the southwest with a component of flow from MW1 toward the station store, and a second component of flow from the northeast corner of the property toward MW12. Regardless, the groundwater elevation in MW12, located near the carwash, was the lowest compared to MW1, MW4, MW11 and MW14.

Using the groundwater sample testing data produced by the April 29 sampling event, a contoured Benzene plume map was developed and is presented in Figure 9. Please note that this Benzene plume map does not depict the presence of shallower liquid-phase petroleum and/or very strong petroleum odors observed in soil samples from MW7, MW8, MW9, MW10 and MW14. Consequently, the presence of numerous, discontinuous silty and/or clayey layers in the 25' to 30' zone has resulted in the formation of small "pools" of liquid-phase petroleum above the less permeable layers. Often, the soil immediately beneath these layers were lesswet to damp to dry, and deeper less-permeable layers similarly yielded petroleum odor, liquid-phase petroleum and/or water-saturated above the less-permeable layers.

In addition to the collection of groundwater samples from the monitoring wells, samples were collected from the water well system servicing the station and the water well system servicing the KinderCare property at 8050 Rockenbach Road, Hanover, MD 21076. An attempt was made to obtain permission to sample the two water wells systems servicing Ridgeview Plaza Shopping Center and located at the Car Doc property at 2633 Annapolis Road, Hanover, MD 21076. The latter property is managed by Renaud Consulting, Inc., 8605 Westwood Center Drive, Suite 410, Vienna, VA 22182. According to Renaud Consulting, the groundwater from the supply wells were recently sampled per the direction of the MDE and found to be acceptable. Renaud did not provide property access permission to obtain samples for testing, and the verbal-account of potability could not be verified.

As noted previously, the two wells at the Car Doc property, and which service the Ridgeview Plaza, are constructed with exposed sand filter/screen intervals at about 400' to 485' (8"/4"diameter well) and about 420' to 465' (6"/4"-diameter well). The depth to groundwater in the two wells was reported by the Maryland WMA to be 200' depth. The supply well for the station is reported to be constructed with exposed filter/screen at about 160' to 400' depth with groundwater at about 210' depth. The KinderCare well is reported to be constructed with an exposed sand filter/screen interval at about 25' to 360' depth, but a screen interval from about 355' to 360'. Consequently, the reported (and atypically extremely shallow) ≈25'-deep grout position may be a data entry error within the Maryland WMA's well database system. The static depth to groundwater in the well was reported to be 190' with a pump column extending to 250'. The KinderCare water supply is equipped with a water quality treatment system including chlorine doser, solar salt system and water softener system, all of which to be maintained. The station water well is reported to have a sand filter/screen interval at about 160' to 400' depth, and a groundwater level at about 210'. During sampling of the KinderCare well water supply (before treatment) and the station well water supply, high sulfur odors were documented. Consequently, the water at the noted depths contains high iron and high sulfur. Prior to sampling, a sampling port was identified before any water treatment devices. An outside spigot was allowed to operate for at least 20-minutes to purge the water line and well. Samples were collected from the sampling port accordingly under low-flow, non-aspirating (e.g., trickle) conditions. The samples were analyzed for VOCs using EPA Method 524.2. Neither of the water samples was measured to contain VOCs above detection limits, and below respective drinking water standards.

As presented herein, petroleum has impacted the local soil and groundwater beneath the station property. The two topographically most-downgradient wells, MW11 and MW12, produced soil and groundwater samples that were generally free of petroleum concentrations, although a soil sample collected from MW11 near the apparent groundwater zoning yielded some petroleum odors (although laboratory testing conformed the relative absence of petroleum in the soil samples). The groundwater samples from MW11 contained 59 µg/l Benzene and 207 µg/l Total The groundwater sample from MW12, the topographically and hydraulically mostdowngradient well, did not contain petroleum-derived VOC concentrations above detection limits. Both MW9 and MW14, which are located proximate to the vapor return line that was originally damaged (and since repaired), yielded the shallowest petroleum odors (and confirmed by PID-testing), soil samples from all other well locations proximate to the tankfield typically yielded strong petroleum odors and/or liquid-phase petroleum beginning at about 25' depth and coincident with the appearance of water-saturated soil on top of thin clay layers. Whereas in MW9 and MW14, strong petroleum odors were encountered as shallow as 13' in MW9 (with 589 ppm-v PID reading) and MW14 (with 244 ppm-v PID reading). Also note that the grade elevation of the trench that contains the vapor return line is graded from the dispenser island area to the tankfield location (or from MW14 toward MW9). Consequently, the site conceptual model for this site is that liquid-petroleum released from the damaged vapor return line penetrated through the gravel-filled utility trench of the vapor return line, permeated through the underlying soil (fine-grained sand was observed in soil samples from 5' to 10' at MW9) and into the deeper zones of stratified soil. Because of the presence of (apparently) numerous and discontinuous low-permeable silt and/or clay layers on top of which is coarser-grained sands, perched groundwater and perched pools of liquid-petroleum have developed in the 20' to 30' depth zone. During the construction of MW9, the soil sample collected from 25' to 27' depth was heavily saturated by gasoline product. Similarly, the gasoline-saturated soil was observed at 27' depth at the MW14 location. As can be shown in the stratigraphic cross-section, impacted soil (both shallow soil containing petroleum odors and deeper zones containing gasoline product) begins at shallower depth in MW9 than in MW10 and then MW7 and MW4. As such, the source of the petroleum appears to be the vapor return line area (of which MW9 is located at the downgradient edge of the utility trench containing the vapor return line). The

thickness and/or of the water-saturated zone above the various low-permeable layers is insufficient to yield a full column of water in a monitoring well. Similarly, the thickness and/or volume of the gasoline product on the low-permeable layers appear to be insufficient to allow drainage into the monitoring wells that have been constructed across the petroleum-saturated zones.

4.0 REVIEW OF RISK FACTORS & IMPLICATIONS FOR REMEDIAL ACTIONS

The Maryland Environmental Assessment Technology (MEAT) document produced by the MDE (June 2008) relays the requirements for determining site-specific risk with an evaluation of seven risk factors. These are presented below.

- a. Liquid Phase Hydrocarbons liquid-phase petroleum (gasoline product) was observed in soil samples collected from MW7, MW8, MW9, MW10 and MW14. Although gasoline product was observed in the samples, the volume appears to be insufficient to allow permeation from the native soil and into the wells. During a recent sampling event, none of the wells contained measurable gasoline product accumulations. However, upon purging MW9, petroleum droplets were observed in the purge water, and after successive bailing events, approximately 1" of gasoline developed on the recharged water surface. Consequently, liquid gasoline product is present at depth, but may not be specifically observed floating on the water table aquifer as represented by static groundwater levels in the monitoring wells.
- b. Current and Future Use of Impacted Groundwater properties within the local area of the subject site rely on water supply wells typically constructed to 100' to 540' depth (averaging 270'). At the subject site, petroleum impacted soil and/or perched groundwater appears to within the upper 30' of the subsurface. Impact to groundwater, including the presence of liquid-phase gasoline product, is predominately on and to very localized, perched groundwater units that are not used as a water resource.
- c. Migration of Contamination based on the distribution of dissolved petroleum compounds observed in MW4 and MW11, and as compared to the known presence of gasoline product in the area of MW7, MW8, MW9 and MW10, it appears that the presence of several discontinuous perched groundwater units has hindered the lateral migration of petroleum. Although gasoline product was observed in soil samples collected from MW7, the groundwater sample obtained from the groundwater that collected at the bottom of the well (groundwater was observed at about 261/4' below grade in soil samples, but upon gauging of the well, it was measured to contain groundwater at about 33½' below grade with the well constructed to 34½ below grade) contained 1500 µg/l Benzene, 4580 µg/l Total VOC and 20 mg/l GRO. These concentrations are lower than what would be expected from a well where gasoline product was observed in soil samples. Located only a few feet away from MW7 in the downgradient direction is MW4. MW4's groundwater sample contained 160 µg/l Benzene, 570 µg/l Total VOC and 3.1 mg/l GRO, indicating considerable reduction/retardation of dissolved concentrations toward the apparent downgradient direction. Further, MW11 is located a feet further downgradient from MW4, and a groundwater sample from MW11 was measured to contain 59 µg/l Benzene, 207 µg/l Total VOC and 2.6 mg/l GRO, further illustrating the considerable reduction/retardation of dissolved petroleum migration. A groundwater sample collected from MW12, which is the most downgradient well, did not contain detectable VOC or GRO concentrations. MW9 is located between the tankfield and the northern property line. A considerable accumulation of gasoline product was observed in soil core samples collected from MW9, and sampling of the well yielded gasoline product upon purging of the well. Construction of an additional monitoring point north of MW9 and in the direction of Annapolis Road (MD Route 175) was evaluated, but the presence of numerous underground utilities in that area of the site

prevented safe drilling operations. A determination of the extent of petroleum impact north of MW9 was not completed during this investigation. However, gasoline product was similarly observed in soil core samples collected during the construction of MW14, located proximate to the dispenser island and upgradient portion of the utility trench containing the formerly-damaged vapor return line. Groundwater was observed in MW14 soil samples at approximately 251/2 below grade, and later measured in the well at a similar depth. A groundwater sample from MW14 showed the presence of 26 μ g/l Benzene, 944 μ g/l Total VOC, 19 μ g/l GRO and 55 μ g/l DRO. Consequently, there appears to be limited extension of dissolved petroleum compounds beyond the area bounded by MW14, MW9, MW10, MW7 and MW8.

- d. Human Exposure supply wells in the immediate and downgradient area of the site, including the water supply well to the station and the supply well at KinderCare have been sampled and determined to not contain detectable VOC concentrations. The supply wells used by the Ridgeview Plaza shopping center were not sampled as part of this study, as permission for property access was not granted. However, the property management company advised that the wells have been recently sampled and the testing results were determined to be acceptable. All of these supply wells are constructed to several hundred feet below grade. Petroleum vapors can develop from shallow, petroleum-impacted soil and/or groundwater, emanate into paths of least resistance such as utility trenches and result in vapor exposure to onsite workers such as electrical conduits extending into the station building. Petroleum odors have not been detected within the station building. At the site, groundwater was first observed in soil samples at approximately 25' below grade, and predominately as discontinuous perched groundwater units. Petroleum-impacted soil vielding PID concentrations above 30 ppm-v were encountered in soil samples collected as shallow as about 13' below grade in MW9 and MW14, and deeper in all other well locations. MW9 is located immediately downslope of the utility trench that contains the formerlydamaged vapor return line. Because the area of impacted is relatively deep, and underground utilities are shallower than the depths at which petroleum was first detected, the risk for impact by human exposure is negligible. However, workers involved with the potential future excavation/upgrade of the tankfield may encounter petroleum-impacted soil. Such excavation work is normally performed by UST contractors that are trained in the proper handling of and needed protective equipment for petroleum-impacted soil.
- e. Environmental Ecological Exposure the stream along the eastern portion of the site, originating in the southwest corner of the intersection of Annapolis Road (MD Route 175) and Rockenbach Road (MD Route 713) and flows to the southwest through improved underground culverts, is not mapped on USGS topographical maps as a perennial or temporal stream. The invert of the depression is at a slightly higher elevation than the depths to first groundwater observed in soil borings constructed on the site proper. The Maryland Assessment and Taxation system reports that the convenience store building was constructed in 1961, and the location of the tankfield was as per current conditions. Review of historical aerial photographs dated from 1964 to 1970 show that a driveway connected the site from the eastern side of the tankfield area and directly through the current depression in which the stream is now located. Consequently, the stream area is not believed to be an environmental ecological receptor to the petroleum compounds beneath the station property.
- f. Impact to Utilities and Other Buried Services as addressed in item d. above, underground utilities beneath and proximate to the site are at a higher elevation than the depth at which petroleum compounds were detected in soil boring samples. These utilities include the product delivery, vapor return and electrical piping and conduits between the tankfield, dispensers and convenience store. Hydrant water, natural gas, electrical and

telecommunication utilities are located underground along the northern boundary of the property (e.g., along the south side of Annapolis Road). There are no deep manhole devices in the area of the tankfield that could otherwise service as potential sensitive receptors.

g. Other Sensitive Receptors - based on review of the surrounding properties and improvements, no other sensitive receptors were identified than those discussed above.

In consideration of the reviewed risk factors, and other than the condition of petroleum compounds that are present within a complex of perched groundwater layers, the risk for impact is relatively nominal. Regardless, the presence of petroleum in the underlying soil and perched groundwater should be addressed. Conventional pumping operations are not recommended because of the inherent lack of sustained flow from the perched groundwater units and significantly low well yields (if any). Although soil vapor vacuum extraction (SVE) may provide removal of "lighter-end" (more volatile) petroleum compounds such as Benzene, such methods may not adequately address the presence of pockets of gasoline product. Use of chemical injections, such as surfactants and/or chemical oxidizing (ChemOx) agents such as persulfate would require very fine-tuned drilling/screening and delivery to multiple depths, zones and/or layers of petroleum-containing media. Further, a substantial mass of surfactants/ChemOx may be required to address the petroleum mass. Future and/or longer-term remediation may require such remedial approaches. However, it is suggested that initial attempts be made using very high vacuum (e.g., approaching 20 to 25 inches of mercury, "Hg) to induce the movement of adsorbed petroleum from soils and perched layers to the wells. An assessment of this methodology can be made by implementing enhanced fluid recovery (EFR) or multi-phase extraction (MPE) where impacted soil vapor is removed from a well in a gaseous phase along with a smaller portion of impacted (perched) groundwater as well as gasoline product (both as a liquid-phase). EFR/MPE can initially be attempted using a vacuum truck capable of delivering a high vacuum on a well (or wells) and the generated waste liquids disposed accordingly offsite. Vacuum truck EFR can be performed on 4"-diameter wells using a 2"-diameter "stinger" pipe inserted into the well and equipped with an air-tight well seal and wellhead assembly that allows connection to vacuum-rated hose and onto the vacuum truck. Operating a vacuum of 20-25 "Hg is equivalent to a hydraulic lift of approximately 22.67' to 28.33'. Adding in the inherent effects of air-entrainment, liquid removal can often be made to depths approaching ≈30' below grade. MW7 through MW10 are 4"-diameter wells constructed proximate to the four sides of the tankfield to approximately 341/2' below grade with MW9 constructed to more than 401/2' below grade. MW14, located near the northeastern pump dispenser is constructed as a 1"-diameter well to about 30½ depth. The small diameter of this temporary well may preclude its use as an effective recovery location, and should be replaced with a 4"-diameter well, along with the construction of an additional 4"-diameter well that would be located between MW14 and MW9 and similarly used as an extraction location, as well as assess the extent of petroleum (if any) between MW14 and MW9.

ATTACHMENT 1 LABORATORY REPORT OF ANALYSES - SOIL SAMPLES

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 04/29/13

Date Issued:

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 7 14-15		Mat	rix: Soil		La	ib ID: 13042	404-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	87	%		SM2540G	04/25/13	04/25/13 9:24	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Chloromethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Vinyl chloride	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Bromomethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Chloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Trichlorofluoromethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1-Dichloroethene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Acetone	ND	ug/kg	160	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Carbon disulfide	ND	ug/kg	14	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Methyl acetate	ND	ug/kg	34	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Methylene chloride	ND	ug/kg	34	EPA 8260B	04/25/13	04/25/13 15:48	JKL
trans-1,2-Dichloroethene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1-Dichloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
cis-1,2-Dichloroethene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
2-Butanone (MEK)	ND	ug/kg	68	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Chloroform	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1,1-Trichloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Cyclohexane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Carbon tetrachloride	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Benzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2-Dichloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Trichloroethene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Methylcyclohexane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2-Dichloropropane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Bromodichloromethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
cis-1,3-Dichloropropene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	14	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Toluene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
trans-1,3-Dichloropropene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1,2-Trichloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Tetrachloroethene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
2-Hexanone (MBK)	ND	ug/kg	14	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Dibromochloromethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2-Dibromoethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	
Chlorobenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL

Page 1 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID: SB 7 14-15		Mat	rix: Soil		La	b ID: 130424	04-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
m&p-Xylene	ND	ug/kg	14	EPA 8260B	04/25/13	04/25/13 15:48	JKL
o-Xylene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Styrene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Bromoform	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Isopropylbenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,3-Dichlorobenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,4-Dichlorobenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2-Dichlorobenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Naphthalene	ND	ug/kg	14	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
tert-Butanol (TBA)	ND	ug/kg	34	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	34	EPA 8260B	04/25/13	04/25/13 15:48	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	7	EPA 8260B	04/25/13	04/25/13 15:48	JKL
Total Petroleum Hydrocarbons - (C10-C28)	DRO						
Diesel Range Organics	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 16:13	AC
Total Petroleum Hydrocarbons - (C6-C10) G	RO						
Gasoline Range Organics	0.62	mg/kg	0.22	EPA 8015C	04/24/13	04/24/13 16:01	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 2 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued:

04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID:	SB 7 22.5-25		Mat	rix: Soil		La	ab ID: 13042	404-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	init.
Percent Solids								
Percent Solids		95	%		SM2540G	04/25/13	04/25/13 9:24	LMJ
Target Compound List	- VOLATILES							
Dichlorodifluorometh	ane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Chloromethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Vinyl chloride		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Bromomethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Chloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Trichlorofluorometha	ine	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1-Dichloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1,2-Trichlorotrifluor	roethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Acetone		ND	ug/kg	68	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Carbon disulfide		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Methyl acetate		ND	ug/kg	24	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Methylene chloride		ND	ug/kg	24	EPA 8260B	04/25/13	04/25/13 16:16	JKL
trans-1,2-Dichloroeth	nene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1-Dichloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
cis-1,2-Dichloroether	ne	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
2-Butanone (MEK)		ND	ug/kg	49	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Chloroform		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1,1-Trichloroethane	e	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Cyclohexane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Carbon tetrachloride		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Benzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,2-Dichloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Trichloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Methylcyclohexane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,2-Dichloropropane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Bromodichlorometha		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
cis-1,3-Dichloroprope	ene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
4-Methyl-2-pentanon	ie (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Toluene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
trans-1,3-Dichloropro	opene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1,2-Trichloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Tetrachloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	
2-Hexanone (MBK)		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 16:16	
Dibromochlorometha	ane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	
1,2-Dibromoethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	
Chlorobenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	

Page 3 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID:	SB 7 22.5-25		Mat	rix: Soil		La	b ID: 130424	04-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	t - VOLATILES							
Ethylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
m&p-Xylene		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 16:16	JKL
o-Xylene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Styrene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Bromoform		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Isopropylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,1,2,2-Tetrachloroe	ethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,3-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,4-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,2-Dichlorobenzen	е	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,2-Dibromo-3-chlor	opropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
1,2,4-Trichlorobenze	ene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Naphthalene		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Ethyl t-butyl ether (E	TBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
tert-Butanol (TBA)		ND	ug/kg	24	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Diisopropyl ether (D	IPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
tert-Amyl methyl eth	er (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
tert-Amyl alcohol (Ta	AA)	ND	ug/kg	24	EPA 8260B	04/25/13	04/25/13 16:16	JKL
tert-Amyl ethyl ether	(TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 16:16	JKL
Total Petroleum Hydr	ocarbons - (C10-C28) [DRO						
Diesel Range Organ	nics	ND	mg/kg	10	EPA 8015C	04/25/13	04/25/13 16:13	AC
Total Petroleum Hydr	ocarbons - (C6-C10) G	RO						
Gasoline Range Org	ganics	0.35	mg/kg	0.19	EPA 8015C	04/24/13	04/24/13 16:25	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 4 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

01 SDG Number: 13042404

Field Sample ID: SB 8 30-32.5		Mat	trix: Soil		La	b ID: 13042	404-03
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	88	%		SM2540G	04/25/13	04/25/13 9:24	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Chloromethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Vinyl chloride	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Bromomethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Chloroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Trichlorofluoromethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1-Dichloroethene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Acetone	ND	ug/kg	5100	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Carbon disulfide	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Methyl acetate	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Methylene chloride	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13 16:44	JKL
trans-1,2-Dichloroethene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1-Dichloroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
cis-1,2-Dichloroethene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
2-Butanone (MEK)	ND	ug/kg	5100	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Chloroform	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1,1-Trichloroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Cyclohexane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Carbon tetrachloride	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Benzene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,2-Dichloroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Trichloroethene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Methylcyclohexane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,2-Dichloropropane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Bromodichloromethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
cis-1,3-Dichloropropene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Toluene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
trans-1,3-Dichloropropene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1,2-Trichloroethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	
Tetrachloroethene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	
2-Hexanone (MBK)	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13 16:44	
Dibromochloromethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	
1.2-Dibromoethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	
Chlorobenzene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	

Page 5 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

 Date Sampled:
 04/15/13

 Date Received:
 04/24/13 11:50

 Date Issued:
 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID:	SB 8 30-32.5		Mat	trix: Soil		La	b ID: 130424	104-03
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	t - VOLATILES							
Ethylbenzene		ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
m&p-Xylene		ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13 16:44	JKL
o-Xylene		ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Styrene		ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Bromoform		ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Isopropylbenzene		ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,1,2,2-Tetrachloroe	ethane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,3-Dichlorobenzen	е	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,4-Dichlorobenzen	е	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,2-Dichlorobenzen	е	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,2-Dibromo-3-chlo	ropropane	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
1,2,4-Trichlorobenz	ene	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Naphthalene		ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Ethyl t-butyl ether (E	ETBE)	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
tert-Butanol (TBA)		ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Diisopropyl ether (D	IPE)	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
tert-Amyl methyl eth	ner (TAME)	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
tert-Amyl alcohol (T	AA)	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13 16:44	JKL
tert-Amyl ethyl ethe	r (TAEE)	ND	ug/kg	510	EPA 8260B	04/25/13	04/25/13 16:44	JKL
Total Petroleum Hydr	ocarbons - (C10-C28) [DRO						
Diesel Range Organ	nics	ND	mg/kg	21	EPA 8015C	04/25/13	04/25/13 16:49	AC
Total Petroleum Hydr	ocarbons - (C6-C10) G	RO						
Gasoline Range Or	ganics	180	mg/kg	20	EPA 8015C	04/25/13	04/25/13 12:59	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 6 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

D1 SDG Number: 13042404

Field Sample ID: SB 8 22-25		Mat	rix: Soil		La	ab ID: 13042	404-04
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	92	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Acetone	ND	ug/kg	67	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Methyl acetate	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Methylene chloride	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 17:13	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1.1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
2-Butanone (MEK)	ND	ug/kg	51	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1.1.1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Benzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1.2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Toluene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	
1.1.2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 17:13	
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	
1.2-Dibromoethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	

Page 7 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13

Date Received: 04/24/13 11:50

Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID:	SB 8 22-25		Mat	rix: Soil		La	b ID: 130424	04-04
		Result	Unit	LLQ	Method	Prepared	Analyzed	init.
Target Compound List	- VOLATILES							
Ethylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
m&p-Xylene		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 17:13	JKL
o-Xylene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Styrene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Bromoform		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Isopropylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,1,2,2-Tetrachloroet	hane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,3-Dichlorobenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,4-Dichlorobenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,2-Dichlorobenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,2-Dibromo-3-chloro	propane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
1,2,4-Trichlorobenzer	ne	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Naphthalene		20	ug/kg	10	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Ethyl t-butyl ether (ET	ΓBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
tert-Butanol (TBA)		ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Diisopropyl ether (DII	PE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
tert-Amyl methyl ethe	r (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
tert-Amyl alcohol (TA	A)	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 17:13	JKL
tert-Amyl ethyl ether	(TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 17:13	JKL
Total Petroleum Hydro	carbons - (C10-C28)	DRO						
Diesel Range Organi	cs	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 16:49	AC
Total Petroleum Hydro	carbons - (C6-C10) G	GRO .						
Gasoline Range Orga	anics	0.82	mg/kg	0.19	EPA 8015C	04/24/13	04/24/13 17:13	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 8 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 04/29/13

13042404

Date Issued:

Project: SMO Hanover Site Location: Hanover, MD

Project Number: 71401 SDG Number:

Field Sample ID: SB 9 18-19		Mat	trix: Soil		La	b ID: 130424	104-05
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	91	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Chloromethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Vinyl chloride	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Bromomethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Chloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Trichlorofluoromethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,1-Dichloroethene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Acetone	ND	ug/kg	4800	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Carbon disulfide	ND	ug/kg	960	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Methyl acetate	ND	ug/kg	2400	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Methylene chloride	ND	ug/kg	2400	EPA 8260B	04/25/13	04/25/13 17:41	JKL
trans-1,2-Dichloroethene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,1-Dichloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
cis-1,2-Dichloroethene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
2-Butanone (MEK)	ND	ug/kg	4800	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Chloroform	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,1,1-Trichloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Cyclohexane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Carbon tetrachloride	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Benzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,2-Dichloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Trichloroethene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Methylcyclohexane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,2-Dichloropropane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Bromodichloromethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
cis-1,3-Dichloropropene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	960	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Toluene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
trans-1,3-Dichloropropene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,1,2-Trichloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Tetrachloroethene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
2-Hexanone (MBK)	ND	ug/kg	960	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Dibromochloromethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
1,2-Dibromoethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL
Chlorobenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:41	JKL

Page 9 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID: SB 9 18-19		Mat	trix: Soil		La	b ID: 13042	2404-05
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
m&p-Xylene	ND	ug/kg	960	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
o-Xylene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Styrene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Bromoform	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Isopropylbenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,3-Dichlorobenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,4-Dichlorobenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,2-Dichlorobenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
1,2,4-Trichlorobenzene	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Naphthalene	1,100	ug/kg	960	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
tert-Butanol (TBA)	ND	ug/kg	2400	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Diisopropyl ether (DIPE)	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	2400	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	480	EPA 8260B	04/25/13	04/25/13 17:4	l JKL
Fotal Petroleum Hydrocarbons - (C10-C28) DRO						
Diesel Range Organics	49	mg/kg	10	EPA 8015C	04/25/13	04/25/13 17:20	AC
Total Petroleum Hydrocarbons - (C6-C10)	GRO						
Gasoline Range Organics	210	mg/kg	19	EPA 8015C	04/24/13	04/24/13 17:3	7 JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 10 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 9 13-15			Mat	Lab ID: 13042404-06				
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids								
Percent Solids		87	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound Lis	t - VOLATILES							
Dichlorodifluoromet		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Chloromethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Vinyl chloride		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Bromomethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
Chloroethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Trichlorofluorometh	ane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1-Dichloroethene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1,2-Trichlorotrifluo	roethane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Acetone		ND	ug/kg	5300	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Carbon disulfide		ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Methyl acetate		ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Methylene chloride		ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 18:09	JKL
trans-1,2-Dichloroet	hene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
Methyl t-butyl ether	(MTBE)	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1-Dichloroethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
cis-1,2-Dichloroethe	ene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
2-Butanone (MEK)		ND	ug/kg	5300	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Chloroform		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1,1-Trichloroethar	ne	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
Cyclohexane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Carbon tetrachloride	9	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Benzene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2-Dichloroethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Trichloroethene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Methylcyclohexane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2-Dichloropropane	e	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
Bromodichlorometh	ane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09) JKL
cis-1,3-Dichloroprop	ene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
4-Methyl-2-pentano	ne (MIBK)	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Toluene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
trans-1,3-Dichloropi	ropene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1,2-Trichloroethar	ne	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Tetrachloroethene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
2-Hexanone (MBK)		ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Dibromochlorometh	ane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2-Dibromoethane		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Chlorobenzene		ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL

Page 11 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID: SB 9 13-15		Mat	La	b ID: 130424	104-06		
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
m&p-Xylene	1,200	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 18:09	JKL
o-Xylene	800	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Styrene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Bromoform	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Isopropylbenzene	580	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,3-Dichlorobenzene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,4-Dichlorobenzene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2-Dichlorobenzene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Naphthalene	12,000	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
tert-Butanol (TBA)	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 18:09	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	530	EPA 8260B	04/25/13	04/25/13 18:09	JKL
Total Petroleum Hydrocarbons - (C10-C28	B) DRO						
Diesel Range Organics	100	mg/kg	22	EPA 8015C	04/25/13	04/25/13 17:26	AC
Fotal Petroleum Hydrocarbons - (C6-C10)	GRO						
Gasoline Range Organics	1,000	mg/kg	21	EPA 8015C	04/24/13	04/24/13 18:01	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 12 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 10 18-20		Mat	rix: Soil		La	b ID: 13042	404-07
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	96	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Chloromethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Vinyl chloride	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Bromomethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Chloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Trichlorofluoromethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,1-Dichloroethene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Acetone	ND	ug/kg	76	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Carbon disulfide	ND	ug/kg	13	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Methyl acetate	ND	ug/kg	32	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Methylene chloride	ND	ug/kg	32	EPA 8260B	04/25/13	04/25/13 18:37	JKL
trans-1,2-Dichloroethene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,1-Dichloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
cis-1,2-Dichloroethene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
2-Butanone (MEK)	ND	ug/kg	63	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Chloroform	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,1,1-Trichloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Cyclohexane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Carbon tetrachloride	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Benzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,2-Dichloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Trichloroethene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Methylcyclohexane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,2-Dichloropropane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Bromodichloromethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
cis-1,3-Dichloropropene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	13	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Toluene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
trans-1,3-Dichloropropene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,1,2-Trichloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Tetrachloroethene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
2-Hexanone (MBK)	ND	ug/kg	13	EPA 8260B	04/25/13	04/25/13 18:37	JKL
Dibromochloromethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	JKL
1,2-Dibromoethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	
Chlorobenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:37	

Page 13 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 10 18-20		Mat	rix: Soil		La	b ID: 1304	2404-07
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
m&p-Xylene	ND	ug/kg	13	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
o-Xylene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Styrene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Bromoform	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Isopropylbenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,3-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,4-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,2-Dichlorobenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
1,2,4-Trichlorobenzene	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Naphthalene	68	ug/kg	13	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
tert-Butanol (TBA)	ND	ug/kg	32	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Diisopropyl ether (DIPE)	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	32	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	6	EPA 8260B	04/25/13	04/25/13 18:3	7 JKL
Total Petroleum Hydrocarbons - (C10-C28) DF	10						
Diesel Range Organics	ND	mg/kg	10	EPA 8015C	04/25/13	04/25/13 18:0	3 AC
Total Petroleum Hydrocarbons - (C6-C10) GR0)						
Gasoline Range Organics	1.1	mg/kg	0.44	EPA 8015C	04/25/13	04/25/13 13:4	2 JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 14 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

401 SDG Number: 13042404

Field Sample ID: SB 10 14-15		Mat	rix: Soil		La	ab ID: 130424	104-08
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	89	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Acetone	ND	ug/kg	81	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Methyl acetate	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Methylene chloride	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:06	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
2-Butanone (MEK)	ND	ug/kg	51	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Benzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Toluene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL

Page 15 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13

Date Received: 04/24/13 11:50

Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 10 14-15	i	Mat	rix: Soil		La	b ID: 130424	04-08
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:06	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Styrene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Naphthalene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
tert-Butanol (TBA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:06	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:06	JKL
Total Petroleum Hydrocarbons - (C10-	C28) DRO						
Diesel Range Organics	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 18:03	AC
Fotal Petroleum Hydrocarbons - (C6-C	:10) GRO						
Gasoline Range Organics	ND	mg/kg	0.22	EPA 8015C	04/24/13	04/24/13 18:48	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 16 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

1401 SDG Number: 13042404

Field Sample ID: SB 11 18.5-20		Mat	rix: Soil		La	ib ID: 130424	104-09
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids		•					
Percent Solids	87	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Acetone	ND	ug/kg	64	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Methyl acetate	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Methylene chloride	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:33	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
2-Butanone (MEK)	ND	ug/kg	50	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Benzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Toluene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	

Page 17 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13

Date Received: 04/24/13 11:50

Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 11 18.5-20		Mat	trix: Soil		La	b ID: 13042	404-09
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:33	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Styrene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Naphthalene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
tert-Butanol (TBA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 19:33	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 19:33	JKL
Total Petroleum Hydrocarbons - (C10-C28)	DRO						
Diesel Range Organics	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 18:40	AC
Total Petroleum Hydrocarbons - (C6-C10) (GRO						
Gasoline Range Organics	ND	mg/kg	0.19	EPA 8015C	04/24/13	04/24/13 19:12	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 18 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD

Project Number: 71401

401 SDG Number: 13042404

Field Sample ID:	SB 11 23-25		Mat	rix: Soil		La	ib ID: 13042	404-10
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids								
Percent Solids		94	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound Lis	t - VOLATILES							
Dichlorodifluoromet	nane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Chloromethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Vinyl chloride		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Bromomethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Chloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Trichlorofluorometha	ane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1-Dichloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1,2-Trichlorotrifluo	roethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Acetone		ND	ug/kg	50	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Carbon disulfide		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Methyl acetate		ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Methylene chloride		ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 20:02	JKL
trans-1,2-Dichloroet	hene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Methyl t-butyl ether	(MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1-Dichloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
cis-1,2-Dichloroethe	ne	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
2-Butanone (MEK)		ND	ug/kg	50	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Chloroform		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1,1-Trichloroethan	ie	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Cyclohexane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Carbon tetrachloride)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Benzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2-Dichloroethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Trichloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Methylcyclohexane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2-Dichloropropane)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Bromodichlorometh	ane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
cis-1,3-Dichloroprop	ene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
4-Methyl-2-pentano	ne (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Toluene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
trans-1,3-Dichloropr	opene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1,2-Trichloroethan	e	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Tetrachloroethene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
2-Hexanone (MBK)		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Dibromochlorometh	ane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2-Dibromoethane		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Chlorobenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL

Page 19 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 11 23-25		Mat	La	b ID: 130424	104-10		
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:02	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Styrene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Naphthalene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
tert-Butanol (TBA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	25	EPA 8260B	04/25/13	04/25/13 20:02	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:02	JKL
Total Petroleum Hydrocarbons - (C10-C2	8) DRO						
Diesel Range Organics	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 18:40	AC
Total Petroleum Hydrocarbons - (C6-C10) GRO						
Gasoline Range Organics	ND	mg/kg	0.2	EPA 8015C	04/24/13	04/24/13 19:36	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 20 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 12 29-30		Mat	rix: Soil		La	b ID: 130424	104-11
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Percent Solids							
Percent Solids	87	%		SM2540G	04/25/13	04/25/13 9:25	LMJ
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Chloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Vinyl chloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Bromomethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Chloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Acetone	ND	ug/kg	63	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Carbon disulfide	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Methyl acetate	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Methylene chloride	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:30	JKL
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
2-Butanone (MEK)	ND	ug/kg	52	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Chloroform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Benzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Toluene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2-Dibromoethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL

Page 21 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 12 29-30		Mat	rix: Soil		La	b ID: 130424	04-11
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Ethylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
m&p-Xylene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:30	JKL
o-Xylene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Styrene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Bromoform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Isopropylbenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,1,2,2-Tetrachloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,3-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,4-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2-Dichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2-Dibromo-3-chloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
1,2,4-Trichlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Naphthalene	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
tert-Butanol (TBA)	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Diisopropyl ether (DIPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
tert-Amyl methyl ether (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
tert-Amyl alcohol (TAA)	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:30	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:30	JKL
Total Petroleum Hydrocarbons - (C10-C28) I	ORO						
Diesel Range Organics	ND	mg/kg	11	EPA 8015C	04/25/13	04/25/13 19:17	AC
Total Petroleum Hydrocarbons - (C6-C10) G	RO						
Gasoline Range Organics	ND	mg/kg	0.2	EPA 8015C	04/24/13	04/24/13 20:00	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 22 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 04/29/13

Date Issued:

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 12 25-26		Mat	rix: Soil		Lab ID: 13042404-12					
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.			
Percent Solids										
Percent Solids	91	%		SM2540G	04/25/13	04/25/13 9:25	LMJ			
Target Compound List - VOLATILES										
Dichlorodifluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Chloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Vinyl chloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Bromomethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Chloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Acetone	ND	ug/kg	52	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Carbon disulfide	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Methyl acetate	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Methylene chloride	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
2-Butanone (MEK)	ND	ug/kg	52	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Chloroform	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Benzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
Toluene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL			
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58				
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58				
2-Hexanone (MBK)	ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:58				
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58				
1.2-Dibromoethane	ND	ug/kg ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58				
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58				

Page 23 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID:	SB 12 25-26		Mat	rix: Soil		La	b ID: 130424	104-12
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	t - VOLATILES							
Ethylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
m&p-Xylene		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:58	JKL
o-Xylene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Styrene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Bromoform		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Isopropylbenzene		ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,1,2,2-Tetrachloroe	ethane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,3-Dichlorobenzen	e	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,4-Dichlorobenzen	e	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,2-Dichlorobenzen	e	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,2-Dibromo-3-chlor	ropropane	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
1,2,4-Trichlorobenz	ene	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Naphthalene		ND	ug/kg	10	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Ethyl t-butyl ether (E	TBE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
tert-Butanol (TBA)		ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Diisopropyl ether (D	IPE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
tert-Amyl methyl eth	er (TAME)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
tert-Amyl alcohol (T.	AA)	ND	ug/kg	26	EPA 8260B	04/25/13	04/25/13 20:58	JKL
tert-Amyl ethyl ether	r (TAEE)	ND	ug/kg	5	EPA 8260B	04/25/13	04/25/13 20:58	JKL
Total Petroleum Hydr	ocarbons - (C10-C28)	DRO						
Diesel Range Organ	nics	28	mg/kg	11	EPA 8015C	04/25/13	04/25/13 19:17	AC
Total Petroleum Hydr	ocarbons - (C6-C10) G	RO						
Gasoline Range Org	ganics	ND	mg/kg	0.21	EPA 8015C	04/24/13	04/24/13 20:24	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 24 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

401 SDG Number: 13042404

Field Sample ID: SB 14 27-30		Mat	rix: Soil		Lab ID: 13042			
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Percent Solids								
Percent Solids	87	%		SM2540G	04/25/13	04/25/13 9:25	LMJ	
Target Compound List - VOLATILES								
Dichlorodifluoromethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Chloromethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Vinyl chloride	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Bromomethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Chloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Trichlorofluoromethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1-Dichloroethene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Acetone	ND	ug/kg	5500	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Carbon disulfide	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Methyl acetate	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Methylene chloride	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
trans-1,2-Dichloroethene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Methyl t-butyl ether (MTBE)	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1-Dichloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
cis-1,2-Dichloroethene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
2-Butanone (MEK)	ND	ug/kg	5500	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Chloroform	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1,1-Trichloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Cyclohexane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Carbon tetrachloride	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Benzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2-Dichloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Trichloroethene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Methylcyclohexane	3,900	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2-Dichloropropane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Bromodichloromethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
cis-1,3-Dichloropropene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Toluene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
trans-1,3-Dichloropropene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1,2-Trichloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26		
Tetrachloroethene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
2-Hexanone (MBK)	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Dibromochloromethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2-Dibromoethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26		
Chlorobenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26		

Page 25 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/15/13
Date Received: 04/24/13 11:50
Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 14 27-30		Mat	trix: Soil		La	nb ID: 130424	13042404-13	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
arget Compound List - VOLATILES								
Ethylbenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
m&p-Xylene	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
o-Xylene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Styrene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Bromoform	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Isopropylbenzene	1,600	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,1,2,2-Tetrachloroethane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,3-Dichlorobenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,4-Dichlorobenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2-Dichlorobenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2-Dibromo-3-chloropropane	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
1,2,4-Trichlorobenzene	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Naphthalene	ND	ug/kg	1100	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Ethyl t-butyl ether (ETBE)	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
tert-Butanol (TBA)	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
Diisopropyl ether (DIPE)	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
tert-Amyl methyl ether (TAME)	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
tert-Amyl alcohol (TAA)	ND	ug/kg	2700	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
tert-Amyl ethyl ether (TAEE)	ND	ug/kg	550	EPA 8260B	04/25/13	04/25/13 21:26	JKL	
otal Petroleum Hydrocarbons - (C10-C28)	DRO							
Diesel Range Organics	27	mg/kg	23	EPA 8015C	04/25/13	04/25/13 19:53	AC	
otal Petroleum Hydrocarbons - (C6-C10) G	RO							
Gasoline Range Organics	800	mg/kg	22	EPA 8015C	04/24/13	04/24/13 20:48	JKL	

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 26 of 28

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50

Date Issued:

04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

SDG Number: 13042404

Field Sample ID: SB 14 30-32		Mat	trix: Soil		La	130424	12404-14	
	Result	Unit	LLQ	Method	Prepared	Analya	zed	Init.
Percent Solids								
Percent Solids	84	%		SM2540G	04/25/13	04/25/1	3 9:25	LMJ
Target Compound List - VOLATILES								
Dichlorodifluoromethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Chloromethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Vinyl chloride	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Bromomethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Chloroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Trichlorofluoromethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,1-Dichloroethene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Acetone	ND	ug/kg	5200	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Carbon disulfide	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Methyl acetate	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Methylene chloride	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/13	21:55	JKL
trans-1,2-Dichloroethene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
Methyl t-butyl ether (MTBE)	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
1,1-Dichloroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
cis-1,2-Dichloroethene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	21:55	JKL
2-Butanone (MEK)	ND	ug/kg	5200	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Chloroform	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,1,1-Trichloroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Cyclohexane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Carbon tetrachloride	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Benzene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,2-Dichloroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Trichloroethene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Methylcyclohexane	1,300	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,2-Dichloropropane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Bromodichloromethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
cis-1,3-Dichloropropene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Toluene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
trans-1,3-Dichloropropene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,1,2-Trichloroethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13		JKL
Tetrachloroethene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
2-Hexanone (MBK)	ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Dibromochloromethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
1,2-Dibromoethane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL
Chlorobenzene	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/13	3 21:55	JKL

Page 27 of 28

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/15/13 Date Received: 04/24/13 11:50 Date Issued: 04/29/13

Project: SMO Hanover Site Location: Hanover, MD Project Number: 71401

13042404 SDG Number:

Field Sample ID:	SB 14 30-32		Mat	trix: Soil		La	b ID:	130424	04-14
		Result	Unit	LLQ	Method	Prepared	Ana	lyzed	Init.
Farget Compound List	- VOLATILES								
Ethylbenzene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
m&p-Xylene		ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
o-Xylene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Styrene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Bromoform		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Isopropylbenzene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,1,2,2-Tetrachloroet	hane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,3-Dichlorobenzene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,4-Dichlorobenzene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,2-Dichlorobenzene		ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,2-Dibromo-3-chloro	propane	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
1,2,4-Trichlorobenze	ne	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Naphthalene		ND	ug/kg	1000	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Ethyl t-butyl ether (E	TBE)	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
tert-Butanol (TBA)		ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Diisopropyl ether (DI	PE)	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
tert-Amyl methyl ethe	er (TAME)	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
tert-Amyl alcohol (TA	A)	ND	ug/kg	2600	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
tert-Amyl ethyl ether	(TAEE)	ND	ug/kg	520	EPA 8260B	04/25/13	04/25/	13 21:55	JKL
Total Petroleum Hydro	carbons - (C10-C28) [ORO							
Diesel Range Organi	cs	ND	mg/kg	12	EPA 8015C	04/25/13	04/25/	13 19:53	AC
Total Petroleum Hydro	carbons - (C6-C10) G	RO							
Gasoline Range Org	anics	380	mg/kg	21	EPA 8015C	04/24/13	04/24/	13 21:12	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

Approved by:

QC Chemist

Page 28 of 28

Chain of Custody Record

Customer:	ENVIROPECH	E-mail address:	tophindeaoli com	SDG Number:	130424
Contact/Report to:	Bay Hamison	Project Name:	Smo Hanover		
Phone:	4105250045	Project Number:	714-01		
Fax:	4105258644	Location:	Hanover, my	PO Number:	71401-
			Analysis Request	ed	
		Preserva	tive Z40C >		
	1 1				/
			10/4/5/		/

Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles	Matrix	Vacen		Die a	Slap							Sampling Remarks/ Comments
	587 14-15	415	pom	1	5	*	K	×								
	SB7 22.5.25	415	14m	1	5	X	×	×								
	588 30-32.5	4 15	Am	1	5	X	×	X								
	588 22-25	415	Am	1	5	×	K	×								
	589 18-19	415	PM	1	S	X	X	×								
	SB9 13-15	415	PM	1	S	×	K.	×								
	SB10 18-20	4/16	Am	- 1	S	×	X	×								
	SB10 14-15	416	Am	1	S	×	X	X								
	SBI1 18/2-20	4/16	pm	1	5	×	×	X								
	SB11 23-25	4/16	Am	1	5	X	X	×								
Relinquished by:	Stown		Date/Time):	4/24/13			Deliv	verab	oles:	Re	eceipt	Temp	peratu	ıre:	Turnaround Time: 3 NAV
Received by:	au , ,		Date/Time	e:	/			1.0	III CI	LP EDD		Temp:		On lo	2	STD Next Day 2-Day Other
Relinquished by:	X und shot		Date/Time	e:				Cust	tody	Seals:	Com	ment	s/Spec	cial In	struc	ctions:
Received by:	1. Coller		Date/Time	9:	4/24/13	ils	0	Sar	nple	Cooler		Ana	lyze	B	d f	29/13
Relinquished by:			Date/Time	e:				Deli	vered	by client	5	_	_U_	-		-
Received by:			Date/Time	e:												

Page 2 of 2

Received by:

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151 Fax: 410.825,2126

Chain of Custody Record

Customer:	ENVIROPELLE]	E-mail a	ddress:	SA	ME				S	DG N	umber	:	120	92404	
Contact/Report to:	SAME			Project	Name:	84	mi	Ξ									
Phone:	Some			Project	Number:	80	mi	3			_						_
Fax:	SAME			Locatio	n:	84	smé				F	O Nur	nber:		71	401-	
								An	alysis R	equeste	ed						
					Preserva	tive	4	PC-+	-9								
Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles	Matrix		0970	2005				//	//	//	Sai	mpling Remarks Comments	,
	3812 29-30	416	Pm	乜	S	X	K	×					1				
	8812 25-26	416	om	4	S	K	x	x									
	SB14 27-30	414	ANY	中	S	X	x	V.									
	5814-30-32	4/14	Am	1	S	×	x	X	_		_	_	-	+			_
										A	ali	ze	By	4	12	9 13	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				1,	1 //	_	_									December 2	\exists
Relinquished by:	Domoon		Date/Tim	e: 1/	124/13			Deliver	rables:	Re	ceipt 1	,	-		rnaround	3	DA
Received by:	1.111		Date/Tim	e: '				1 11 111	CLP EDI	D T	Temp:	(On loe	ST	D Next Da	y 2-Day Other	-
Relinquished by:	X/UM/ YX		Date/Tim	e:				Custoo	ly Seals:	Comn	nents/	Specia	l Instr	uction	s:		- 1
Received by:	1 Li Tolly	-	Date/Tim	e:	+/24/13	115	0	Sample	e Cooler		Anal	42e	By.	4/29	113		
Relinquished by:	100		Date/Tim	e:				Deliver	ed by client	>	,	9	a				
Received by:			Date/Tim	e:													

ATTACHMENT 2 LABORATORY REPORTS OF ANALYSES - WATER SAMPLES

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 06/05/13 12:00 Date Received: 06/05/13 13:42

Date Issued: 06/06/13

Project: SMO-Hanover MD Site Location: Hanover - Kinder Care

Project Number: 71401 SDG Number: 13060504

Field Sample ID: 71401-KC		Mat	rix: Drin	king Water	La	ab ID: 13060	504-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
/olatile Organic Compounds							
Benzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Bromobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Bromochloromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Bromodichloromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Bromoform	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Bromomethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
n-Butylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
sec-Butylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
tert-Butylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Carbon tetrachloride	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Chlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Chloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Chloroform	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Chloromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
2-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
4-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Dibromochloromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2-Dibromo-3-chloropropane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2-Dibromoethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Dibromomethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,3-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,4-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Dichlorodifluoromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1-Dichloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2-Dichloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1-Dichloroethene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
cis-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
trans-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,3-Dichloropropane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
2,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1-Dichloropropene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
cis-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
trans-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Ethylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Isopropylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
p-lsopropyltoluene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Methylene chloride	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Methyl t-butyl ether (MTBE)	ND	ug/L	0.2	EPA 524.2	06/06/13	06/06/13 12:18	JKL

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 06/05/13 12:00
Date Received: 06/05/13 13:42
Date Issued: 06/06/13

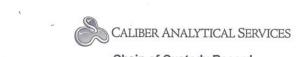
Project: SMO-Hanover MD Site Location: Hanover - Kinder Care

Project Number: 71401

SDG Number: 13060504

Field Sample ID: 71401-KC		Mat	rix: Drin	king Water	La	b ID: 130605	504-01
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Volatile Organic Compounds							
Naphthalene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
n-Propylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Styrene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Tetrachloroethene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Toluene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2,3-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2,4-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1,1-Trichloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,1,2-Trichloroethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Trichloroethene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Trichlorofluoromethane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2,3-Trichloropropane	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,2,4-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
1,3,5-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Vinyl chloride	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
m&p-Xylene	ND	ug/L	1	EPA 524.2	06/06/13	06/06/13 12:18	JKL
o-Xylene	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
tert-Butanol (TBA)	ND	ug/L	5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
Diisopropyl ether (DIPE)	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
tert-Amyl methyl ether (TAME)	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
tert-Amyl alcohol (TAA)	ND	ug/L	5	EPA 524.2	06/06/13	06/06/13 12:18	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/L	0.5	EPA 524.2	06/06/13	06/06/13 12:18	JKL

Notes/Qualifiers:


LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 2 of 2

Chain of Custody Record

Customer:	ENVIROTECH	
Contact/Report to:	DOUG HAMILTON	
Phone:	4105250045	
Fax:	4105258644	

E-mail address:	tphmd@aol.com
Project Name:	SMO-HANOVER MD
Project Number:	71401
Site Location:	HANOVER - KINDER CARE

SDG Number:	13060504
Sampled by:	HAMILTON
PO Number:	71401-KC

Page ___ of __

	4							A F	analys	is Re	quest	ed						
					Preserva	tive	40											
	Date Sampled	Time Sampled Sampled	No. of Bottles	Matrix *	VOC 524.2							/					Remarks/	
	71401-KC	06/05/13	12:00 PM	3	W	Х												
		-												-	-	,		2
													7	1	1	Vn		
														4		186	TX	7
												_		1	ı	1	103	
									H		_	_			-	-		
																	9.5	
Relinquished by:	HAMRE)	Date/Time:	6	15	1342	_	Deliv	erable	s:	Re	ceipt	Tem	perati	ure:	Turna	round Time	:
Received by:	CKANT IN	/	Date/Time:	6	15 1.	342	-	1111	III CLP	EDD		Temp:_		on lo			ext Day 2-Day	
Relinquished by:	1110		Date/Time:	1				Cust	ody Se	eals:	Com	ments	s/Spe	cial Ir	nstruc	tions:		
Received by:	V		Date/Time:					Sam	ple Co	ooler								
Relinquished by:			Date/Time:					Deliv	ered by	client								
Received by:			Date/Time:					CA	AS Couri	er								

^{*} W = Water; WW = Wastewater; GW = Groundwater; S = Soil; SL = Sludge

http://www.caslabs.net/downloads/CASCOC.pdf

CAS_COC

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

Field Sample ID: 71401 MW-1		Mat	rix: Wate	r	La	ab ID: 130430	002-0
	Result	Unit	LLQ	Method	Prepared	Analyzed	init.
arget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Bromomethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Chloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Acetone	ND	ug/L	10	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Carbon disulfide	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Methyl acetate	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKL
Methylene chloride	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Methyl t-butyl ether (MTBE)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Chloroform	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Cyclohexane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Benzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1.2-Dichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Trichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Methylcyclohexane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Bromodichloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	
Toluene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	
trans-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Tetrachloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Dibromochloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	
1.2-Dibromoethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Chlorobenzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
Ethylbenzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
m&p-Xylene	ND	ug/L	2	EPA 8260B	05/03/13	05/03/13 17:54	JKI
o-Xylene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKI
5 /y.o.io	ND	Page 1	-	L. 7. 0200D	23/00/10	00.00.10 17.04	JIK

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13043002

Field Sample ID:	71401 MW-1		Mat	rix: Wat	er	Lab ID: 13043002-01			
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Target Compound List -	VOLATILES								
Styrene		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Bromoform		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Isopropylbenzene		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,1,2,2-Tetrachloroeth	nane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,3-Dichlorobenzene		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,4-Dichlorobenzene		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,2-Dichlorobenzene		ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,2-Dibromo-3-chlorop	oropane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
1,2,4-Trichlorobenzen	e	ND	ug/L	2	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Naphthalene		ND	ug/L	10	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Ethyl t-butyl ether (ET	BE)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
tert-Butanol (TBA)		ND	ug/L	25	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Diisopropyl ether (DIP	E)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
tert-Amyl methyl ether	(TAME)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
tert-Amyl alcohol (TAA	A)	ND	ug/L	25	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
tert-Amyl ethyl ether (TAEE)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 17:54	JKL	
Total Petroleum Hydroc	arbons - (C10-C28) I	DRO							
Diesel Range Organic	es	ND	mg/L	0.22	EPA 8015C	05/07/13	05/06/13 12:42	AC	
Total Petroleum Hydroc	arbons - (C6-C10) G	RO							
Gasoline Range Orga	nics	ND	mg/L	0.2	EPA 8015C	05/03/13	05/03/13 18:55	JKL	

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by

QC Chemis

Page 2 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/29/13 Date Received: 04/30/13 11:30 Date Issued: 05/07/13

SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

Project:

SDG Number: 13043002

/OLATILES	Result	Unit					
			LLQ	Method	Prepared	Analyzed	init.
e	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
thane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	100	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
ie	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
BE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	92	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	160	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
е	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
MIBK)	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	110	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
ene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	62	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	120	ug/L	20	EPA 8260B	05/06/13	05/06/13 11:3	3 JKL
	26	ug/L	10	EPA 8260B	05/06/13		
1	ethane ne (MIBK) ene	ND ND ND ND ND ND ND ND	ND	ND ug/L 10 Pethane ND ug/L 50 ND ug/L 100 ND ug/L 100 ND ug/L 100 ND ug/L 50 ND ug/L 50 ND ug/L 50 ND ug/L 100 ND ug/L 50 ND ug/L 100 ND ug/L 100	ND	ND	ND ug/L 10 EPA 8260B 05/06/13 05/06/13 11:33 sthane ND ug/L 10 EPA 8260B 05/06/13 05/06/13 11:33 sthane ND ug/L 10 EPA 8260B 05/06/13 05/06/13 11:33 sthane ND ug/L 10 EPA 8260B 05/06/13 05/06/13 11:33 ND ug/L 100 EPA 8260B 05/06/13 05/06/13 11:33 ND ug/L 50 EPA 8260B 05/06/13 05/06/13 11:33 ND ug/L 10 EPA 8260B 05/06/13 05/06/13 11:33

8851 Orchard Tree Lane Towson, Maryland 21286

tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/29/13 Date Received: 04/30/13 11:30 Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

71401 Project Number:

SDG Number: 13043002

Field Sample ID:	71401 MW-4		Mat	rix: Wat	er	La	b ID: 13043	002-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List	- VOLATILES							
Styrene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
Bromoform		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
Isopropylbenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,1,2,2-Tetrachloroet	hane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,3-Dichlorobenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,4-Dichlorobenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,2-Dichlorobenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,2-Dibromo-3-chloro	propane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
1,2,4-Trichlorobenze	ne	ND	ug/L	20	EPA 8260B	05/06/13	05/06/13 11:33	JKL
Naphthalene		ND	ug/L	100	EPA 8260B	05/06/13	05/06/13 11:33	JKL
Ethyl t-butyl ether (E	TBE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
tert-Butanol (TBA)		ND	ug/L	250	EPA 8260B	05/06/13	05/06/13 11:33	JKL
Diisopropyl ether (DII	PE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
tert-Amyl methyl ethe	er (TAME)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
tert-Amyl alcohol (TA	A)	ND	ug/L	250	EPA 8260B	05/06/13	05/06/13 11:33	JKL
tert-Amyl ethyl ether	(TAEE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:33	JKL
otal Petroleum Hydro	carbons - (C10-C28) [DRO						
Diesel Range Organi	cs	0.37	mg/L	0.23	EPA 8015C	05/07/13	05/07/13 11:38	AC
Total Petroleum Hydro	carbons - (C6-C10) G	RO						
Gasoline Range Orga	anics	3.1	mg/L	1	EPA 8015C	05/03/13	05/03/13 19:19	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

QC Chemist

Page 4 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30

Date Issued:

05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

401 SDG Number: 13043002

Field Sample ID: 71401 MW-7		Mat	trix: Wat	er	La	b ID: 13043	002-03
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
arget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Chloromethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Vinyl chloride	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Bromomethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Chloroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Trichlorofluoromethane	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1,1-Dichloroethene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Acetone	ND	ug/L	1000	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Carbon disulfide	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Methyl acetate	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Methylene chloride	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
trans-1,2-Dichloroethene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Methyl t-butyl ether (MTBE)	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1,1-Dichloroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
cis-1,2-Dichloroethene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
2-Butanone (MEK)	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Chloroform	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	
1,1,1-Trichloroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Cyclohexane	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Carbon tetrachloride	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Benzene	1.500	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1,2-Dichloroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Trichloroethene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Methylcyclohexane	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1,2-Dichloropropane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Bromodichloromethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
cis-1,3-Dichloropropene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Toluene	800	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
trans-1,3-Dichloropropene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
1.1.2-Trichloroethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Tetrachloroethene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	JKL
2-Hexanone (MBK)	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:06	JKL
Dibromochloromethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	
1.2-Dibromoethane	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	
Chlorobenzene	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	
Ethylbenzene	620	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	
m&p-Xylene	1,500	ug/L	200	EPA 8260B	05/03/13	05/03/13 19:06	
o-Xylene	160	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:06	

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13043002

Field Sample ID: 71401 MW-7 Matrix: Water Lab ID: 13043002-03 LLQ Result Unit Method Analyzed Target Compound List - VOLATILES Styrene ND 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L Bromoform EPA 8260B 05/03/13 05/03/13 19:06 JKL ND ug/L 100 Isopropylbenzene ND 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L 1,1,2,2-Tetrachloroethane ND 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L **EPA 8260B** 05/03/13 19:06 JKL 1,3-Dichlorobenzene ND ug/L 100 05/03/13 1,4-Dichlorobenzene ND 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L 1,2-Dichlorobenzene ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL 100 **EPA 8260B** 05/03/13 05/03/13 19:06 JKL 1,2-Dibromo-3-chloropropane ND ug/L 1,2,4-Trichlorobenzene ND 200 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L ND ug/L 1000 EPA 8260B 05/03/13 05/03/13 19:06 JKL Ethyl t-butyl ether (ETBE) EPA 8260B 05/03/13 05/03/13 19:06 JKL ND ug/L 100 tert-Butanol (TBA) ND 2500 EPA 8260B 05/03/13 05/03/13 19:06 JKL ug/L Diisopropyl ether (DIPE) ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL tert-Amyl methyl ether (TAME) ND ug/L tert-Amyl alcohol (TAA) ND ug/L 2500 EPA 8260B 05/03/13 05/03/13 19:06 JKL tert-Amyl ethyl ether (TAEE) ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:06 JKL Total Petroleum Hydrocarbons - (C10-C28) DRO Diesel Range Organics mg/L EPA 8015C 05/07/13 05/07/13 12:13 AC Total Petroleum Hydrocarbons - (C6-C10) GRO Gasoline Range Organics 05/03/13 05/03/13 19:43 JKL mg/L

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 6 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/29/13 Date Received: 04/30/13 11:30

Date Issued:

05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

arget Compound List - VOL Dichlorodiffluoromethane Chloromethane Chlorodethane Chloroethane Trichloroffluoromethane 1,1-Dichloroethene	ATILES	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorottifluoroethan	ATILES	ND						
Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		ND						
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		IND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethan		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1,1,2-Trichlorotrifluoroethan		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
	e	ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Acetone		ND	ug/L	1000	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Carbon disulfide		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Methyl acetate		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Methylene chloride		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
trans-1,2-Dichloroethene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Methyl t-butyl ether (MTBE)		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1,1-Dichloroethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
cis-1,2-Dichloroethene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
2-Butanone (MEK)		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Chloroform		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1,1,1-Trichloroethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Cyclohexane		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Carbon tetrachloride		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Benzene		1,500	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1.2-Dichloroethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Trichloroethene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
Methylcyclohexane		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	0 JKL
1,2-Dichloropropane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
Bromodichloromethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
cis-1,3-Dichloropropene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
4-Methyl-2-pentanone (MIB	()	ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	
Toluene	•/	900	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
trans-1,3-Dichloropropene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
1.1.2-Trichloroethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
Tetrachloroethene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
2-Hexanone (MBK)		ND	ug/L	500	EPA 8260B	05/03/13	05/03/13 19:3	
Dibromochloromethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
1.2-Dibromoethane		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
Chlorobenzene		ND	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
Ethylbenzene		1.600	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	
m&p-Xylene		4.100	ug/L	200	EPA 8260B	05/03/13	05/03/13 19:3	
o-Xylene		490	ug/L	100	EPA 8260B	05/03/13	05/03/13 19:3	

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 04/29/13 Date Received: 04/30/13 11:30 Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

Field Sample ID: 71401 MW-8 Matrix: Water Lab ID: 13043002-04 LLQ Result Unit Method Analyzed Target Compound List - VOLATILES Styrene ND 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L Bromoform EPA 8260B 05/03/13 05/03/13 19:30 JKL ND ug/L 100 Isopropylbenzene ND 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L 1,1,2,2-Tetrachloroethane ND 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L **EPA 8260B** 05/03/13 05/03/13 19:30 JKL 1,3-Dichlorobenzene ND ug/L 100 1,4-Dichlorobenzene ND 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L 1,2-Dichlorobenzene ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL 100 **EPA 8260B** 05/03/13 05/03/13 19:30 JKL 1,2-Dibromo-3-chloropropane ND ug/L 1,2,4-Trichlorobenzene ND 200 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L Naphthalene ND ug/L 1000 EPA 8260B 05/03/13 05/03/13 19:30 JKL Ethyl t-butyl ether (ETBE) EPA 8260B 05/03/13 05/03/13 19:30 JKL ND ug/L 100 tert-Butanol (TBA) ND 2500 EPA 8260B 05/03/13 05/03/13 19:30 JKL ug/L Diisopropyl ether (DIPE) ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL tert-Amyl methyl ether (TAME) ND ug/L tert-Amyl alcohol (TAA) ND ug/L 2500 EPA 8260B 05/03/13 05/03/13 19:30 JKL tert-Amyl ethyl ether (TAEE) ND ug/L 100 EPA 8260B 05/03/13 05/03/13 19:30 JKL Total Petroleum Hydrocarbons - (C10-C28) DRO Diesel Range Organics mg/L 0.22 EPA 8015C 05/07/13 05/07/13 12:13 AC Total Petroleum Hydrocarbons - (C6-C10) GRO Gasoline Range Organics 18 05/03/13 05/03/13 20:07 JKL mg/L

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 8 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

ield Sample ID: 71401 MW-11		Mat	rix: Wate	r	La	ab ID: 13043	002-0
	Result	Unit	LLQ	Method	Prepared	Analyzed	init.
arget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKL
Bromomethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Chloroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Acetone	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Carbon disulfide	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Methyl acetate	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKL
Methylene chloride	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Methyl t-butyl ether (MTBE)	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Chloroform	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JK
Cyclohexane	72	ug/L	50	EPA 8260B	05/06/13	05/06/13 13:51	JKI
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Benzene	59	ug/L	10	EPA 8260B	05/06/13	05/06/13 13:51	JKI
1.2-Dichloroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Trichloroethene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Methylcyclohexane	54	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Bromodichloromethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	
Toluene	4	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
trans-1,3-Dichloropropene	ND.	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Tetrachloroethene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	05/06/13	05/06/13 13:27	JKI
Dibromochloromethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
1.2-Dibromoethane	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
Chlorobenzene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
Ethylbenzene	ND	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	
m&p-Xylene	18	ug/L	2	EPA 8260B	05/06/13	05/06/13 13:27	JKI
o-Xylene	ND.	ug/L	1	EPA 8260B	05/06/13	05/06/13 13:27	JKI
0.7,10.10	140	Page 9	-	Z1 /1 0200D	00/00/10	55/00/10 15.2/	01(1

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Matrix: Water

LLQ

2

10

25

- 1

25

0.25

Unit

ug/L

ug/L

ua/L

ug/L

mg/L

mg/L

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

71401 MW-11

Result

ND

0.42

Site Location: Hanover, MD

Project Number: 71401

Target Compound List - VOLATILES

Field Sample ID:

Styrene

Bromoform

Isopropylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

Ethyl t-butyl ether (ETBE)

Diisopropyl ether (DIPE)

tert-Amyl alcohol (TAA)

Diesel Range Organics

Gasoline Range Organics

tert-Amyl methyl ether (TAME)

tert-Amyl ethyl ether (TAEE)

Total Petroleum Hydrocarbons - (C10-C28) DRO

Total Petroleum Hydrocarbons - (C6-C10) GRO

Naphthalene

tert-Butanol (TBA)

1,1,2,2-Tetrachloroethane

1,2-Dibromo-3-chloropropane

SDG Number: 13043002

Lab ID: 13043002-05 Method Analyzed EPA 8260B 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 13:27 JKL **EPA 8260B** 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 05/06/13 13:27 JKL **EPA 8260B** 05/06/13 05/06/13 13:27 JKL EPA 8260B 05/06/13 05/06/13 13:27 JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

EPA 8260B

EPA 8015C

QC Chemist

05/06/13 05/06/13 13:27 JKL

05/07/13 05/07/13 12:50 AC

05/03/13 05/03/13 20:30 JKL

Page 10 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

ield Sample ID: 71401 MW-12	ample ID: 71401 MW-12 Matrix:		rix: Wate	er	La	ab ID: 130430	002-0
	Result	Unit	LLQ	Method	Prepared	Analyzed	init.
arget Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKL
Bromomethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Chloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Acetone	ND	ug/L	10	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Carbon disulfide	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Methyl acetate	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Methylene chloride	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Methyl t-butyl ether (MTBE)	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Chloroform	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JK
Cyclohexane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Benzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,2-Dichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Trichloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Methylcyclohexane	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Bromodichloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	JKI
Toluene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
trans-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
Tetrachloroethene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	05/03/13	05/03/13 18:18	
Dibromochloromethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
1.2-Dibromoethane	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
Chlorobenzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
Ethylbenzene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	JKI
m&p-Xylene	ND	ug/L	2	EPA 8260B	05/03/13	05/03/13 18:18	JKI
o-Xylene	ND	ug/L	1	EPA 8260B	05/03/13	05/03/13 18:18	
		-5-					

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13043002

Field Sample ID: 71401 MW-12 Matrix: Water Lab ID: 13043002-06 LLQ Result Unit Method Analyzed Target Compound List - VOLATILES Styrene ND EPA 8260B 05/03/13 05/03/13 18:18 JKL ug/L Bromoform EPA 8260B 05/03/13 05/03/13 18:18 JKL ND ug/L Isopropylbenzene ND EPA 8260B 05/03/13 05/03/13 18:18 JKL ua/L 1,1,2,2-Tetrachloroethane ND EPA 8260B 05/03/13 18:18 JKL ug/L **EPA 8260B** 05/03/13 05/03/13 18:18 JKL 1,3-Dichlorobenzene ND ug/L 1,4-Dichlorobenzene ND EPA 8260B 05/03/13 05/03/13 18:18 JKL ug/L 1,2-Dichlorobenzene ND ug/L EPA 8260B 05/03/13 05/03/13 18:18 JKL **EPA 8260B** 05/03/13 05/03/13 18:18 JKL 1,2-Dibromo-3-chloropropane ND ug/L 1,2,4-Trichlorobenzene ND 2 EPA 8260B 05/03/13 05/03/13 18:18 JKL ug/L Naphthalene ND ug/L 10 EPA 8260B 05/03/13 05/03/13 18:18 JKL Ethyl t-butyl ether (ETBE) EPA 8260B 05/03/13 05/03/13 18:18 JKL ND ug/L tert-Butanol (TBA) ND 25 EPA 8260B 05/03/13 05/03/13 18:18 JKL ug/L Diisopropyl ether (DIPE) ND ug/L EPA 8260B 05/03/13 05/03/13 18:18 JKL EPA 8260B 05/03/13 05/03/13 18:18 JKL tert-Amyl methyl ether (TAME) ND ug/L - 1 tert-Amyl alcohol (TAA) ND ug/L 25 EPA 8260B 05/03/13 05/03/13 18:18 JKL tert-Amyl ethyl ether (TAEE) ND ug/L EPA 8260B 05/03/13 05/03/13 18:18 JKL Total Petroleum Hydrocarbons - (C10-C28) DRO Diesel Range Organics mg/L 0.23 EPA 8015C 05/07/13 05/07/13 12:50 AC Total Petroleum Hydrocarbons - (C6-C10) GRO Gasoline Range Organics 05/03/13 05/03/13 20:54 JKL mg/L

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 12 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 SDG Number: 13043002

Farget Compound List - Dichlorodifluorometha Chloromethane Vinyl chloride	VOLATILES	Result	Unit					
Dichlorodifluorometha Chloromethane	VOLATILES		Unit	LLQ	Method	Prepared	Analyzed	Init.
Chloromethane	VOLKHILLO							
	ne	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Vinyl chloride		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Bromomethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Chloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Trichlorofluoromethan	e	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,1-Dichloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,1,2-Trichlorotrifluoro	ethane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Acetone		ND	ug/L	100	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Carbon disulfide		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Methyl acetate		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Methylene chloride		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
trans-1,2-Dichloroethe	ene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Methyl t-butyl ether (N	ITBE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,1-Dichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
cis-1,2-Dichloroethene	•	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
2-Butanone (MEK)		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Chloroform		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,1,1-Trichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Cyclohexane		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Carbon tetrachloride		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Benzene		100	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,2-Dichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Trichloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Methylcyclohexane		57	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1,2-Dichloropropane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Bromodichloromethan	e	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
cis-1,3-Dichloroproper	ne	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
4-Methyl-2-pentanone		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Toluene	,	1.300	ug/L	100	EPA 8260B	05/03/13	05/03/13 20:17	JKL
trans-1,3-Dichloroprop	ene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1.1.2-Trichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Tetrachloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
2-Hexanone (MBK)		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Dibromochloromethan	e	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
1.2-Dibromoethane	•	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Chlorobenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
Ethylbenzene		210	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
m&p-Xylene		880	ug/L	20	EPA 8260B	05/06/13	05/06/13 12:21	JKL
o-Xylene		490	ug/L	10	EPA 8260B	05/06/13	05/06/13 12:21	JKL
• • •			Page 1	2 -540				

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13043002

Field Sample ID: 71401 MW-13 Matrix: Water Lab ID: 13043002-07 LLQ Result Unit Method Analyzed Target Compound List - VOLATILES Styrene ND 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL ug/L Bromoform 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL ND ug/L Isopropylbenzene 46 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL ug/L 1,1,2,2-Tetrachloroethane ND ug/L 10 EPA 8260B 05/06/13 12:21 JKL 10 **EPA 8260B** 05/06/13 05/06/13 12:21 JKL 1,3-Dichlorobenzene ND ug/L 1,4-Dichlorobenzene ND 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL ug/L 1,2-Dichlorobenzene ND ug/L 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL 10 **EPA 8260B** 05/06/13 05/06/13 12:21 JKL 1,2-Dibromo-3-chloropropane ND ug/L 1,2,4-Trichlorobenzene ND 20 EPA 8260B 05/06/13 05/06/13 12:21 JKL ug/L Naphthalene 160 ug/L 100 EPA 8260B 05/06/13 05/06/13 12:21 JKL Ethyl t-butyl ether (ETBE) EPA 8260B 05/06/13 05/06/13 12:21 JKL ND ug/L 10 tert-Butanol (TBA) ND 250 EPA 8260B 05/06/13 05/06/13 12:21 JKL ug/L Diisopropyl ether (DIPE) ND ug/L 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL tert-Amyl methyl ether (TAME) ND ug/L tert-Amyl alcohol (TAA) ND ug/L 250 EPA 8260B 05/06/13 05/06/13 12:21 JKL tert-Amyl ethyl ether (TAEE) ND ug/L 10 EPA 8260B 05/06/13 05/06/13 12:21 JKL Total Petroleum Hydrocarbons - (C6-C10) GRO

mg/L

13

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

Gasoline Range Organics

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

EPA 8015C

QC Chemist

05/03/13 05/03/13 21:18 JKL

Page 14 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 **SDG Number: 13043002**

Field Sample ID:	71401 MW-14 Matrix: Water				er	La	Lab ID: 13043002		
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Target Compound Lis	- VOLATILES								
Dichlorodifluorometh	nane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Chloromethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Vinyl chloride		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Bromomethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Chloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Trichlorofluorometha	ne	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,1-Dichloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,1,2-Trichlorotrifluo	roethane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Acetone		ND	ug/L	100	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Carbon disulfide		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Methyl acetate		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Methylene chloride		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
trans-1,2-Dichloroetl	hene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Methyl t-butyl ether ((MTBE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,1-Dichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
cis-1,2-Dichloroethe	ne	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
2-Butanone (MEK)		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Chloroform		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,1,1-Trichloroethan	e	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Cyclohexane		130	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Carbon tetrachloride	•	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Benzene		26	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,2-Dichloroethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Trichloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Methylcyclohexane		210	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,2-Dichloropropane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Bromodichlorometha	ane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
cis-1,3-Dichloroprop	ene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
4-Methyl-2-pentanor	ne (MIBK)	ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Toluene	, ,	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
trans-1,3-Dichloropr	opene	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,1,2-Trichloroethan	e	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Tetrachloroethene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
2-Hexanone (MBK)		ND	ug/L	50	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Dibromochlorometha	ane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
1,2-Dibromoethane		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Chlorobenzene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
Ethylbenzene		36	ug/L	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
m&p-Xylene		200	ug/L	20	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
		12	•	10	EPA 8260B	05/06/13	05/06/13 11:57	JKL	
o-Xylene		12	ug/L	10	EPA 8200B	05/06/13	05/06/13 11:57	JNL	

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Project:

Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

SMO Ft. Meade Shell

Site Location: Hanover, MD
Project Number: 71401

SDG Number:

13043002

Field Sample ID:	71401 MW-14	Matrix: Water				La	b ID:	130430)02-08
		Result	Unit	LLQ	Method	Prepared	Analy	zed	Init.
Target Compound Lis	st - VOLATILES								
Styrene		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Bromoform		ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Isopropylbenzene		230	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,1,2,2-Tetrachloro	ethane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,3-Dichlorobenzen	ie	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,4-Dichlorobenzen	ie	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,2-Dichlorobenzen	ie	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,2-Dibromo-3-chlo	ropropane	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
1,2,4-Trichlorobenz	.ene	ND	ug/L	20	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Naphthalene		100	ug/L	100	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Ethyl t-butyl ether (f	ETBE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
tert-Butanol (TBA)		ND	ug/L	250	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Diisopropyl ether (D	IPE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
tert-Amyl methyl eth	ner (TAME)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
tert-Amyl alcohol (T	AA)	ND	ug/L	250	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
tert-Amyl ethyl ethe	r (TAEE)	ND	ug/L	10	EPA 8260B	05/06/13	05/06/13	3 11:57	JKL
Total Petroleum Hydi	rocarbons - (C10-C28) D	RO							
Diesel Range Orga	nics	55	mg/L	0.24	EPA 8015C	05/07/13	05/07/1	3 13:25	AC
Total Petroleum Hydr	rocarbons - (C6-C10) GF	₹0							
Gasoline Range Or	ganics	19	mg/L	1	EPA 8015C	05/03/13	05/03/13	3 21:42	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by

QC Chemis

Page 16 of 18

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 04/29/13
Date Received: 04/30/13 11:30
Date Issued: 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401 **SDG Number: 13043002**

Field Sample ID: 71401 Pot		Mat	trix: Drin	king Water	La	ab ID: 1304:	13043002-0	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
/olatile Organic Compounds								
Benzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Bromobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Bromochloromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Bromodichloromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Bromoform	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Bromomethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
n-Butylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
sec-Butylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
tert-Butylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Carbon tetrachloride	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Chlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Chloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Chloroform	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Chloromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
2-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
4-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Dibromochloromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,2-Dibromo-3-chloropropane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,2-Dibromoethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Dibromomethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,2-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,3-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,4-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Dichlorodifluoromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,1-Dichloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,2-Dichloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,1-Dichloroethene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
cis-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
trans-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,3-Dichloropropane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
2,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
1,1-Dichloropropene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
cis-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
trans-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Ethylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Isopropylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
p-Isopropyltoluene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Methylene chloride	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
Methyl t-butyl ether (MTBE)	ND	ug/L	0.2	EPA 524.2	05/06/13	05/06/13 17:1	3 JKL	
weuryr t-butyr euler (MTBE)	ND	•	7 of 18	EFA 324.2	03/06/13	03/00/13 1/	. 10	

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230
 Date Sampled:
 04/29/13

 Date Received:
 04/30/13 11:30

 Date Issued:
 05/07/13

Project: SMO Ft. Meade Shell

Site Location: Hanover, MD

Project Number: 71401

SDG Number: 13043002

Field Sample ID: 71401 Pot		Mat	rix: Drin	king Water	La	b ID: 130430	002-09
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Volatile Organic Compounds							
Naphthalene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
n-Propylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Styrene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Tetrachloroethene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Toluene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,2,3-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,2,4-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,1,1-Trichloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,1,2-Trichloroethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Trichloroethene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Trichlorofluoromethane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,2,3-Trichloropropane	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,2,4-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
1,3,5-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Vinyl chloride	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
m&p-Xylene	ND	ug/L	1	EPA 524.2	05/06/13	05/06/13 17:16	JKL
o-Xylene	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
tert-Butanol (TBA)	ND	ug/L	5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
Diisopropyl ether (DIPE)	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
tert-Amyl methyl ether (TAME)	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
tert-Amyl alcohol (TAA)	ND	ug/L	5	EPA 524.2	05/06/13	05/06/13 17:16	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/L	0.5	EPA 524.2	05/06/13	05/06/13 17:16	JKL

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 18 of 18

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825,1151 Fax: 410.825,2126 www.caslabs.net

Chain of Custody Record

Customer:	Envirotech]	E-mail	address:	HGT	MDG	AD	L- C	on	SDG	Numb	er:	1	3043007	2
Contact/Report to:	Dous Hamilton			Project	t Name:	SME) Ft	Mead	1 S	hell	100					
Phone:	410 525-0075]	Projec	t Number:	7140					San	pled b	y:			
Fax:	410) 525 - 8644	†		Locatio	on:	Hano	ver	m	4		PO	Numbe	r:		71401-	4042
							/			questec					1	
					Preserva	live		Γ.								
Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles	Matrix	1 1	00/	0/4	5108 0112	We Sou	1 1				Sampling F	
ab ivalibo	71401 MW-1	4/29/13	AM	4	GW	1	1./	1/				\vdash			Oomin	viito
	01401 MW-4	14/29	AM	u	GW	1	1	1								
	71401 MW - 7	4/29	AM	14	GW	1	1.7	1	1							
	71401 174-8	4/29	Am	u	GW	1/	1	1/			_		-			
	101	11/20	n a	1	0-1	- 2/	1	-				-				
	71401 MW-11	4/29	AM	4	GW	1	1/	1		-	-	+				
	71401 MW-12	4/29	AM	4	GW	1	V	1/		-						
	6-	4/29	Am	3	GW	1/	111	Anti	104°		_					
	171401 MW-13	4/29	AM	V	GW	1	1/	1/	13.00							
	Witter	4/29	alh	1	GN	- a	me	NA A	- 10	. /	-	-	-			
	171401 Pot	17/21	HIN	3	1510	V	yvao	Juston	10.	0						
Relinquished by:	2-17		Date/Time	: 4	1/29/13	1:30pu	Deliv	erabl	es:	Rec	ipt Tem	peratu	re:	Turnar	ound Time:	
Received by:	With hin		Date/Time		1/30/13	1330			P EDD	Te	mp:	On los	V	STD N	xt Day 2-Day	Other
Relinquished by:	00		Date/Time		7		Cust	ody S	eals:	Comme	ents/Spe	cial Ins	structi	iens:		
Received by:	_		Date/Time				Sam	nple C	cooler							

Delivered by client

Date/Time:

Date/Time:

http://www.caslabs.net/downloads/CASCOC.pdf

Relinquished by:

Received by:

CAS_COC

Matrix: Water

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 12/26/12
Date Received: 12/28/12 10:15
Date Issued: 01/08/13

12122801

Lab ID: 12122801-01

SDG Number:

Project: SMO Ft. Meade Site Location: Hanover, MD

Project Number: 71401

Field Sample ID: 71401 MW-1

Ethylbenzene

m&p-Xylene

o-Xylene

	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound List - VOLATILES							
Dichlorodifluoromethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Chloromethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Vinyl chloride	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Bromomethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Chloroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Trichlorofluoromethane	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1-Dichloroethene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Acetone	ND	ug/L	10	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Carbon disulfide	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Methyl acetate	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Methylene chloride	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
trans-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Methyl t-butyl ether (MTBE)	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1-Dichloroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
cis-1,2-Dichloroethene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
2-Butanone (MEK)	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Chloroform	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1,1-Trichloroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Cyclohexane	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Carbon tetrachloride	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Benzene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2-Dichloroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Trichloroethene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Methylcyclohexane	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2-Dichloropropane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Bromodichloromethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
cis-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Toluene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
trans-1,3-Dichloropropene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1,2-Trichloroethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Tetrachloroethene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
2-Hexanone (MBK)	ND	ug/L	5	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Dibromochloromethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2-Dibromoethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	
Chlorobenzene	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL

Page 1 of 4

8851 Orchard Tree Lane Towson, Maryland 21286
tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

ug/L

ug/L

ug/L

EPA 8260B

EPA 8260B

EPA 8260B

01/02/13 01/02/13 16:36 JKL

01/02/13 01/02/13 16:36 JKL 01/02/13 01/02/13 16:36 JKL

ND

ND

ND

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 12/26/12
Date Received: 12/28/12 10:15
Date Issued: 01/08/13

Project: SMO Ft. Meade
Site Location: Hanover, MD
Project Number: 71401

SDG Number: 12122801

Field Sample ID:	71401 MW-1		Mat	rix: Wat	er	La	b ID: 121228	01-01
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	t - VOLATILES							
Styrene		ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Bromoform		ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Isopropylbenzene		ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,1,2,2-Tetrachloroe	ethane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,3-Dichlorobenzen	e	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,4-Dichlorobenzen	e	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2-Dichlorobenzen	е	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2-Dibromo-3-chlor	ropropane	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
1,2,4-Trichlorobenz	ene	ND	ug/L	2	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Naphthalene		ND	ug/L	10	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Ethyl t-butyl ether (E	ETBE)	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
tert-Butanol (TBA)		ND	ug/L	25	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Diisopropyl ether (D	IPE)	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
tert-Amyl methyl eth	ner (TAME)	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
tert-Amyl alcohol (T.	AA)	ND	ug/L	25	EPA 8260B	01/02/13	01/02/13 16:36	JKL
tert-Amyl ethyl ether	r (TAEE)	ND	ug/L	1	EPA 8260B	01/02/13	01/02/13 16:36	JKL
Total Petroleum Hydr	ocarbons - (C10-C28) I	DRO						
Diesel Range Organ	nics	0.35	mg/L	0.33	EPA 8015C	01/02/13	01/03/13 9:09	AC
Total Petroleum Hydr	ocarbons - (C6-C10) G	RO						
Gasoline Range Or	ganics	ND	mg/L	0.2	EPA 8015C	01/04/13	01/04/13 20:47	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by

QC Chemist

Page 2 of 4

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230 Date Sampled: 12/26/12
Date Received: 12/28/12 10:15
Date Issued: 01/08/13

12122801

SDG Number:

Project: SMO Ft. Meade Site Location: Hanover, MD

Project Number: 71401

Field Sample ID:	71401 MW-4		Mat	rix: Wat	er	La	ib ID: 121228	301-02
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List	- VOLATILES							
Dichlorodifluorometha	ane	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Chloromethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Vinyl chloride		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Bromomethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Chloroethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Trichlorofluorometha	ne	ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1-Dichloroethene		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1,2-Trichlorotrifluor	oethane	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Acetone		ND	ug/L	200	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Carbon disulfide		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Methyl acetate		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Methylene chloride		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
trans-1,2-Dichloroeth	ene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Methyl t-butyl ether (f	MTBE)	61	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1-Dichloroethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
cis-1,2-Dichloroether	ie	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
2-Butanone (MEK)		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Chloroform		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1,1-Trichloroethane	•	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Cyclohexane		220	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Carbon tetrachloride		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Benzene		2,900	ug/L	100	EPA 8260B	01/04/13	01/04/13 12:37	JKL
1,2-Dichloroethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Trichloroethene		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Methylcyclohexane		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,2-Dichloropropane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Bromodichlorometha	ne	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
cis-1,3-Dichloroprope	ene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
4-Methyl-2-pentanon	e (MIBK)	ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Toluene		300	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
trans-1,3-Dichloropro	pene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1,2-Trichloroethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Tetrachloroethene		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
2-Hexanone (MBK)		ND	ug/L	100	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Dibromochlorometha	ne	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,2-Dibromoethane		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Chlorobenzene		ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Ethylbenzene		690	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
m&p-Xylene		1,200	ug/L	40	EPA 8260B	01/03/13	01/03/13 14:59	JKL
o-Xylene		41	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

 Date Sampled:
 12/26/12

 Date Received:
 12/28/12 10:15

 Date Issued:
 01/08/13

Project: SMO Ft. Meade Site Location: Hanover, MD Project Number: 71401

SDG Number: 12122801

Field Sample ID: 71401 MW	-4	Mat	rix: Wat	er	La	nb ID: 121228	301-02
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Farget Compound List - VOLATILES							
Styrene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Bromoform	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Isopropylbenzene	35	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,1,2,2-Tetrachloroethane	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,3-Dichlorobenzene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,4-Dichlorobenzene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,2-Dichlorobenzene	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,2-Dibromo-3-chloropropane	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
1,2,4-Trichlorobenzene	ND	ug/L	40	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Naphthalene	ND	ug/L	200	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Ethyl t-butyl ether (ETBE)	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
tert-Butanol (TBA)	ND	ug/L	500	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Diisopropyl ether (DIPE)	71	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
tert-Amyl methyl ether (TAME)	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
tert-Amyl alcohol (TAA)	ND	ug/L	500	EPA 8260B	01/03/13	01/03/13 14:59	JKL
tert-Amyl ethyl ether (TAEE)	ND	ug/L	20	EPA 8260B	01/03/13	01/03/13 14:59	JKL
Total Petroleum Hydrocarbons - (C1	0-C28) DRO						
Diesel Range Organics	0.28	mg/L	0.24	EPA 8015C	01/02/13	01/03/13 9:42	AC
Total Petroleum Hydrocarbons - (C6	-C10) GRO						
Gasoline Range Organics	9.9	mg/L	0.2	EPA 8015C	01/04/13	01/04/13 21:10	CBS

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by

QC Chemist

Page 4 of 4

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151 Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	Envirotech
Contact/Report to:	Done Hamilton
Phone:	410)525-0045
Fav:	410 \ 525 - 9644

E-mail address:	TPHMD& MOL. Com
Project Name:	SMO Ft. Meade
Project Number:	71461
Location:	Hanover, MD

SDG Number: | |2|22801 PO Number: | 7|40|~335|

			Analysis Requested												
ab Number	Field Sample ID 71401 MW= 71401 MW-4	Date Sampled (2/2/q/1) (2/2/q/1)	411	No. of Bottles	Preservativ	8260	5/	5/03	Keques					Sampling Remarks Comments	
delinquished by: Deceived by: D		Date/Time Date/Time Date/Time Date/Time	: 12	126/12 11		Cust San	/erables:	s: Com	Temp:_	(erature: On Ice		around Time:)Next Day 2-Day Other		

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 12/06/12 Date Received: 12/06/12 10:15

Date Issued:

12/13/12

SMO Ft. Meade Shell

Project: Site Location: Severn, MD

Project Number: 71401

SDG Number: 12120601

Field Sample ID: 71401 SW-1		Matrix: Drinking Water		king Water	La	b ID: 12120	601-01	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Volatile Organic Compounds								
Benzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Bromobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Bromochloromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Bromodichloromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Bromoform	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Bromomethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
n-Butylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
sec-Butylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
tert-Butylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Carbon tetrachloride	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Chlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Chloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Chloroform	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Chloromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
2-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
4-Chlorotoluene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Dibromochloromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2-Dibromo-3-chloropropane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2-Dibromoethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Dibromomethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,3-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,4-Dichlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Dichlorodifluoromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1-Dichloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2-Dichloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1-Dichloroethene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
cis-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
trans-1,2-Dichloroethene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,3-Dichloropropane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
2,2-Dichloropropane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1-Dichloropropene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
cis-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
trans-1,3-Dichloropropene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Ethylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Isopropylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
p-Isopropyltoluene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Methylene chloride	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Methyl t-butyl ether (MTBE)	ND	ug/L	0.2	EPA 524.2	12/06/12	12/06/12 14:53	JKL	

8851 Orchard Tree Lane Towson, Maryland 21286 tel: 410.825.1151 fax: 410.825.2126 www.caslabs.net

Certificate of Analysis

Envirotech Consultants, LLC. 2931 Whittington Ave. Baltimore, MD 21230

Date Sampled: 12/06/12 Date Received: 12/06/12 10:15 Date Issued: 12/13/12

Project: SMO Ft. Meade Shell

Site Location: Severn, MD

Project Number: 71401

12120601 SDG Number:

Field Sample ID: 71401 SW-1		Mat	rix: Drin	king Water	La	b ID: 121206	601-01	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Volatile Organic Compounds								
Naphthalene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
n-Propylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Styrene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Tetrachloroethene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Toluene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2,3-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2,4-Trichlorobenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1,1-Trichloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,1,2-Trichloroethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Trichloroethene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Trichlorofluoromethane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2,3-Trichloropropane	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,2,4-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
1,3,5-Trimethylbenzene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Vinyl chloride	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
m&p-Xylene	ND	ug/L	1	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
o-Xylene	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
tert-Butanol (TBA)	ND	ug/L	5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Ethyl t-butyl ether (ETBE)	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
Diisopropyl ether (DIPE)	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
tert-Amyl methyl ether (TAME)	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
tert-Amyl alcohol (TAA)	ND	ug/L	5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	
tert-Amyl ethyl ether (TAEE)	ND	ug/L	0.5	EPA 524.2	12/06/12	12/06/12 14:53	JKL	

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

QC Chemist

Page 2 of 2

8851 Orchard Tree Lane Towson, MD 21286 Phone: 410.825.1151 Fax: 410.825.2126 www.caslabs.net

Chain of Custody Record

Customer:	Envirotech	E-mail address:	TPHMDGAOLICEM	SDG Number:	12120601
Contact/Report to:	Dona Hamilton	Project Name:	SMO Hmende Shell		
Phone:	4107525-0045	Project Number:	71401	Sampled by:	to the
Fax:	410 525 - 8644	Location:	1. Sprain, MD	PO Number:	71401-3257
			Analysis Requeste	d	

	Analysis Requested														_						
					Preservat/v	ve															
Lab Number	Field Sample ID	Date Sampled	Time Sampled	No. of Bottles			Matrix /	13 TE		A FALS			WOC 524. 2				_	/		ing Remarks omments	,
	71401 SW-1	12/6/12	AM	3			1		1	+								_			
							+	74	1	+											
	1						\mp		+	+				-							
							1		_	_	_	_	_	_							
Relinquished by:	that w		Date/Time:		12/6/2/013			Deliverables:			Receip	t Temperature:			Turnaround Time:						
Received by: Relinquished by:	14/1		Date/Time		17/21	010		Custody					s/Special Instru								
Received by:	V		Date/Time	:				Sample	Coole	er											
Relinquished by:			Date/Time	:				Delivered	by clie	ent											
Received by:			Date/Time	:																	

http://www.caslabs.net/downloads/CASCOC.pdf

CAS_COC