HESS CORPORATION

CORRECTIVE ACTION PLAN ADDENDUM OIL CONTROL PROGRAM CASE 1991-2100BA FORMER HESS STATION #20204 1613 EAST JOPPA ROAD, TOWSON, MARYLAND

SEPTEMBER 17, 2020

CORRECTIVE ACTION PLAN ADDENDUM

OIL CONTROL PROGRAM #1991-2100BA FORMER HESS STATION #20204 1613 EAST JOPPA ROAD, TOWSON, MARYLAND

HESS CORPORATION

PROJECT NO. 31400408 DATE: SEPTEMBER 17, 2020

WSP SUITE 300 13530 DULLES TECHNOLOGY DRIVE HERNDON, VA 20171

PHONE: +1 703-709-6500 FAX: +1 703-709-8505 WSP.COM

wsp

TABLE OF CONTENTS

1	INTRODUCTION1
1.1 1.1.1	Corrective Action Objectives
1.1.1	Asymptotic or Declining Concentration Trends
1.1.2	Observable Site Conditions
1.1.4	Soil Conditions
2	SITE DESCRIPTION
2.1	Site Geology/Hydrogeology5
2.2	Historic Site Investigations and Remedial Actions5
2.3	Current Conditions
2.3.1	Groundwater7
2.3.2	Groundwater Management System7
3	IN SITU DESIGN RATIONALE9
3.1	Injection Treatment Area9
3.2	Chemical Selection and Dosage9
4	IN SITU TREATMENT PROCEDURES10
4.1	Access Agreement and Community Outreach 10
4.2	Permits
4.2.1	Health and Safety Planning
4.2.2	Utility Locate
4.3	General Procedures11
4.4	Monitoring Equipment 11
4.5	Decontamination11
4.6	Injection Well Installation Procedures 12
4.7	Baseline Groundwater Sampling Procedures
4.8	Amendment Preparation, Injection Procedure, and Monitoring During Treatment13
4.8.1	Persulfate Monitoring and Release Prevention14

usp

4.9	Post-Treatment Groundwater Sampling and Injection Monitoring	15
4.10	Sample Containers and Labels	15
4.11	Chain of Custody Records	16
4.12	Quality Control and Analytical Procedures	16
4.12.1	Field Duplicates	16
4.12.2	Equipment Blanks	16
4.12.3	Trip Blanks	16
4.12.4	Temperature Blanks	17
4.12.5	Analytical Procedures	17
4.13	Investigation Derived Waste	17
4.14	Surveying	17
5	SCHEDULE AND REPORTING	18
6	REFERENCES	19

wsp

FIGURES

FIGURE 1	SITE PLAN
FIGURE 2	GEOLOGICAL CROSS-SECTIONS
FIGURE 3	PROPOSED INJECTION TREATMENT AREAS
FIGURE 4	ISCO QUARTERLY MONITORING LOCATIONS

TABLES

TABLE 1	MONITORING PROGRAM FOR PERSULFATE INJECTION

APPENDICES

APPENDIX A	EMS QUARTERLY REPORT
APPENDIX B	WSP SITE INVESTIGATION SUMMARY LETTER -
	MAY 2018
APPENDIX C	TREND GRAPHS
APPENDIX D	SAFETY DATA SHEETS
APPENDIX E	STANDARD OPERATING PROCEDURES
APPENDIX F	RELEASE MONITORING AND RESPONSE PLAN

1 INTRODUCTION

On behalf of Hess Corporation, WSP USA Inc. (WSP) has developed this addendum to the corrective action plan (CAP) for the former Hess filling station located at 1613 Joppa Road in Towson, Maryland. The proposed corrective action will include activities in Ridgely Manor Park, located south of the former Hess filling station on Yakona Road (Figure 1).

In September 2017, a site investigation was performed to define the vertical and horizontal location of maximum concentration of remaining total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylene (BTEX) compounds and gather data needed to evaluate in situ treatment options. WSP also completed an in situ chemical oxidation (ISCO) bench scale study (WSP 2017) to evaluate its efficacy at reducing site contaminants. Based on the investigation and bench scale results, this CAP addendum proposes in situ application of unactivated persulfate in the area of significant contaminated mass located in the southern portion of the former Hess filing station and the northeastern portion of Ridgely Manor Park.

This CAP addendum, prepared in accordance with Maryland Environmental Assessment Technology (MEAT) Guidance for Leaking Underground Storage Tanks (LUSTs), revised February 2003, serves to:

- Evaluate the achievement of remedial goals in accordance with the MEAT Guidance
- Evaluate the site status with respect to the seven risk factors in the MEAT Guidance
- Evaluate compliance with previous directives for the site from the Maryland Department of the Environment (MDE)
- Identify a corrective action (ISCO treatment) to address any remaining risk factors and outstanding obligations

The focused ISCO treatment in areas of significant contaminant mass is designed to (1) reduce BTEX and TPH concentrations in groundwater collected by the management system, thereby allowing removal of the activated carbon treatment prior to discharge, (2) shorten the time to reach closure at the site, and (3) demonstrate Hess' continued commitment to addressing impacted groundwater.

1.1 CORRECTIVE ACTION OBJECTIVES

The corrective action objectives are based on the remedial goals from the MEAT Guidance and the site-specific directives issued by MDE. The objectives for the former Hess filling station include:

- Remove all risks posed by the release in accordance with the MEAT guidance including:
 - Prevent contamination migration
 - Reduce potential human health risks via all appropriate pathways for the contaminants originating from the former Hess filling station
- Demonstrate an asymptotic or declining trend in dissolved-phase contamination including benzene, total BTEX, and Methyl Tertiary-butyl ether (MTBE)
- Demonstrate consistent site conditions including absence of iron staining at groundwater discharge locations
- Ensure soils remaining in-place do not pose a risk to human health or environment

1.1.1 SEVEN RISK FACTORS

This section evaluates the status of the site with respect to the following seven risk factors listed in the MEAT guidance:

- 1 Liquid Phase Hydrocarbons (LPH)
- 2 Current and Future Use of Impacted Groundwater
- 3 Migration of Contamination
- 4 Human Exposure
- 5 Environmental Ecological Exposure
- 6 Impact to Utilities and Other Buried Services
- 7 Other Sensitive Receptors

The definition of each risk factor in the MEAT guidance is provided below in *italics*, followed by the lines of evidence from the site.

LIQUID PHASE HYDROCARBONS

The site must demonstrate the presence of LPH has been removed to the maximum extent possible- generally indicated when measurable product can no longer be detected over an extended period of time in site monitoring points used to observe the subsurface and/or groundwater beneath the site.

Existing monitoring wells are monitored for LPH every quarter. LPH has not been detected in any onsite or offsite groundwater monitoring well since July 1995. Therefore, LPH is not present at the site.

CURRENT AND FUTURE USE OF IMPACTED GROUNDWATER

If the groundwater impacted by the release is used for direct consumption within a half mile of the site or the site is located within an approved wellhead protection zone, a site assessment and corrective action plan must be designed. Other uses of groundwater that would warrant remediation include industrial, agricultural, and surface water augmentation. If known, future use of the groundwater must be taken into consideration. If site-specific future use is unsure, regional trends must be considered. Generally, if future use is not clear a more conservative approach to cleanup is applied.

There is no current direct consumption or use of groundwater impacted by the release, and there are no drinking water receptors in the area. Baltimore County provides municipal water and sanitary sewer services to both the former Hess filling station and the surrounding commercial and residential areas.

The development of Ridgely Manor Park has eliminated any potential future risk associated with residual amounts of hydrocarbons in groundwater. The park is zoned for residential properties, but Baltimore County has labeled the property as unbuildable because it is identified as "environmentally constrained." Due to these restrictions, there is no potential future use of groundwater at the filling station site or the park.

As discussed in the sections below, the groundwater management system completed in Ridgely Manor Park is preventing offsite migration of groundwater contamination to other properties. The wells maintained in the monitoring program (YMW-1 through YMW-4 and YP-5) proposed in September 2018 *Groundwater Monitoring Program Modifications* Letter will monitor the potential for offsite migration.

MIGRATION OF CONTAMINATION

The ability of contamination to migrate off site or to migrate to a receptor is a critical measure. If it can be demonstrated that the contamination is stationary and site conditions restrict the potential for migration, the need for cleanup may be reduced.

Four of the wells at the Site have had non-detectable concentrations for all compounds analyzed in the most recent eight or more consecutive quarters, and 11 wells had non-detect concentrations for TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), Naphthalene, and at least three BTEX constituents in the June 2018 sampling event. Monitoring locations such as OW-1, YMW-1 and YMW-2 have been monitored before and after installation of the groundwater management system, and provide clear evidence of decreasing concentrations due to natural attenuation of petroleum compounds and the groundwater management system operations.

Wells near the downgradient property boundary will continue to be monitored, as stated above, to confirm that the extent of affected groundwater has been defined at the downgradient edge of Ridgely Manor Park. Offsite migration of groundwater contamination is unlikely due to the operation of the groundwater management system which prevents groundwater surface discharge and significantly reduces offsite groundwater migration.

HUMAN EXPOSURE

Any exposure to the public warrants site corrective action. There are several exposure pathways that must be considered and include but not limited to inhalation, ingestion, and dermal contact.

The exposure pathways evaluated are ingestion and dermal contact of groundwater for visitors to the site. While groundwater on the property is considered shallow, the wells have locked plugs and a bolted steel well cover to prevent access to wells. By lowering the water table, the groundwater management system prevents groundwater from discharging to the ground surface and has eliminated associated exposure pathways.

ENVIRONMENTAL ECOLOGICAL EXPOSURE

The need to protect the natural resources of the state mandated by Maryland Law. If there is exposure to animal or plant life from the petroleum release or the degradation of a natural resource, correct action is warranted.

The groundwater management system collects any groundwater migrating offsite or groundwater discharging to the surface. Treated groundwater has never exceeded the National Pollutant Discharge Elimination System (NPDES) discharge limits and is discharged to the public storm sewer. No natural resources have been impacted since the installation of the groundwater management system.

IMPACT TO UTILITIES AND OTHER BURIED STRUCTURES

The responsible party must correct adverse effects to utilities. Utility materials have been known to degrade from contact with petroleum products. Utilities may also act as conduits that lead to the migration of contamination. Migration along utilities may cause vapor impacts or other issues at nearby structures.

Groundwater affected by the release is treated by filtration and liquid phase granular activated carbon to meet the NPDES discharge limits prior to being discharged to the public storm sewer system. The treated groundwater effluent sample results demonstrate that benzene, BTEX, and TPH concentrations have never exceeded the NPDES permit limits. Beginning in January 2015, the breathing zone in and above the five onsite storm sewer manholes and the Yakona Road curb inlet have been screened weekly with a photoionization detector (PID) to monitor organic vapor concentrations (Appendix A – Figure 1). No organic vapors have ever been detected in the breathing zone at any location. While the PID readings indicate that volatile organic compounds (VOCs) are present in the below grade air space of the collection system manholes, the PID readings for the curb inlet have been non-detectable or near non-detectable. It is anticipated that the organic vapor concentrations in the below grade airspace would decrease after the injection remedy has degraded BTEX and other volatiles.

There are utilities along the southern portion of the property, including underground gas and underground electric lines running along Yakona Road. The groundwater concentrations along the southern boundary of the site (i.e. monitoring wells YMW-1 and YMW-2 through YMW-5) indicate that contamination will not impact the buried utilities.

OTHER SENSITIVE RECEPTORS

Sensitive receptors such as surface water, historic structures, and subways are an indication that a site may warrant further corrective action.

There are no sensitive receptors on the site. The end of Herring Run, a tributary of the Back River, is located approximately 3,080 feet east-southeast of the site. The groundwater management system collects and treats groundwater before it is discharged to the storm sewer system.

There are no historic structures, subway systems or other sensitive receptors on or near the site.

1.1.2 ASYMPTOTIC OR DECLINING CONCENTRATION TRENDS

Groundwater monitoring has been performed for the release since 1991. Groundwater monitoring has been performed on a quarterly basis, and MDE approved a change to semi-annual groundwater monitoring in November 2018 (MDE, 2018). Therefore, the groundwater data set is sufficient to evaluate concentration trends. The quarterly groundwater quality results do not suggest seasonal variability.

The quarterly groundwater samples are analyzed for VOCs and fuel oxygenates by U.S. Environmental Protection Agency (EPA) Method 8260C, TPH–GRO by U.S. EPA Method 8015C, and TPH–DRO by U.S. EPA Method 8015C. An evaluation of the groundwater quality results and concentration trends indicate non-detect, consistent, or decreasing concentrations at

most location/analyte pairs. Many analyte detections in recent sampling events are below the MEAT criteria for groundwater for the respective constituent, or below the laboratory reporting limits.

Monitoring locations such as OW-1, YMW-1 and YMW-2 have been monitored before and after installation of the groundwater management system and provide clear evidence of decreasing concentrations due to natural attenuation of petroleum compounds and the groundwater management system operations. The proposed corrective action will further reduce the BTEX, TPH-GRO and TPH-DRO concentrations in groundwater.

1.1.3 OBSERVABLE SITE CONDITIONS

MDE requested reporting of notable observations about the site in the letter mailed in February 2016 (MDE 2016). Since installation of the groundwater management system, there has been no evidence of surface discharge of groundwater, odors, iron staining, or any other observations indicating contaminant impacts at the site.

1.1.4 SOIL CONDITIONS

The last corrective action objective is to ensure soils remaining in-place do not pose a risk to human health or environment.

In 2017, WSP conducted the site investigation using a membrane interface probe (MIP)/ hydraulic profiling tool (HPT) to identify areas of the site with significant contaminant mass (Appendix B). Soil sample collection was biased towards the areas with the highest contaminant concentrations. The maximum BTEX and TPH concentrations in soil were measured at MIP-02 (25-30 feet below ground surface [bgs]) in soil (Figure 2). All soil concentrations were below the MEAT standards except for the TPH-GRO and TPH-DRO concentrations at MIP-02 (1,220 milligrams per kilogram [mg/kg] and 803 mg/kg, respectively). There is no potential exposure to soil at the depths of the exceedances nor are there buried structures at that depth that could be impacted or a conduit for the contamination to migrate. Therefore, the soils remaining in place do not pose a risk to human health or the environment. The proposed corrective action will further reduce the TPH-GRO and TPH-DRO concentrations in soil in this area of the site.

2 SITE DESCRIPTION

The site includes former Hess filling station No. 20204, located at 1613 East Joppa Road in Baltimore County, Baltimore, Maryland, and Ridgely Manor Park to the south (Figure 1). Ridgely Manor Park is located on 16 contiguous parcels formerly occupied by 8 duplex residences at 1612 through 1642 Yakona Road. The park is topographically lower and hydraulically downgradient of several commercial properties along East Joppa Road including the former Hess Station. The park property slopes from a high of 454 feet above mean sea level (MSL) in the northern corner near the former Hess filling station to a low point of 430 feet above MSL in the southern portion of the park along the sidewalk at Yakona Road. Releases of gasoline constituents from the former Hess filling station were a potential source of petroleum contamination in groundwater beneath the former residences (MDE 2005). The Site Number associated with the releases is MDE Oil Control Program (OCP) Case No. 1991-2100BA.

There are no drinking water receptors in the area. Baltimore County provides municipal water and sanitary sewer services to both the former Hess filling station property and the surrounding commercial and residential areas.

2.1 SITE GEOLOGY/HYDROGEOLOGY

The geologic conditions in the area consist of a surficial unit comprised of layered clayey and sandy deposits believed to represent the Cretaceous-age Potomac Group, which are underlain by saprolite formed by the weathering of the local metamorphic rocks (Baltimore Gneiss). Geologic cross sections that include the former station and park areas are shown in Figure 2. The texture of the saprolitic materials varies from clayey to silty sand to sandy clay and is governed by the lithologic characteristics of the parent (i.e., unweathered) rock. Regional geologic studies in the Baltimore area and Harford County, Maryland indicate the saprolite thickness ranges from approximately 30 to 50 feet (Otton et al. 1964; SRBC 2008).

Saturated portions of the unconsolidated Potomac Group deposits and underlying saprolite are interpreted to comprise a coupled, unconfined hydrogeologic unit of variable permeability. The water table occurs within the surficial Potomac Group deposits, with the depth to the groundwater surface greater than 10 feet bgs in the northern-most portion of the area and less than 10 feet bgs moving south. Water level elevations indicate the historical fluctuation in the groundwater surface at the site has been less than 4 feet bgs. Groundwater flow within this water-bearing unit is in a generally southward direction and appears to mimic the local surface topography. Overall, the groundwater surface contours indicate a lower Site-wide hydraulic gradient in the northern-most area under both high and low water table conditions.

The hydraulic conductivity (K) of the unconsolidated surficial sand (Potomac Group) deposits and saprolite was estimated from slug tests conducted at site monitoring wells. (Detailed information on the test performance and data analysis, and the calculated K values determined from test data, are provided in the WSP 2013 CAP.) The hydraulic conductivity of the aquifer materials exhibits some degree of spatial variability over Ridgely Manor Park. The representative K values for the tested wells range from 0.71 feet per day (ft/day) to 7.8 ft/day, with a geometric mean value of 2.0 ft/day. Further examination of the K estimates indicates a slightly higher permeability for the surficial sand deposits (range: 0.71 to 7.8 ft/day; median: 2.3 ft/day) compared to the saprolitic materials (range: 1.1 to 2.8 ft/day; median: 1.4 ft/day). Additionally, the conductivities for aquifer materials are higher in the northern portion of Ridgely Manor Park (geometric mean = 3.1 ft/day) compared to the south along Yakona Road (geometric mean = 1.1 ft/day). This spatial variability in K values may reflect the increased abundance of fine-grained silt and clay deposits in the upper-most portion of the saturated zone.

2.2 HISTORIC SITE INVESTIGATIONS AND REMEDIAL ACTIONS

Hess designed and implemented corrective actions to treat the impacted groundwater on the gas station property and the former residential properties downgradient of the gas station property, located on Yakona Road. These corrective measures have included the installation of a groundwater treatment system, a soil vapor extraction system, enhanced fluid recovery events, and air-sparging. By-pass drains, interceptor sumps, and vapor abatement systems were also installed in several residences between 1612 and 1640 Yakona Road.

In 2013, Hess purchased the properties from 1610 through 1642 Yakona Road (even numbered properties only) and implemented a corrective action approach that involved groundwater collection, site monitoring, and site development as a

green space. The approach is described in WSP's CAP dated August 14, 2013, and the CAP Addendum (detailing design modifications) dated October 11, 2013. The MDE OCP conditionally approved the corrective action in a letter dated November 22, 2013 (MDE 2013).

During the installation of the groundwater management system in 2014, samples of the collected groundwater did not meet the discharge criterion of 100 parts per billion total BTEX in the General Permit for the Discharge of Treated Ground Water from Oil Contaminated Ground Water Sources to Surface or Ground Waters of the State (NPDES Permit No. MDG915958). A treatment system consisting of granular activated carbon was installed to treat the groundwater prior to discharge from the groundwater management system. Ridgely Manor Park was opened to the public on August 30, 2014, and the groundwater management system began operating in December 2014. Monitoring of the manholes and Yakona road curb inlet began in January 2015.

In September 2017, WSP completed a site investigation to identify areas of maximum concentrations of site contaminants, collect additional groundwater data needed to evaluate in situ treatment options, and perform an ISCO bench scale study. The investigation identified the southern portion of the former Hess filling station and the northeastern portion of Ridgely Manor Park as the area of maximum contaminant concentrations. The groundwater data provided information on the present groundwater contaminant concentrations, as well as geochemical conditions demonstrating that anaerobic (reducing) conditions are present in wells with contamination. The bench scale ISCO treatability study was performed by Terra Systems of Claymont, Delaware, to evaluate the effectiveness of both unactivated and pH-activated Klozur® SP, a persulfate formulation distributed by PeroxyChem, on site soil and groundwater samples collected during the September 2017 investigation. Three concentrations of unactivated and pH-activated persulfate (10 grams per liter [g/l], 20 g/l and 40 g/l) were tested to determine the most suitable concentration for site application. The study compared contaminant concentrations from the baseline samples to the treated samples collected in the study and evaluated the longevity of persulfate at the end of the study. The bench scale study demonstrated that activated and unactivated persulfate were both effective at reducing contaminant concentrations, with complete to near complete destruction of BTEX and TPH-GRO. Although the TPH-DRO concentrations in the bench scale results were not reduced to levels below the MEAT standard, the persulfate treatment created favorable conditions for continued biodegradation of TPH. The study also determined more favorable results with the unactivated persulfate, including improved persulfate longevity and absence of metals mobilization (which occurred in the activated persulfate test samples). Of the three persulfate concentrations evaluated in the bench scale study, a concentration of 20 g/l was most effective at contaminant mass reduction. Further details and results of the 2017 investigation can be found in the May 2018 Site Investigation Summary letter (Appendix B).

2.3 CURRENT CONDITIONS

The groundwater management system and treatment equipment remain in operation. EMS Environmental, Inc. (EMS) is responsible for the operation, maintenance, and monitoring of the system and collects bi-monthly system samples in accordance with the discharge permit. EMS also conducts the groundwater monitoring program. The 2019 Fourth Quarter Site Status Report submitted to MDE by EMS is provided as Appendix A. Historical groundwater monitoring results are tabulated in Table 1 of Appendix A, and the November 2019 groundwater quality results are shown on Figure 1 in Appendix A. The maximum concentrations of TPH-DRO, TPH-GRO, and BTEX compounds detected in groundwater samples were detected at monitoring wells MW-7, YMW-8 and YP-1 located in Ridgely Manor Park. Contaminant concentrations at these locations are consistent across quarters and have not decreased significantly since installation of the groundwater management system. Given that the groundwater management system controls downgradient migration but does not directly affect residual contamination in the area around these wells, additional corrective action would be needed to reduce the TPH and BTEX concentrations in these areas, the duration of groundwater treatment and groundwater monitoring, and the time required to reach site closure.

As required by MDE's letter Request for Comprehensive Well Sampling letter dated June 7, 2010, dissolved concentrations of benzene, total BTEX, and MTBE are monitored (MDE 2010). A summary of the site conditions for each constituent is described below.

BENZENE

During the semi-annual sampling events in 2019, benzene was detected at concentrations above the MEAT Standard (5.0 micrograms per liter $[\mu g/L]$) at six of ten monitoring well locations. The benzene concentrations in samples from these wells have been relatively constant or decreasing. Benzene concentrations in the other four locations are below the MEAT

Standards or additionally below the laboratory reporting limits. The proposed ISCO remedy will further reduce benzene concentrations, and monitoring will continue at select well locations.

TOTAL BTEX

There is no MEAT Standard for Total BTEX. The concentrations of the individual BTEX constituents varied over time in most of the monitoring locations, and benzene exceeds the MEAT Standard at six out of ten locations sampled in 2019. It is anticipated that the proposed ISCO remedy will reduce concentrations of all BTEX constituents in the groundwater.

MTBE

The MTBE concentrations in the groundwater samples collected in November 2019 were less than the MEAT criteria. Groundwater samples collected from YMW-2 and YMW-4 in July 2019 contained MTBE at concentrations greater than the MEAT criteria of 20 μ g/L. MTBE concentrations in groundwater samples from the other eight locations in the current monitoring program were less than the MEAT criteria and have been below the criteria for three years or longer. The detected MTBE concentrations appear to be stable or decreasing over time.

The remaining discussion in this CAP will not address MTBE, tertiary butyl alcohol (TBA) or other oxygenates in further detail for the following reasons:

- MTBE concentrations in groundwater samples appear to be stable or decreasing over time (Appendix A).
- TBA has no established MEAT criteria. In 2019, TBA concentrations greater than the method detection limits were detected in samples from five of the ten current sampling locations. The TBA concentrations detected at these sampling locations appear to be stable or decreasing over time.
- The ISCO bench scale study showed that chemical oxidation primarily reduced BTEX concentrations, and reduced TPH concentrations to a lesser extent compared to BTEX. The locations for injection wells have been selected based on BTEX and TPH concentrations rather than oxygenate concentrations (Section 3.1).

2.3.1 GROUNDWATER

Groundwater flows generally southward before being collected by the groundwater management system for treatment and discharge to the storm sewer system. The distribution of the impacted groundwater is primarily contained between MW-4 (source area) and the southern property boundary of Ridgely Manor Park between YMW-1 and YMW-2. Wells with concentrations of TPH-GRO, TPH-DRO or benzene that exceed MEAT Standards include: MW-4, OW-1, MW-7, YMW-7, YMW-8, YP-1, YP-1, YMW-4 and YMW-2. BTEX compounds and TPH were not detected in samples from wells on the southwestern portion of the site or were detected at very low concentrations.

WSP compiled the quarterly site-wide monitoring data in the 2019 Fourth Quarter Site Status Report (EMS, 2020) and prepared trend graphs depicting the groundwater elevations and concentrations over time for BTEX, TPH-DRO, and TPH-GRO (Appendix C). Trend graphs were only generated for location/analyte pairings with 3 or more detections; therefore, no trend graphs were generated for YMW-3, YMW-6, and YMW-9. The newest monitoring wells on site have been sampled quarterly for four years, providing sufficient data to identify general trends. The groundwater management system has now been operating for over 5 years, and the start of system operation is also marked on each trend graph. Multiple years of monitoring data collected since installing the groundwater management system also provide a sufficient quantity of data to identify trends such as the noticeable decrease in contaminant concentrations at wells OW-1, YMW-1 and YMW-2.

An evaluation of the groundwater results and graphical trends indicated non-detect, consistent, or decreasing concentrations at most of the location/analyte pairs. Overall, groundwater concentrations of BTEX, TPH-DRO, TPH-GRO, and Naphthalene at wells across the site have been stable or decreasing.

2.3.2 GROUNDWATER MANAGEMENT SYSTEM

The groundwater management system collects groundwater through four underground parallel drains consisting of slotted polyvinyl chloride (PVC) pipe. The groundwater drains by gravity to a manhole, from which it is pumped through bag filters and liquid phase granular activated carbon prior to being discharged to the storm sewer system. The groundwater management system lowers the water table, thereby eliminating surface discharge of groundwater. The system influent and

effluent are sampled by EMS twice each month to ensure compliance with the NPDES permit discharge limits. Influent concentrations of total BTEX are typically greater than the NPDES BTEX discharge limit of 100 μ g/L but there is seasonal variation. During 2019, the total BTEX concentrations in the influent samples were greater than 500 μ g/L from April through June (maximum concentration 669 μ g/L) but less than 100 μ g/L during September and October (minimum concentration 44 μ g/L). Influent concentrations of TPH-DRO and TPH-GRO have fluctuated over time but remain below the NPDES discharge limit of 15,000 μ g/L total TPH. To date, there have been no exceedances of the NPDES discharge limits in the treatment system effluent samples. The historical influent and effluent sample results are provided in the EMS quarterly report (Appendix A).

Based on sampling data, the groundwater management system is operating as designed and fulfilling the Site's corrective action objectives. Based on the influent concentrations of BTEX, treatment of the groundwater is expected to continue for the foreseeable future, unless BTEX concentrations are reduced. The proposed ISCO remedy is anticipated to reduce BTEX concentrations in the collected groundwater to the extent that the groundwater would no longer require treatment before discharge. The groundwater collection system would remain in place to continue to lower the groundwater elevation and prevent groundwater discharge to the ground surface.

3 IN SITU DESIGN RATIONALE

The ISCO injection design, treatment area, treatment chemical selection, and dosage calculations are presented below. Detailed information about the bench scale treatability study are included in the May 2018 *Site Investigation Summary* letter (Appendix B).

3.1 INJECTION TREATMENT AREA

The proposed injection locations have been selected to effectively treat the area of maximum concentrations ("hot spots") remaining and achieve the objectives described in Section 1.1. The proposed injection locations are designed to treat the area of the maximum probe responses from the MIP/HPT investigation: the southern portion of the former Hess filling station and the northeastern portion of Ridgely Manor Park (Figure 3). The design includes installing 3 permanent injection wells (IP-1 through IP-3) to maximum depths of approximately 33 feet bgs. These wells will be screened in the most conductive groundwater flow zone (approximately 10 feet thick) based on the HPT data. The injections are designed to treat a 25-foot radius of influence around each well. The estimated total area of treatment is approximately 5,900 square feet. Permanent injection wells were selected over direct push injection points because of their versatility (monitoring or injection use), ability to be used for additional injections if needed, and greater potential radius of influence for the injection.

3.2 CHEMICAL SELECTION AND DOSAGE

The treatability study results determined that unactivated Klozur® SP (Klozur®) sodium persulfate would provide the most effective treatment. The proposed remedy will inject the following amendments in the "hot spot" areas:

- Klozur® SP (Klozur®) sodium persulfate (unactivated), applied at a concentration of 20 g/l (20% solution)
- Micro nutrients (nitrogen and phosphorous source)

The safety data sheets for Klozur® and a typical nitrogen and phosphorus source are provided in Appendix D. The amendment formula (Klozur® and nutrients) will be diluted with potable water and applied through the injection wells at a pressure of less than 40 pounds per square inch (psi). Assuming an average saturated soil mobile porosity value of 0.34, there are 20,026 cubic feet (approximately 567,000 liters or 150,000 gallons) of mobile groundwater are present within the treatment volume for each injection well. The volume of amendment needed to achieve the design amendment distribution was calculated to be equivalent to 9% of the estimated mobile porosity. Therefore, a total volume of 13,085 gallons of Klozur® amendment solution will be distributed equally to each injection well resulting in 4,362 gallons of injection fluid per well. Assuming a delivery flow rate of 5 gallons per minute, the application is estimated to take 7 days to complete.

The estimated amount of each component to be injected in each well (in gallons) is summarized in the table below.

Injection Point	Units	IP-1	IP-2	IP-3	Total
Klozur®	Pounds	8,340	8,340	8,340	25,020
Potable Water	Gallons	4,011	4,011	4,011	12,033
Nutrient – Nitrogen	Pounds	38	38	38	114
Nutrient - Phosphorous	Pounds	5.5	5.5	5.5	16.5

4 IN SITU TREATMENT PROCEDURES

4.1 ACCESS AGREEMENT AND COMMUNITY OUTREACH

Access agreements have been executed with Petroleum Marketing Group, the current owners of the former Hess filling station property, and NeighborSpace, the organization that operates Ridgely Manor Park. The agreements will be reviewed and extended or expanded to include the proposed ISCO injections if necessary.

Prior to conducting any field work activities, Hess will notify Petroleum Marketing Group and NeighborSpace. In addition, Hess will contact members of the board of Ridgely Manor Community Association to describe the focused investigation on Ridgely Manor Park and to discuss the planned work. Communication will be performed directly between a Hess representative and members of the Ridgely Manor Community Association. Details such as the planned dates of the work, the areas of the park to be temporarily closed to public access during the work, and other safety measures that will be implemented to protect public safety will be presented, as further described in Section 4.2.1.

4.2 PERMITS

The drilling contractor will obtain soil boring permits from Baltimore County in advance of the injection well installation.

WSP contacted the MDE Water Management Administration for underground injection applications to treat affected groundwater. According to Ms. Tracy Rocca-Weikart of MDE in a call on November 1, 2018, an underground injection control permit is not required for this environmental remediation application.

4.2.1 HEALTH AND SAFETY PLANNING

Health and safety planning will include protection for the general public, including residents, Ridgely Manor Park patrons, and employees and customers at the current filling station. As mentioned previously, discussions with members of the Ridgely Manor Community Association in advance of the work will be used to alert residents regarding the injection activities and schedule, as well as any temporary access restrictions in the park for public safety. WSP will order and install temporary barriers to restrict access to the work areas and restricted access signs to alert patrons of the hazards and access restrictions during the planning stage. The temporary barriers may include concrete or plastic jersey barriers, cones, or a temporary fence supported by movable footings. The ground surface conditions will also be restored following completion of the work.

Worker safety planning involves updating the Site-Specific Health and Safety Plan (HASP) to include the activities being conducted under this CAP Addendum. The updated HASP will detail the objectives, project organization, and specific procedures required for all activities conducted during the field work, including the type and location of temporary barriers installed around the work area. WSP's subcontractors are required to prepare their own HASP and will be required to restrict site access as described in the HASP prepared by WSP.

4.2.2 UTILITY LOCATE

A ground penetrating radar survey will be conducted by a private utility locator prior to any intrusive activities at the site to identify potential underground utilities in or near the injection well locations. The locations of the groundwater management system laterals will be marked based on the cleanout and manhole locations. A public utility mark out will also be made a minimum of 72 hours before intrusive work begins.

4.3 GENERAL PROCEDURES

All activities will be conducted in accordance with WSP Standard Operating Procedures (SOPs; Appendix E) and the MDE MEAT Guidance. All field activities will be conducted using cleaned equipment; decontamination of non-disposable equipment will be conducted in accordance with WSP's SOPs and manufacturer's specifications.

Before any intrusive work is conducted, the location of each proposed injection well (Figure 3) will be determined in the field during a site reconnaissance; locations may be adjusted in the field based on underground and overhead utilities and site access considerations. Each location will be marked using white marking paint and given a unique identifier that will be written directly on the ground surface.

Standard efforts will be taken to prevent cross contamination and contamination of the environment when installing the injection wells, conducting the injections and collecting samples. Equipment, sample containers and supplies will be protected from accidental contamination. In accordance with WSP's SOPs, a new pair of disposable gloves will be donned immediately before each sample is collected to limit the possibility of cross-contamination from accidental contact. The gloves will not come in contact with the sample and will be changed any time during sample collection that their cleanliness is compromised.

4.4 MONITORING EQUIPMENT

Monitoring equipment used for sample collection and health and safety will be inspected before use to assess the operating condition of the equipment. The condition of the monitoring equipment will be documented in the field log book, and necessary maintenance will be performed on the equipment prior to sampling. WSP will follow the manufacturer's operation manuals for calibration, use, and decontamination procedures.

Manufacturer's guidelines will be consulted before beginning the calibration process and the manufacturer's technical support will be contacted if problems or questions arise. Air and water quality monitoring equipment will be tested and calibrated daily before use and will be recalibrated every twenty samples. All calibration procedures performed will be documented in the field book and will include the date/time of calibration, name of person performing the calibration, reference standard used, temperature at which the readings were taken, and the calibration readings.

- Before calibrating and using air and water quality monitoring equipment in the field, the sensors will be inspected to
 ensure that they are clean, installed properly and are not damaged.
- Field calibration will be conducted in an area sheltered from wind, dust, and temperature/sunlight fluctuations, such as inside a room or vehicle. The standards will be maintained at a temperature >40 degrees Fahrenheit (°F) and < 100°F.
- The air and water quality monitoring equipment will be allowed to warm up for at least 10 minutes after being turned on and the display will be set to read the appropriate measurement units.
- The standard solutions will be handled in a manner that prevents their dilution or contamination. Standard solutions will
 not be reused or poured back into the bottle. Expired standard solutions will not be used. Proper chain-of-custody will be
 followed for standard solutions.

Following calibration, the air and water quality monitoring equipment will be used to collect field parameters and the field measurements will be recorded on sampling forms and in the field book; conditions that may affect data quality (e.g., changes in weather) will also be noted.

4.5 DECONTAMINATION

Non-dedicated equipment must be adequately decontaminated between locations. Where possible, each individual piece will be individually decontaminated in accordance with the manufacturer's specifications. Specifically, the decontamination process will include the following steps:

- Physical removal of debris
- Bucket wash with non-phosphate soap such as Liquinox®, or equivalent and scrub brush

- Tap water rinse
- Deionized (DI) water rinse (distilled water can be used as a substitute)

Equipment will be allowed to dry thoroughly after decontamination. Water used for decontamination will be processed through a 5-gallon bucket of granulated carbon and then discharged onto the natural ground surface.

4.6 INJECTION WELL INSTALLATION PROCEDURES

The injection wells will be installed by a licensed Maryland driller. The drilling firm will also be responsible for obtaining Baltimore County boring permits before drilling work is initiated. The final well locations will be surveyed following installation by a licensed Maryland surveyor. Horizontal locations will be determined to +0.1 feet using the Maryland Coordinate System and North American Datum (NAD 83). The surveyed coordinates for the injection wells locations will be added on the existing site plan.

The borings will be installed using track- or cart-mounted direct-push drilling equipment to approximately 33 feet bgs, where the MIP investigation identified the highest concentration of contamination. Soil samples will be collected as necessary to confirm the anticipated stratigraphy. WSP's onsite geologist will determine the final boring depth and screen interval based on observed conditions.

Soil samples will be collected using 2-foot split spoon or Macro-Core® samplers equipped with a disposable acetate liner. Upon recovery, the soils will be visually screened for evidence of contamination and logged using the Unified Soil Classification System. The headspace of each sample will be screened for organic vapors at approximately 2.5-foot intervals using a PID equipped with a 10.6 electron-volt lamp. Soil observations, such as odors, presence of fill, staining, and moisture content will be recorded in the field logbook along with the PID readings.

The wells will be constructed using 10 feet of 2-inch inner diameter (ID), flush-threaded 0.020-inch continuous wrap Schedule 40 (SCH40) PVC well screen fitted with enough blank SCH40 PVC riser to reach the ground surface. The top of casing will be completed with an appropriate, and removable, connection to the amendment delivery system. A 10-foot section of 2-inch continuous wrap 20 slotted screen will be installed at the intervals shown in the table below.

	Screen Interval
Injection Well ID	(feet bgs)
IP-1	22-32
IP-2	20-30
IP-3	18-28

At each well, the well screen will be surrounded with a high silica content, washed and rounded sand filter pack from the bottom of the screen to approximately 2 feet above the top of the screens. The filter pack will be placed in the annulus of the well in such a manner that bridging of the filter pack material will not occur. A 3-foot bentonite seal will be placed on top of the sand filter pack, delivered to the annular space in one-foot lifts. At each lift, the bentonite will be tamped and charged with potable water. Once the bentonite has been fully hydrated, the remaining annular space will be backfilled with bentonite-cement grout to approximately 1-foot bgs. Grout will be placed in the borehole using a tremie pipe.

The wells will be developed by surging the screened interval to loosen any fine-grained sediment in the sand filter pack and adjacent aquifer material. Groundwater from each well will then be removed by pumping or bailing for a minimum of 1 hour, until the groundwater is sediment free. Well development documentation, including development method(s), time spent on development, volume of water removed, well depth, depth to top of the screen, well diameter, visual appearance (clarity), and discharge water stability parameters (turbidity, pH, temperature, oxidation-reduction potential, specific conductance, and dissolved oxygen) at various stages of pumping, as possible, will be recorded in the field book. Water quality parameters will be collected by monitoring equipment with procedures as described in Section 4.4. The water level and total well depth will be periodically checked during the mechanical surging and pumping process to assess changes in the well condition. The

monitoring well will be developed for a minimum of 1 hour or as directed by WSP's onsite geologist. The wells will be equipped with lockable watertight caps and 12-inch diameter flush mount completion.

4.7 BASELINE GROUNDWATER SAMPLING PROCEDURES

Table 1 presents the monitoring program for the persulfate injection. The monitoring is designed to evaluate effectiveness at contaminant treatment and the persulfate distribution. This section describes monitoring to be conducted before injection to establish pre-treatment conditions (baseline monitoring). Section 4.8 describes monitoring during the injection, and Section 4.9 describes post-injection monitoring.

Baseline groundwater samples will be collected from the existing wells MW-4, OW-1, MW-7, YMW-7, MDE-4, YP-1, and YMW-8 (Figure 4). The samples will be collected within 30 days of the injection so that the analytical results are representative of conditions at the time of treatment application. Before initiating any sampling activities, depth to water measurements will be collected at the sampling locations. Purging and sampling will be performed using low-flow techniques with bladder pumps connected to in-line water quality meters. Temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential (ORP) will be measured at equal time intervals during the purging activities using a multi-parameter water quality meter with a flow-through cell to minimize atmospheric interference. These readings, along with observations on groundwater quality, will be recorded on groundwater purge forms. At MW-1, the water level will be measured, and grab sample of purge water from MW-1 will be collected for field analysis of pH and ORP only.

Groundwater will be removed until parameters stabilize, thereby confirming that formation water is present in the well. After the well has been adequately purged, groundwater samples will be collected using the bladder pump. Filtered (0.45 micron filter) and unfiltered samples will be collected for metals analysis.

- VOCs by US EPA Method 8260C (including BTEX constituents)
- TPH-DRO by US EPA Method 8015C
- TPH-GRO by US EPA Method 8015C
- Total and dissolved chromium and selenium by US EPA Method 6020
- Total and dissolved hexavalent chromium by US EPA Method 7196
- Total and dissolved iron by Hach Colorimeter Test Kit or equivalent

The samples will then be labeled with the appropriate identification, stored in a cooler with ice, and submitted to Phase Separation Science of Catonsville, Maryland for analysis of the following, except for persulfate and total iron, which will be analyzed in the field using the text kits specified above. Chromium and selenium were selected for analysis because they are the only metals detected in the bench scale test for the 20 g/L unactivated persulfate dose.

The pH, ORP and total iron concentration of water in groundwater collection system manholes MH-21 and MH-23 will be measured bi-monthly for at least one month before the injections to establish pre-treatment conditions. This data will be collected by EMS during their bi-monthly sampling of treatment system influent and effluent.

4.8 AMENDMENT PREPARATION, INJECTION PROCEDURE, AND MONITORING DURING TREATMENT

The Klozur® and nutrients will be delivered as solids in bulk containers (e.g., totes, drums, or sacks). The Klozur®, nutrients, and dilution water solution will be prepared in a mixing area set up in the fenced area at the rear of the former Hess filling station before being pumped to the injection point. The amendment will be prepared in batches for each well as specified in Section 3.2. The nutrients and Klozur® will be mixed into potable water until the soluble materials dissolve and any remaining insoluble materials are in a uniform suspension. The persulfate concentration will be measured in the first batch mixed each day using the persulfate field test kit and the solution pH will be measured using a field test. The amendment solution will then be pumped to the injection well or transported to the injection areas on a mobile platform (e.g., trailer or lift), which will also be used for staging equipment during treatment.

The wellhead of each injection well (IP-1 through IP-3) will be sealed during the injection as necessary to withstand injection pressures. Additionally, a ball valve will be installed near the well head to minimize spillage when disconnecting the injection hose. Gravity feed of the amendment is preferred, however, if necessary the amendment may be delivered to the well under pressure. A pressure gauge on the application pump or the amendment conveyance line will be used to ensure that the applied injection pressure does not exceed 40 psi. The amendment will be fed or pumped into the screened interval of the injection well at an expected flow rate of approximately 5 gallons per minute. The flow rate will be monitored using an inline flow meter or visual observations of the fluid level decrease in the amendment holding tank over time.

The injections will begin with IP-1, followed by IP-2, and then IP-3. WSP will attempt to evenly distribute the amendment volume between the three injection wells. If delivery to any injection well is unsuccessful, the volume of amendment that was not delivered will be injected into the adjacent injection well. If all other injections have been completed and residual amendment remains, the residual amendment volume will be delivered into a previous location where delivery was successful.

The injection volumes, pressures, and flow rates of the amendment application at each injection well will be recorded. WSP will also regularly monitor water levels, field parameters, and iron concentrations in nearby monitoring wells, such as MW-4, OW-1, MW-7, MW-1, and YMW-7. When injections are performed within 25 feet of an existing monitoring well, a packer or other device will be used to seal the top of the monitoring well(s) to prevent amendment from reaching the ground surface. No existing monitoring wells are within 25 feet of IP-1 (Figure 3). Wells MW-4 and OW-1 will be capped during injections into IP-2. MW-7 will be capped during injections into IP-3.

WSP will place a pressure transducer into each capped well to measure influence (i.e., changes in water pressure) during the injection at the nearby injection point. The pressure transducer will be installed at least 1 hour prior to initiating injections at the nearby injection point and remain in place for at least 2 hours after completing injection.

4.8.1 PERSULFATE MONITORING AND RELEASE PREVENTION

It is possible that diluted amendment solution may migrate into one or more collection laterals of the groundwater management system. Any amendment would be further diluted by the groundwater in the management system. The procedures that will be used to monitor for a release and respond to a release (if necessary) are present in Appendix F.

WSP will monitor the water quality in a manhole of the collection system, MH-23 (Figure 1), at least 1 hour prior to treatment (baseline) and at regular intervals during treatment to check for persulfate discharge to the groundwater management system. MH-23 was selected as the monitoring point due to accessibility and because it receives groundwater from the two collection laterals that straddle the treatment area. The water quality monitoring will include field parameters (e.g., pH, ORP), persulfate, and total iron concentrations in MH-23. The persulfate concentration will be monitored in the field using the Persulfate by Klozur® Field Test Kit "K". WSP will also visually observe the water flow rate in the manhole to identify any changes. If a change from baseline conditions is observed in MH-23, the parameters will then be monitored in MH-21. MH-21 receives groundwater from all four collection laterals and represents the overall water quality in water discharging from the groundwater management system.

If monitoring indicates that any of the action levels in Appendix F have been triggered, the injection delivery pressure will be reduced. If the injection pressure is unable to be reduced (such as in the case where the amendment is flowing under gravity feed) then the injection will be stopped at the injection point. Any remaining amendment will be added to a previous injection point. WSP will continue to monitor water quality in MH-23 at regular intervals over the course of the injection. Appendix F contains more information regarding the monitoring conducted to detect any impact to the groundwater management system, action levels and countermeasures that will be implement in the event that any action levels are exceeded.

The potential countermeasures include recovering persulfate solution or low pH groundwater from manholes MH-21 and MW-23. An emergency response contractor will be on call during the injections in case it becomes necessary to recover fluid from the manholes.

The stormwater/groundwater discharge from Ridgely Manor Park flows underground in the Baltimore County storm sewer system for approximately 0.6 miles before discharging into a concrete lined drainage ditch. Water flows in this concrete-lined ditch for approximately ½ mile before discharging into Herring Run. The procedures in Appendix F identify two locations in the downstream stormwater system where water quality would be monitored if there was a persulfate release from manhole MH-21.

4.9 POST-TREATMENT GROUNDWATER SAMPLING AND INJECTION MONITORING

The initial post-treatment monitoring will begin the day after the injection ends. Water samples will be collected from MH-21 and MH-23 daily for one week, and the pH, ORP and persulfate concentration will be measured in the field (Table 1). If the first week of post-injection measurements are consistent with the baseline, then the monitoring frequency will be reduced to bi-monthly for three months (in conjunction with bi-monthly EMS sampling of the treatment system). If the post-treatment measurements indicate a significant change from baseline, MDE will be contacted and daily measurements will continue until MDE approves an alternate sampling frequency.

Long-term post-treatment monitoring will consist of quarterly groundwater samples collected from existing monitoring wells MW-4, MW-7, YMW-7, MDE-4, OW-1, YP-1, and YMW-8 for 1 year following the injections. The groundwater samples will be analyzed for the following parameters, as shown in Table 1:

- VOCs by US EPA Method 8260C
- TPH-DRO by US EPA Method 8015C
- TPH-GRO by US EPA Method 8015C
- Total and dissolved chromium and selenium by US EPA Method 6020
- Total and dissolved hexavalent chromium by US EPA Method 7196
- Total and dissolved iron by Hach Colorimeter test kit or equivalent

WSP will review the results from the first two quarterly post-treatments sampling events and, if appropriate, recommend adjustments to the list of parameter analysis for the next two quarterly sampling events. Continuation of iron and metals testing after the first quarter will be contingent on detected metals concentrations above the 2008 MDE Generic Cleanup Standards for Type I/II Aquifers and/or detected iron concentrations above baseline from the initial pre-treatment monitoring event (MDE 2008). The wells will be sampled with procedures described in Section 4.7 and in accordance with WSP SOPs. Concurrently with the quarterly post-treatment monitoring events, the water level in MW-1 will be measured and a grab sample will be collected for pH and ORP. After 1 year, the wells will be sampled semi-annually as per the MDE-approved groundwater monitoring program (MDE 2018).

4.10 SAMPLE CONTAINERS AND LABELS

Laboratory supplied containers will be used for sample collection. Preservation by pH adjustment will be achieved using appropriate preservatives. Preservatives will be added to the sample containers in the laboratory prior to being shipped to WSP for use. While collecting samples, care must be taken to prevent washing out the preservative by sample container overfilling.

Temperature control will be achieved by placing the samples in a cooler immediately after collection. The cooler will be packed with enough ice to cool the samples to 4° Celsius (C) and maintain the temperature at 4° C until arrival at the laboratory. Field personnel will record the sample temperature on the chain-of-custody form prior to sample shipment. The temperature will be measured upon receipt at the laboratory.

Adhesive, waterproof labels will be used to identify the samples. Each label will provide the following information:

- Sample identification number
- Name of sample collector
- Date
- Time
- Place of collection
- Parameters requested for analysis
- Type of preservative added (if applicable)

This information will be written on the label with an indelible, waterproof marker and be repeated on the chain-of-custody forms.

4.11 CHAIN OF CUSTODY RECORDS

Sample custody will be controlled and maintained through the chain-of-custody procedures. Chain-of-custody procedures will allow for the tracing of possession and handling of samples from the field to the laboratory. A sample is considered to be in a person's custody if it is in the person's possession or it is in the person's view after being in his or her possession or it was in that person's possession and that person has locked it up to prevent tampering. Items to be used to document the possession and handling of samples and protect their integrity include sample labels, custody seals, a logbook, and chain-of-custody forms.

In accordance with WSP's SOPs, the chain-of-custody form will be used to trace sample possession from the time of collection to receipt at the laboratory. Dated and signed adhesive seals will be affixed to the shipping containers to demonstrate that they have not been opened during shipment. The seals will be affixed so that the shipping containers cannot be opened without breaking the seal.

4.12 QUALITY CONTROL AND ANALYTICAL PROCEDURES

The Quality Control and Analytical Procedures are provided to ensure that controls are initiated and maintained throughout sample collection and analysis. Field quality assurance and quality control (QC) procedures, such as the use of proper sampling technique and decontamination procedures, were discussed in earlier sections of this plan. Additional QC measures include the use of control samples.

Control samples are introduced into the train of actual samples as a monitor on the sampling procedures and the analytical system performance. Control samples for this monitoring plan include field duplicates, equipment blanks, trip blanks, and temperature blanks. Each type provides a different form of quality control for the analytical system. The collection of each QC sample will be recorded in the field book and will be limited to VOCs.

4.12.1 FIELD DUPLICATES

Field duplicates are used to assess sampling process precision. One field duplicate will be collected during each sampling event. The duplicate sample will be collected at the same time from the same sample aliquot and in the same order as the corresponding field sample. The field duplicate identity will not be provided to the laboratory. Trip blanks will not be used for field duplicates. The unique sample identification will be chosen from the range of MW-100 through MW-999.

4.12.2 EQUIPMENT BLANKS

Equipment blanks are useful in documenting adequate decontamination of sampling equipment. One equipment blank will be collected per each type of non-dedicated, reused equipment (bladder pumps). Each equipment blank will consist of collecting a rinsate sample from non-dedicated equipment after the equipment has been decontaminated. Laboratory-provided deionized (DI) water will be used for the rinsing the equipment. The equipment blank will be analyzed for all analytes of interest (VOCs, TPH-DRO and TPH-GRO). The unique sample identification will indicate that the sample is an equipment blank and will include the sampling date (e.g., WSP-EB-MMDDYY).

4.12.3 TRIP BLANKS

Trip blanks are used to document contamination attributable to shipping and field handling procedures. One trip blank will be provided in each cooler with VOC samples and trip blank(s) will only be analyzed for VOCs. Trip blank(s) will be prepared at the laboratory by filling two 40-milliliter vials with Teflon-lined septum caps with DI water. The trip blank(s) will be labeled in the field and returned to the laboratory in the cooler(s) along with sample containers that contain samples for VOC

analysis. The unique sample identification will indicate that the sample is a trip blank and will include the sampling date (e.g., TB-MMDDYY).

4.12.4 TEMPERATURE BLANKS

Temperature blanks are used to determine if proper sample thermal preservation has been maintained by measuring the sample container temperature upon arrival at the laboratory. Laboratory-provided temperature blank(s) will be returned to the laboratory in each cooler.

4.12.5 ANALYTICAL PROCEDURES

All analyses will be performed by Phase Separation Science in Catonsville, Maryland.

A "standard turn-around time" will be requested for the samples with results anticipated within 10 business days of sample receipt by the laboratory. The analytical method used, extraction date, and date of actual analysis will be recorded by the laboratory.

Laboratory QC checks such as lab blanks, spikes, calibration standards, duplicates, and reference samples will be used to provide a measure of accuracy and precision. Laboratory reference QC samples and spikes will be integrated into the analytical scheme in accordance with the Phase Separation Science Quality Control Plan. Laboratory duplicates will be analyzed at the same frequency to assess precision.

4.13 INVESTIGATION DERIVED WASTE

Investigation-derived waste (IDW) such as drill cuttings and drilling fluids will be contained in U.S. Department of Transportation-compliant 55-gallon steel drums. The drums will be labeled as "Non-Hazardous Pending Analysis" and moved to a temporary storage area on the filling station property for subsequent management and disposal. IDW will be promptly characterized and disposed of in accordance with state and federal requirements. Purge water from the well installation and sampling events will be processed through a 5-gallon bucket of granulated carbon and then discharged onto the natural ground surface.

Personal protective equipment will be disposed of as general trash.

4.14 SURVEYING

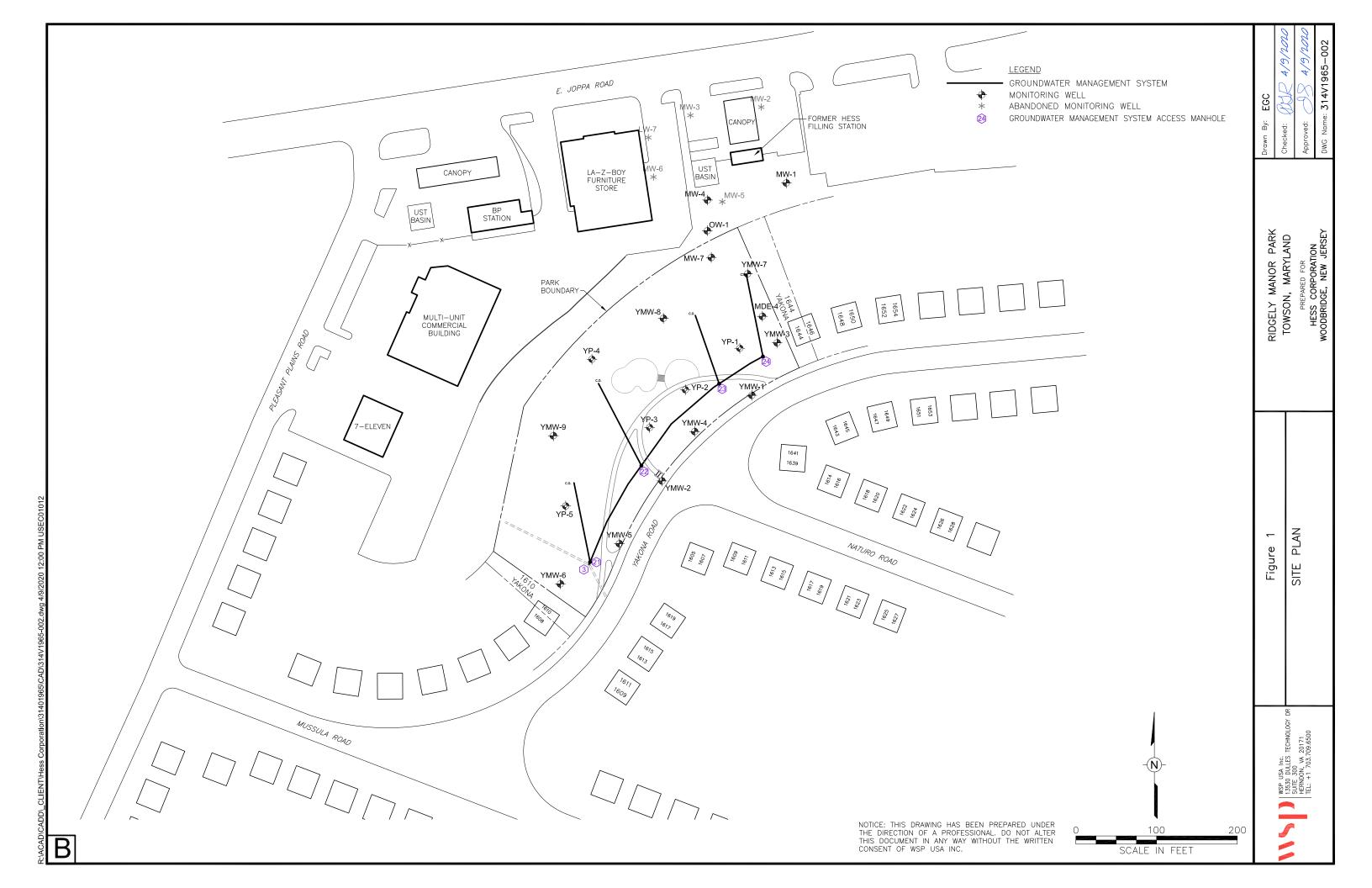
Following the injection well installation, the elevations of the new wells will be surveyed by a Maryland-licensed surveyor to the nearest +/-0.01-foot, and the horizontal locations will be measured to the nearest +/0.1 foot.

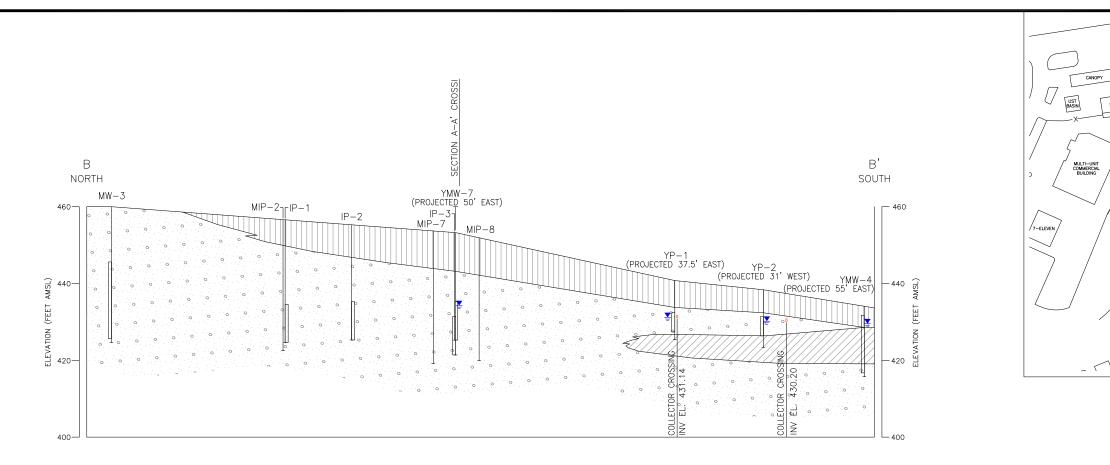
5 SCHEDULE AND REPORTING

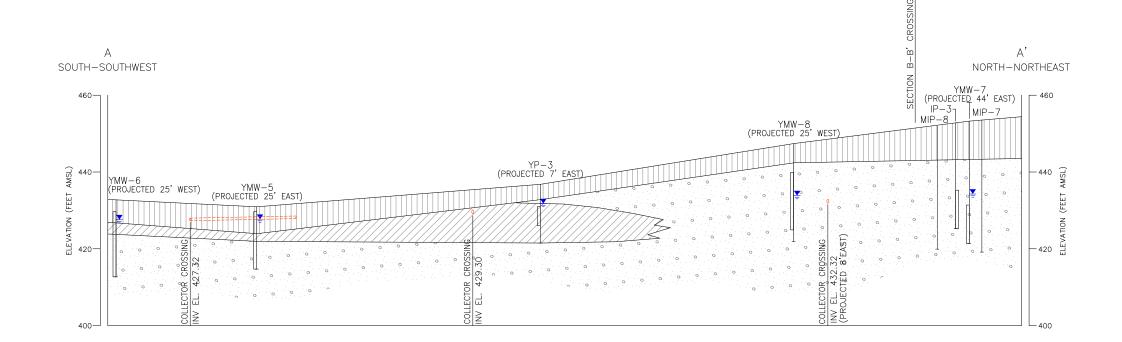
The ISCO remedy will commence after receiving MDE's approval of the injection application described in this CAP Addendum. The approximate schedule shown below is contingent on MDE's approval of this CAP. The injection well installation is expected to take 3 days and will be scheduled a minimum of 2 weeks prior to the baseline groundwater sampling and no more than 30 days prior to the injection event. The amendment application is anticipated to take approximately 1 week, with quarterly groundwater monitoring to continue for 1 year after the injection.

Results will be reported to the MDE OCP in a completion report following the final round of post-injection groundwater monitoring (to occur 1 year following the injections). The completion report will summarize the treatment intervals per injection boring, volume of materials injected, general observations from the injections (e.g., flow rates, pressures), monitoring well construction details, and groundwater monitoring results. Successful treatment will be demonstrated through the groundwater quality samples exhibiting decreasing BTEX concentration trends.

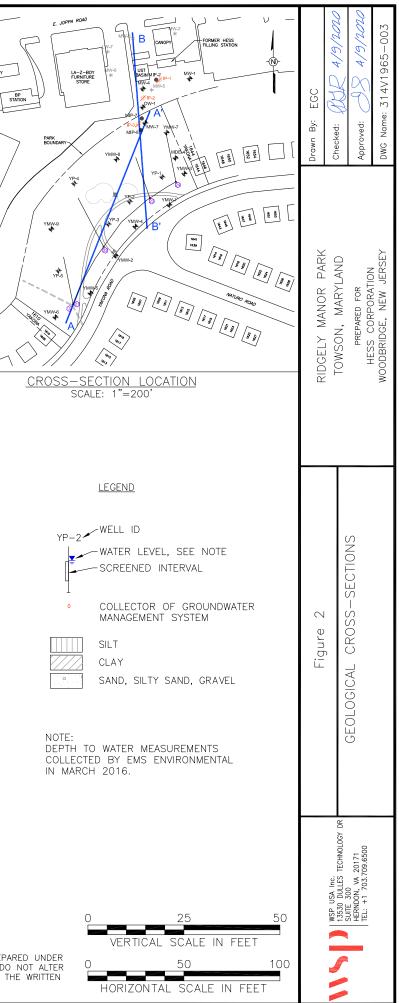
Task	<u>Schedule</u>
CAP Addendum Submitted to MDE Oil Control Program	September 2020
Field Preparations (HASP Modification, Driller Procurement, Permitting, Site Access	October 2020
Agreements, Miss Utility One Call)	
Injection Well Installation	November 2020
Baseline Groundwater Monitoring	November 2020
ISCO Injection Implementation	December 2020
Post-Injection Groundwater Monitoring Round #1	March 2020
Post-Injection Groundwater Monitoring Round #2	June 2021
Post-Injection Groundwater Monitoring Round #3	September 2021
Post-Injection Groundwater Monitoring Round #4	December 2021
ISCO Injection Completion Report	February 2022

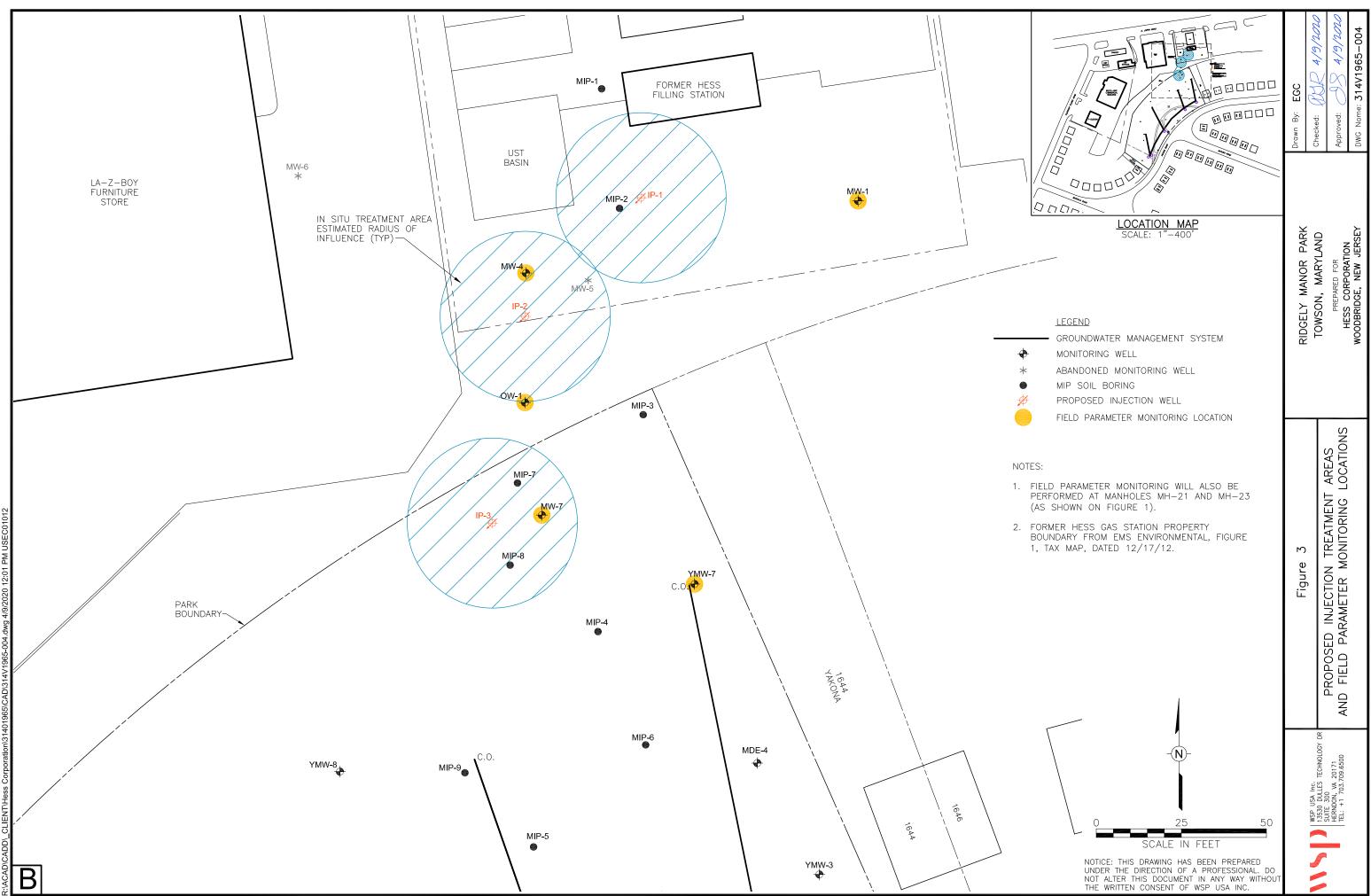

CAP Addendum Remediation Schedule

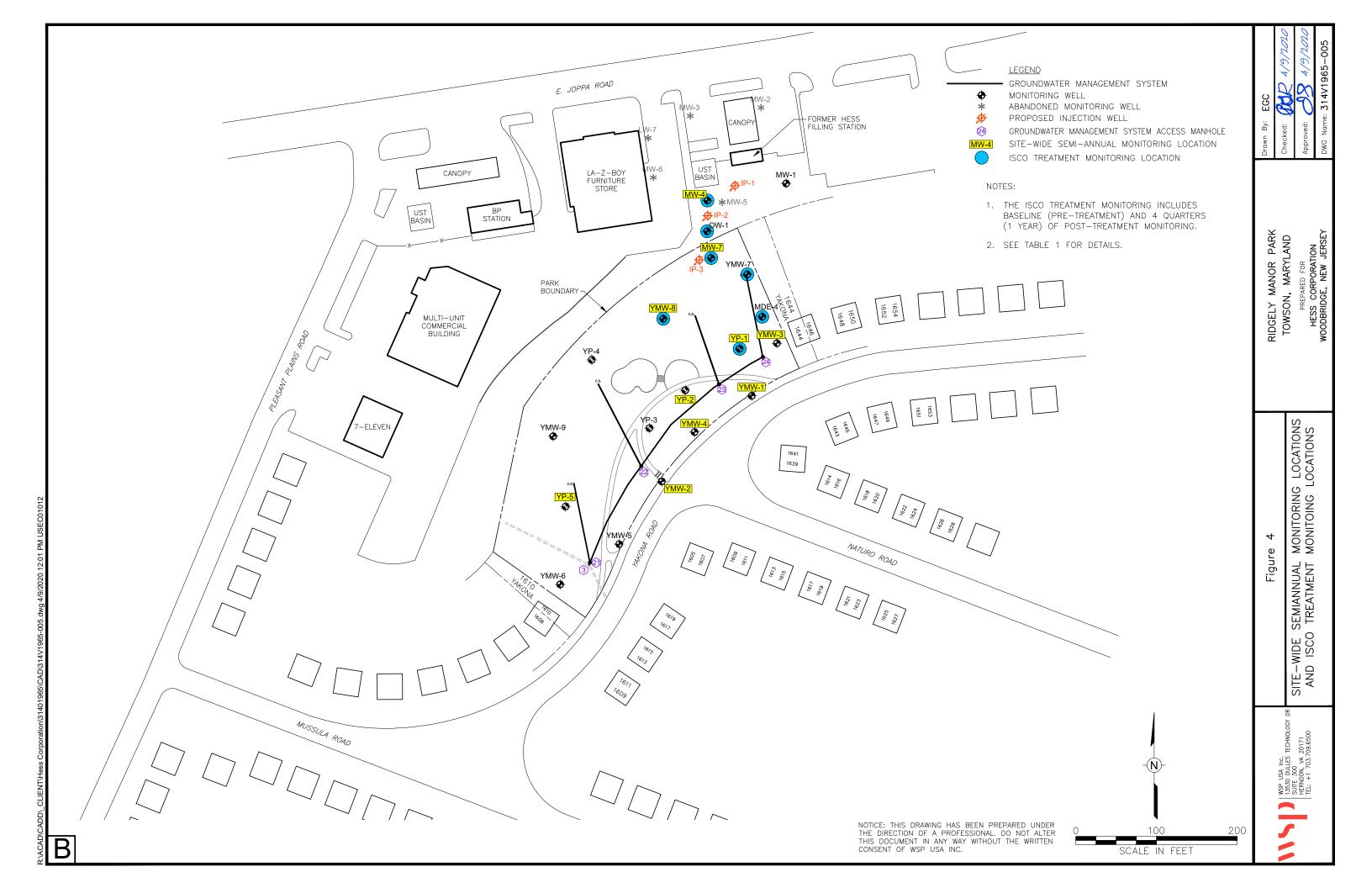

6 **REFERENCES**


- EMS, 2020. 2019 Fourth Quarter Status Report, Former Hess Station #20204. January 6.
- Maryland Department of the Environment (MDE). 2003. Maryland Environmental Assessment Technology for Leaking Underground Storage Tanks. Oil Control Program Land Management Administration. February.
- MDE. 2005. Environmental Investigation (Yakona Groundwater Investigation) Hess Station No. 2024. February 28.
- MDE. 2008. Cleanup Standards for Soil and Groundwater- Interim Final Guidance Update No. 2.1. June.
- MDE. 2010. Response to Request for Comprehensive Well Sampling. June 7.
- MDE. 2013. Approval of CAP Addendum. November 22.
- MDE. 2016. Response to Monthly Monitoring and Reporting Request. February 11.
- MDE. 2018. Groundwater Monitoring Modification Approval. November 15.
- Otton, E.G., R.O.R. Martin, and W.H. Durum. 1964. Water Resources of the Baltimore Area, Maryland, U.S. Geological Survey Water Supply Paper 1499-F.
- Susquehanna River Basin Commission (SRBC). 2008. Deep Creek Water Availability Study, Technical Publication 256. May 2008.
- WSP. 2013. Corrective Action Plan I. August 13.
- WSP. 2017. Site Investigation Work Plan. April 7.
- WSP. 2018. Site Investigation Summary. May 30.

FIGURES






NOTICE: THIS DRAWING HAS BEEN PREPARED UNDER THE DIRECTION OF A PROFESSIONAL. DO NOT ALTER THIS DOCUMENT IN ANY WAY WITHOUT THE WRITTEN CONSENT OF WSP USA INC.

В

THE WRITTEN CONSENT OF WSF

TABLE

Monitoring Program for Persulfate Injection Oil Control Program Case 1991-2100BA 1613 East Joppa Road, Towson MD (a)

Baseline (Pre-Treatment) (b)				During Treatment (g)			Initial Post-Treatment (h) Long-Term Post-Treatment (i)							1									
Location 1	Total	Total	Total	Screen	<u>Screen Interval</u> <u>Depth</u> (ft BTOC)	Water Level	Field Parameters (c)	VOCs (d)	TPH (e)	Metals (f)	Persulfate	Water Level	Field Parameters	Metals	Persulfate	Field Parameters	Persulfate	Water Level	Field Parameters	VOCs	ТРН	Metals	Included In Semi- annual
	Depth (ft BTOC)	Length (ft)	Method:			US EPA 8260C	US EPA 8015C	US EPA 6020; Iron Field Test Kit	Persulfate Field Test Kit	-	-	US EPA 6020; Iron Field Test Kit	Persulfate Field Test Kit		Persulfate Field Test Kit	1		US EPA 8260C	US EPA 8015C	US EPA 6020; Iron Field Test Kit	<u>Monitoring</u> <u>Program</u>		
MDE-4	15.00	10.00	3.00 - 13.00	Х	Х	Х	Х	Х								Х		Х	Х	Х			
MW-1	NA	NA	NA - NA	Х	pH, ORP					Х	pH, ORP					Х	pH, ORP						
MW-4	25.00	15.00	10.00 - 25.00	Х	Х	Х	Х	Х		Х	Х	Х				Х		Х	Х	Х	Х		
MW-7	34.00	25.00	8.00 - 33.00	Х	Х	Х	Х	Х		Х	Х	Х				Х		Х	Х	Х	Х		
OW-1	34	25	9.00 - 34.00	Х	Х	Х	Х	Х		Х	Х	Х				Х		Х	Х	Х			
YMW-1	15.00	12.00	2.00 - 14.00																		Х		
YMW-2	15.00	12.00	2.00 - 14.00																		Х		
YMW-3	20.00	15.00	4.50 - 19.50																		Х		
YMW-4	18.00	15.00	2.00 - 17.00																		Х		
YMW-5	16.00	15.00	1.00 - 16.00																				
YMW-6	20.00	15.00	3.00 - 18.00																				
YMW-7	28.00	10.00	18.00 - 28.00	Х	Х	Х	Х	Х		Х	Х	Х				Х		Х	Х	Х			
YMW-8	25.00	15.00	7.00 - 22.00	Х	Х	Х	Х	Х								Х		Х	Х	Х	Х		
YMW-9	18.00	15.00	2.50 - 17.50																				
YP-1	15.00	5.00	8.00 - 13.00	Х	Х	Х	Х	Х								Х		Х	Х	Х	Х		
YP-2	15.00	5.00	7.00 - 12.00																		Х		
YP-3	15.00	5.00	5.50 - 10.50																				
YP-4	15.00	5.00	8.00 - 13.00																				
YP-5	11.00	5.00	5.00 - 10.00																		Х		
MH-21	5.80	NA	NA		pH, ORP (j)			Iron	Х		pH, ORP	Iron	Х	pH, ORP									
MH-23	7.40	NA	NA		pH, ORP (j)			Iron	Х		pH, ORP	Iron	Х	pH, ORP									
			Total	8	9	7	7	9	2	5	6	6	2	2	0	8	0	7	7	7	10		

Notes:

a/ ft = feet; BTOC = below top of casing; NA = Not available or not applicable; US EPA = United States Environmental Protection Agency; VOCs = volatile organic compounds; TPH = total petroleum hydrocarbons; BTEX = benzene, toluene, ethylbenzene, xylene; MH = manhole. b/ Samples will be collected a minimum of 2 weeks after injection point development, and within 30 days prior to the pilot test so that the analytical results are representative of conditions at the time of treatment application.

c/ Field parameters include temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential.

During treatment, the field parameters will be monitored hourly beginning 1 hour prior to treatment and ending 1 hour post treatment. MW-1, MH-21, and MH-23 will be monitored for pH and ORP only.

d/ VOCs are analyzed by US EPA Method 8260C. BTEX constituents and total BTEX will be determined through the VOC suite analysis.

e/ TPH are analyzed by US EPA Method 8015C and include diesel range organics and gasoline range organics.

f/ Collect filtered (0.45 micron) and unfiltered samples for analysis of total and dissolved chromium and selenium by US EPA Method 6020 and hexavalent chromium by USEPA Method 7196. Iron will be the only parameter monitored during treatment and will be monitored at the same frequency as the field parameters using a field method such as a Hach Colorimeter or equivalent. Metals will be monitored quarterly for two quarters after treatment; continuation of iron and metals testing after the first quarter will be contingent on detected metals concentrations above the 2008 Maryland Department of the Environment (MDE) Generic Cleanup Standards for Type I/II Aquifers and/or detected iron concentrations above baseline from the initial pre-treatment monitoring event.

g/ Existing monitoring wells within the anticipated radius of influence of an injection point (25 feet) will be capped during treatment and field parameters will not be collected from the capped wells. A pressure transducer will be deployed in each capped well. The groundwater collection piping downstream of MH-23 will be capped and the water in MH-23 monitored. See the Persulfate Release Prevention Plan in Appendix F for more information.

h/Initial post-treatment monitoring will be initiated the day after the injection ends. Assuming the post-treatment measurements remain consistent with the baseline, then frequency of monitoring will be performed daily for the first week, then biweekly for three months (in conjunction with biweekly EMS site visits). If the post-treatment measurements indicate a significant change from baseline, MDE will be contacted and the frequency will be increased to daily until conditions stabilize.

i/ Long-term post-treatment monitoring will occur on a quarterly basis for one year following treatment and is in addition to the semi-annual monitoring program. For more information, please see the September 10, 2018 Proposed Groundwater Monitoring Program Modifications Letter submitted to MDE.

j/ Biweekly for one month (in conjunction with biweekly EMS site visits).

A EMS QUARTERLY REPORT

January 6, 2020

Ms. Ellen Jackson, Central Region Section Head Maryland Department of the Environment Remediation Division Oil Control Program 1800 Washington Boulevard, Suite 620 Baltimore, Maryland 21230-1719

Via: FedEx

Re: 2019 Fourth Quarter Status Report Former Hess Station #20204 1613 East Joppa Road Towson, Maryland Case Number 1991-2100 BA

Dear Ms. Jackson:

Enclosed please find the above-referenced report. This report includes results from the November 13, 2019 groundwater monitoring and sampling event. This report also summarizes the results of the groundwater management system (System) vapor screening, operations and maintenance (O&M), and discharge sampling events conducted during the Fourth Quarter of 2019.

Should you have any questions or require any additional information, please feel free to contact me by telephone at (610) 866-7799 or via email at jfox@emsenv.com. If you have any questions relating to the project, please contact John Schenkewitz of Hess Corporation at (609) 406-3969.

Sincerely, EMS Environmental, Inc.

my I. Jos

Jeremy L. Fox Regional Manager

Enclosure

- cc: J. Schenkewitz, Hess Corporation
 - T. Jackson, Baker Botts
 - G. Helfrick, PMG
 - B. Hopkins, NeighborSpace
 - P. Groff Robertson, WSP

NEW YORK

PENNSYLVANIA

NORTH CAROLINA

January 6, 2020

2019 FOURTH QUARTER STATUS REPORT FORMER HESS STATION #20204 1613 East Joppa Road Towson, Maryland Case Number 1991-2100 BA

Prepared For:

Hess Corporation Trenton-Mercer Airport 601 Jack Stephan Way West Trenton, NJ 08628

Prepared By:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017

INTRODUCTION

The following is the 2019 Fourth Quarter Site Status Report for Former Hess Station #20204, located at 1613 East Joppa Road in Towson, Maryland. This report includes results from the November 13, 2019 groundwater monitoring and sampling event. Also included in this report are summaries of the groundwater management system vapor screening, operations and maintenance (O&M), and discharge sampling events. Figure 1 is included as a Site Plan depicting the subject site layout, adjacent properties, the site's below-grade system, as well as all monitoring wells, piezometers, storm drain outlets, and vapor monitoring points bounded by the area known as Ridgely Manor Park. Refer to Tables 1 and 2 for a summary of the groundwater data collected during the monitoring and sampling event. Refer to the Appendix for copies of the corresponding laboratory analytical reports.

During the Fourth Quarter of 2019, continued monthly system vapor screening events, using a photoionization detector (PID), were conducted at the designated vapor monitoring points depicted in Figure 1. Additionally, system O&M events were performed on a bi-monthly basis. Post-treatment discharge samples were collected twice monthly from the system's groundwater collection vault. Besides routine system maintenance (e.g. filter bag and carbon changeouts, pump and hose checks, electrical component maintenance, system throughput monitoring, etc.), noteworthy or unusual conditions, such as surficial dissolved iron staining, were not observed. Tables 3 through 5 summarize the system vapor screening and discharge data.

GENERAL INFORMATION

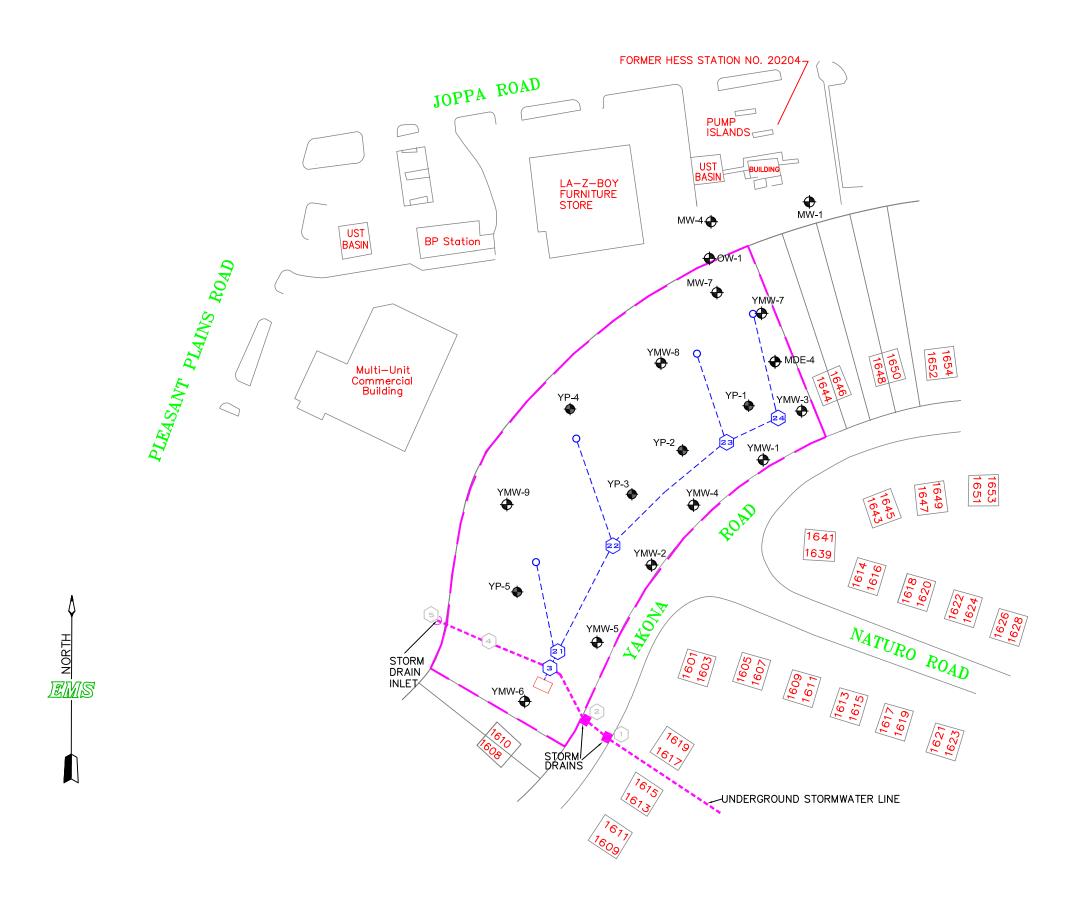
Former Hess Station #20204 – Towson, MD
(See Figure 1)
Semi-Annual
Quarterly
MW-4, MW-7, YMW-1 through YMW-4,
YMW-8, YP-1, YP-2 and YP-5
MDE-4, MW-1, OW-1, YMW-5, YMW-6,
YMW-7, YMW-9, YP-3 and YP-4
MDE-4, MW-1, MW-4, MW-7, OW-1, YMW-1
through YMW-9 and YP-1 through YP-5
None
Full Scan Volatile Organic Compounds (VOCs)
+ Fuel Oxygenates by EPA Method 8260C, and
Total Petroleum Hydrocarbons-Gasoline Range
Organics (TPH-GRO) and Total Petroleum
Hydrocarbons-Diesel Range Organics (TPH-
DRO) by EPA Method 8015C
November 13, 2019
2.61 feet (YMW-2) to 20.66 feet (OW-1)
427.19 feet (YMW-6) to 435.48 feet (MW-1)
(See Table 1, Table 2, and Figure 2)

Groundwater Flow: Liquid Phase Hydrocarbons (LPH) Identified: **Dissolved Phase Concentrations Reported:**

Predominantly south (See Figure 2) None See Table 1 and Figure 3

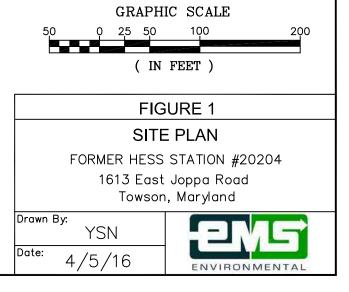
REMEDIATION DATA

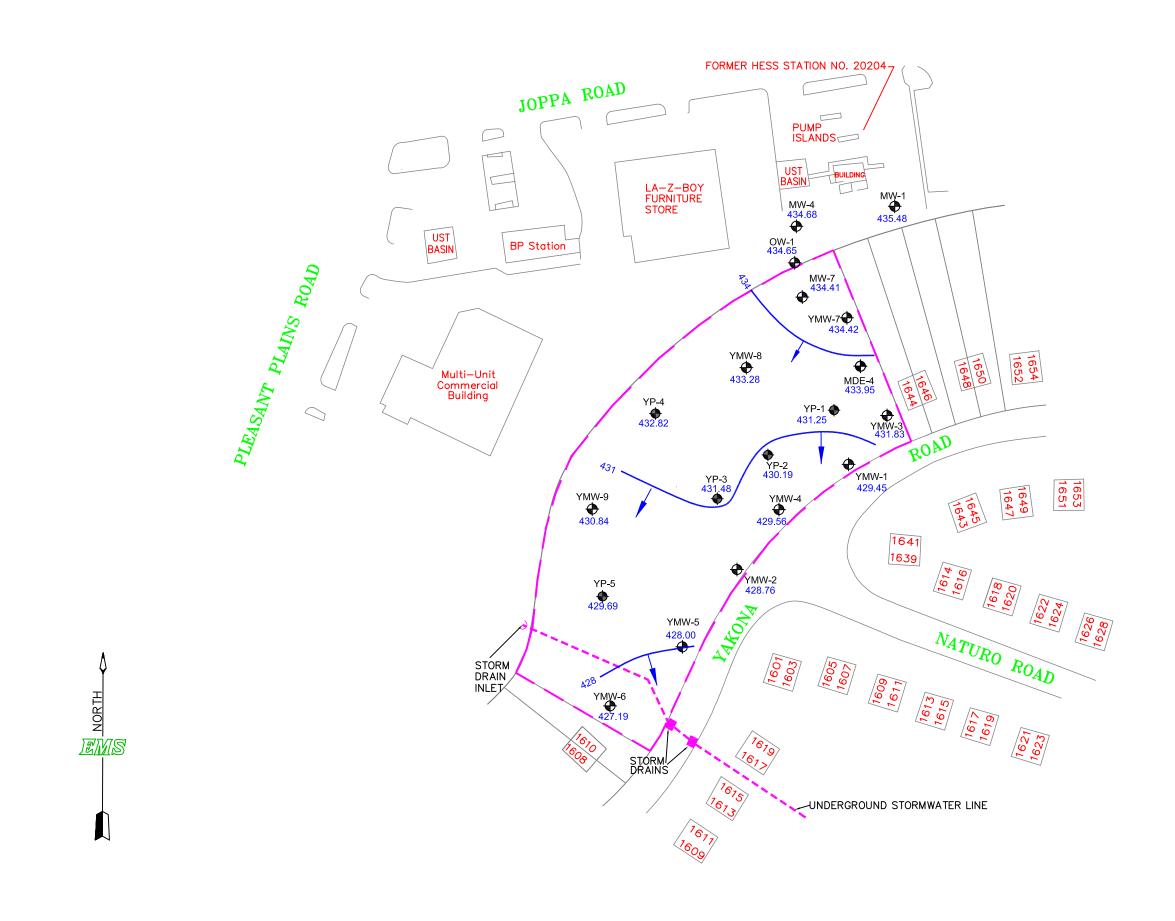
<u>Technology:</u> <u>System Start:</u> <u>Waste Stream Treatment:</u>


Vapor Screening Frequency: O&M Frequency: Discharge Sampling Frequency: System Performance Data: Groundwater Collection System May 22, 2014 Groundwater collected within the site's groundwater collection system vault is treated via the use of both liquid phase carbon adsorbers and filter bags prior to being discharged to the adjacent public storm sewer system. Monthly Weekly Twice monthly See **Tables 4** and **5**

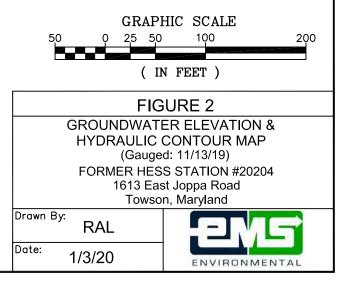
SCHEDULED/PROPOSED WORK

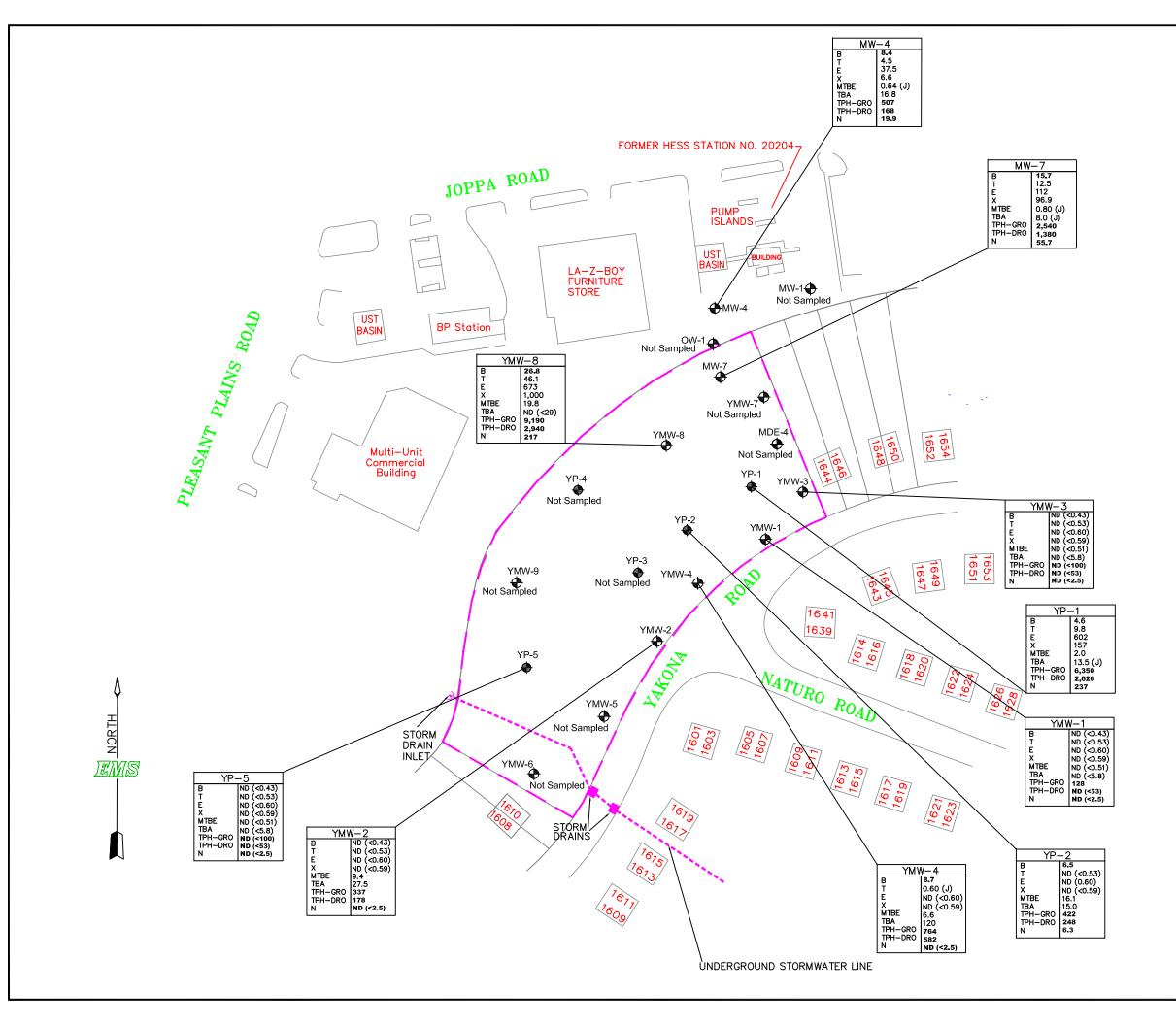
System vapor screening events are scheduled to continue on a monthly basis during the First Quarter of 2020. System O&M events and discharge sampling events are scheduled to continue weekly and twice monthly, respectively, during the First Quarter of 2020. Groundwater monitoring and sampling will continue on a semi-annual basis.


ATTACHMENTS


<u>Figure 1:</u> <u>Figure 2:</u> <u>Figure 3:</u>	Site Plan Groundwater Elevation & Hydraulic Contour Map (November 13, 2019) Hydrocarbon Distribution Map (November 13, 2019)
Table 1:	Historical Groundwater Monitoring Data
	Summary
Table 2:	Groundwater Gauging Results Summary
Table 3:	Monthly PID Screening Results Summary
Table 4:	Groundwater Treatment System Discharge
	Summary
Table 5:	Groundwater Treatment System Sampling
	Results Summary
Appendix:	Laboratory Analytical Report (November 13,
	2019)

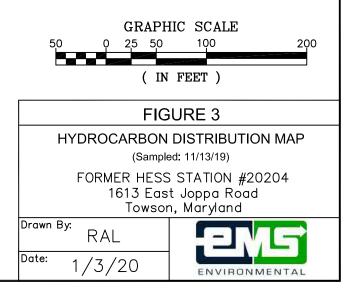
LEGEND


	Ridgely Manor Park Boundary
•	Groundwater Monitoring Well
•	Piezometer
3	Groundwater Management System Access Manhole (Vapor Screening Point)
1	Stormwater Inlet Callout
0	Drainage Piping Cleanout
\Box	Below Grade Groundwater Management System Vault
	Underground Groundwater Management System Drainage Piping



LEGEND

	Ridgely Manor Park Boundary
\	Groundwater Monitoring Well
•	Piezometer
435.48	Groundwater Elevation (In Feet)
431	Groundwater Contour Value (In Feet)
C	Groundwater Contour Line



LEGEND

	Ridgely Manor Park Boundary
•	Groundwater Monitoring Well
•	Piezometer
ND	Constituent Compound Not Detected
J	Laboratory-Estimated Value
В	Benzene
т	Toluene
E	Ethylbenzene
х	Total Xylenes
MTBE	Methyl Tertiary Butyl Ether
ТВА	Tertiary Butyl Alcohol
TPH-GRO	Total Petroleum Hydrocarbons-Gasoline Range Organics
TPH-DRO	Total Petroleum Hydrocarbons-Diesel Range Organics
Ν	Naphthalene
All Concent	rations Expressed In Micrograms/Liter (µg/L)

Values Shown In Boldface Type Exceed The Applicable MDE Statewide Health Standard

		Casing	Depth to	Product	Water Table	Benzene	Toluene	Ethyl-	Xylenes	Total BTEX	MTBE	ТВА	TPH-GRO	TPH-DRO	Naphthalene
Well No.	Date	Elevation* (feet)	Water (feet)	Thickness (feet)	Elevation* (feet)	(μg/L)	(μg/L)	benzene (μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
MDE-4	7/17/1996	NSVD NSVD	NM NM	NM NM	NM NM	ND	ND	ND ND	ND ND	ND 6	ND ND	NS NS	NS NS	NS NS	NS NS
Casing:	2/27/1990	444.03	5.78	0.00	438.25	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
0 to 3 feet	5/30/1997	444.03	6.20	0.00	437.83	ND	ND	ND	2	2	ND	NS	NS	NS	NS
	8/21/1997	444.03	7.37	0.00	436.66	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
Screen: 3 to 13 feet	11/25/1997 2/19/1998	444.03 444.03	7.42	0.00	436.61 438.02	11 ND	642 ND	892 ND	3,050 ND	4,595 ND	69 ND	NS NS	NS NS	NS NS	NS NS
3 to 13 leet	5/28/1998	444.03	5.60	0.00	438.43	4	5	4	8	21	ND	NS	NS	NS	NS
	8/18/1998	444.03	6.68	0.00	437.35	13	10	57	92	172	31	NS	NS	NS	NS
	11/21/1998	444.03	7.64	0.00	436.39	1	8	31	176		57	NS	NS	NS	NS
	2/17/1999 5/24/1999	444.03 444.03	7.70	0.00	436.33 437.01	3.7	107 ND	193 ND	605 ND	909	39 ND	NS NS	NS NS	NS NS	NS NS
	8/26/1999	444.03	7.87	0.00	436.16	24	140	390	750	1,304	44	NS	NS	NS	NS
	11/18/1999	444.03	6.90	0.00	437.13	ND	500	920	2,850	4,270	ND	NS	NS	NS	NS
	2/23/2000	444.03	6.50	0.00	437.53	ND	ND	ND	ND	ND	3.9	NS	NS	NS	NS NS
	5/17/2000 8/3/2000	444.03 444.03	6.00 6.48	0.00	438.03 437.55	ND 7.7	ND 9	2.4 59	11.7 101	14.1 177	30 54	NS NS	NS NS	NS NS	NS
	11/20/2000	444.03	7.15	0.00	436.88	ND	ND	120	242	362	ND	NS	NS	NS	NS
	2/20/2001	444.03	6.87	0.00	437.16	7.3	7.5	19	81	115	22	NS	NS	NS	NS
	5/25/2001	444.03	6.66	0.00	437.37	15	8.8	ND	20.3	44	34	NS	NS	NS	NS
	8/6/2001 11/7/2001	444.03 444.03	7.26	0.00	436.77 435.64	9.7 ND	33 41	380 220	1,220 760	1,643 1,021	87 120	NS NS	NS NS	NS NS	NS NS
	2/22/2002	444.03	8.83	0.00	435.20	12	91	220	1,380	1,703	ND	NS	NS	NS	NS
ĺ	5/16/2002	444.03	6.52	0.00	437.51	ND	27	120	268	415	15	NS	NS	NS	NS
	8/6/2002	444.03 444.03	8.72	0.00	435.31	ND ND	360 610	1,100	3,630 5,900	5,090	150 ND	NS NS	NS NS	NS NS	NS
	11/13/2002 3/5/2003	444.03	8.23 5.43	0.00	435.80 438.60	ND ND	610 ND	1,300 ND	5,900 ND	7,810 ND	ND ND	NS NS	NS NS	NS NS	NS NS
	5/13/2003	444.03	5.36	0.00	438.67	2.0	ND	ND	2.6	4.6	11	NS	NS	NS	NS
	8/27/2003	444.03	5.72	0.00	438.31	1.0	ND	1.8	ND	2.8	ND	NS	NS	NS	NS
	11/12/2003	444.03 444.03	6.66	0.00	437.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS	NS NS	NS NS
·	2/2/2004 5/14/2004	444.03	5.39 5.24	0.00	438.64 438.79	ND	ND ND	ND	ND ND	ND ND	1.7	NS	NS NS	NS	NS
	8/19/2004	444.03	5.97	0.00	438.06	ND	ND	ND	ND		26.8	NS	NS	NS	NS
	5/19/2005	444.03	5.94	0.00	438.09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/24/2007 12/27/2007	444.03 444.03	NM NM	NM NM	NM NM	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	3/27/2008	444.03	6.91	0.00	437.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/25/2008	444.03	6.56	0.00	437.47	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/24/2008	444.03	7.14	0.00	436.89	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008 3/31/2009	444.03 444.03	6.53 NM	0.00 NM	437.50 NM	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
·	6/22/2009	444.03	6.36	0.00	437.67	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/25/2009	444.03	6.60	0.00	437.43	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/2009	444.03	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/2009 3/17/2010	444.03 444.03	NM 4.51	NM 0.00	NM 439.52	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	3/18/2010	444.03	NM	NM	433.32 NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/24/2010	443.68	6.69	0.00	436.99	1.3	0.87 (J)	2.8	1.3	6.27 (J)	ND	ND	858	216	1.6 (J)
	1/11/2011	443.68	7.17	0.00	436.51	ND	ND	0.42 (J)	ND		ND	ND	ND (<200)	ND (<100)	ND
	6/23/2011 9/28/2011	443.68 443.68	6.26 6.02	0.00	437.42 437.66	1.3 ND	0.46 (J) ND	4.4 ND	3.6 ND		ND ND	ND ND	982 ND (<200)	464 ND (<100)	3.3 (J) ND
·	12/21/2012	443.68	5.90	0.00	437.78	ND	ND	ND	ND	ND	ND	ND	ND (<200)	ND (<100)	ND
	3/21/2012	443.68	6.18	0.00	437.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/16/2012	443.68	6.48	0.00	437.20	0.50 (J)	ND	0.46 (J)	0.73 (J)	1.69 (J)	ND	ND	340	104	ND
	8/29/2012 12/19/2012	443.68 443.68	7.67	0.00	436.01 436.74	0.50 (J) 0.40 (J)	ND 0.44 (J)	0.30 (J) 2.5	0.43 (J) 19.2	1.23 (J) 22.54 (J)	ND ND	ND ND	407 390	ND 372	ND 1.1 (J)
	3/20/2013	443.68	6.57	0.00	437.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/19/2013	443.68	6.47	0.00	437.21	0.45 (J)	0.56 (J)	7.0	8.4	()	ND	ND	328	ND	2.0 (J)
	9/19/2013 11/22/2013	443.68 443.68	7.31 7.25	0.00	436.37 436.43	0.71 (J) 1.9	ND 3.2	1.3 427	0.60 (J) 1,420		ND ND	ND ND	580 13,300	221 2,310	2.0 (J) 110
	3/20/2014	443.68	5.56	0.00	430.43	ND	3.2 ND	0.99	5.8		ND	ND	13,300 ND	2,310 ND	ND
***	6/18/2014	443.68	8.33	0.00	435.35	ND	1.2	ND	17.5	18.7	ND	ND	762	***	6.9
***	6/30/2014	443.68	NM 0.54	NM	NM	NS	NS 0.52 (I)	NS	NS		NS	NS	NS	ND	NS
	9/23/2014 12/23/2014	443.18 443.18	9.54 9.94	0.00	433.64 433.24	ND ND	0.53 (J) ND	0.99 (J) 0.62 (J)	1.1 0.53 (J)	2.62 (J) 1.15 (J)	ND ND	ND ND	ND ND	ND (<80) ND (<80)	0.93 (J) 0.37 (J)
ł	3/24/2015	443.18	9.94	0.00	433.60	ND	ND	0.02 (J) ND	0.53 (J) ND		ND	ND	ND	ND (<80) ND (<77)	0.37 (J) ND
	6/22/2015	443.18	9.25	0.00	433.93	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/21/2015	443.18	9.28	0.00	433.90	ND	ND	ND	ND		ND	ND	ND	125	ND
	12/9/2015 3/8/2016	443.18 443.18	9.58 8.98	0.00	433.60 434.20	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND (<55)	98.4 ND (<64)	ND ND
	6/7/2016	443.18	9.03	0.00	434.15	ND	ND	ND	ND			ND	ND (<55) ND (<55)	ND (<64) ND (<58)	ND
	9/13/2016	443.18	9.48	0.00	433.70	ND	ND	ND	ND	ND	ND	ND	ND (<100)	94.6	ND
	11/21/2016	443.18	9.90	0.00	433.28	ND	ND	ND	ND		ND	ND	ND (<100)	469	ND (<1.0)
	3/9/2017 6/7/2017	443.18 443.18	10.42 9.72	0.00	432.76 433.46	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND (<100) ND (<100)	ND (<64) ND (<64)	ND (<1.0) ND (<1.0)
'	9/6/2017	443.18	9.72	0.00	433.40	ND	ND	ND	ND			ND	ND (<100)	ND (<83)	ND (<1.1)
	11/1/2017	443.18	9.97	0.00	433.21	ND	ND	ND	ND		ND	ND	ND (<100)	154	ND (<1.1)
	3/6/2018	443.18	9.84	0.00	433.34	ND	ND	ND	ND			ND	ND (<100)	ND (<83)	ND (<1.1)
	6/20/2018 9/5/2018	443.18 443.18	8.72 8.64	0.00	434.46 434.54	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (<100) ND (<100)	ND (<83) ND (<53)	ND (<1.1) ND (<0.98)
	7/18/2019	443.18	8.11	0.00	435.07		ND	ND			sampled				110 (10.00)
		440.40													
	11/13/2019	443.18	9.23	0.00	433.95	5				NOT	sampled	<u> </u>			

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (µg/L)
MW-1	3/28/1991	455.93	15.86	0.00	440.07	17	ND	(P-9)	35	52	5	NS	NS	NS	NS
10100-1	6/26/1991	455.93	29.40	0.00	426.53	2	ND	ND	2	4	8	NS	NS	NS	NS
Casing:	9/1/1992	455.93	26.35	0.00	429.58	25	18	10	41	94	ND	NS	NS	NS	NS
Unknown	1/7/1993	455.93	24.70	0.00	431.23	3	4	ND	10		142	NS	NS	NS	NS
C	4/12/1993 7/15/1993	455.93 455.93	NM NM	NM NM	NM NM	29 12		7	51 66	92 84	30 ND	NS NS	NS NS	NS NS	NS NS
Screen: Unknown	10/19/1993	455.93	NM	NM	NM	12		ND	37	48	ND	NS	NS	NS	NS
onaionn	1/26/1994	455.93	NM	NM	NM	10	ND	3	22	35	ND	NS	NS	NS	NS
	4/20/1994	455.93	NM	NM	NM	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	8/2/1994	455.93	NM	NM	NM	23	ND	4	38	65	ND	NS	NS	NS	NS
	11/22/1994 3/3/1995	455.93 455.93	NM NM	NM NM	NM NM	14 12	ND 2	3	16 13	33 30	11 6	NS NS	NS NS	NS NS	NS NS
	5/9/1995	455.93	NM	NM	NM	10		ND	10	21	16	NS	NS	NS	NS
	8/15/1995	455.93	NM	NM	NM	12	ND	2	23	37	ND	NS	NS	NS	NS
	11/28/1995	455.93	NM 10.00	NM	NM	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	2/13/1996 5/15/1996	455.93 455.93	16.20 18.06	0.00	439.73 437.87	ND 4	ND ND	ND ND	4	4	ND 24.3	NS NS	NS NS	NS NS	NS NS
	8/28/1996	455.93	16.95	0.00	438.98	4 ND	6	3	12		5.6	NS	NS	NS	NS
	11/26/1996	455.93	26.21	0.00	429.72	3	ND	ND	2	5	ND	NS	NS	NS	NS
	2/27/1997	455.93	15.73	0.00	440.20	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/30/1997 8/21/1997	455.93 455.93	16.00 18.66	0.00	439.93 437.27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	11/25/1997	455.93	18.66	0.00	437.27 437.96	ND	ND	ND	ND ND	ND	ND	NS	NS	NS	NS
	2/19/1998	455.93	15.47	0.00	440.46	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/28/1998	455.93	15.06	0.00	440.87	ND	ND	3	9	12	ND	NS	NS	NS	NS
	8/18/1998	455.93	16.42	0.00	439.51	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/19/2005 8/24/2007	455.93 455.93	16.83 NM	0.00 NM	439.10 NM	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	12/27/2007	455.93	17.58	0.00	438.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/27/2008	455.93	17.39	0.00	438.54	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/25/2008	455.93	16.41	0.00	439.52	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/24/2008	455.93	16.57	0.00	439.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2008 3/31/2009	455.93 455.93	16.26 17.87	0.00	439.67 438.06	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	6/22/2009	455.93	16.07	0.00	438.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/25/2009	455.93	16.48	0.00	439.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/2009	455.93	15.94	0.00	439.99	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/2009	455.93	NM	NM	NM 155.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/17/2010 3/18/2010	455.93 455.93	0.01 NM	0.00 NM	455.92 NM	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	8/26/2010	454.42	16.61	0.00	437.81	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
	1/10/2011	454.42	17.64	0.00	436.78	ND	ND	ND	ND	ND	ND	ND	ND (<200)	ND (<100)	NE
	6/22/2011	454.42	16.05	0.00	438.37	ND	ND	ND	ND	ND	ND	ND	ND (<200)	ND (<110)	NE
	9/28/2011 12/20/2012	454.42 454.42	6.68 15.90	0.00	447.74 438.52	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (<200) ND (<200)	ND (<110) ND (<100)	NE NE
	3/21/2012	454.42	16.41	0.00	438.01	ND	ND	ND	ND	ND	ND	ND	ND (<200) ND	ND (100) ND	NE
	5/15/2012	454.42	14.43	0.00	439.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
	8/28/2012	454.42	15.84	0.00	438.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
	12/18/2012	454.42	17.16	0.00	437.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
	3/19/2013 6/18/2013	454.42 454.42	16.57 17.45	0.00	437.85 436.97	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NI NI
	9/19/2013	454.42	17.54	0.00	436.88	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	11/22/2013	454.42	17.87	0.00	436.55	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
	3/20/2014	454.42	15.89	0.00	438.53	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59 (J
***	6/18/2014 6/30/2014	454.42 454.42	18.43 NM	0.00 NM	435.99 NM	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	*** ND	NI NS
	9/23/2014	454.42	18.73			ND	ND	ND	ND		ND	18.4	ND	243	
	12/23/2014	453.92	19.67	0.00	434.25	ND	ND	ND	ND	ND	ND	ND	ND	ND (<80)	NE
	3/24/2015	453.92	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS		NS	N
	6/22/2015	453.92	18.24	0.00	435.68	ND	ND	ND	ND	ND	ND	ND		102	N
	9/21/2015 12/9/2015	453.92 453.92	18.49 19.24	0.00	435.43 434.68	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	233 ND (<64)	N
	3/8/2016	453.92	18.24	0.00	435.64	ND	ND	ND	ND		ND	ND	ND (<55)	ND (<64)	
	6/7/2016	453.92	18.21	0.00	435.71	ND	ND	ND	ND	ND	ND	ND	ND (<55)	ND (<58)	N
	9/13/2016	453.92	18.92	0.00	435.00	ND	ND	ND	ND		ND	ND	ND (<100)	108	
	11/21/2016 3/9/2017	453.92 453.92	19.83 20.49	0.00	434.09 433.43	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (<100) ND (<100)	ND (<64) ND (<64)	
	6/7/2017	453.92	19.38	0.00	433.43	ND	ND	ND	ND	ND	ND	ND ND		ND (<64) ND (<64)	ND (<1.0 ND (<1.0
	9/6/2017	453.92	19.04	0.00	434.88	ND	ND	ND	ND		ND	ND		ND (<83)	ND (<1.1
	11/1/2017	453.92	19.67	0.00	434.25	ND	ND	ND	ND		ND	ND	ND (<100)	ND (<83)	ND (<1.1
	3/6/2018	453.92	20.16	0.00	433.76	ND	ND	ND	ND	ND	ND	ND	ND (<100)	91.9	
	6/20/2018 9/5/2018	453.92 453.92	17.45 16.71	0.00	436.47 437.21	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND (<100) ND (<100)	ND (<83) ND (<53)	ND (<1.1 ND (<0.98
															ט.90, טיין ו
	7/18/2019	453.92	16.52	0.00		n.		NB	ND			110			
				0.00	437.40				ND	Not	sampled sampled				

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
MW-4	3/28/1991	457.11	16.98	0.00	440.13	600	1,300	380	1,500	3,780	40	NS	NS	NS	NS
	6/26/1991	457.11	23.80	0.00	433.31	3,775	4,825	925	4,075	13,600	1,125	NS	NS	NS	NS
Casing:	9/1/1992	457.11	22.00	0.00	435.11	3,500	9,300	1,625	5,225	19,650	1,100	NS	NS	NS	NS
0 to 10 feet	9/4/1992	457.11	22.79	0.01	434.33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/15/1992	457.11	22.98	sheen	434.13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Screen:	11/9/1992	457.11	23.20	2.50	435.79	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
10 to 25 feet	12/9/1992	457.11	21.58	1.36	436.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/7/1993	457.11	21.68	0.02	435.45	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/1/1993	457.11	23.15	0.85	434.60	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/8/1993	457.11	20.10	sheen	437.01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/1993	457.11	18.20	0.05	438.95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/11/1993	457.11	18.10	0.15	439.12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/3/1993	457.11	18.96	0.38	438.44	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/7/1993	457.11	19.65	0.30	437.69	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/2/1993	457.11	18.95	0.00	438.16	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/1993	457.11	19.34	0.00	437.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/19/1993	457.11	19.75	0.00	437.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/18/1993	457.11	20.75	sheen	436.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/1993	457.11	19.85	0.00	437.26	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/25/1994	457.11	17.84	0.00	439.27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/11/1994	457.11	17.13	0.00	439.98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/20/1994	457.11	17.68	0.00	439.43	1,650	6,130	678	3,950	12,408	223	NS	NS	NS	NS
	8/2/1994	457.11	18.35	0.00	438.76	2,630	12,200	1,430	9,070	25,330	ND	NS	NS	NS	NS
	11/22/1994	457.11	18.52	0.00	438.59	2,950	7,040	1,430	8,700	20,120	340	NS	NS	NS	NS
	3/3/1995 5/9/1995	457.11 457.11	20.31 20.25	0.00	436.80	1,560	12,400	1,690	9,050	24,700	775	NS NS	NS NS	NS NS	NS NS
	8/15/1995	457.11	20.25	0.00	436.86 436.01	1,600 <200	12,800 <200	1,840 <200	10,400 726	26,640 726	499 <200	NS NS	NS	NS	NS
	7/24/1995	457.11	19.29	0.00	430.01	<200 NS	<200 NS	<200 NS	NS	NS	<200 NS	NS	NS	NS	NS
	11/28/1995	457.11	22.00	0.02	437.04	ND	10	ND	58	68	47	NS	NS	NS	NS
	2/13/1996	457.11	22.00	0.00	436.91	3	10	2	21	37	14	NS	NS	NS	NS
	5/15/1996	457.11	17.60	0.00	439.51	ND	53	18		204	6	NS	NS	NS	NS
	8/28/1996	457.11	16.98	0.00	440.13	ND	3	3	100	16	6	NS	NS	NS	NS
	11/26/1996	457.11	15.85	0.00	441.26	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	2/27/1997	457.11	14.19	0.00	442.92	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/30/1997	457.11	15.77	0.00	441.34	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
			438.10	15	24	4	27	70	ND	NS	NS	NS	NS		
	11/25/1997	457.11	19.15	0.00	437.96	89	75	143	240	547	3	NS	NS	NS	NS
	2/19/1998	457.11	17.68	0.00	439.43	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	5/28/1998	457.11	16.64	0.00	440.47	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	8/18/1998	457.11	18.21	0.00	438.90	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	11/21/1998	457.11	19.65	0.00	437.46	71	1,600	183	731	2,585	19	NS	NS	NS	NS
	2/17/1999	457.11	19.70	0.00	437.41	ND	780	252	460	1,492	<100	NS	NS	NS	NS
	5/24/1999	457.11	18.90	0.00	438.21	ND	14	8.7	21.9	44.6	77.7	NS	NS	NS	NS
	8/26/1999	457.11	20.60	0.00	436.51	ND	ND	35	123	158	220	NS	NS	NS	NS
	11/18/1999	457.11	18.52	0.00	438.59	ND	ND	ND	3.8	3.8	2,000	NS	NS	NS	NS
	12/29/1999	457.11	NM	NM	NM	ND	ND	ND	ND	ND	2,100	NS	NS	NS	NS
	2/23/2000	457.11	19.21	0.00	437.90	120	4.5	32	106	263	730	NS	NS	NS	NS
	5/17/2000	457.11	16.90	0.00	440.21	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	8/3/2000	457.11	17.28	0.00	439.83	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
	11/20/2000	457.11	19.69	0.00	437.42	87	ND	ND	ND	87	3,000	NS	NS	NS	NS
	2/20/2001	457.11	18.60	0.00	438.51	ND	ND	ND	ND	ND	6.8	NS	NS	NS	NS
	5/25/2001	457.11	17.30	0.00	439.81	ND	ND	ND	ND	ND	ND 2.0	NS	NS	NS	NS
	8/6/2001 11/7/2001	457.11 457.11	19.17 21.17	0.00	437.94 435.94	ND 330	ND 62	ND 370	ND 800	ND 1,562	2.0 110	NS NS	NS NS	NS NS	NS NS
	11///2001	497.11	21.17												
	MDE MEAT GNCSG**					5	1,000	700	10,000	NA	20	NA	47	47	0.7

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
MW-4	2/22/2002	457.11	20.80	0.00	436.31	81	120	200	510	911	33	NS	NS	NS	NS
(continued)	5/16/2002	457.11	18.12	0.00	438.99	ND	15	12	223	250	2.2	NS	NS	NS	NS
_	8/6/2002	457.11	21.61	0.00	435.50	3.5	3.2	7.0	22.8	36.5	3.9	NS	NS	NS	NS
-	11/13/2002 3/5/2003	457.11 457.11	18.81 18.41	0.00	438.30	ND ND	4.9 ND	14 ND	141 ND	159.9 ND	ND 2.0	NS NS	NS NS	NS NS	NS NS
-	5/13/2003	457.11	16.96	0.00	440.15	3.9	ND	ND	ND			NS	NS	NS	NS
-	9/25/2003	457.11	NM	NM	NM	ND	ND	ND	ND			NS	NS	NS	NS
	11/12/2003	457.11	18.32	0.00	438.79	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
_	2/2/2004 5/14/2004	457.11 457.11	14.70 18.09	0.00	442.41 439.02	ND ND	ND ND	ND ND	ND ND	ND ND		NS NS	NS NS	NS NS	NS NS
-	8/19/2004	457.11	16.55	0.00	439.02	1.6	2.1	36.5	92.4	132.6		NS	NS	NS	NS
-	11/22/2004	457.11	19.43	0.00	437.68	ND	ND	0.31 (J)	0.57 (J)	0.88 (J)	0.29 (J)	NS	NS	NS	NS
	2/23/2005	457.11	18.93	0.00	438.18	ND	ND	ND	ND			NS	NS	NS	NS
-	5/19/2005	457.11	16.67	0.00	440.44	ND	ND	ND	ND	ND		ND	ND	ND	NS
-	8/24/2007 12/27/2007	457.11 457.11	19.06 18.72	0.00	438.05 438.39	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-	3/27/2008	457.11	18.63	0.00	438.48	NS	NS	NS	NS	NS		NS	NS	NS	NS
	6/25/2008	457.11	17.57	0.00	439.54	NS	NS	NS	NS	NS		NS	NS	NS	NS
_	9/24/2008	457.11	19.28	0.00	437.83	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
-	12/17/2008 3/31/2009	457.11 457.11	19.10 19.12	0.00	438.01 437.99	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-	6/22/2009	457.11	19.12	0.00	437.99	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/25/2009	457.11	17.63	0.00	439.48	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/2009	457.11	16.56	0.00	440.55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
-	12/28/2009 3/17/2010	457.11	NM 14.98	NM 0.00	NM 442.13	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-	3/17/2010	457.11 457.11	14.98 NM	0.00 NM	442.13 NM	NS NS	NS NS	NS	NS NS	NS NS	NS	NS	NS	NS NS	NS
-	8/23/2010	455.60	18.10	0.00	437.50	0.52 (J)	22.3	41.1	84.2	148.12 (J)	ND	ND	449	244	7.2
	1/10/2011	455.60	18.94	0.00	436.66	16.4	16.9	151	235	419.30		112	1,940	1,930	84.1
_	6/22/2011	455.60	17.57	0.00	438.03	8.7	10.6	5.7	8.6		1.9	128	306	304	ND
-	9/28/2011 12/20/2012	455.60 455.60	17.08 17.30	0.00	438.52 438.30	ND ND	ND ND	ND 0.29 (J)	ND ND		ND ND	ND ND	ND (<200) ND (<200)	ND (<100) ND (<100)	ND ND
-	3/21/2012	455.60	17.78	0.00	437.82	0.24 (J)	ND	1.5	ND		ND	ND	ND (1200) ND	ND (100)	ND
	5/15/2012	455.60	11.49	0.00	444.11	ND	ND	ND	ND	ND		ND	ND	283	ND
_	8/28/2012	455.60	18.91	0.00	436.69	ND	ND	ND	ND			ND	ND	924	ND
-	12/18/2012 3/19/2013	455.60 455.60	18.58	0.00	437.02	6.5 ND	37.2 ND	419 ND	108 ND	570.7 ND	ND ND	18.5 (J) ND	2,510 ND	<u>1,120</u> 350	154 ND
-	6/18/2013	455.60	17.35	0.00	437.83	ND	ND	ND	ND	ND	ND	ND	ND	350 ND	ND
-	9/19/2013	455.60	19.01	0.00	436.59	3.0	16.1	85.9	16.2	121.2	ND	55.8	2,420	367	34.3
	11/22/2013	455.60	19.21	0.00	436.39	9.9	32.3	38.4	23.7	104.3	1.3	52.9	4,110	1,400	7.0
***	3/20/2014 6/18/2014	455.60 455.60	15.71 18.24	0.00	439.89 437.36	2.0 87.4	5.2 59.2	ND 9.4	5.8 24.8	13.0 180.8	1.2 106	71.3 1,770	1,870 3,850	408	ND 1.5 (J)
***	6/30/2014	455.60	16.24 NM	0.00 NM	437.30 NM	07.4 NS	59.2 NS	9.4 NS	24.0 NS	NS	NS	1,770 NS	3,650 NS	2,160	1.5 (J) NS
	9/23/2014	455.10	20.69	0.00	434.41	7.3	212	541	567	1,327.3	269	1,150	5,740	2,560	159
Ę	12/23/2014	455.10	21.37	0.00	433.73	88.0	83.0	1,290	1,480	2,941.0	50.6	771	12,200	3,090	490
F	3/24/2015 6/22/2015	455.10 455.10	NM 20.38	NM 0.00	NM 434.72	NS 178	NS 34.1	NS 661	NS 409	NS 1,282.1	NS 17.3	NS 3,200	NS 6,130	NS 4,540	NS 392
	9/21/2015	455.10	20.38	0.00	434.72	178	44.3	623	409 394	1,282.1	17.3	3,200	6,130 10,300	4,540	392 430
F	12/9/2015	455.10	21.08	0.00	434.02	7.8	1.4	34.8	10.1	54.1	ND	250	650	684	28.3
Ē	3/8/2016	455.10	20.29	0.00	434.81	103	9.4	223	49.0	384.4	7.5	553	2,130	874	143
F	6/7/2016	455.10	20.28	0.00	434.82	155	27.1	744	139	1,065.1	6.2	3,030	6,540	3,150	436
F	9/13/2016 11/21/2016	455.10 455.10	20.87 21.56	0.00	434.23 433.54	131 108	23.1 25.9	763	150 192	1,067.1	5.8 12.9	2,320 2,480	6,520 6,730	2,750 3,520	422 439
F	3/9/2017	455.10	22.05	0.00	433.05	23.7	5.5	142	42.8	214.0		2,400 ND	2,450	1,090	144
	6/7/2017	455.10	21.18	0.00	433.92	14.6	2.8	50.7	7.8		2.3	174	1,590	1,050	34.3
Ļ	9/6/2017	455.10	20.94	0.00	434.16	44.1	5.8	141	24.5	215.4	ND	1,230	1,980	1,570	107
F	11/1/2017 3/6/2018	455.10 455.10	21.41 21.75	0.00	433.69 433.35	69.8 11.3	7.6 0.71 (J)	146 12.3	42.1	266 28.7 (J)	6.1 ND	1,380 9.4 (J)	3,050 1,090	<u>1,900</u> 1,070	118 20.6
	6/20/2018	455.10	19.73	0.00	435.33	18.2	0.71 (J) ND	0.77 (J)	4.4 ND	18.97 (J)	2.5	83.4	1,030 124 (J)	1,070	ND (<1.1)
Ē	9/5/2018	455.10	19.34	0.00	435.76	7.3	ND	2.7	ND	10.0	ND	40.3	226	110	2.8 (J)
Ę	7/18/2019	455.10	18.82	0.00	436.28	ND (<0.43)	ND (<0.53)	ND (<0.60)	ND (<0.59)	ND (<2.15)	ND (<0.51)	ND (<5.8)	ND (<42)	ND (<53)	ND (<0.98)
	11/13/2019	455.10	20.42	0.00	434.68	8.4	4.5	37.5	6.6	57.0	(.)	16.8	507	168	19.9
				MDE ME	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (µg/L)
MW-7	3/28/1991	452.69	15.10	0.00	437.59	7,950	6,100	2,700	8,550	25,300	650	NS	NS	NS	NS
	6/26/1991	452.69	16.12	0.00	436.57	2,100	2,400	800	2,300	7,600	1,000	NS	NS	NS	NS
Casing:	9/1/1992	452.69	17.22	0.00	435.47	1,470	3,670	1,350	5,350	11,840	1,200	NS	NS	NS	NS
0 to 8 feet	1/7/1993	452.69	26.25	0.00	426.44	1,550	5,750	1,100	6,250	14,650	600	NS	NS	NS	NS
	4/12/1993	452.69	NM	NM	NM	200	2,550	350	3,600	6,700	ND	NS	NS	NS	NS
Screen:	7/15/1993	452.69	NM	NM	NM	2,150	8,550	1,200	8,950	20,850	1,000	NS	NS	NS	NS
8 to 33 feet	10/19/1993	452.69	NM	NM	NM	2,400	15,700	1,300	9,000	28,400	870	NS	NS	NS	NS
	1/26/1994	452.69	NM	NM	NM	1,100	6,200	950	5,650	13,900	ND	NS	NS	NS	NS
	4/19/1994	452.69	NM	NM	NM	11	68	11	86	176	64.4	NS	NS	NS	NS
	8/2/1994	452.69	NM	NM	NM	280	1,160	260	2,280	3,980	180	NS	NS	NS	NS
	11/22/1994	452.69	NM	NM	NM	1,530	1,780	1,380	5,400	10,090	338	NS	NS	NS	NS
	3/3/1995	452.69	NM	NM	NM	1,690	9,600	1,930	11,000	24,220	913	NS	NS	NS	NS
	5/9/1995	452.69	NM	NM	NM	448	2,330	294	3,560	6,632	<200	NS	NS	NS	NS
	8/15/1995	452.69	NM	NM	NM	370	1,790	420	3,430	6,010	<200	NS	NS	NS	NS
	11/28/1995	452.69	NM	NM	NM	394	3,440	646	4,230	8,710	ND	NS	NS	NS	NS
	2/13/1996	452.69	14.75	0.00	437.94	104	164	106	259	633	ND	NS	NS	NS	NS
	5/15/1996	452.69	15.40	0.00	437.29	132	429	101	436	1,098	33	NS	NS	NS	NS
_	8/28/1996	452.69	15.27	0.00	437.42	422	3,460	480	5,540	9,902	78	NS	NS	NS	NS
	11/26/1996	452.69	15.61	0.00	437.08	96	340	ND	875	1,311	ND	NS	NS	NS	NS
_	2/27/1997	452.69	14.69	0.00	438.00	56	225	1,420	3,830	5,531	109	NS	NS	NS	NS
_	5/30/1997	452.69	15.10	0.00	437.59	69	293	1,600	4,900	6,862	149	NS	NS	NS	NS
_	8/21/1997	452.69	16.53	0.00	436.16	ND	349	1,280	5,730	7,359	ND	NS	NS	NS	NS
-	11/25/1997	452.69	16.63	0.00	436.06	ND	175	913	4,160	5,248	57	NS	NS	NS	NS
-	2/19/1998	452.69	15.23	0.00	437.46	ND	165	381	2,360	2,906	ND	NS	NS	NS	NS
-	5/28/1998	452.69	14.36	0.00	438.33	100	364	1,270	5,070	6,804	147	NS	NS	NS	NS
-	8/18/1998	452.69	15.61	0.00	437.08	120	313	1,300	5,540	7,273	ND	NS	NS NS	NS NS	NS NS
-	11/21/1998 2/17/1999	452.69 452.69	16.86 17.02	0.00	435.83 435.67	<100	195 409	1,280	6,340 6,230	7,815	129	NS NS	NS NS	NS NS	NS NS
-	5/24/1999	452.69	17.02	0.00	435.67	<50 37	229	1,510 1,010	3,230	4,506	136 211	NS	NS	NS	NS
-	8/26/1999	452.69	17.18	0.00	430.49	<50	110	920	3,230	4,500	170	NS	NS	NS	NS
-	11/18/1999	452.69	16.02	0.00	436.67	<20	130	920	3,300	4,930	1,400	NS	NS	NS	NS
-	12/29/1999	452.69	10.02 NM	0.00 NM	430.07 NM	< <u>20</u> 9	130	780	3,300	4,300	240	NS	NS	NS	NS
-	2/23/2000	452.69	15.43	0.00	437.26	9 <20	320	990	3,200	5,110	370	NS	NS	NS	NS
-	5/17/2000	452.69	14.47	0.00	438.22	ND	180	1.100	3,900	5,180	1,300	NS	NS	NS	NS
-	8/3/2000	452.69	14.92	0.00	437.77	84	260	1,100	4.200	5,544	2,100	NS	NS	NS	NS
-	11/20/2000	452.69	16.65	0.00	436.04	ND	140	830	3,180	4,150	150	NS	NS	NS	NS
-	2/20/2001	452.69	17.86	0.00	434.83	70	240	850	2,540	3,700	130	NS	NS	NS	NS
-	5/25/2001	452.69	15.05	0.00	437.64	ND	250	1,300	3.600	5,150	ND	NS	NS	NS	NS
	8/6/2001	452.69	16.70	0.00	435.99	11	280	1,400	4,900	6,591	210	NS	NS	NS	NS
	11/7/2001	452.69	17.64	0.00	435.05	ND	64	810	2.284	3,158	98	NS	NS	NS	NS
	2/22/2002	452.69	17.92	0.00	434.77	11	75	660	2,204	2,826	54	NS	NS	NS	NS
	5/16/2002	452.69	15.80	0.00	436.89	ND	140	690	2,110	2,940	51	NS	NS	NS	NS
	8/6/2002	452.69	18.05	0.00	434.64	60	93	800	2,110	3,133	140	NS	NS	NS	NS
	11/13/2002	452.69	17.23	0.00	435.46	ND	ND	760	1,746	2,506	ND	NS	NS	NS	NS
l F	3/5/2003	452.69	13.94	0.00	438.75	ND	16	100	301	417	5.1	NS	NS	NS	NS
	5/13/2003	452.69	15.10	0.00	437.59	10	10	110	198	328	22	NS	NS	NS	NS
	9/25/2003	452.69	NM	NM	NM	25.6	24.9	343	273	667	16.1	NS	NS	NS	NS
l F	11/12/2003	452.69	15.36	0.00	437.33	23.0	91.7	907	1,400	2,423	10.1	NS	NS	NS	NS
	2/2/2004	452.69	14.40	0.00	438.29	24.5	76.4	605	1,390	2,094	7.0	NS	NS	NS	NS
	5/14/2004	452.69	13.97	0.00	438.72	10.3	28.8	499	595	1,133	5.8	NS	NS	NS	NS
	8/19/2004	452.69	14.67	0.00	438.02	18.8	82.8	763	2,720	3,585	11.3	NS	NS	NS	NS
	2/23/2005	452.69	16.39	0.00	436.30	3.5 (J)	80	1,080	4,320	5,484 (J)	7.6 (J)	NS	NS	NS	NS
-	5/19/2005	452.69	16.25	0.00	436.44	2.1 (J)	61.9	740	2,580	3,384 (J)	3.7 (J)	NS	NS	NS	NS
-	8/24/2005	452.69	15.89	0.00	436.80	2.1 (J) <10	56.9	1,020	3,770	3,364 (J) 4.847	3.7 (J) 8.4 (J)	NS	NS	NS	NS
F	11/8/2005	452.69	15.54	0.00	430.00	1.6 (J)	18.1	472	913	1,405 (J)	9.1	NS	NS	NS	NS
	MDE MEAT GNCSG**				5	1,000	700	10,000	NA	20	NA	47	47	0.7	

		1							1						
Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
MW-7	2/10/2006	452.69	14.54	0.00	438.15	1.2 (J)	22	413	1,390	1,826	5.2	NS	NS	NS	NS
(continued)	5/15/2006	452.69	15.50	0.00	437.19	<10	34.4	880	2,690	3,604	22.2	NS	NS	NS	NS
	8/9/2006	452.69	15.41	0.00	437.28	ND	40	911	3,140	4,091	6.1	NS	NS	NS	NS
	10/17/2006	452.69	17.28	0.00	435.41	<10	42.3	1,170	4,340	5,552	10	NS	NS	NS	NS
	4/11/2007	452.69	NG	NG	NG	ND	1.9	57	92	150.9	ND	ND	1,900	ND	NS
	8/24/2007	452.69	16.38	0.00	436.31	1.5	7.2	200	150	359	4.3	ND	1,900	1,300	NS
	12/27/2007	452.69	16.02	0.00	436.67	ND	ND	1.2	2.2	3.4	ND	ND	ND	4,900	NS
	3/27/2008	452.69	16.11	0.00	436.58	ND	ND	14	12.9	26.9	1.0	ND	ND	ND	NS
	6/25/2008	452.69	15.56	0.00	437.13	0.42 (J)	3.1	17.4	39	59.9	ND	ND	1,400	700	NS
-	9/24/2008	452.69	16.20	0.00	436.49	1.7	9.7	278	323	612.4	3.4	ND	4,340	976	NS
-	12/17/2008	452.69	9.65	0.00	443.04	2.0	17.3	495	911	1,425.3	3.4	ND (105)	8,250	1,160	NS
	3/31/2009	452.69	16.77	0.00	435.92	1.0 1.2 (J)	ND 7.9	ND 257	ND 285	1.0	59.8	ND (<25) ND (<63)	ND 4,810	1,160 1,870	NS NS
	6/22/2009 9/25/2009	452.69 452.69	15.50 15.64	0.00	437.19 437.05	1.2 (J) 1.2 (J)	9.1	257 528	285	551.1 (J) 1,087.3 (J)	1.6 (J) ND	ND (<63) ND (<50)	9,450	2,330	NS
	12/14/2009	452.69	13.57	0.00	437.05	1.2 (J) NS	9.1 NS	528 NS	549 NS	1,087.3 (J) NS	ND	ND (<50) NS	9,450 NS	2,330 NS	NS
	12/14/2009	452.69	13.57 NM	0.00 NM	439.12 NM	0.51 (J)	3.4	98.9	53.7	156.51 (J)	ND	ND (<25)	1,490	531	NS
	3/17/2010	452.69	13.17	0.00	439.52	0.51 (3) NS		90.9 NS	33.7 NS	130.31 (3) NS	ND	ND (~23) NS	1,490 NS	NS	NS
	3/18/2010	452.69	13.17 NM	NM	439.32 NM	ND	ND	43.3	7.4	50.7	ND	ND (<25)	1,160	516	NS
19 ft. sample	8/24/2010	453.52	15.73	0.00	437.79	1.8	3	238	58.4	301.2	ND	ND (~23)	3.000	567	NS
27 ft. sample	8/24/2010	453.52	15.73	0.00	437.79	13	2	127	31.3	173.3	53.1	47.6	2,080	655	7.3
	1/11/2011	453.52	16.36	0.00	437.16	1.8	8.7	492	294	796.5	1.8	ND	7,180	2,360	75.4
·	6/23/2011	453.52	15.20	0.00	438.32	0.76 (J)	3.8	114	19.9	138.46 (J)	0.75 (J)	ND	1,640	772	12.6
-	9/29/2011	453.52	14.99	0.00	438.53	1.5	6.7	330	200	538.2	1.7	18.8 (J)	3,060	2,620	48.0
-	12/21/2012	453.52	14.86	0.00	438.66	3.7	2.8	13.6	3.0	23.1	6.7	276	452	422	32.9
-	3/21/2012	453.52	15.26	0.00	438.26	4.0	3.4	128	10.1	145.5	4.5	198	1.820	1,390	11.9
	5/16/2012	453.52	15.60	0.00	437.92	2.3	3.5	138	55.7	199.5	2.9	126	2.270	1.330	20.5
	8/29/2012	453.52	15.84	0.00	437.68	3.5	9.3	392	354	758.8	3.5	96.3	6,070	1,530	85.7
	12/19/2012	453.52	16.06	0.00	437.46	3.2	8.9	464	424	900.1	9.7	44.3 (J)	8,770	1,760	153
	3/20/2013	453.52	14.45	0.00	439.07	1.8	7.8	208	289	506.6	3.7	ND	4,880	1,400	171
	6/19/2013	453.52	15.46	0.00	438.06	1.6	6.1	193	150	350.7	2.4	5.4 (J)	3,980	1,690	80.0
	9/19/2013	453.52	16.49	0.00	437.03	2.4	8.0	386	259	647.4	2.8	ND	6,250	1,520	162
	11/22/2013	453.52	16.56	0.00	436.96	2.1	9.0	481	295	787.1	3.8	10.1 (J)	8,920	1,230	197
	3/20/2014 453.52 14.60 0.00 43		438.92	2.1	3.2	147	20.3	172.6	1.5	ND	2,830	1,560	29.2		
	6/18/2014 453.52							Inaccessit	ole - Sample	d on 6/24/201	4				
***	*** 6/24/2014 453.52 16.89 0.00 43				436.63	4.8	10.5	396	284	695.3	32.1	256	8,400	***	34.1
***	6/30/2014	453.52	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	1,840	NS
	9/23/2014	452.69	18.44	0.00	434.25	1.3	5.5	350	389	745.8	28.3	125	8,640	232	159
	12/23/2014	452.69	19.02	0.00	433.67	1.4	4.3	200	177	382.7	29.6	90.1	5,990	1,030	91.8
	3/24/2015	452.69	18.67	0.00	434.02	3.6	1.9	97.4	53.4	156.3	80.0	130	3,540	463	56.2
	6/22/2015	452.69	18.29	0.00	434.40	5.0	3.6	117	117	242.6	51.0	145	2,980	1,580	45.7
	9/21/2015	452.69	18.42	0.00	434.27	5.9	2.6	77.0	73.2	158.7	18.0	89.7	3,460	902	27.3
	12/9/2015	452.69	18.81	0.00	433.88	7.3	2.5	63.3	40.4	113.5	18.1	93.2	2,080	714	6.4
	3/8/2016	452.69	18.16	0.00	434.53	8.9	1.6	36.9	11.6	59.0	81.5	138	1,990	785	2.8 (J)
	6/7/2016	452.69	18.19	0.00	434.50	8.3	1.5	32.0	14.4	56.2	25.3	73.8	1,390	904	5.5
	9/13/2016	452.69	18.62	0.00	434.07	8.5	1.5	31.6	15.6	57.2	10.7	73.5	2,600	925	5.0
	11/21/2016	452.69 452.69	19.14 19.63	0.00	433.55 433.06	7.6	<u>1.8</u> 1.1	39.0 27.8	21.8 14.0	70.2 49.8	7.4	77.1 ND	2,240	564	7.7
	3/9/2017 6/7/2017		19.63	0.00		6.9		-	14.0 7.8			ND 94.7	1,720	434	4.5
*	6/7/2017 9/6/2017	452.69 452.69	18.89	0.00	433.80 433.91	6.2	0.81(J) 2.2	8.5 42.6	7.8	23.31 (J) 86.8	43.2 8.2	94.7 64.6	1,130	585	ND (<1.0)
	9/6/2017	452.69	18.78	0.00	433.91	6.6 8.3	3.3	42.6	35.4 56.2	131.0	9.2	96.2	1,630 1,560	665 893	6.7 10.5
	3/6/2018	452.69	19.07	0.00	433.62	8.3 3.3	0.56 (J)	<u>63.2</u> 3.3	2.2	9.36 (J)	9.2 21.0	96.2	1,560	893 517	10.5 ND (<1.1)
	6/20/2018	452.69	19.31	0.00	433.38	3.3 18.4	0.56 (J) 3.4	3.3 59.1	47.2	9.36 (J) 128.1	21.0 52.7	187	1,810	517 866	ND (<1.1) 12.0
	9/5/2018 452.69 17.38 0.00 435.31		18.4	2.1	27.8	20.6	63.4	52.7 14.2	100	1,810	715	4.6 (J)			
ŀ			0.00	435.72	5.1	3.6	31.0	19.0	58.7	14.2	ND (<5.8)	1,410	537	4.8 (J) 9.0	
	11/13/2019 452.69 18.28 0.00 434.41			15.7	12.5	112	96.9	237	0.80 (J)	8.0 (J)	2,540	1,380	55.7		
ļ I		.02.00				5	1.000	700	10.000	NA	20	NA	47	47	0.7
	MDE MEAT GNCSG**					5	1,000	, 00	10,000	in A	20	in A	-1	-1	0.1

Viel No. Unite Eventsor Impact (eq.1) <													-			
2222000 RVVD 1728 0.00 NVVD 144 0.94 108 247 853 153 153 153 153 153 153 153 153 153 1	Well No.	Date	Elevation*	Water	Thickness	Elevation*			benzene							Naphthalene (μg/L)
Control ST102000 NSVD 71.4 0.00 NSVD 14.5 68 343 1.330 1.53	OW-1	11/22/2004	NSVD	18.36	0.00	NSVD	74.8	169	919	5,220	6,383	25	NS	NS	NS	NS
0 to 0 fert 8742000 NSVD 14.31 193 880 3.800 4.327 5.9 NS NS NS NS Burset: 2702000 NSVD 17.87 0.00 NSVD 17.8 NS	-	2/23/2005	NSVD	17.93	0.00	NSVD		9.4	168	621	803		NS	NS	NS	NS
Serrer 118/2000 NSVD 14.00 NSVD 14.00 NSVD 14.00 17.8 34 1.000 NSVD NS	Casing:						14.5									NS
Streem: 2102006 NEVD 17.8 0.00 NEVD 1.8 11.2 77.3 328 11.8 NE <	0 to 9 feet															NS
9 19 3 A ket 9 15/2008 9 19 0 3 A ket 9 15/2008 9 19 0 18 15 9 0 0.00 9 18 0 18 15 9 0 0.00 9 18 0 18 15 9 0 0.00 9 18 0 12 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 10 3 1 9 9 10 3 1 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 10 3 1 9 9 9 10 3 1 9 9 9 10 3 1 9 9 9 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1																NS
B9.2000 NSVD 18.1 0.00 NSVD 12.(J) 16.8 2.66 10.8 NS							-									NS
10172200E NSVD 16.50 0.00 NSVD 11 16.6 268 712 1.000 17.2 NS NS NS NN 8/242007 NSVD 17.64 0.00 NSVD ND 111 210 44.0 661 4.2 ND 6.300 2.400 NN 8/242007 NSVD 16.8 0.00 NSVD ND 4.7 16.3 3.1 12.8 3.6 10.0 2.400 NN 9/242008 NSVD 18.0 0.00 NSVD 0.07/11 11.1 15.7 12.1 13.0 8.400 1.400 NN 1.400 NN 1.400 1.400 NN 1.400 NN 1.400 NN 1.400 1.500 NN 0.671 1.11 3.52 3.510 NN NN 1.600 NN 0.671 1.11 3.52 1.411 1.600 NN 1.600 NN NN NN NN NN NN NN <td>9 to 34 feet</td> <td></td>	9 to 34 feet															
4/112007 NSVD NSVD ND 28 320 1/40 7.7 ND 1/4.000 3000 NN 12272007 NSVD 19.14 0.00 NSVD ND 5.8 120 3.1 128.9 3.3 13 9.600 2.400 NN 12272007 NSVD 16.84 0.00 NSVD ND 5.8 120 3.1 128.9 3.3 13 9.600 2.400 NN 6252008 NSVD 16.00 NSVD ND 5.7 100 ND 5.8 100 ND 5.8 100 1.8 ND 4.40 NN 4.40																
ep/42007 NSVD NSVD NSVD ND 11 210 440 661 4.2 ND 6.900 2.400 NN 3272000 NSVD 18.38 0.00 NSVD ND 4.2 66 382.5 455.7 5.6 7.6 9.200 2.000 NN 6242003 NSVD 16.36 0.00 NSVD 0.00 1.6 1.00 3.47 513.7 ND ND 6.800 1.460 NN 1.11 3.60 1.460 NN 1.400 1.410 1.410 1.410 1.410 1.410 1.410 1.410 1.410 1.41												-				NS
122720207 NSVD 1890 0.00 NSVD ND 5.8 120 3.1 122.9 3.3 13 5.600 2.400 NN 6252036 NSVD 18.4 0.00 NSVD ND 8.7 165.7 5.0 7.6 5.200 2.00 0.00 NSVD 116 1170 372 555.4 121 33.1 3.6 6.00 1.600 NSVD 0.00 NSVD NS NS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NS</td></t<>																NS
32727000 NNV N D 4.2 0.90 382.5 445.7 5.0 7.6 5.200 N.500 1.400 N.500 1.400 N.50 1.500 1.410 N.500 1.400 1.5000 1.5000 1.5000																
0242000 NSVD 0.630 N.VD 0.07 (J) 11.6 170 172 154.3 (J) 8.400 1.550 N.N 3312000 NSVD 15.9 0.00 NSVD 0.40 N.N N.N 1.1 1.1 1.1 1.1 1.1 N.N <																
12/17/2006 NSVD 15/35 0.00 NSVD 0.44 (J) 6.2 96.3 24/8 3510 ND 6.0725 1.140 NN 6/22/000 NSVD 17.74 0.00 NSVD NO 3.12 157 111 3.12 157 111 1.0 ND (<25)		6/25/2008	NSVD	NM	NM	NSVD	ND		163	347	518.7	ND	ND	8,900	1,400	NS
33/12/2000 NSVD 919 0 0.0 NSVD 0.00 NSVD 0.00 NSVD 0.00 NSVD 0.00 NSVD 0.00 NSVD 0.00 NSVD NS NN NN <td></td> <td>NS</td>																NS
6/22/2006 NSVD 17.74 0.00 NSVD 17.74 0.00 NSVD 17.0 0.00 NSVD NN NN																NS
9/25/2008 NSVD 18:10 0.00 NSVD NS													(- /			
12/14/2009 NSVD 16.51 0.00 NSVD NS NS <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>												-				
12282009 NSVD NM NM NM NM NM NS																
317/2010 NSVD NS																
31182010 NSVD NM NM ND															1 -	
B 12890 B 252010 455.81 19.27 0.00 437.54 0.71 () 14.7 276 658.41 () ND ND 6.760 2.290 NN B 10896 B 222010 455.81 19.97 0.00 437.54 0.86(.) 13.1 14.3 376 532.91 () ND ND 7.960 2.800 N1 6 222011 455.81 17.56 0.00 438.25 ND 2.0 41.0 110 153.0 ND ND 3.280 2.868 65.3 12202012 455.81 17.56 0.00 438.25 ND 2.0 41.0 110 153.0 ND ND ND 4.56 65. 65.10 7.41 () 2.6 7.4 1.0 110 11.8 7.4 7.0.96 () ND ND 5.666 6.40 7.0 5.64 63.0 7.60 7.4 7.2.96 () ND ND 7.60 64.1 2.8 54.3 50.50 1																
# Hangel B/22/2010 455.81 19.27 0.00 437.54 0.88 (j) 13.4 13.9 33.4 637.28 (j) ND ND 8.290 2.600 N1 1/10/2011 455.81 19.73 0.00 437.08 ND 0.22 (j) 4.3 9.1 13.6 (j) ND ND ND 7.960 2.800 13.3 1/22/20121 455.81 17.66 0.00 433.25 ND 2.0 41.0 110 115.0 ND ND A430 465 61.1 1.760 7.44 4.430 465 61.1 1.760 7.44 4.430 465 61.1 1.760 7.41 (j) 0.87 (j) ND ND A430 465 61.3 1.760 7.41 (j) 0.71 (j) ND A430 465 61.3 1.760 7.41 (j) 0.87 (j) ND A430 465 61.3 1.760 1.760 7.41 (j) 0.71 (j) ND ND A530 5.600 1.840 7.60 7.61 (j) ND A130 2.600 7.61 (j) 1.710 ND	22 ft comple												(- /			
1/10/2011 455.81 18.99 0.00 436.82 0.81(u) 13.1 143 376 532.91(u) ND ND 7.960 2.800 141 9222011 455.81 17.56 0.00 438.25 ND 0.20(u) 41.0 110 153.0 ND ND 3320 288 53.1 12/202012 455.81 17.74 0.00 440.32 0.53(u) 2.2 33.9 124 160.63(u) ND ND 6.030 1.760 6.030 1.760 6.030 1.760 6.030 1.760 6.030 1.760 6.030 1.760 6.030 1.760 6.030 1.760 7.4 6.030 1.760 7.4 6.030 1.760 7.4 6.030 1.760 7.4 7.4 0.00 4.376 0.800 1.28 5.43 10.801 0.741 10.00 4.376 0.800 1.20 2.15 8.45 10.801 0.741 ND 0.4300 0.52 1.247																ND
6/22.011 455.81 18.73 0.00 437.08 ND 0.20 (J) 4.3 9.1 13.6 (J) ND ND 353 1,110 4.1 (J) 12/20/012 455.81 15.49 0.00 443.02 0.53 (J) 2.2 233.9 124 160.63 (J) ND ND 433 465 651. 32/20/2012 455.81 17.84 0.00 437.97 0.41 (J) 2.5 24.2 107 134.11 (J) 0.87 (J) ND 6.030 1.760 74. 51/20212 455.81 10.00 437.50 0.54 (J) 2.8 77.8 145 27.30 (J) 0.42 (J) ND 4.560 1.840 70. 4.561 18.80 71.4 1.720 (J) 0.45 (J) ND 4.530 4.520 1.260 4.1 1.161 1.6 6.61 1.720 (J) ND 4.520 1.260 4.51 1.840 (J) ND ND 4.501 1.260 4.51 1.602 (J) 1.6 5.53.7<	Lo Roumpio															138
9282011 458.81 17.56 0.00 440.25 ND 2.0 41.0 110 150.0 ND ND 3.920 226 53.0 12202012 455.81 17.64 0.00 437.97 0.41.01 2.5 2.4.2 107 134.11.01 0.07.7 0.60.00 1.760 74. 5/52012 455.81 12.016 0.00 437.50 0.54.01 2.8 54.3 95.0 152.64.01 ND ND 5.660 1.840 70. 12/82012 455.81 18.61 0.00 437.76 0.80.01 2.0 2.15 84.5 106.80.01 0.74.01 ND 4.800 4.80 71. 3/192013 455.81 10.63 0.00 437.76 0.80.01 2.0 21.5 84.5 106.80.01 0.74.01 ND 4.330 2.180 44.5 108.80.01 0.74.01 ND 4.330 2.180 45.7 1.85.7 1.86.7 1.227.30.1 0.55.7 1.280 <td></td>																
12202012 455.81 15.49 0.00 44.032 0.53.01 2.2 33.9 124 160.63.01 ND ND 44.30 44.55 3202012 455.81 120.16 0.00 435.65 0.65.01 1.11 11.8 57.4 70.95.01 ND ND 5.066 1.760 74.4 45/52012 455.81 10.60 437.75 0.94.01 2.8 54.3 95.0 152.84.01 ND ND 5.066 1.840 70. 12/16/2012 455.81 10.66 0.00 437.76 0.90.01 2.0 2.15 84.5 108.60.01 0.74.(1) ND 5.066 1.420 86. 3/19/2013 455.81 19.03 0.00 437.76 ND 2.5 53.7 68.5 12.47 ND ND 5.30 64.5 12.47 ND ND 5.30 64.93.01 0.52.01 ND 1.200 65.0 1.100 1.200 45.5 1.116.4 12.4									_	-						53.9
5/15/2012 455.81 20.16 0.00 435.65 0.05 (.) 1.1 11.8 57.4 70.95 (.) ND ND 2.30 514 29. 8/28/2012 455.81 18.64 0.00 437.17 0.90 (.) 3.6 77.8 145 227.30 (.) 0.42 (.) ND 4,890 1,280 58. 3'192013 455.81 18.05 0.00 437.76 0.80 (.) 2.0 21.5 84.5 108.80 (.) 0.74 (.) ND 4,50 1.280 44. 6'182013 455.81 19.00 437.69 ND 1.5 21.8 45.1 71.4 ND ND 3,510 1,220 45.81 1,220 65. 9'192013 455.81 19.03 0.00 436.87 ND 2.5 53.7 68.5 124.7 ND ND 5.61 1.620 98. 3'102014 455.81 17.2 0.00 436.99 2.2 3.5 47.6 65.1																61.8
8/28/2012 455.81 18.31 0.00 437.50 0.54 (J) 2.8 54.3 95.0 152.64 (J) ND 5.660 1.480 70. 12/18/2012 455.81 18.64 0.00 437.76 0.80 (J) 2.0 21.5 84.5 108.80 (J) 0.74 (J) ND 4.590 41. 6*18/2013 455.81 17.91 0.00 437.76 ND 2.5 53.7 68.5 12.47. ND ND 4.330 2.190 56. 1122/2013 455.81 19.3 0.00 436.68 0.38 (J) 1.7 77.4 55.64.5 10.47.7 ND ND 5,610 1,220 98. 3/20/2014 455.81 18.82 0.00 436.99 2.2 3.5 47.6 65.1 118.4 7.9 ND 6,150 **** 66/30/2014 455.31 20.88 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7.780		3/20/2012	455.81	17.84	0.00	437.97	0.41 (J)	2.5	24.2	107	134.11 (J)	0.87 (J)	ND	6,030	1,760	74.4
12/18/2012 455.81 18.64 0.00 437.77 0.90 (J) 3.6 77.8 145 227.30 (J) 0.42 (J) ND 4.890 1.280 58. 3/19/2013 455.81 18.05 0.00 437.90 ND 1.5 21.5 84.5 108.80 (J) 0.74 (J) ND 4,330 2,190 56. 9/19/2013 455.81 19.03 0.00 436.78 ND 2.5 53.7 66.5 124.7 ND ND 3,910 1,200 65. 3/20/2014 455.81 19.33 0.00 436.68 0.38 (J) 5.1 116 92.4 213.88 (J) ND ND 5.61.09 *** 66.1 118.4 7.9 ND 6.150 *** 66.1 118.4 7.9 ND 6.150 *** 66.30/2014 455.81 NN <		5/15/2012	455.81	20.16	0.00		0.65 (J)				70.95 (J)			2,630	514	29.4
3/19/2013 455.81 18.05 0.00 437.76 0.80 (j) 2.0 21.5 84.5 108.80 (j) 0.74 (j) ND 3.670 1.280 41. 6/18/2013 455.81 17.91 0.00 437.90 ND 2.5 53.7 68.6 124.7 ND ND 4,330 2,190 56. 11/2/2/2013 455.81 19.13 0.00 436.78 ND 2.5 53.7 68.6 124.7 ND ND 5.910 4.100 1.200 65. 3/20/2014 455.81 17.24 0.00 436.89 0.22 3.5 47.6 65.1 118.4 7.9 ND 6.150 *** 66.0 118.4 7.9 ND 6.56 7.760 1.770 7.7 9/23/2014 455.31 20.88 0.00 434.43 0.43 (j) 1.6 53.3 135 190.33 (j) 1.5 5.67 7.760 1.770 7.7 12/28/2014 455.31		8/28/2012 455.81 18.31 0.00												70.0		
6/18/2013 455.81 17.91 0.00 437.90 ND 1.5 21.8 48.1 71.4 ND ND 4,330 2,190 56. 9/19/2013 455.81 19.03 0.00 436.68 0.80 2.5 53.7 68.5 124.7 ND ND 3,910 1,200 65. 11/22/2014 455.81 19.13 0.00 436.68 0.33.01 1.7 27.4 35.5 64.93.01 0.52.01 ND 4,100 1,420 45. **** 6/18/2014 455.81 NM NM NM NS 1.70 77.0 1.170 77. 12/23/2014 455.31 2.0.8 0.00 434.43 0.41.01 1.6 53.3 135 19.03.01 1.5 56.7 7.780 1.700 77. 12/23/2014 455.31 2.0.8 0.00 434.43		12/18/2012 455.81 18.64 0.00														58.8
9/19/2013 455.81 19.03 0.00 436.76 ND 2.5 53.7 68.5 124.7 ND ND 3.910 1.200 65. 11/22/2013 455.81 19.13 0.00 436.66 0.38 (J) 5.1 116 92.4 213.88 (J) ND ND 5.810 1,620 98. **** 6/18/2014 455.81 17.24 0.00 438.67 0.33 (J) 1.7 27.4 35.5 64.39 (J) 0.52 (J) ND 6,150 **** 6/18/2014 455.81 18.82 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 12/23/2014 455.31 20.28 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 12/23/2014 455.31 21.28 0.00 434.73 1.4 0.32 (J) ND ND									-						1	
11/22/2013 455.81 19.13 0.00 436.68 0.38 (J) 5.1 116 92.4 213.88 (J) ND ND 5,810 1,620 98. 3/20/2014 455.81 17.24 0.00 436.87 0.33 (J) 1.7 27.4 35.5 64.93 (J) 0.52 (J) ND 4,100 1.240 45. *** 6(18)/2014 455.81 18.82 0.00 436.99 2.2 3.5 47.6 65.1 118.4 7.9 ND 6,150 *** 66. 9/23/2014 455.31 20.88 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 12/23/2014 455.31 21.08 0.00 434.23 0.47 (J) 0.4 1.31 34.2 49.51 1.5 3.9.9 4,310 1.280 23. 3/24/2015 455.31 20.58 0.00 434.73 1.4 0.32 (J) 1.0																
3/20/2014 455.81 17.24 0.00 438.57 0.33 (J) 1.7 27.4 35.5 64.93 (J) 0.52 (J) ND 4,100 1,240 45. *** 6/18/2014 455.81 18.82 0.00 438.99 2.2 3.5 47.6 65.1 118.4 7.9 ND 6,150 *** 66 6/30/2014 455.31 20.88 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 12/23/2014 455.31 21.28 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 3/24/2015 455.31 20.08 0.00 434.73 1.4 0.32 (J) 1.0 1.8 4.52 (J) 6.9 29.5 1,370 918 3.4 (J) 91/3/2015 455.31 20.73 0.00 434.58 1.7 0.27 (J) 1.4 1.8																
6/18/2014 455.81 18.82 0.00 436.99 2.2 3.5 47.6 65.1 118.4 7.9 ND 6,150 *** 66. 6/30/2014 455.81 NM NM NM NS NS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
6/30/2014 455.81 NM NM NM NS	***														***	66.4
9/23/2014 455.31 20.88 0.00 434.43 0.43 (J) 1.6 53.3 135 190.33 (J) 1.5 56.7 7,780 1,170 72. 12/23/2014 455.31 21.28 0.00 434.03 0.81 1.4 13.1 34.2 49.51 1.5 33.9 4,310 1,280 23. 3/24/2015 455.31 20.58 0.00 434.23 0.47 (J) 0.64 (J) 2.3 8.9 12.31 (J) ND ND 3,180 787 14. 6/22/2015 455.31 20.58 0.00 434.68 1.7 0.27 (J) 1.4 1.8 5.17 (J) 5.3 24.5 982 515 1.3 (J) 12/9/2015 455.31 20.73 0.00 434.08 2.3 0.23 (J) 0.93 (J) 1.3 4.76 (J) 6.9 19.5 1,040 455 0.76 (J) 0.76 (J) 3/8/016 455.31 20.58 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NN 11/2/	***													,	2.020	NS
3/24/2015 455.31 21.08 0.00 434.23 0.47 (J) 0.64 (J) 2.3 8.9 12.31 (J) ND ND 3,180 787 14. 6/22/2015 455.31 20.58 0.00 434.73 1.4 0.32 (J) 1.0 1.8 4.52 (J) 6.9 29.5 1,370 918 3.4 (J) 9/21/2015 455.31 20.73 0.00 434.68 1.7 0.27 (J) 1.4 1.8 5.17 (J) 5.3 24.5 982 515 1.3 (J) 12/9/2015 455.31 20.74 0.00 434.77 1.9 ND 0.36 (J) ND 2.26 (J) 6.1 ND 1,000 373 0.33 (J) 0.33 (J) 6.6 14.0 934 370 NN 9/13/2016 455.31 20.58 0.00 433.49 1.2 ND ND ND 0.99 3.3 10.7 583 209 ND ND 0.99 3.3 10.7 583 209 ND 11/21/216 4455.31 21.22 0.00 433.49 1.2 <																72.0
3/24/2015 455.31 21.08 0.00 434.23 0.47 (J) 0.64 (J) 2.3 8.9 12.31 (J) ND ND 3,180 787 14. 6/22/2015 455.31 20.58 0.00 434.73 1.4 0.32 (J) 1.0 1.8 4.52 (J) 6.9 29.5 1,370 918 3.4 (J) 9/21/2015 455.31 20.73 0.00 434.68 1.7 0.27 (J) 1.4 1.8 5.17 (J) 5.3 24.5 982 515 1.3 (J) 12/9/2015 455.31 20.54 0.00 434.77 1.9 ND 0.36 (J) ND 2.26 (J) 6.1 ND 1,100 373 0.33 (J) 0.33 (J) 6.6 14.0 934 370 NN 9/13/2016 455.31 20.58 0.00 433.49 1.2 ND ND ND 0.99 3.3 10.7 583 209 ND ND 1.76 (J) 4.2 11.4 486 344 NI 9/13/2016 455.31 21.62 0.00 433.49							()					1.5				23.6
9/21/2015 455.31 20.73 0.00 434.58 1.7 0.27 (J) 1.4 1.8 5.17 (J) 5.3 24.5 982 515 1.3 (J) 12/9/2015 455.31 21.23 0.00 434.08 2.3 0.23 (J) 0.93 (J) 1.3 4.76 (J) 6.9 19.5 1.040 459 0.76 (J) 3/8/2016 455.31 20.54 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NN 9/13/2016 455.31 21.03 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NN 9/13/2016 455.31 21.03 0.00 433.49 1.2 ND ND ND 0.99 3.3 10.7 583 209 NN 11/21/2016 455.31 21.82 0.00 433.27 1.5 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 ND 39/2017 455.31 21.27																14.6
12/9/2015 455.31 21.23 0.00 434.08 2.3 0.23 (J) 0.93 (J) 1.3 4.76 (J) 6.9 19.5 1,040 459 0.76 (J) 3/8/2016 455.31 20.54 0.00 434.77 1.9 ND 0.36 (J) ND 2.26 (J) 6.1 ND 1,100 373 0.33 (J) 6/7/2016 455.31 20.58 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NI 9/13/2016 455.31 21.03 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 11/21/2016 455.31 21.42 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 3/9/2017 455.31 21.22 0.00 433.49 1.2 ND 0.34 (J) 0.58 (J) 2.42 (J) 7.9 ND 845 298 ND (<1.0																3.4 (J)
3/8/2016 455.31 20.54 0.00 434.77 1.9 ND 0.36 (J) ND 2.26 (J) 6.1 ND 1,100 373 0.33 (J) 6/7/2016 455.31 20.58 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NN 9/13/2016 455.31 21.03 0.00 434.28 0.99 ND ND ND 0.99 3.3 10.7 583 209 NI 11/2/2016 455.31 21.02 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 3/9/2017 455.31 21.22 0.00 433.27 1.5 ND 0.34 (J) 0.58 (J) 2.42 (J) 7.9 ND 845 298 ND (<1.0																
6/7/2016 455.31 20.58 0.00 434.73 2.5 0.33 (J) 2.5 3.0 8.33 (J) 6.6 14.0 934 370 NI 9/13/2016 455.31 21.03 0.00 434.28 0.99 ND ND ND 0.99 3.3 10.7 583 209 NI 11/21/2016 455.31 21.82 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 3/9/2017 455.31 21.22 0.00 433.27 1.5 ND 0.34 (J) 0.56 (J) 7.3 11.5 572 356 ND (<1.0														,		0.76 (J)
9/13/2016 455.31 21.03 0.00 434.28 0.99 ND ND ND 0.99 3.3 10.7 583 209 NI 11/21/2016 455.31 21.82 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 3/9/2017 455.31 21.22 0.00 433.49 1.6 ND 0.47 (J) 0.69 (J) 2.76 (J) 7.3 11.5 572 356 ND (<1.0																
11/21/2016 455.31 21.82 0.00 433.49 1.2 ND 0.56 (J) ND 1.76 (J) 4.2 11.4 486 344 NI 3/9/2017 455.31 22.04 0.00 433.27 1.5 ND 0.34 (J) 0.58 (J) 2.42 (J) 7.9 ND 845 298 ND (<1.0																
3/9/2017 455.31 22.04 0.00 433.27 1.5 ND 0.34 (J) 0.58 (J) 2.42 (J) 7.9 ND 845 298 ND (<1.0 6/7/2017 455.31 21.22 0.00 434.09 1.6 ND 0.47 (J) 0.69 (J) 2.76 (J) 7.3 11.5 572 356 ND (<1.0													-			ND
6/7/2017 455.31 21.22 0.00 434.09 1.6 ND 0.47 (J) 0.69 (J) 2.76 (J) 7.3 11.5 572 356 ND (<1.0 9/6/2017 455.31 21.27 0.00 434.04 1.3 ND 0.37 (J) 0.45 (J) 2.12 (J) 4.7 12.8 583 348 ND (<1.1																
9/6/2017 455.31 21.27 0.00 434.04 1.3 ND 0.37 (J) 0.45 (J) 2.12 (J) 4.7 12.8 583 348 ND (<1.1 11/1/2017 455.31 21.53 0.00 433.78 1.4 ND 0.49 (J) 0.32 (J) 2.2 (J) 6.1 11.3 439 336 ND (<1.1				-												ND (<1.0)
11/1/2017 455.31 21.53 0.00 433.78 1.4 ND 0.49 (J) 0.32 (J) 2.2 (J) 6.1 11.3 439 336 ND (<1.1 3/6/2018 455.31 21.77 0.00 433.58 1.5 ND 1.3 8.6 11.4 7.5 19.7 962 511 ND (<1.1																ND (<1.1)
3/6/2018 455.31 21.77 0.00 433.54 1.5 ND 1.3 8.6 11.4 7.5 19.7 962 511 ND (<1.1 6/20/2018 455.31 20.03 0.00 435.28 1.7 0.45 (J) 2.8 16.1 21.1 (J) 6.2 14.2 746 469 ND (<1.1																ND (<1.1)
9/5/2018 455.31 19.61 0.00 435.70 2.2 ND 7.8 8.3 18.3 5.2 21.3 816 441 1.2 (J 7/18/2019 455.31 19.23 0.00 436.08 Not sampled Not sampled 11/13/2019 455.31 20.66 0.00 434.65 Not sampled		3/6/2018	455.31	21.77	0.00	433.54		ND	1.3	8.6	11.4				511	ND (<1.1)
7/18/2019 455.31 19.23 0.00 436.08 Not sampled 11/13/2019 455.31 20.66 0.00 434.65 Not sampled														-		ND (<1.1)
11/13/2019 455.31 20.66 0.00 434.65 Not sampled							2.2	ND	7.8	8.3			21.3	816	441	1.2 (J)
MDE MEAT GNCSG** 5 1,000 700 10,000 NA 20 NA 47 47 0.7		11/13/2019	455.31	20.66			-									
					MDE ME	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
YMW-1	6/13/2006	433.72	3.00	0.00	430.72	21.7	30.1	559	373	984	15.6	NS	NS	NS	NS
	7/17/2006	433.72	3.95	0.00	429.77	5.3	61.4	543	1,390	2,000	ND	NS	NS	NS	NS
Casing:	4/11/2007	433.72	4.89	0.00	428.83	5.5	140	1,200	3,300	4,646	ND	ND	37,000	ND	NS
0 to 2 feet	8/24/2007	433.72	5.94	0.00	427.78	4.6	60	660	850	1,574.6	ND	ND	12,000	1,500	NS
	12/27/2007	433.72	5.29	0.00	428.43	4.8	32	500	30	566.8	ND	ND	14,000	1,500	NS
Screen:	3/27/2008	433.72	5.19	0.00	428.53	5.6	73	610	1,510	2,198.6	1.2	ND	9,600	1,000	NS
2 to 14 feet	6/25/2008	433.72	1.68	0.00	432.04	4.0	92.7	648	1,700	2,444.7	ND	ND	14,300	1,980	NS
	9/24/2008	433.72	2.55	0.00	431.17	2.3	38.1	477	912	1,429.4	ND	ND	11,200	1,010	NS
	12/17/2008	433.72	2.30	0.00	431.42	2.0	38.5	346	1,000	1,386.5	ND	ND	10,700	731	NS
	3/31/2009	433.72	2.78	0.00	430.94	7.7	20.2	112	290	429.9	6.1	ND (<25)	7,790	567	NS
	6/22/2009	433.72	1.13	0.00	432.59	1.9 (J)	54.4	557	1,470		ND	(<130)	11,600	1,810	NS
-	9/25/2009	433.72	0.20	0.00	433.52	2.0	28.1	325	701	1,056.1	ND	ND (<50)	8,540	1,540	NS
-	12/14/2009	433.72	0.00	0.00	433.72	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/2009	433.72	NM	NM	NM	ND	40.7	401	1,490	1,931.7	ND	(<130)	10,700	1,760	NS
	3/17/2010	433.72	0.01	0.00 NM	433.71 NM	NS ND	NS 60.4	NS 407	NS 1.060	NS 4 507 4	NS ND	NS	NS	NS	NS NS
	3/18/2010		NM					407 635	1	1,527.4	ND ND	(<130)	10,500	1,080	
	8/25/2010 1/12/2011	434.11	1.39 1.51	0.00	432.72 432.60	2.3 (J)	81.1	635 464	1,250 1,620	1,968.4 2,126.4	ND ND	131 ND	5,350	796 2,080	234 168
-	6/22/2011	434.11 434.11	1.51	0.00	432.60	1.8 0.74 (J)	40.6 18.0	464	392		ND ND	ND ND	11,500 4,200	2,080	59.3
	9/28/2011	434.11	0.03	0.00	432.77	0.74 (J) 1.6	31.3	463		1,180.9	ND ND	ND	4,200	ND (<110)	59.3
	9/28/2011	434.11	1.01	0.00	434.08	1.0 1.4 (J)	52.0	463 792	1,530	2375.4 (J)	ND ND	ND ND	12,600	1,161	285
	3/20/2012	434.11	0.90	0.00	433.10	0.51 (J)	11.4	145	298			ND	1,690	1,181	58.6
+	5/15/2012	434.11	0.90	0.00	434.07	3.5	7.3	14.1	73.8	98.7	5.8	21.8 (J)	2,420	1,140	83.3
	8/28/2012	434.11	1.56	0.00	432.55	1.9 (J)	22.0	240	107	370.9 (J)	ND	21.0 (3) ND	5,040	1,850	156
	12/18/2012	434.11	0.50	0.00	433.61	2.0	23.4	178	143	346.4	ND	ND	3,790	616	15.1
ŀ	3/19/2013	434.11	0.03	0.00	434.08	1.3	54.4	444	645		ND	ND	6,810	807	184
The second se	6/18/2013	434.11	0.89	0.00	433.22	0.90 (J)	21.3	231	164	417.2 (J)	ND	ND	3.770	1.280	104
	9/19/2013	434.11	1.49	0.00	432.62	2.2	27.3	428	173	630.5	ND	ND	5,960	1,560	200
	11/22/2013	434.11	0.50	0.00	433.61	2.2	23.0	377	89.5	491.7	ND	ND	8,760	1,130	186
	3/20/2014	434.11	0.01	0.00	434.10	1.4	18.6	234	69.5	323.5	ND	ND	3,210	659	57.4
***	6/18/2014	434.11	3.62	0.00	430.49	3.3	19.2	96.6	104		ND	ND	4,710	***	132
***	6/30/2014	434.11	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	1,040	NS
ľ	9/23/2014	433.64	5.33	0.00	428.31	0.72	1.4	0.98 (J)	2.7	5.8 (J)	ND	ND	775	269	2.3 (J)
	12/23/2014	433.64	4.19	0.00	429.45	0.31 (J)	0.33 (J)	2.5	0.61 (J)	3.75 (J)	ND	ND	277	ND (<80)	ND
	3/24/2015	433.64	3.02	0.00	430.62	ND	ND	2.0	0.57 (J)	2.57 (J)	ND	ND	ND	ND (<77)	0.97 (J)
	6/22/2015	433.64	3.04	0.00	430.60	ND	ND	0.39 (J)	ND	0.39 (J)	ND	ND	ND	108	ND
	9/21/2015	433.64	4.94	0.00	428.70	0.60	ND	0.61 (J)	ND	1.21 (J)	ND	ND	205	144	0.81 (J)
	12/9/2015	433.64	4.37	0.00	429.27	ND	ND	1.7	ND	1.7	ND	ND	ND	160	ND
_	3/8/2016	433.64	3.31	0.00	430.33	ND	ND	ND	ND		ND	ND	ND (<55)	ND (<64)	ND
	6/7/2016	433.64	3.90	0.00	429.74	ND	ND	ND	ND	ND	ND	ND	ND (<55)	ND (<64)	ND
	9/13/2016	433.64	5.47	0.00	428.17	0.86	ND	ND	ND	0.86	ND	ND	157 (J)	112	ND
	11/21/2016	433.64	6.21	0.00	427.43	0.35 (J)	ND	ND	ND	0.35 (J)	ND	ND	ND (<100)	ND (<64)	ND
-	3/9/2017	433.64	5.40	0.00	428.24	0.41 (J)	ND	13.1	0.46 (J)	13.97 (J)	ND	ND	184	ND (<64)	ND (<1.0)
*_	6/7/2017	433.64	4.25	0.00	429.39	ND	ND	ND	ND	ND		ND	ND (<100)	ND (<64)	ND (<1.0)
Ļ	9/6/2017	433.64	4.44	0.00	429.20	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
ŀ	11/1/2017	433.64	5.37	0.00	428.27	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
Ļ	3/6/2018	433.64	4.16	0.00	429.48	ND	ND	0.86 (J)	ND	0.86 (J)	ND	ND	ND (<100)	90.6	ND (<1.1)
Ļ	6/20/2018	433.64	3.08	0.00	430.56	0.55	ND	ND	ND	0.55	ND	ND	ND (<100)	ND(<83)	ND (<1.1)
	9/5/2018	433.64	3.35	0.00	430.29 430.91	ND (<0.42)	ND (<0.53)	ND ND (<0.60)	ND (<0.59)	ND (<2.15)	ND (<0.51)		ND (<100) ND (<0.42)	ND(<53)	ND (<0.90)
ŀ	7/18/2019	433.64	2.73 4.19	0.00	430.91	ND (<0.43)	(: : :)	ND (<0.60) ND (<0.60)		ND (<2.15)		ND (<5.8)		ND(<53)	ND (<0.98)
	11/13/2019	433.64	4.19			ND (<0.43)	ND (<0.53)		· · · · · /		ND (<0.51)	ND (<5.8)	128	ND(<53)	ND (<2.5)
				MDE ME	EAT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7

	1	1						1							
Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (µg/L)
YMW-2	6/13/2006	431.42	0.89	0.00	430.53	3.3	47.6	211	656	917.9	2.3	NS	NS	NS	NS
	7/17/2006	431.42	1.25	0.00	430.17	14.9	25.6	533	285	858.5	10.7	NS	NS	NS	NS
Casing:	4/11/2007	431.42	1.60	0.00	429.82	15	24	630	670	1,339	14		1,400	3,000	
0 to 2 feet	8/24/2007	431.42 431.42	2.61	0.00	428.81 428.94	16 13	59 21	250 370	270 14	595 418	14 9.9		4,800 13,000	3,200 2,300	NS NS
Screen:	3/27/2008	431.42	1.06	0.00	430.36	8.2	21	260	395	684.2	7.7	ND	7,700	1,400	
2 to 14 feet	6/25/2008	431.42	1.00	0.00	430.42	11.5	38.5	66.3	163	279.3	10.5		6,010	1,550	NS
	9/24/2008	431.42	1.15	0.00	430.27	13.5	45.7	125	215	399.2	9	ND	7,710	2,000	NS
	12/17/2008	431.42	1.00	0.00	430.42	1.3	2.4	22.7	33.9	60.3	1.1	ND	920	ND	NS
	3/31/2009	431.42	1.66	0.00	429.76	8.1	23.2	164	357	552.3	5.8		7,750	1,030	
	6/22/2009	431.42	0.60	0.00	430.82	6.6	14.6	43.8	93.8	158.8	4.1		3,960	977	NS
	9/25/2009	431.42 431.42	0.30	0.00	431.12 431.32	9.1 NS	25.8	73.0 NS	178 NS	285.9 NS	6.5 NS	ND (<25) NS	5,290 NS	3,070 NS	NS NS
	12/14/2009	431.42	NM	0.00 NM	431.32 NM	4.8	NS 12.0	117	176		2.7		4,560	534	NS
	3/17/2010	431.42	0.74	0.00	430.68	NS	NS	NS	NS	NS	NS	ND (120)	NS	NS	NS
	3/18/2010	431.42	NM	NM	NM	4.9	17.0	115	187	323.9	3.8		3,670	549	
	8/25/2010	431.34	0.90	0.00	430.44	6.9	25.4	63.8	118	214.1	5.3	NĎ	5,820	1,580	239
	1/11/2011	431.34	1.39	0.00	429.95	7.0	23.6	199	251	480.6	4.8		7,190	1,950	215
	6/23/2011	431.34	0.87	0.00	430.47	1.8	3.0	2.1	7.8	14.7	5.5		2,140	649	
	9/29/2011	431.34	0.08	0.00	431.26	6.9	19.6	29.0	138	193.5	9.4		3,010	1,140	
	12/21/2012 3/21/2012	431.34 431.34	0.92	0.00	430.42 430.16	7.2 4.1	14.9 8.6	98.0 38.1	194 90.5	314.1 141.3	8.6 6.5		5,510	1,470	164
	5/16/2012	431.34	1.18	0.00	430.16	4.1 1.0 (J)	28.6	450	90.5		6.5 ND		3,800 8,100	859 1,820	86.2
	8/29/2012	431.34	0.59	0.00	430.75	4.7	15.2	25.4	135	180.3	4.7	39.0	4,490	1,820	
	12/19/2012	431.34	1.03	0.00	430.31	4.5	19.1	77.9	229	330.5	3.1	ND	6,000	1,300	148
	3/20/2013	431.34	1.00	0.00	430.34	2.9	12.4	55.1	133	203.4	5.0	ND	3,550	582	96.5
	6/19/2013	431.34	0.58	0.00	430.76	2.2	7.9	6.2	85.8	102.1	4.6		3,190	612	61.1
	9/19/2013	431.34	0.08	0.00	431.26	3.2	18.9	23.3	158		2.7	ND	3,770	1,250	102
	11/22/2013	431.34	0.50	0.00	430.84	0.98 (J)	4.1	12.3	67.9		1.4		2,180	747	34.3
***	3/20/2014 6/18/2014	431.34 431.34	0.00	0.00	431.34 430.11	4.5	7.6 0.43 (J)	124 9.4	178 24.6	314.1 35.32 (J)	4.7 ND	ND ND	4,340 729	934	76.6 2.2 (J)
***	6/30/2014	431.34	NM	0.00 NM	430.11 NM	0.09 NS	0.43 (J) NS	9.4 NS	24.0 NS	33.32 (J)			NS	183	2.2 (5) NS
	9/23/2014	431.37	2.51	0.00	428.86	3.4	ND	ND	ND				759	313	ND
	12/23/2014	431.37	2.64	0.00	428.73	2.7	ND	ND	ND	2.7	18.7	103	740	310	ND
	3/24/2015	431.37	2.78	0.00	428.59	3.0	0.27 (J)	ND	ND	3.27 (J)	22.6		671	309	ND
	6/22/2015	431.37	2.51	0.00	428.86	2.4	ND	ND	ND	2.4	12.7	87.7	336	315	
	9/21/2015	431.37 431.37	2.58	0.00	428.79	4.0 6.8	ND	ND		-		150 202	391 671	320 345	ND
	12/9/2015 3/8/2016	431.37	3.94 2.97	0.00	427.43	2.2	1.6 ND	0.96 (J) ND	5.7 ND	15.06 (J) 2.2	16.5 19.6	96.2	364	345 ND (<64)	1.6 (J) ND
	6/7/2016	431.37	2.84	0.00	428.53	5.2	ND	ND	ND	5.2	14.3	99.4	222	ND (<64)	ND
	9/13/2016	431.37	2.44	0.00	428.93	3.3	ND	ND	ND	3.3	11.6		304	489	
	11/21/2016	431.37	2.94	0.00	428.43	5.8	ND	ND	ND	5.8	ND	185	645	260	ND
	3/9/2017	431.37	2.94	0.00	428.43	5.8	ND	0.51 (J)	0.45 (J)	6.76 (J)	7.9		727	ND (<64)	ND (<1.0)
	6/7/2017	431.37	3.10	0.00	428.27	1.1	ND	ND	ND	1.1			376	318	
	9/6/2017 11/1/2017	431.37 431.37	2.65 2.67	0.00	428.72	ND ND	ND ND	ND ND	ND ND			280 338	334 374	358 420	ND (<1.1) ND (<1.1)
	3/6/2018	431.37	2.85	0.00	428.70	0.53	ND	ND	ND	0.53	5.8		514	308	ND (<1.1) ND (<1.1)
	6/20/2018	431.37	2.58	0.00	428.79	ND	ND	ND	ND	ND			150 (J)	162	ND (<1.1)
	9/5/2018	431.37	2.51	0.00	428.86	ND	ND	ND	ND	ND		184	144 (J)	151	ND (<0.98)
	7/18/2019	431.37	3.01	0.00	428.36		ND (<0.53)	ND (<0.60)		ND (<2.15)	54.4		158 (J)	ND (<53)	ND (<0.98)
	11/13/2019	431.37	2.61	0.00	428.76	ND (<0.43)	ND (<0.53)	ND (<0.60)	ND (<0.59)	ND (<2.15)	9.4	27.5	337	178	ND (<2.5)
YMW-3	9/23/2014	440.39	9.41	0.00	430.98	ND	0.39 (J)	9.0	5.1	14.49 (J)	ND	ND	268	327	1.1 (J)
111110-3	12/23/2014	440.39	9.41	0.00	430.98	ND	0.39 (J) ND	9.0 ND	5.1 ND				200 ND	ND (<80)	1.1 (J) ND
Casing:	3/24/2015	440.39	9.00	0.00	430.33	ND	ND	ND	ND				ND	ND (<76)	ND
0 to 4.5 feet	6/22/2015	440.39	8.54	0.00	431.85	ND	ND	ND					ND	ND	ND
	9/21/2015	440.39	9.21		431.18								ND	ND (<58)	
Screen:	12/9/2015	440.39	8.83	0.00	431.56	ND	ND	ND	ND				ND	231	ND
4.5 to 19.5 feet	3/8/2016	440.39	8.63	0.00	431.76	ND	ND	ND	ND			ND	ND (<55)	ND (<64)	ND
	6/7/2016	440.39 440.39	8.86	0.00	431.53	ND	ND	ND		ND ND			ND (<55)	ND (<64) ND (<64)	
	9/13/2016 11/21/2016	440.39	9.54 10.44	0.00	430.85 429.95	ND ND	ND ND	ND ND	ND ND				ND (<100) ND (<100)	ND (<64) ND (<64)	
	3/9/2017	440.39	9.55		430.84	ND	ND	ND	ND				ND (<100)	ND (<64)	
ŧ	6/7/2017	440.39	8.82		431.57	ND	ND	ND					ND (<100)	ND (<64)	
	9/6/2017	440.39	8.84	0.00	431.55	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND (<83)	ND (<1.1)
	11/1/2017	440.39	9.34	0.00	431.05	ND	ND	ND	ND				ND (<100)	ND (<83)	
	3/6/2018	440.39	7.97	0.00	432.42	ND	ND	ND	ND				ND (<100)	ND (<83)	
	6/20/2018	440.39	8.27	0.00	432.12	ND	ND	ND	ND				ND (<100)	ND (<83)	
	9/5/2018 7/18/2019	440.39 440.39	8.48 8.12		431.91 432.27	ND (<0.43)	ND ND (<0.53)	ND (<0.60)	ND (<0.59)		ND (<0.51)		ND (<100) ND (<42)	ND (<53) ND (<53)	
	11/13/2019	440.39			432.27	· · · ·			ND (<0.59) ND (<0.59)		ND (<0.51) ND (<0.51)		ND (<42)	ND (<53) ND (<53)	
		0.00	0.00		AT GNCSG**	5	1,000	700	10,000	NA	20	NA	47	47	0.7
1							.,		,						.

Weil NO. Using Elevation (ugt)	g/L) (µg/L 1,050 612 1,190 2,460 1,560 1,560 414 1,790 2,490 299 925 1,300 134 ND (1,730 134 ND (1,730 10 (60) 10 (80) 10 (0 612 0 1,190 0 2,460 0 1,560 0 1,560 0 1,560 0 1,560 0 1,560 0 1,790 0 2,490 0 2,299 0 9,255 0 1,300 2 134 0 1,730 3 3833 6 582 4 2733 0 ND (<80) 0 ND (<80) 0 123 0 98.0 0 ND (<<64) ND (<<64)	780 240 240 470 280 480 110 828 040 550 550 830 550 688 591 010 625 570 688 591 010 625 764 80 764 80 80 80 80 80 80 80 80 80 80 80 80 80
Casing: 0 to 2 feet 12/2/20/14 43372 4.31 0.00 4/2.94 (s) 5.7 1.4.2 2.4.7 2.19 2.83.6 5.9 11.6.6 4.4/20 0 to 2 feet 6/2/2/015 433.72 4.06 0.00 42.96 (s) 4.9 5.6.6 21.6 3.6.3 376 439.5 2.4.5 11.4 4.280 9.2 13.7 31.2 289.5 347.2 38.9 163.5 5.480 Screen: 12/9/2015 433.72 4.44 0.00 42.92.42 1.3 1.4 39.0 44.89 10.68.8 8.82 9/13/2016 433.72 4.48 0.00 42.92.44 1.3 4.9 9.6 97.7 116 107.7 2.3.2 2.80 4.0404 9/13/2016 433.72 4.46 0.00 42.92.44 13.4 3.0 7.6 18.7 4.2.7 21.4 16.6 1.940 9/13/2016 433.72 4.48 0.00 42.94.64 1.3.4 3.0	612 1,190 2,460 1,560 1,560 1,560 1,560 1,790 2,490 299 925 1,300 134 ND (813 406 ND (273 10 (<80) 10 (<80) 10 (<64) 10 (<64) 10 (<64) 10 (<64) 10 (<64)	0 612 0 1,190 0 2,460 0 1,560 0 1,560 0 1,560 0 1,560 0 1,560 0 1,790 0 2,490 0 2,299 0 9,255 0 1,300 2 134 0 1,730 3 383 6 582 4 2733 0 ND (<80) 0 ND (<80) 0 ND (<80) 0 ND (<64) ND (<64) ND (<64)	240 470 280 4480 110 828 040 500 520 830 940 262 570 570 688 591 010 625 764 294 ND ND
Casing: 0 to 2 text 326/2015 433.72 4.06 0.00 429.66 4.0 21.6 36.6 434 4962 10.6 53.8 4.470 0 to 2 text 6/22/015 433.72 4.45 0.00 429.77 7.8 17.2 33.2 289 347.2 38.9 163 5.480 2 to 17 feet 12/20215 433.72 4.18 0.00 429.84 2.4 3.1 4.4 39.0 48.8 42.23 280 4.040 9/12/2016 433.72 4.18 0.00 429.45 1.4 4.4 39.0 48.8 822 4.040 9/12/2016 433.72 4.46 0.00 429.47 18.8 5.2 13.6 59.5 97.1 24.4 3.500 11/12/2016 433.72 4.46 0.00 429.47 19.6 4.8 8.9 47.4 70.7 59.9 ND 2.23 350 1.01 14.8 3.57 17.8 3.57 17.8	1,190 2,460 1,560 414 1,790 2,490 299 925 1,300 134 ND (1,730 406 ND (< 813 1 406 ND (< 813 1 406 ND (< 813 0 123 98.0 123 98.0 123 98.0 10 (<64) ID (<64) ID (<565 ND (<	1,190 2,460 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,300 2 1,300 2 1,300 2 1,300 2 1,300 2 1,300 2 1,300 2 1,300 3,333 3,383 4,662 5,562 4,0530 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>470 280 480 110 828 040 500 520 830 940 262 570 688 591 010 625 591 010 625 764 ND ND</td></t<>	470 280 480 110 828 040 500 520 830 940 262 570 688 591 010 625 591 010 625 764 ND ND
0 to 2 feet 6222015 43372 3.96 0.00 429.76 5.6 21.6 3.63 3.76 439.5 24.6 11.4 4.280 Screen: 129/2015 433.72 4.34 0.00 429.38 9.2 13.7 31.9 252 306.8 38.4 251 55.16 3/8/2016 433.72 4.18 0.00 429.54 3.1 4.4 30 48.9 10 68.8 822 3/8/2016 433.72 4.18 0.00 429.52 18.4 8.7 25.3 108 160.4 24.9 24.0 3.500 11/1217016 433.72 4.36 0.00 429.42 18.6 5.2 13.6 56.5 97.1 28.4 24.7 3.500 11/1217016 433.72 4.36 0.00 429.42 13.6 0.76.16.7 42.7 21.4 168 1.94 9/9/2017 433.72 4.41 0.00 429.45 5.0 ND <td< td=""><td>2,460 1,560 1,560 414 1,790 2,490 299 925 1,300 134 ND (1,730 383 AD (813 1 406 ND (< 582 ND (273 1D (<80) 123 98.0 123 98.0 10 (<64) 1D (<64) 1D (<64) ND (< 565 1D (<64) ND (<</td><td>2,460 1,560 1,560 1,560 1,560 2,490 2,490 2,490 2,490 2,490 2,290 1,300 2,134 1,730 3,333 6,231 1,630 1,730 3,333 6,231 1,730 3,333 6,233 8,133 6,233 9,813 5,406 9,800 ND (<80)</td> ND (<80)</td<>	2,460 1,560 1,560 414 1,790 2,490 299 925 1,300 134 ND (1,730 383 AD (813 1 406 ND (< 582 ND (273 1D (<80) 123 98.0 123 98.0 10 (<64) 1D (<64) 1D (<64) ND (< 565 1D (<64) ND (<	2,460 1,560 1,560 1,560 1,560 2,490 2,490 2,490 2,490 2,490 2,290 1,300 2,134 1,730 3,333 6,231 1,630 1,730 3,333 6,231 1,730 3,333 6,233 8,133 6,233 9,813 5,406 9,800 ND (<80)	280 480 110 828 040 500 520 830 940 262 570 688 591 010 625 764 829 764 ND ND
Screen: 2 to 17 feet 99/21/2015 433.72 4.45 0.00 429.27 7.8 17.2 33.2 299 347.2 38.4 251 5.110 2 to 17 feet 38/2016 433.72 4.18 0.00 429.84 9.2 13.7 31.9 252 306.8 38.4 251 5.110 67/2016 433.72 4.18 0.00 429.26 18.4 8.7 25.3 106 160.4 24.9 240 3.500 91/32016 433.72 4.45 0.00 429.42 19.6 4.8 8.4 4.4 60.7 50.9 ND 2.830 3/42017 433.72 4.45 0.00 429.46 13.4 3.0 7.6 18.7 42.7 24.4 61.9 1.940 9/62017 433.72 4.41 0.00 429.31 20.9 1.28.3 2.50 1.8 1.942 1.940 3.551 1.941 9/62018 433.72 4.42 0.00	1,560 1,560 414 414 1,790 2,490 299 925 1,300 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 582 ND (273 1D (<60) 123 98.0 1D (<64) ID (<64) ID (<64) ND (< 555 ID (<64) ND (< 565 ID (<64) ND (< 123 135 145 145 145 145 145 145 145 14	1,560 1,560 1,560 1,560 2,490 2,490 2,490 2,490 2,490 2,490 2,490 1,730 2,490 1,730 2,134 1,730 3,333 6,233 3,363 6,233 0,813 4,0582 4 2733 0,ND (<80)	480 110 828 040 500 520 830 940 262 570 688 591 010 625 764 888 010 625 764 ND ND
Screen: 129/2015 433/21 4.34 0.00 429.38 9.2 13.7 31.9 252 306.8 38.4 251 51.10 2 to 17 feet 38/2016 433.72 4.18 0.00 429.54 13.9 9.5 27.8 116 117.2 32.2 280 4.040 91/32016 433.72 4.46 0.00 429.54 18.8 5.2 116 117.2 32.2 280 4.040 1/12/12016 433.72 4.46 0.00 429.42 19.6 4.8 8.9 47.4 80.7 50.9 ND 2.83 500 3/6/2017 433.72 4.18 0.00 429.42 19.6 4.8 8.9 47.4 80.7 50.9 ND 2.83 50.0 50.7 61.6 42.7 2.4 1.96 4.9 1.96 4.8 8.9 47.4 80.7 50.9 ND 63.5 17.8 34.5 3.70 1.93 1.43.7 <	1,560 414 1,790 2,490 299 925 1,300 134 ND (1,730 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 813 1 406 ND (< 813 2 0 (<80) 10 (<80)	1,560 414 1,790 2,490 299 925 1,300 2 134 1,730 3333 623 541 50 10 1134 1133 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134	110 828 040 550 520 830 940 262 570 688 591 010 625 764 294 ND ND
2 to 17 feet 38/2016 433.72 4.18 0.00 429.54 2.4 3.1 4.4 39.0 48.9 10 68.8 828 67/2016 433.72 4.46 0.00 429.26 18.4 8.7 25.3 108 160.4 24.9 240 3.500 11/21/2016 433.72 4.85 0.00 429.42 19.6 4.8 8.9 9.71 28.4 247 3.520 3/9/2017 433.72 4.26 0.00 429.42 19.6 4.8 8.9 47.4 80.7 26.9 10.9 2.65 18.7 42.7 21.4 165 1.9 42.7 21.6 19.6 4.8 8.9 47.4 80.7 26.9 35.7 1.8 3.4 3.0 7.6 18.7 42.7 21.4 165 1.9 4.8 2.0 2.0 2.6 3.6 10.1 1.4 4.8 3.7 2.6 0.6 1.6 1.6 3.5 1.	414 1,790 2,490 299 925 1,300 134 1730 383 4 623 1730 383 4 623 ND (813 1 406 ND (582 ND (273 ID (<80)	3 414 1,730 2,490 0 2,490 0 299 9,250 300 0 1,300 2 134 0 1,730 3 383 6 263 1 582 1 583 1 583 1 583 1	828 040 500 520 830 940 262 570 688 591 010 625 764 ND ND
6/7/2016 433.72 4.18 0.00 429.54 13.9 9.5 27.8 116 167.2 32.3 280 4.040 9/13/2016 433.72 4.85 0.00 429.42 18.8 5.2 13.6 59.5 97.1 28.4 247 3.520 3/9/2017 433.72 4.26 0.00 429.42 19.6 4.8 6.9 47.4 60.7 56.9 ND 2.830 6/7/2017 433.72 4.16 0.00 429.42 19.6 4.8 6.9 47.4 60.7 60.9 7.2 1.4 169 1.940 9/6/2017 433.72 4.26 0.00 429.48 5.2 2.2 3.6 2.66 31.6 10.0 144 688 6/20/2018 433.72 4.01 0.00 429.51 10.40 0.72(J) 4.2 5.7 11.0 355 1.010 144 688 6/20/2018 433.72 4.16 0.00	1,790 2,490 299 925 1,300 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 582 ND (273 1D (<80) 123 98.0 1D (<64) ID (<64) ID (<64) ID (<64) ND (< 555 ND (123 10 (<10) 10 (1,790 2,490 299 925 1,300 2,134 1,730 2,134 1,730 2,133 3,333 3,333 4,623 5,406 5,540 4,552 1,730 ND (<80)	040 500 520 830 940 262 570 688 591 010 625 764 ND ND
9/13/2016 433 72 4.46 0.00 422.26 18.4 8.7 25.3 106 160.4 24.9 24.0 3.500 3/9/2017 433.72 4.30 0.00 429.42 19.6 4.8 6.9 47.4 80.7 50.9 ND 2.630 6/7/2017 433.72 4.20 0.00 429.42 19.6 4.8 6.9 47.4 80.7 50.9 ND 2.630 9/6/2017 433.72 4.16 0.00 429.45 0.42 0.9 12.9 35.9 286 355.7 17.8 345 3.570 3/6/2018 433.72 4.01 0.00 429.83 5.0 ND 0.63.01 ND 56.(J) 16.6 361 591 9/6/2018 433.72 4.01 0.00 429.93 1.8 ND (<0.50)	2,490 299 925 1,300 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 813 1 406 ND (< 582 ND (273 10 (<80) 10 (<80) 10 (<80) 10 (<80) 10 (<84) 10 (<64) 10 (<64) 565 10 (<64) ND (<	2,490 299 925 1,300 2 134 1,303 3333 623 3 4 273 0 0 0 134 406 582 0	520 940 262 570 688 591 010 625 764 ND ND
9/02017 433.72 4.30 0.00 429.42 19.6 4.8 8.9 47.4 80.7 50.9 ND 2.830 67/2017 433.72 4.26 0.00 429.46 13.4 3.0 7.6 18.7 42.7 21.4 150 1,940 9/62017 433.72 4.41 0.00 429.31 20.9 12.9 35.5 286 356.7 17.8 345 3,570 3/62018 433.72 3.89 0.00 429.43 6.2 2.2 3.6 29.6 41.6 10.0 144 468 6/20/2018 433.72 3.9 0.00 429.43 5.0 ND 0.63 (J) ND 5.6 (J) 10.6 361 591 9/9/2019 433.72 3.79 0.00 429.93 1.8 ND (<0.60)	925 1,300 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 582 ND (273 1D (<80) 123 98.0 1D (<64) 1D (<64) 1D (<64) 1D (<64) 1D (<565 ND (<	925 1,300 1,300 1,730 3,383 6,233 1,623 3,813 1,623 1,630 1,63	830 940 262 570 688 591 010 625 764 ND ND ND
Fright Fright<	1,300 134 ND (1,730 383 4 623 ND (813 1 406 ND (< 582 ND (273 1D (<80) 1D (<80) 1D (<80) 1D (<64) 1D (<64) 1D (<64) 565 ID (<64) ND (<	1,300 1,340 1,730 1,730 1,730 3,383 623 1,724 1,725 1,725 1,725 <td>940 262 570 688 591 010 625 764 ND ND ND</td>	940 262 570 688 591 010 625 764 ND ND ND
9/6/2017 433.72 4.18 0.00 429.54 0.49 (J) ND 0.70 (J) 16 2.79 (J) 0.46 (J) 7.2 (J) 262 11/1/2017 433.72 4.41 0.00 429.48 6.2 2.2 3.6 28.6 41.6 10.0 144 688 6/2/02018 433.72 3.29 0.00 429.48 5.0 ND 0.63 (J) ND 5.6 (J) 16.6 361 591 9/5/2018 433.72 3.79 0.00 429.93 1.8 ND (<0.53)	134 ND (1,730 383 4 383 4 623 ND (813 1 1 406 ND (582 ND (582 ND (273 10 (<80)	2 134 1,730 3 383 6 623 0 813 5 406 6 582 4 273 0 ND (<80) 0 ND (<80) 0 ND (<80) 0 123 0 98.0 0 ND (<64) 1 0 (<64)	262 570 688 591 010 625 764 ND ND
Intraction 443 72 4.41 0.00 429.31 20.9 12.9 35.9 286 355.7 17.8 345 3,70 3/6/2018 433.72 4.24 0.00 429.48 6.2 2.2 3.6 29.6 41.6 10.0 144 668 6/20/2018 433.72 3.89 0.00 429.83 5.0 ND 0.63(J) ND 5.6(J) 16.6 361 591 9/5/2018 433.72 4.01 0.00 429.71 10.4 0.72(J) 4.2 5.7 21.0(J) 14.0 355 1,010 7/18/2019 433.72 4.16 0.00 429.56 8.7 0.60(J) ND (<0.59)	1,730 383 4 623 ND (813 1 406 ND (< 582 ND (273 1D (<80) 1D (<80) 123 98.0 1D (<64) 1D (<64) 1D (<64) 565 1D (<64) ND (<	1,730 3333 623 813 5406 823 813 5406 813 50 813 532 813 813 546 532 813 813 813 813 813 813 910 123 910 910 123 910 123 910 123 910 123 910 123 910 123 123 123 123 123 123 123 123 123 123 123 123 123 124 125	570 688 591 010 625 764 294 ND ND
3/6/2018 433.72 4.24 0.00 429.48 6.2 2.2 3.6 29.6 41.6 10.0 144 688 6/20/2018 433.72 3.89 0.00 429.83 5.0 ND 0.63 (J) ND 5.6 (J) 11.6.6 361 591 9/5/2018 433.72 3.79 0.00 429.93 1.8 ND (<0.53)	383 4 623 ND (813 1 406 ND (582 ND (273 1 1D (<60)	3 383 623 5 406 4 582 4 273 5 ND (<80) ND (<80) 0 123 9 80. 0 ND (<64) ND (<64)	688 591 010 625 764 294 ND ND
9/5/2018 433.72 4.01 0.00 429.71 10.4 0.72 (j) 4.2 5.7 21.0 (j) 14.0 355 1,010 71/18/2019 433.72 3.79 0.00 429.93 1.8 ND (<0.50)	623 ND (813 1 406 ND (582 ND (10 (80) 10 (<80)	813 406 4 5 4 273 ND (<80)	010 625 764 294 ND ND
7/18/2019 433.72 3.79 0.00 429.93 1.8 ND (<0.53) ND (<0.59) <3.5 181 384 6225 11/13/2019 433.72 4.16 0.00 429.56 8.7 0.60 (J) ND (<0.59)	406 ND (< 582 ND (273 ID (<60)	406 582 ND (<80)	625 764 294 ND ND
11/13/2019 433.72 4.16 0.00 429.56 8.7 0.60 (J) ND (<0.60) ND (<0.59) <10.5 6.6 384 764 YMW-5 9/23/2014 430.70 4.42 0.00 426.28 ND ND ND ND 0.65 (J) 5.6 ND ND Casing: 3/24/2015 430.70 3.05 0.00 427.65 0.66 ND ND ND 0.65 7.7 7.0 (J) ND 0 to 1 feet 6/222015 430.70 3.52 0.00 427.65 0.92 ND ND ND 0.65 7.7 7.0 (J) ND 9/21/2015 430.70 3.52 0.00 427.18 0.54 ND ND ND 0.54 9.2 23.5 ND 1 to 16 feet 12/9/2015 430.70 3.01 0.00 427.71 0.38 (J) ND ND 0.38 (J) 6.8 12.6 ND (<55)	582 ND (273 ID (80) ID (<	Image: state	764 294 ND ND
YMW-5 9/23/2014 430.70 4.42 0.00 426.28 ND ND ND ND ND ND 0.181 0.63 (J) 6.6 ND 294 Casing: 0 to 1 feet 3/24/2015 430.70 5.52 0.00 425.18 0.25 (J) ND ND 0.25 (J) 5.6 ND ND 0 to 1 feet 6/22/2015 430.70 3.05 0.00 427.65 0.65 ND ND ND 0.65 7.7 7.0 (J) ND 9/21/2015 430.70 3.05 0.00 427.64 0.32 ND ND 0.54 9.2 2.5 ND Screen: 12/9/2015 430.70 3.16 0.00 427.74 0.38 (J) ND ND 0.38 (J) 6.8 19.7 ND (455) 9/13/2016 430.70 3.39 0.00 427.31 0.20 (J) ND ND ND 0.23 (J) 6.8 15.4 ND (<100)	273 ID (<80) ID (<80) 123 98.0 ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<	1 273 ND (<80)	294 ND ND
12/23/2014 430.70 5.52 0.00 425.18 0.25 (J) ND ND ND ND ND Casing: 3/24/2015 430.70 3.05 0.00 427.65 0.65 ND ND ND 0.655 7.7 7.0 (J) ND 9/21/2015 430.70 3.05 0.00 427.65 0.92 ND ND 0.92 6.3 10.3 ND 9/21/2015 430.70 3.52 0.00 427.18 0.54 ND ND 0.54 9.2 23.5 ND Screen: 12/9/2015 430.70 3.16 0.00 427.54 0.35 (J) ND ND 0.38 (J) 6.8 19.7 ND (<55)	ID (<80) ID (<80) 123 98.0 ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<64) 565	ND (<80) ND (<80)	ND ND
Casing: 0 to 1 feet 3/24/2015 430.70 3.05 0.00 427.65 0.65 ND ND ND 0.65 7.7 7.0 (J) ND 0 to 1 feet 6/22/2015 430.70 3.05 0.00 427.65 0.92 ND ND ND 0.92 6.3 10.3 ND 9/21/2015 430.70 3.52 0.00 427.65 0.92 ND ND ND 0.54 9.2 23.5 ND Screen: 12/9/2015 430.70 3.16 0.00 427.54 0.35 (J) ND ND 0.35 (J) 7.4 7.0 (J) ND 1 to 16 feet 3/8/2016 430.70 3.01 0.00 427.31 0.20 (J) ND ND 0.23 (J) 6.8 12.6 ND (<55)	ID (<80) 123 98.0 ID (<64) ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<	ND (<80) 123 98.0 ND (<64)	ND
0 to 1 feet 6/22/2015 430.70 3.05 0.00 427.65 0.92 ND ND ND 0.92 6.3 10.3 ND Screen: 12/9/2015 430.70 3.52 0.00 427.48 0.54 ND ND ND 0.54 9.2 23.5 ND Screen: 12/9/2015 430.70 3.16 0.00 427.41 0.38 (J) ND ND 0.35 (J) 7.4 27.3 ND 1 to 16 feet 3/8/2016 430.70 3.01 0.00 427.71 0.38 (J) ND ND 0.23 (J) 6.8 12.6 ND (<55)	123 98.0 ID (<64) ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<) 123) 98.0) ND (<64)) ND (<64)	
9/21/2015 430.70 3.52 0.00 427.18 0.54 ND ND ND 0.54 9.2 23.5 ND Screen: 12/9/2015 430.70 3.16 0.00 427.54 0.35 (J) ND ND ND 0.35 (J) 7.4 27.3 ND 1 to 16 feet 3/8/2016 430.70 3.01 0.00 427.71 0.38 (J) ND ND 0.38 (J) 6.8 19.7 ND (<55)	98.0 ID (<64) ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<	98.0 ND (<64) ND (<64)	ND
Screen: 12/9/2015 430.70 3.16 0.00 427.54 0.35 (J) ND ND ND 0.35 (J) 7.4 27.3 ND 1 to 16 feet 3/8/2016 430.70 2.99 0.00 427.71 0.38 (J) ND ND ND 0.38 (J) 6.8 19.7 ND (<55)	ID (<64) ID (<64) ID (<64) ID (<64) 565 ID (<64) ND (<	ND (<64) ND (<64)	
6/7/2016 430.70 3.01 0.00 427.69 0.23 (J) ND ND ND 0.23 (J) 6.8 12.6 ND (<55) 9/13/2016 430.70 3.39 0.00 427.31 0.20 (J) ND ND ND 0.20 (J) 6.6 15.4 ND (<55)	ID (<64) ID (<64) 565 ID (<64) ND (<		
9/13/2016 430.70 3.39 0.00 427.31 0.20 (J) ND ND ND 0.20 (J) 6.6 15.4 ND (<100) 11/21/2016 430.70 3.74 0.00 426.96 ND ND ND ND ND 6.2 26.2 ND (<100)	ID (<64) 565 ID (<64) ND (<	ND (<64)	
11/21/2016 430.70 3.74 0.00 426.96 ND ND ND ND 6.2 26.2 ND (<100) 3/9/2017 430.70 3.14 0.00 427.65 0.30 (J) ND ND ND 0.30 (J) 5.7 23.2 ND (<100)	565 ID (<64) ND (<		
3/9/2017 430.70 3.14 0.00 427.56 0.30 (J) ND ND 0.30 (J) 5.7 23.2 ND (<100) 6/7/2017 430.70 3.07 0.00 427.56 0.25 (J) ND ND ND 0.25 (J) 4.5 13.5 ND (<100)	ID (<64) ND (<		/
6/7/2017 430.70 3.07 0.00 427.63 0.25 (J) ND ND ND 0.25 (J) 4.5 13.5 ND (<100) 9/6/2017 430.70 2.98 0.00 427.72 ND ND ND ND 3.6 12.2 ND (<100)			
9/6/2017 430.70 2.98 0.00 427.72 ND ND ND ND 3.6 12.2 ND (<100) 11/1/2017 430.70 3.23 0.00 427.47 ND ND ND ND S.5 27.9 ND (<100)			
3/6/2018 430.70 2.83 0.00 427.87 ND ND ND ND 4.2 27.9 ND (<100) 6/20/2018 430.70 2.67 0.00 428.03 ND <	171 ND (
6/20/2018 430.70 2.67 0.00 428.03 ND ND ND ND 3.0 ND ND 9/5/2018 430.70 2.74 0.00 427.96 ND ND ND ND ND 3.3 ND ND (<100)	109 ND () 109	00)
9/5/2018 430.70 2.74 0.00 427.96 ND ND ND ND 3.3 ND ND (<100) 7/18/2019 430.70 2.36 0.00 428.34 Not sampled 11/13/2019 430.70 2.70 0.00 428.00 Not sampled YMW-6 9/23/2014 432.68 6.61 0.00 426.07 ND ND ND 1.5 26.9 ND	98.6 ND (
7/18/2019 430.70 2.36 0.00 428.34 Not sampled 11/13/2019 430.70 2.70 0.00 428.00 Not sampled YMW-6 9/23/2014 432.68 6.61 0.00 426.07 ND ND ND 1.5 26.9 ND			
11/13/2019 430.70 2.70 0.00 428.00 Not sampled YMW-6 9/23/2014 432.68 6.61 0.00 426.07 ND ND ND 1.5 26.9 ND	ID (<53) ND (<) ND (<53)	UU)
	ID (<80)	ND (<80)	ND
12/23/2014 432.68 5.69 0.00 426.99 ND ND ND ND ND 1.4 24.7 ND			ND
0 to 3 feet 6/22/2015 432.68 5.11 0.00 427.57 ND ND ND ND ND 2.4 65.6 ND	ND		
9/21/2015 432.68 6.11 0.00 426.57 ND ND ND ND ND 2.9 73.3 ND	76.9		
3 to 18 feet 3/8/2016 432.68 5.10 0.00 427.58 ND ND ND ND ND ND 3.3 91.0 ND (<55) 6/7/2016 432.68 5.36 0.00 427.32 ND ND ND ND ND ND 4.3 109 ND (<55)			
9/13/2016 432.68 6.38 0.00 426.30 ND ND ND ND ND 4.3 98.6 ND <100			
11/21/2016 432.68 7.05 0.00 425.63 ND ND ND ND ND 3.8 85.9 ND (<100)			
3/9/2017 432.68 6.25 0.00 426.43 ND ND ND ND ND A.5 ND ND (<100)			
6/7/2017 432.68 5.49 0.00 427.19 ND ND ND ND ND 4.9 97.3 ND (<100)		,	
9/6/2017 432.68 6.25 0.00 426.43 ND ND ND ND ND A0 89.6 ND (400)			
11/1/2017 432.68 6.65 0.00 426.03 ND ND ND ND 4.7 83.7 ND (<100) 3/6/2018 432.68 5.35 0.00 427.33 ND ND ND ND 5.0 85.6 ND (<100)			
3/0/2018 432.68 5.33 0.00 427.79 ND ND ND ND ND ND S.5 96.8 ND (<100)		, , , , , ,	/
7/18/2019 432.68 4.74 0.00 427.94 Not sampled			
11/13/2019 432.68 5.49 0.00 427.19 Not sampled			
YMW-7 9/23/2014 449.40 15.33 0.00 434.07 173 141 428 2.240 2.982 10.0 ND 17,500	1,670		500
12/23/2014 449.40 15.16 0.00 434.24 176 130 690 2,580 3,576 9.1 (J) ND 23,800	2,250		
Casing: 3/24/2015 449.40 15.54 0.00 433.86 142 78.0 261 2,330 2,811 11.4 ND 16,300	2,560		
0 to 18 feet 6/22/2015 449.40 15.22 0.00 434.18 134 37.4 146 828 1,145.4 9.1 ND 6,820	1,680		
9/21/2015 449.40 15.32 0.00 434.08 101 18.9 67.9 286 473.8 8.3 17.0 4,970 Screen: 12/9/2015 449.40 15.68 0.00 433.72 129 80.2 301 1,140 1,650.2 7.3 ND 14,100	736 1,630		
Bio 28 for the state of the sta	1,300		
6/7/2016 449.40 15.09 0.00 434.31 127 42.3 166 620 955.3 7.6 15.7 7,370			
9/13/2016 449.40 15.47 0.00 433.93 118 65.2 296 961 1,440.2 6.9 14.0 (J) 9,010		1,480	010
11/21/2016 449.40 15.69 0.00 433.71 97.2 68.1 313 1.080 1.558.3 ND ND 10,300	1,480		
<u>3/9/2017</u> 449.40 16.31 0.00 433.09 45.0 81.7 342 1.450 1.918.7 1.9 ND 12,000	1,480 841		
6/7/2017 449.40 15.24 0.00 434.16 60.0 76.2 303 1,310 1,749.2 2.6 (J) ND 13,100 9/6/2017 449.40 15.68 0.00 433.72 57.3 92.3 398 1,470 2,017.6 ND ND 13,200	1,480 841 1,290		
	1,480 841 1,290 2,350	2,350	
11/1/2017 449.40 15.91 0.00 433.49 48.5 89.61 3741 1.550 2.0621 NOI NOI 13.200	1,480 841 1,290 2,350 1,650	2,350 1,650	200
11/1/2017 449.40 15.91 0.00 433.49 48.5 89.6 374 1,550 2,062 ND ND 13,200 3/6/2018 449.40 16.12 0.00 433.28 37.9 54.1 267 1,190 1,549 1.4 ND 13,000	1,480 841 1,290 2,350 1,650 2,330	2,350 2,350 1,650 2,330	200 200
	1,480 841 1,290 2,350 1,650	2,350 0 1,650 0 2,330 0 2,170	200 200 000
3/6/2018 449.40 16.12 0.00 433.28 37.9 54.1 267 1,190 1,549 1.4 ND 13,000 6/20/2018 449.40 14.75 0.00 434.65 57.9 23.6 195 473 750 2.7 15.9 (J) 6,530 9/5/2018 449.40 14.43 0.00 434.97 64.9 10.1 105 207 387 3.5 12.1 3,810	1,480 841 1,290 2,350 1,650 2,330 2,170 1,100	2,350 1,650 2,330 2,370 1,100	200 200 000 530
3/6/2018 449.40 16.12 0.00 433.28 37.9 54.1 267 1,190 1,549 1.4 ND 13,000 6/20/2018 449.40 14.75 0.00 434.65 57.9 23.6 195 473 750 2.7 15.9 (J) 6,530 9/5/2018 449.40 14.43 0.00 434.97 64.9 10.1 105 207 387 3.5 12.1 3,810 7/18/2019 449.40 13.96 0.00 435.44 Not sampled Not sampled	1,480 841 1,290 2,350 1,650 2,330 2,170 1,100	2,350 1,650 2,330 2,370 1,100	200 200 000 530
3/6/2018 449.40 16.12 0.00 433.28 37.9 54.1 267 1,190 1,549 1.4 ND 13,000 6/20/2018 449.40 14.75 0.00 434.65 57.9 23.6 195 473 750 2.7 15.9 (J) 6,530 9/5/2018 449.40 14.43 0.00 434.97 64.9 10.1 105 207 387 3.5 12.1 3,810	1,480 841 1,290 2,350 1,650 2,330 2,170 1,100 ID (<53)	2,350 1,650 2,330 2,370 1,100	200 200 000 530

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
YMW-8	9/23/2014	446.91	13.63	0.00	433.28	56.4	46.8	638	2,270	3,011.2	50.8	ND	16,100	1,820	182
	12/23/2014	446.91	13.96	0.00	432.95	61.9	50.5	793	2,570	3,475.4	40.0	ND	17,800	2,450	216
Casing:	3/24/2015	446.91	12.91	0.00	434.00	ND	ND	ND	ND		ND	ND	ND	ND (<80)	ND
0 to 7 feet	6/22/2015	446.91	13.44	0.00	433.47	91.5	18.4	255	395	759.9	28.4	17.2	4,330	1,710	75.9
	9/21/2015	446.91	13.85	0.00	433.06	45.7	24.9	533	1,150	1,753.6	31.2	ND	16,600	1,900	145
Screen: 7 to 22 feet	12/9/2015 3/8/2016	446.91 446.91	13.94 13.05	0.00	432.97 433.86	39.5 ND	96.9 ND	631 ND	1,500 ND	2,267.4 ND	24.6 ND	ND ND	18,400 ND (<55)	2,470 ND (<64)	169 ND
7 to 22 leet	6/7/2016	446.91	13.05	0.00	433.80	72.4	14.6	341	185	613.0	29.1	20.9	4,260	1,020	77.1
	9/13/2016	446.91	14.03	0.00	432.88	37.0	14.0	806	1,790	2,750	26.1	30.6 (J)	14,700	3,440	200
	11/21/2016	446.91	14.39	0.00	432.52	22.9	113	710	2,240	3,085.9	18.8	ND	18,200	3,920	208
	3/9/2017	446.91	14.61	0.00	432.30	31.2	114	1,010	3,070	4,225.2	21.3	ND	20,400	2,620	297
	6/7/2017	446.91	14.07	0.00	432.84	41.9	70.9	953	2,840	3,905.8	22.4	47.8 (J)	19,500	3,080	251
	9/6/2017	446.91	14.28	0.00	432.63	25.1	155	1,060	3,190	4,430.1	18.4	ND	26,300	6,870	291
	11/1/2017	446.91	14.43	0.00	432.48	23.9	144	1,190	4,250	5,608	19.2	ND	21,600	4,510	301
	3/6/2018	446.91	14.07	0.00	432.84	36.3	76.0	1,240	4,660	6,012	21.6	102	26,400	4,570	325
	6/20/2018 9/5/2018	446.91 446.91	12.80 12.99	0.00	434.11 433.92	ND 29.3	ND 10.4	ND 202	ND 267	ND 509	ND 9.4	ND 17.4	ND (<100) 3,000	ND (<83)	ND (<1.1) 59.7
	7/18/2019	446.91	12.99	0.00	433.92	29.3	10.4	31.4	34.5	78.4	9.4 5.5		403	823 ND (<53)	6.1
	11/13/2019	446.91	13.63	0.00	433.28	26.8	46.1	673	1,000			ND (<29)	9,190	2,940	217.0
	11/10/2010	110.01	10.00	0.00	100.20	_0.0	10.1	0.0	1,000	1,1 10	10.0	112 (20)	0,100	2,010	2
YMW-9	9/23/2014	436.71	6.16	0.00	430.55	ND	ND	ND	ND		1.8	ND	ND	ND (<80)	ND
	12/23/2014	436.71	5.94	0.00	430.77	ND	ND	ND	ND	ND	1.6	ND	ND	ND (<80)	ND
Casing:	3/24/2015	436.71	5.41	0.00	431.30	ND	ND	ND	ND	ND	ND	ND	ND	ND (<80)	ND
0 to 2.5 feet	6/22/2015	436.71	5.81	0.00	430.90	ND	ND	ND	ND	ND	ND	ND	ND	ND (450)	ND
C	9/21/2015	436.71	6.17	0.00	430.54	ND	ND	ND	ND	ND	ND	ND	ND	ND (<58)	ND
Screen:	12/9/2015	436.71 436.71	5.86 5.43	0.00	430.85 431.28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (<55)	ND (<64)	ND ND
2.5 to 17.5 feet	3/8/2016 6/7/2016	436.71	5.43	0.00	431.28 430.78	ND ND	ND ND	ND ND	ND ND	ND ND	0.48 (J)	ND ND	ND (<55) ND (<55)	ND (<64) ND (<64)	ND ND
	9/13/2016	436.71	6.44	0.00	430.78	ND	ND	ND	ND	ND	0.48 (J) 0.67 (J)	ND	ND (<55) ND (<100)	ND (<64) ND (<64)	ND
	11/21/2016	436.71	6.50	0.00	430.21	ND	ND	ND	ND	ND	0.62 (J)	ND	ND (<100)	ND (<64)	ND
	3/9/2017	436.71	6.23	0.00	430.48	ND	ND	ND	ND	ND	0.94 (J)	ND	ND (<100)	ND (<64)	ND (<1.0)
	6/7/2017	436.71	6.13	0.00	430.58	ND	ND	ND	ND	ND	0.86 (J)	ND	ND (<100)	ND (<64)	ND (<1.0)
	9/6/2017	436.71	6.42	0.00	430.29	ND	ND	ND	ND	ND	0.92 (J)	ND	ND (<100)	ND (<83)	ND (<1.1)
	11/1/2017	436.71	6.34	0.00	430.37	ND	ND	ND	ND	ND	1.2	ND	ND (<100)	ND (<83)	ND (<1.1)
	3/6/2018	436.71	5.29	0.00	431.42	ND	ND	ND	ND	ND	ND	ND	ND (<100)	87.5	ND (<1.1)
	6/20/2018	436.71	5.73	0.00	430.98	ND	ND	ND	ND	ND	1.7	ND	ND (<100)	ND (<83)	ND (<1.1)
	9/5/2018 7/18/2019	436.71 436.71	5.88 5.65	0.00	430.83 431.06	ND	ND	ND	ND		1.7 sampled	ND	ND (<100)	ND (<53)	ND (<0.98)
	11/13/2019	436.71	5.87	0.00	430.84						sampled				
YP-1	9/23/2014	440.41	9.11	0.00	431.30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/2014	440.41	9.16	0.00	431.25	0.98	42.1	383	326	752.08	6.3	34.5	4,370	221	67.0
Casing:	3/25/2015	440.41	9.26	0.00	431.15	1.8 (J)	72.6	762	2,120		11.2	70.9	13,300	2,160	160
0 to 8 feet	6/23/2015 9/22/2015	440.41	9.18 9.20	0.00	431.23 431.21	5.6 7.0	75.6 63.1	714 807	1,420 1,460	2,215.2 2,337.1	19.3 9.4	104 120	11,100 9,470	1,980 2,500	186 280
Screen:	12/10/2015	440.41	9.20	0.00	431.21	5.5	31.0	723	872	1,631.5	5.0	113	9,470	2,500	181
8 to 13 feet	3/9/2016		9.24	0.00	431.17	6.0	28.1	756	970	1,760.1	5.0	38.4	10,400	1,940	166
	6/8/2016	440.41			431.27		20.2			1,437.6	4.2				
		440.41 440.41	9.14	0.00		6.4	20.2	638	773			53.3	8,270	2,490	189
	9/14/2016			0.00	432.23	6.4 6.8	12.4	638 516	259	794.2	3.5	53.3 25.0	8,270 6,130		
	11/22/2016	440.41 440.41 440.41	9.14 8.18 9.25	0.00	432.23 431.16	6.8 7.4	12.4 12.7	516 652	259 314	794.2 986.1	3.5 2.4	25.0 24.7	6,130 6,950	2,490 1,730 1,230	189 113 129
	11/22/2016 3/10/2017	440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39	0.00 0.00 0.00	432.23 431.16 431.02	6.8 7.4 4.0	12.4 12.7 22.7	516 652 820	259 314 1,160	794.2 986.1 2,006.7	3.5 2.4 ND	25.0 24.7 ND	6,130 6,950 8,680	2,490 1,730 1,230 1,710	189 113 129 171
\$	11/22/2016 3/10/2017 6/8/2017	440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34	0.00 0.00 0.00 0.00	432.23 431.16 431.02 431.07	6.8 7.4 4.0 4.4	12.4 12.7 22.7 14.4	516 652 820 683	259 314 1,160 1,020	794.2 986.1 2,006.7 1,721.8	3.5 2.4 ND 2.0 (J)	25.0 24.7 ND 32.4 (J)	6,130 6,950 8,680 11,500	2,490 1,730 1,230 1,710 1,780	189 113 129 171 185
*	11/22/2016 3/10/2017 6/8/2017 9/7/2017	440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29	0.00 0.00 0.00 0.00 0.00	432.23 431.16 431.02 431.07 431.12	6.8 7.4 4.0 4.4 6.9	12.4 12.7 22.7 14.4 23.4	516 652 820 683 698	259 314 1,160 1,020 466	794.2 986.1 2,006.7 1,721.8 1,194.3	3.5 2.4 ND 2.0 (J) ND	25.0 24.7 ND 32.4 (J) ND	6,130 6,950 8,680 11,500 8,770	2,490 1,730 1,230 1,710 1,780 3,130	189 113 129 171 185 228
ŧ	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017	440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32	0.00 0.00 0.00 0.00 0.00 0.00	432.23 431.16 431.02 431.07 431.07 431.12 431.09	6.8 7.4 4.0 4.4 6.9 8.4	12.4 12.7 22.7 14.4 23.4 31.3	516 652 820 683 698 785	259 314 1,160 1,020 466 398	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7	3.5 2.4 ND 2.0 (J) ND 3.1	25.0 24.7 ND 32.4 (J) ND ND	6,130 6,950 8,680 11,500 8,770 6,930	2,490 1,730 1,230 1,710 1,780 3,130 2,230	189 113 129 171 185 228 202
*	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.32 9.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00	432.23 431.16 431.02 431.07 431.12 431.09 431.00	6.8 7.4 4.0 4.4 6.9 8.4 5.5	12.4 12.7 22.7 14.4 23.4 31.3 54.7	516 652 683 698 785 952	259 314 1,160 1,020 466 398 2,210	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J)	25.0 24.7 ND 32.4 (J) ND ND 52.7	6,130 6,950 8,680 11,500 8,770 6,930 14,600	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660	189 113 129 171 185 228 202 284
ŧ	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.32 9.41 9.14	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6	516 652 820 683 698 785 952 811	259 314 1,160 1,020 466 398 2,210 1,360	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1	25.0 24.7 ND 32.4 (J) ND ND 52.7 89.5	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000	189 113 129 171 185 228 228 202 284 245
ŧ	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.32 9.41 9.14	0.00 0.00 0.00 0.00 0.00 0.00 0.00	432.23 431.16 431.02 431.07 431.12 431.09 431.00	6.8 7.4 4.0 4.4 6.9 8.4 5.5	12.4 12.7 22.7 14.4 23.4 31.3 54.7	516 652 683 698 785 952	259 314 1,160 1,020 466 398 2,210	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3	25.0 24.7 ND 32.4 (J) ND ND 52.7	6,130 6,950 8,680 11,500 8,770 6,930 14,600	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660	189 113 129 171 185 228 228 202 284 245
ŧ	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.00 431.27 431.40	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5	516 652 820 683 698 785 952 811 688	259 314 1,160 1,020 466 398 2,210 1,360 759	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000 2,030	189 113 129 171 185 228 202 284 245 245 202 268
#	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.43 431.48 431.48	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8	516 652 820 683 698 785 952 811 688 725 602	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 773	3.5 2.4 ND 2.0 (J) 3.1 1.9 (J) 4.1 5.3 1.9 2.0	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J)	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000 2,030 1,510 2,020	189 113 129 171 185 228 202 284 245 202 268 237
н 	11/22/2016 3/10/2017 6/8/2017 9/7/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 431.00 431.25	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6 XS	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 NS	516 652 820 683 698 785 952 811 688 725 602 NS	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 NS	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 773 NS	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 NS	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) NS	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350 NS	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000 2,000 1,510 2,020 NS	189 113 129 171 185 228 202 284 202 268 237 202 268 237
	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.14 9.14 9.16 8.25 8.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.02 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.10 430.25	6.8 7.4 4.0 6.9 8.4 5.5 4.2 10.1 5.8 4.6 4.6 8.8 3.0	12.4 12.7 22.7 14.4 31.3 54.7 22.6 30.6 16.5 9.8 NS ND	516 652 820 683 698 785 952 811 688 725 602 802 802 802 802 802 802 802 802 802 8	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157	794.2 986.1 1,2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 NS 3.0	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 NS 8.5	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) NS 7.4 (J)	6,130 6,950 8,680 11,500 6,930 14,600 9,620 9,700 11,200 6,350 NS ND	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80)	189 113 129 171 185 228 202 284 245 202 268 237 8 8 237 8 0.43 (J)
Casing:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/2/18 9/6/2018 9/6/2018 9/6/2018 9/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 9.16 8.25 8.10 8.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.48 431.48 431.45 430.10 430.25 430.30	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6 4.6 9 8.4 5.8 3.0 3.0 5.3	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 9.8 ND ND	516 652 820 683 698 785 952 811 688 725 602 802 802 802 802 802 802 802 802 802 8	259 314 1,160 466 398 2,210 1,360 759 404 157 NS ND 1	794.2 986.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 773 8 8 8 3.0 7.0	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 2.0 NS 8.5 12.5	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) NS 7.4 (J) ND	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 11,200 1,200 8,350 ND ND	2,490 1,730 1,230 1,710 1,780 3,130 2,230 2,030 2,030 1,510 2,020 ND (<80) ND (<80)	189 113 129 171 185 228 202 284 245 202 268 237 NS 0.43 (J) 0.42 (J)
	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.10 430.25 430.30 430.37	6.8 7.4 4.0 4.4 5.5 4.2 10.1 5.8 4.6 8 8.4 6 8.4 6 5.3 3.0 3.3 9 3.9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND	516 652 820 683 698 785 952 811 688 725 602 NS ND 1.7 ND	259 314 1,160 466 398 2,210 1,360 759 404 157 NS ND 11 ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 773 NS 3.00 7.00 3.9	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8.5 8.5 12.5 12.5 12.6	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) 13.5 (J) NS 7.4 (J) ND 4.7 (J)	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000 2,000 1,510 2,020 ND (<80) ND (<80) 95	189 113 129 171 185 228 202 284 245 202 268 237 0.202 268 237 0.43 (J) 0.42 (J) ND
Casing: 0 to 7 feet	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015 6/23/2015	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.10 430.25 430.30 430.37 430.22	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6 4.6 3.0 5.3 3.9 5.2	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND ND 0.20 (J)	516 652 820 683 698 785 952 811 688 725 602 802 ND 1.7 ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 1 ND 0.77 (J)	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,488 1,151 773 8 8 3.0 7.0 3.9 6.17 (J)	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8 5 1.2,5 12,5 12,6 13,26 13,26	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) NS 7.4 (J) ND ND 4.7 (J) 06.2	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND ND ND	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 2,030 2,030 1,510 2,020 ND (<80) ND (<80) S S 299	189 113 129 171 185 202 284 245 202 268 237 0.43 (J) 0.42 (J) ND 0.52 (J)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019 11/13/2019 9/23/2014 3/25/2015 6/23/2015 9/22/2015 12/10/2015	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13 8.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.02 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.48 431.48 431.25 430.00 430.25 430.30 430.32 430.30	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.6 3.0 5.3 3.9 5.2 9.8	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 S ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 688 725 602 ND 1.7 ND 1.7 ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 5 ND 157 ND 0,77 (J) 0,44 (J)	794.2 9886.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 2.0 8.5 12.5 12.5 12.6 13.2.2 15.5	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) 13.5 (J) ND (<7.4 (J) ND 4.7 (J) 60.2 76.0	6,130 6,950 8,680 11,500 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND ND ND 399 322	2,490 1,730 1,230 1,710 1,780 3,130 2,230 2,030 2,030 2,030 1,510 2,020 ND (<80) ND (<80) 95 299 254	189 113 129 171 185 228 202 284 245 202 268 237 0.43 (J) 0.42 (J) ND 0.52 (J) 0.52 (J) 0.61 (J)
Casing: 0 to 7 feet	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015 6/23/2015	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.09 431.00 431.27 431.40 431.48 431.25 430.40 430.25 430.30 430.37 430.22	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6 4.6 3.0 5.3 3.9 5.2	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND ND 0.20 (J)	516 652 820 683 698 785 952 811 688 725 602 802 ND 1.7 ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 1 ND 0.77 (J)	794.2 9886.1 2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 3,222 2,198 1,488 1,151 773 3.0 7.0 3.0 7.0 3.9 6.17 (J) 10.42 (J) 65.85 (J)	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8 5 1.2,5 12,5 12,6 13,26 13,26	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) NS 7.4 (J) ND ND 4.7 (J) 06.2	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND ND ND	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 2,030 2,030 1,510 2,020 ND (<80) ND (<80) S S 299	189 113 129 171 185 202 284 245 202 268 237 0.43 (J) 0.42 (J) ND 0.52 (J)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015 6/23/2015 9/22/2015 12/10/2015 3/9/2016 6/8/2016 9/14/2016	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.03 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.15 8.15	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.45 430.25 430.30 430.37 430.22 430.10 430.20	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.5 4.2 10.1 5.5 3.0 5.3 3.9 5.2 9.8 62.4	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 811 688 725 602 ND 1.7 ND ND ND ND 2.8	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 157 ND 10,77 (J) 0,44 (J) 0,44 (J)	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8.0 0 7.0 7.0 7.0 9.6.17 (J) 10.42 (J) 10.42 (J) 10.585 (J) 13.9	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 (J) 4.1 5.3 1.9 (J) 8.5 12.5 12.5 12.5 12.6 13.2 2 15.5 32.7 7.7,7 6,1	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 7.4 (J) ND 4.7 (J) 60.2 76.0 76.0 76.0 18.9	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,700 11,200 6,350 ND ND ND ND ND 3399 3222 324	2,490 1,730 1,230 1,710 1,780 3,130 2,230 2,030 1,510 2,020 ND (<80) ND (<80) 95 299 254 110	189 113 129 171 185 228 202 284 245 202 268 237 NS 0.43 (J) 0.43 (J) 0.52 (J) 0.81 (J) 0.66 (J)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015 6/23/2015 3/9/2016 6/8/2016 9/14/2016 11/22/2016	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.15 8.07 8.07 8.07	0.00 0.00	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.48 431.25 430.10 430.25 430.30 430.25 430.30 430.22 430.30 430.22 430.10 430.20 430.28 430.28 430.24	6.8 7.4 4.0 4.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.6 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) ND ND 0.24 (J)	516 652 820 683 698 785 952 811 688 725 602 ND 1.7 ND ND ND 2.8 ND ND 1.5.9	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 0.75 (J) 0.44 (J) 0.44 (J) ND ND ND 7,4	794.2 986.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8 8 0,0 7.0 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J)	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8.5 5 1.2.5 1.2.5 1.2.6 1.3.2 15.5 32.7 17.7 6.1 8.8	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 13.5 (J) 13.5 (J) ND (<5.8) 13.5 (J) 13.5 (J) ND (<7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 167	6,130 6,950 8,680 11,500 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND ND ND 399 3222 324 159 2,15 1,030	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,000 2,030 1,510 2,020 ND (<80) ND (<80) 95 299 254 110 151 ND (<64) ND (<64) 437	189 113 129 171 185 228 202 284 245 202 268 237 0.43 (J) 0.42 (J) ND 0.52 (J) 0.61 (J) 0.66 (J) ND ND
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 9/23/2014 12/23/2014 12/23/2014 12/23/2015 6/23/2015 6/23/2015 3/9/22/2015 3/9/22/2016 6/8/2016 9/14/2016 3/10/2017	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 8.10 8.05 7.98 8.13 8.25 8.15 8.07 8.07 8.11 8.11	0.00 0.00	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.30 430.25 430.30 430.25 430.30 430.20 430.20 430.20 430.28 430.24	6.8 7.4 4.0 4.4 5.5 4.2 10.1 5.8 4.6 NS 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9 3.0	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) ND ND ND 0.24 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 811 688 725 602 ND 1.7 ND ND ND 2.8 ND ND 2.8 ND ND ND 2.8 ND	259 314 1,160 466 398 2,210 1,360 759 404 157 ND 0.75 9 0.077 (J) 0.44 (J) 0.44 (J) ND 0.74 (J) ND 0.74 (J) ND 0.74 (J) ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 NS 8.5 12.5 12.5 12.5 12.5 12.5 12.6 13.2 15.5 12.5 12.5 12.5 12.5 12.5 12.5 12	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 7.4 (J) ND 4.7 (J) 60.2 76.0 76.0 18.9 23.4 37.0 167 78.5	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,700 11,200 6,350 ND ND ND ND ND 399 322 324 159 2155 1,030 168	2,490 1,730 1,230 1,730 1,780 3,130 2,230 3,660 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) 1,510 2,999 254 4,110 151 ND (<64) 4,37 ND (<64)	189 113 129 171 185 228 202 284 245 202 268 202 268 202 268 203 0.43 (J) 0.43 (J) 0.43 (J) 0.43 (J) 0.43 (J) 0.66 (J) ND 0.52 (J) 0.66 (J) ND ND ND
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 6/21/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/22/2015 9/22/2015 3/9/2016 6/8/2016 9/14/2016 3/10/2017 9/7/2017	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.03 9.16 8.25 8.10 8.05 7.988 8.13 8.25 8.15 8.07 8.07 8.07 8.07 8.11 8.11	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	432.23 431.02 431.02 431.09 431.00 431.00 431.27 431.48 431.26 430.10 430.25 430.30 430.37 430.32 430.30 430.22 430.10 430.28 430.28 430.28 430.28 430.28	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.2 10.1 5.8 4.2 10.1 5.5 5.2 9.8 624 4.1 3.9 9.5.2 9.8 624 13.9 2.0 6.9 3.0 0 1.4	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 688 725 602 ND 1.7 ND ND ND ND ND ND ND ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 1 ND 0.77 (J) 0.44 (J) 0.44 (J) 0.44 (J) 0.44 (J) ND ND ND ND ND ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 7773 NS 3.00 7.00 8.17 (J) 10.42 (J) 65.85 (J) 10.42 (J) 65.85 (G) 30.66 (J) 3.00 1.4	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 (J) 4.1 5.3 1.9 (Z) 8.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 167 78.5 5 26.3	6,130 6,950 8,680 11,500 6,930 9,700 9,700 9,700 11,200 6,350 ND ND ND ND ND ND 399 3222 324 159 215 1,030 168 121 (J)	2,490 1,730 1,230 1,710 1,780 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) 1,510 2,929 254 1100 151 ND (<64) 437 ND (<64) 196	189 113 129 171 185 228 284 245 202 268 237 NS 0.43 (J) 0.43 (J) 0.66 (J) ND ND ND ND (S)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 9/6/2018 9/6/2018 9/6/2018 9/6/2018 9/23/2014 11/13/2019 9/23/2014 3/25/2015 9/22/2015 3/9/2016 6/8/2016 11/22/2016 3/10/2017 9/7/2017 9/7/2017	440.41 440.43 8.35 438.	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.10 8.07 8.11 8.27 8.07 8.11 8.11 8.10	0.00 0.00	432.23 431.02 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.00 430.25 430.30 430.25 430.30 430.22 430.10 430.20 430.28 430.24 430.24 430.24 430.24 430.24 430.24	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.2 10.1 5.8 4.2 10.1 5.5 5.2 9.8 62.4 13.9 2.0 6.9 2.0 6.9 3.0 1.4 2.0	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) ND ND 0.24 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 688 725 602 ND 1.7 ND ND ND ND 15.9 ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 5 ND 1,360 1,375 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,360 1,377 1,0	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8 0 770 3.00 7.0 3.0 7.0 3.0 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 3.0 3.0 6.14 2.0	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8.5 5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND (<5.8) ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND (16.7) 13.5 (J) ND (16.7) 13.5 (J) ND (16.7) 13.5 (J) ND (16.7) 13.5 (J) ND (16.7) 13.5 (J) ND (17.7) 13.5 (J) 13.5 (J) 13	6,130 6,950 8,680 11,500 8,770 6,930 9,620 9,700 11,200 6,350 ND ND ND ND ND ND 399 322 324 159 215 1,030 168 1,21 (J) 130 (J)	2,490 1,730 1,230 1,710 1,780 3,130 2,230 2,030 2,030 1,510 2,020 ND (<80) ND (<80) 95 299 254 1110 151 ND (<64) 437 ND (<64) 192	189 113 129 171 185 228 202 284 245 202 268 237 0.43 (J) 0.42 (J) 0.52 (J) 0.52 (J) 0.81 (J) 0.56 (J) ND ND 7.7 ND (<1.0) ND (<1.1)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 12/23/2014 12/23/2015 9/22/2015 6/23/2015 9/22/2015 12/10/2015 3/9/2016 6/8/2016 9/11/22/2016 3/10/2017 9/7/2017 6/8/2017 9/7/2017	440.41 44	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 9.16 8.15 8.10 8.05 8.15 8.13 8.25 8.13 8.13 8.11 8.11 8.11 8.11	0.00 0.00	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.00 431.27 431.40 431.48 431.48 431.25 430.30 430.25 430.30 430.27 430.20 430.28 430.24 430.24 430.24 430.24 430.25	6.8 7.4 4.0 4.4 5.5 4.2 10.1 5.8 4.6 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9 3.0 1.4 2.0 6.9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) ND ND 0.24 (J) ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 811 688 725 602 ND 1.7 ND ND ND ND 2.8 ND ND ND 15.9 ND ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 0,75 9 0,077 (J) 0,44 (J) 0,0,77 (J) 0,0,44 (J) ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 3.222.2 2,198 1,488 1,151 773 3.00 7.00 3.00 7.00 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.00 30.66 (J) 30.06 (J) 3.00 1.4 2.00 1.4	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 8.5 5 8.5 5 12.5 12.6 12.6 13.2 15.5 32.7 17.7 6.1 8.6 6 11.6 10.1 13.1	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) NS 7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 167 7 78.5 26.3 21.6 26.3	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,700 11,200 1,200 6,350 ND ND ND ND 399 3399 3222 3224 159 215 1,030 168 121 (J) 130 (J) 121 (J)	2,490 1,730 1,230 1,230 1,710 1,780 3,130 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) 1,510 2,999 254 1110 151 ND (<64) 196 1922 196	189 113 129 171 185 228 202 284 245 202 268 268 202 268 202 268 202 202 268 202 202 202 203 202 203 202 203 202 203 202 203 202 203 202 203 202 203 202 203 202 203 202 203 202 203 203
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/25/2015 9/22/2015 9/22/2015 3/9/22/2015 3/9/22/2015 3/9/22/2016 6/8/2016 9/14/2016 11/22/2016 11/22/2017 6/8/2017 9/7/2017 11/1/2017	440.41 440.43 8.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.03 8.03 8.10 8.05 8.15 8.15 8.17 8.07 8.07 8.07 8.11 8.11 8.10 8.23 8.10 8.23	0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	432.23 431.02 431.02 431.02 431.09 431.00 431.27 431.40 431.48 431.25 430.10 430.25 430.30 430.37 430.22 430.10 430.22 430.21 430.28 430.28 430.24 430.25 430.25 430.27	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9 9.3.0 1.4 13.9 2.0 6.9 1.4 6.7	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND 0.20 (J) 0.20 (J) 0.20 (J) 0.20 (J) 0.21 (J) 0.21 (J) ND ND 0.20 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 602 ND 1.77 ND ND 1.77 ND ND 2.88 ND 1.5.9 ND 15.9 ND 15.9 ND 15.9 ND 15.9 ND 15.9 ND 15.9 ND 15.9 ND 15.9 ND 3.0 ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 1 ND 0.77 (J) 0.44	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 7773 8 8 3.0 7.0 7.0 3.0 6.17 (J) 10.42 (J) 65.85 (J) 9 30.66 (J) 30.0 3.0 3.0 3.0 1.4 2.0 3.0 6.17 (J) 10.42 (J) 6.13.9 2.0 3.0 6.17 (J) 10.42 (J) 6.13.9 2.0 3.0 3.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 (J) 4.1 5.3 2.0 NS 8.5 12.5 12.6 13.2 15.5 12.6 13.2 15.5 32.7 16.1 8.6 13.2 15.5 32.7 17.7 .6.1 1.8 (G) 1.0 (J) 1.0 (J)	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (55.8) 13.5 (J) 13.5 (J) NS 7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 167 78.5 26.3 21.6 26.3 21.6 257	6,130 6,950 8,680 11,500 8,770 6,930 9,700 9,700 9,700 11,200 6,350 ND ND ND ND ND ND 3399 3222 324 159 215 1,030 168 121 (J) 130 (J) 121 (J) 521	2,490 1,730 1,230 1,730 1,780 3,130 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) S5 299 254 110 151 ND (<64) 192 196 984	189 113 129 171 185 228 202 268 202 268 202 268 202 268 202 268 203 0.43 (J) 0.43 (J) 0.43 (J) 0.52 (J) 0.66 (J) 0.66 (J) ND 0.66 (J) ND (<1.1) ND (<1.1) ND (<1.1) ND (<1.1) A 3 (J)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 9/6/2018 9/6/2018 9/6/2018 9/23/2014 11/13/2019 9/23/2014 3/25/2015 9/23/2015 9/23/2015 3/9/2016 6/8/2016 11/22/2016 11/22/2016 3/10/2017 9/7/2017 6/8/2017 9/7/2017	440.41 44	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.17 8.07 8.07 8.07 8.07 8.11 8.10 8.23 8.10 8.23 8.10 8.23 8.10 8.24 8.25 8.10 8.25 8.10 8.25 8.10 8.25 8.10 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25	0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	432.23 431.02 431.02 431.07 431.12 431.09 431.00 431.27 431.48 431.25 430.10 430.25 430.30 430.25 430.30 430.22 430.10 430.22 430.10 430.22 430.12 430.23 430.24 430.24 430.25 430.22 430.27 430.27 430.27 430.27	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.2 3.0 5.3 3.9 9 5.2 9.8 62.4 13.9 2.0 6.9 3.00 1.4 2.0 1.4 2.0 9.3	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND ND ND 0.20 (J) 0.20 (J) 0.20 (J) 0.21 (J) 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 688 725 602 ND 1.7 ND ND ND ND ND ND ND ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 1 ND 0.77 (J) 0.44 (J) 0.44 (J) 0.44 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 773 8 0 3.0 7.0 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 3.0 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 3.0 0 1.4 4 2.0 1.4 4 0.0 3.0 0 0 1.4 4 0.0 9 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 NS 8.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND (<5.8) 13.5 (J) ND 0.2 76.0 18.9 23.4 37.0 167 78.5 26.3 21.6 26.3 21.6 26.3 257	6,130 6,950 8,680 11,500 8,770 6,930 9,620 9,700 11,200 6,350 ND ND ND ND ND ND ND ND 399 322 324 159 215 1,030 168 121 (J) 130 (J) 121 (J) 521 ND (<00)	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) 151 ND (<64) 437 ND (<64) 151 ND (<64) 437 ND (<64) 192 196 984 106	189 113 129 171 185 202 284 245 202 284 245 202 284 245 202 284 237 0.43 (J) 0.43 (J) 0.43 (J) 0.52 (J) 0.81 (J) 0.66 (J) ND ND ND ND (<1.1)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 12/23/2014 3/25/2015 6/23/2015 3/9/2016 6/8/2016 9/14/2016 11/22/2016 3/10/2017 9/7/2017 11/1/2017 11/1/2017 3/7/2018 6/21/2018 6/21/2018	440.41 440.43 8.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 9.16 8.25 8.10 8.05 7.98 8.13 8.15 8.17 8.07 8.11 8.11 8.10 8.23 8.10 8.25 8.10	0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000000 0.00000000	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.00 430.25 430.30 430.22 430.30 430.22 430.10 430.24 430.24 430.24 430.24 430.24 430.24 430.25 430.21 430.25 430.23 430.22	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.6 3.0 5.3 3.9 9.5.2 9.8 62.4 13.9 2.0 6.9 3.0 1.4 4.6 7 9.8 62.4 13.9 2.0 6.9 3.0 1.4 4.67 9.8 6.9 9.8 6.9 9.8 6.9 9.8 6.9 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) ND ND 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 952 811 688 725 602 ND 1.7 ND ND ND 2.8 ND 15.9 ND ND 15.9 ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 0.75 ND 0.77 (J) 0.44 (J) 0.44 (J) 0.44 (J) 0.44 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8 3.00 7.0 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 30.66 (J) 3.0 4.14 1.0 1.14 1.0,93 0.092	3.5 2.4 ND 2.0(J) ND 3.1 1.9(J) 4.1 5.3 1.9 2.0 0 NS 8.5 5 12.5 12.6 13.2 15.5 32.7 17.7 6.1 1.8 (6) 11.6 10.1 13.1 10.1 13.1 10.1 10.1 10.1 10.5 5.0 0 7.0 0 7.0	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (14.5 (J) ND (15.5 (J) N	6,130 6,950 8,680 11,500 6,930 9,620 9,700 11,600 9,620 9,700 11,200 6,350 ND ND ND ND ND 3399 3322 324 159 215 1,030 168 121 (J) 130 (J) 121 (J) 521 ND (<100) ND (<100)	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) 95 299 254 110 151 ND (<64) 437 ND (<64) 192 196 192 196 ND (<83)	189 113 129 171 185 228 202 284 245 202 288 237 0.43 (J) 0.42 (J) ND 0.52 (J) 0.52 (J) 0.81 (J) 0.66 (J) ND ND 7.7 ND (<1.0) ND (<1.1) ND (<1.1) ND (<1.1) ND (<1.1)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 6/8/2017 11/1/2017 11/1/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 9/23/2014 12/23/2014 12/23/2014 12/23/2014 12/23/2015 6/23/2015 12/10/2015 12/10/2015 13/9/2016 6/8/2016 3/10/2017 9/7/2017 11/1/2017 3/7/2018 8/21/2018 9/6/2018 9/6/2018	440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 440.41 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.01 8.93 9.16 8.10 8.05 7.988 8.13 8.15 8.15 8.15 8.15 8.11 8.10 8.23 8.10 8.10 8.11 8.10 8.11 8.11 8.11 8.11	0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000000	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.40 431.48 431.25 430.30 430.25 430.30 430.22 430.10 430.22 430.10 430.22 430.21 430.24 430.24 430.25 430.27 430.25 430.27 430.27 430.22 430.27 430.27 430.22 430.27 43	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.5 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9 3.0 1.4 2.0 0.1.4 6.7 0.93 0.92 2.9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND 0.20 (J) 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 811 688 725 602 811 688 725 602 811 688 725 602 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 1 ND 0.77 (J) 0.44 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 3.222 2,198 1,488 1,151 773 3.0 7.0 3.0 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 30.66 (J) 3.0 6.1.4 1.4 2.0 1.4 1.4 1.0.1 0.93 0.92 2.9	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 1.9 (J) 4.1 5.3 2.0 NS 8.55 12.55	25.0 24.7 ND 32.4 (J) ND 52.7 (7 89.5 115 ND (<5.8) 13.5 (J) NS 7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 167 77.8 5 26.3 21.6 26.3 21.6 26.3 257 44.0 13.6 57.7	6,130 6,950 8,680 11,500 8,770 6,930 14,600 9,620 9,700 11,200 6,350 ND ND ND ND ND ND ND 3399 3222 324 159 215 1,030 168 121 (J) 130 (J) 121 (J) 521 ND (<100) 181 (J)	2,490 1,730 1,230 1,730 1,780 3,130 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) ND (<80) 1,510 2,020 1,510 1	189 113 129 171 185 228 284 245 202 268 237 NS 0.43 (J) 0.43 (J) 0.66 (J) ND 0.52 (J) 0.66 (J) ND 7.7 ND (<1.1)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 9/7/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 12/23/2014 3/25/2015 6/23/2015 3/9/2016 6/8/2016 9/14/2016 11/22/2016 3/10/2017 9/7/2017 11/1/2017 11/1/2017 3/7/2018 6/21/2018 6/21/2018	440.41 440.43 8.35 438.35	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.03 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.15 8.07 8.07 8.07 8.07 8.07 8.07 8.11 8.11 8.10 8.23 8.10 8.23 8.10 8.23 8.10 8.23 8.10 8.23 8.11 8.11 8.11 8.11 8.11 8.12 8.12 8.12	0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000000 0.00000000	432.23 431.16 431.02 431.07 431.12 431.09 431.00 431.27 431.40 431.48 431.25 430.00 430.25 430.30 430.22 430.30 430.22 430.10 430.24 430.24 430.24 430.24 430.24 430.24 430.25 430.21 430.25 430.23 430.22	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.5 3.0 5.3 3.9 5.2 9.8 62.4 13.9 2.0 6.9 3.0 1.4 2.0 0.1.4 6.7 0.93 0.92 2.9	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) 0.21 (J) 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 952 811 688 725 602 ND 1.7 ND ND ND 2.8 ND 15.9 ND ND 15.9 ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 0,759 ND 0,77 (J) 0,44 (J) 0,44 (J) 0,44 (J) 0,77 (J) 0,44 (J) ND 0,77 (J) 0,0.44 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 1,2006.7 1,721.8 1,194.3 1,222.7 2,198 1,488 1,151 773 8 3.00 7.0 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 30.66 (J) 3.0 4.14 1.0 1.14 1.0,93 0.092	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 1.9 (J) 4.1 5.3 2.0 NS 8.55 12.55	25.0 24.7 ND 32.4 (J) ND 52.7 89.5 115 ND (<5.8) 13.5 (J) ND (14.5 (J) ND (15.5 (J) N	6,130 6,950 8,680 11,500 6,930 9,620 9,700 11,600 9,620 9,700 11,200 6,350 ND ND ND ND ND 3399 3322 324 159 215 1,030 168 121 (J) 130 (J) 121 (J) 521 ND (<100) ND (<100)	2,490 1,730 1,230 1,710 1,780 3,130 2,230 3,660 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) 95 299 254 110 151 ND (<64) 437 ND (<64) 192 196 192 196 ND (<83)	189 113 129 171 185 228 202 284 245 202 288 237 0.43 (J) 0.42 (J) ND 0.52 (J) 0.52 (J) 0.52 (J) 0.52 (J) 0.52 (J) 0.52 (J) ND (<1.1) ND (<1.1) ND (<1.1) ND (<1.1) ND (<1.1) ND (<1.1)
Casing: 0 to 7 feet Screen:	11/22/2016 3/10/2017 6/8/2017 6/8/2017 11/1/2017 11/1/2017 3/7/2018 9/6/2018 7/18/2019 11/13/2019 9/23/2014 12/23/2014 3/23/2015 9/22/2015 12/10/2015 9/22/2015 12/10/2015 3/9/2016 6/8/2016 11/22/2016 6/8/2017 9/7/2017 9/7/2017 11/1/2017 3/7/2018 6/21/2018 6/21/2018 7/18/2019	440.41 44	9.14 8.18 9.25 9.39 9.34 9.29 9.32 9.41 9.14 9.01 8.03 9.16 8.25 8.10 8.05 7.98 8.13 8.25 8.15 8.07 8.07 8.07 8.07 8.07 8.07 8.11 8.11 8.10 8.23 8.10 8.23 8.10 8.23 8.10 8.23 8.10 8.23 8.11 8.11 8.11 8.11 8.11 8.12 8.12 8.12	0.00 0.000 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000000	432.23 431.02 431.02 431.09 431.00 431.00 431.27 431.00 431.48 431.25 430.10 430.25 430.30 430.32 430.30 430.22 430.30 430.22 430.23 430.23 430.24 430.25 430.22 430.23 430.22 430.23 430.23	6.8 7.4 4.0 4.4 6.9 8.4 5.5 4.2 10.1 5.8 4.2 10.1 5.8 4.2 3.0 5.3 3.9 9 5.2 9.8 62.4 13.9 2.0 6.9 9.3.0 1.4 13.9 2.0 6.9 3.0 0.1.4 2.0 5.7 5.9 5.9 5.9 5.2 9.8 6.2 4.1 13.9 5.2 9.8 6.2 4.1 13.9 5.2 9.8 6.2 4.2 13.9 5.2 9.8 6.2 4.2 13.9 9.5 5.2 9.8 6.2 4.2 13.9 9.5 5.2 9.8 6.2 4.2 13.9 9.5 5.2 9.8 6.2 4.2 10.1 15.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	12.4 12.7 22.7 14.4 23.4 31.3 54.7 22.6 30.6 16.5 9.8 ND ND ND ND 0.20 (J) 0.18 (J) 0.21 (J) 0.21 (J) 0.21 (J) 0.21 (J) ND ND ND ND ND ND ND ND ND ND ND ND ND	516 652 820 683 698 785 952 811 662 725 602 ND 1.7, ND ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	259 314 1,160 1,020 466 398 2,210 1,360 759 404 157 ND 0,759 ND 0,77 (J) 0,44 (J) 0,44 (J) 0,44 (J) 0,77 (J) 0,44 (J) ND 0,77 (J) 0,0.44 (J) ND ND ND ND ND ND ND ND ND ND ND ND	794.2 986.1 2,006.7 1,721.8 1,194.3 1,222.7 3,222.2 2,198 1,488 1,151 7773 8 3.00 7.00 3.9 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 30.66 (J) 3.0 6.17 (J) 10.42 (J) 65.85 (J) 3.0 3.0 6.17 (J) 10.42 (J) 65.85 (J) 13.9 2.0 3.0.66 (J) 3.0 9 2.0 3.0.66 (J) 3.0 9 2.0 3.0.66 (J) 3.0 9 2.0 3.0.66 (J) 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	3.5 2.4 ND 2.0 (J) ND 3.1 1.9 (J) 4.1 5.3 1.9 2.0 NS 8.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	25.0 24.7 ND 32.4 (J) ND 32.4 (J) ND 52.7 89.5 115 ND (55.8) ND (55.8) ND (55.8) ND (55.8) ND (55.8) 7.4 (J) ND 4.7 (J) 60.2 76.0 18.9 23.4 37.0 16.7 26.3 21.6 26.3 21.6 26.3 257 44.0 13.6 57.7 ND (<5.8)	6,130 6,950 8,680 11,500 8,770 6,930 9,620 9,700 14,600 9,620 9,700 11,200 11,200 0,5350 ND ND ND ND ND ND ND ND ND ND ND 1,210 130 (J) 121 (J) 130 (J) 121 (J) 1521 ND (<100) ND (<100) 151 (J)	2,490 1,730 1,230 1,730 1,780 3,130 2,230 3,660 2,030 2,030 1,510 2,020 ND (<80) ND (<80) ND (<80) ND (<80) 1,510 1,500 1,510 1,510 1,510 1,510 1,510 1,510 1,500 1,510 1,50	189 113 129 171 185 228 202 284 245 202 268 237 0.43 (J) 0.43 (J) 0.43 (J) 0.43 (J) 0.52 (J) 0.81 (J) 0.66 (J) 0.66 (J) 0.66 (J) 0.77 ND (<1.0] ND (<1.1] ND (<1.1] ND (<1.1] ND (<1.1] ND (<1.1] ND (<1.2] ND

Well No.	Date	Casing Elevation* (feet)	Depth to Water (feet)	Product Thickness (feet)	Water Table Elevation* (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TBA (μg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)	Naphthalene (μg/L)
	0/00/00/11	. ,	、 ,	. ,	()										
YP-3	9/23/2014	436.51	5.21	0.00	431.30	NS	NS	NS	NS	NS	NS	NS	NS	NS (199)	NS
Casina	12/23/2014 3/25/2015	436.51 436.51	5.21 4.85	0.00	431.30 431.66	0.30 (J)	ND ND	ND ND	ND ND		1.9	ND ND	ND ND	ND (<80) ND (<80)	ND ND
Casing: 0 to 5.5 feet	6/23/2015	436.51	4.03	0.00	431.00	0.30 (J)	ND	ND	ND	(.)	6.9	4.8 (J)	ND	199	ND
0 10 5.5 leet	9/22/2015	436.51	5.19	0.00	431.32	1.0	ND	ND	ND	1.0	6.6	4.8 (J)	ND	133	ND
Screen:	12/10/2015	436.51	5.27	0.00	431.24	0.98	ND	ND	ND	110	5.9	5.3 (J)	ND	146	ND
5.5 to 10.5 feet	3/9/2016	436.51	4.74	0.00	431.77	0.25 (J)	ND	ND	ND		2.6	ND	ND (<55)	122	ND
	6/8/2016	436.51	5.02	0.00	431.49	0.84	ND	ND	ND		4.3	ND	ND (<55)	216	ND
	9/14/2016	436.51	5.32	0.00	431.19	0.61	ND	ND	ND	0.61	4.9		ND (<100)	ND (<64)	ND
	11/22/2016	436.51	6.65	0.00	429.86	1.0	ND	ND	ND	1.0	6.7	ND	ND (<100)	NS	ND
	3/10/2017	436.51	5.62	0.00	430.89	0.88	ND	ND	ND	0.88	5.0	3.3 (J)	ND (<100)	ND (<64)	ND (<1.0)
+	6/8/2017	436.51	5.21	0.00	431.30	0.69	ND	ND	ND		4.0	4.0 (J)	ND (<100)	89.6	ND (<1.0)
	9/7/2017	436.51	5.16	0.00	431.35	0.67	ND	ND	ND		3.6	ND	ND (<100)	197	ND (<1.1)
	11/1/2017	436.51	5.94	0.00	430.57	0.96	ND	ND	ND	0.96	5.7	ND	ND (<100)	413	ND (<1.1)
	3/7/2018	436.51	4.95	0.00	431.56	0.25 (J)	ND	ND	ND	0.25 (J)	2.0	ND	ND (<100)	ND (<83)	ND (<1.1)
	6/21/2018	436.51	4.62	0.00	431.89	0.39 (J)	ND	ND	ND	0.39 (J) ND	2.5	ND	ND (<100)	102	ND (<1.1)
	9/6/2018 7/18/2019	436.51 436.51	4.76 4.49	0.00	431.75 432.02	ND	ND	ND	ND		2.2 sampled	ND	ND (<100)	ND (<53)	ND (<0.98)
	11/13/2019	436.51	5.03	0.00	431.48						sampled				
	11/13/2019	-30.31	5.05	0.00	431.40					INUL	oampieu				
YP-4	9/23/2014	441.83	9.01	0.00	432.82	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/2014	441.83	9.24	0.00	432.59	0.44 (J)	ND	ND	ND		36.5	19.7	386	ND (<80)	ND
Casing:	3/25/2015	441.83	8.25	0.00	433.58	ND	ND	ND	ND	ND	5.5	ND	ND	ND (<80)	ND
0 to 8 feet	6/23/2015	441.83	8.96	0.00	432.87	ND	ND	ND	ND	ND	3.1	ND	ND	ND (<64)	ND
	9/22/2015	441.83	9.31	0.00	432.52	ND	ND	ND	ND	ND	12.2	ND	ND	199	0.26 (J)
Screen:	12/10/2015	441.83	9.28	0.00	432.55	0.41 (J)	ND	ND	ND	. (.)	19.5	13.7	ND	ND (<64)	ND
8 to 13 feet	3/9/2016	441.83	8.54	0.00	433.29	ND	ND	ND	ND	ND	2.7	ND	ND (<55)	ND (<64)	ND
	6/8/2016	441.83	9.02	0.00	432.81	ND	ND	ND	ND	ND	4.2	ND	ND (<55)	ND (<64)	ND
	9/14/2016	441.83	9.53	0.00	432.30	0.23 (J)	ND	ND	ND		14.1	9.3 (J)	118 (J)	ND (<64)	ND
	11/22/2016	441.83	9.74	0.00	432.09	0.29 (J)	ND	ND	ND	0.29 (J)	19.8	18.4	140 (J)	122	ND
	3/10/2017 6/8/2017	441.83 441.83	9.91 9.31	0.00	431.92	ND ND	ND ND	ND ND	ND ND	ND ND	19.9 5.0	ND ND	ND (<100) ND (<100)	ND (<64) 115	ND (<1.0) ND (<1.0)
+	9/7/2017	441.83	9.72	0.00	432.32	ND	ND	ND	ND		11.0	ND	ND (<100)	115	ND (<1.0) ND (<1.1)
	11/1/2017	441.83	9.82	0.00	432.01	ND	ND	ND	ND	ND	14.2	ND	ND (<100)	100	ND (<1.1)
	3/7/2018	441.83	9.23	0.00	432.60	ND	ND	ND	ND		8.5	ND	ND (<100)	ND (<83)	ND (<1.1)
	6/21/2018	441.83	8.48	0.00	433.35	ND	ND	ND	ND		ND	ND	ND (<100)	ND (<83)	ND (<1.1)
	9/6/2018	441.83	8.61	0.00	433.22	ND	ND	ND	ND	ND	4.7	ND	ND (<100)	ND (<53)	ND (<0.98)
	7/18/2019	441.83	8.18	0.00	433.65					Not	sampled				
	11/13/2019	441.83	9.01	0.00	432.82					Not	sampled				
	0/00/0044	400.05	4.04	0.00	100.01	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
YP-5	9/23/2014	433.65 433.65	4.01 4.33	0.00	429.64 429.32	NS ND	NS ND	NS ND	NS ND	NS ND	NS	NS ND	NS ND	NS 137	NS ND
Casing:	12/23/2014 3/25/2015	433.65	4.33	0.00	429.32	ND ND	ND ND	ND ND	ND ND	ND ND	0.66 (J) 17.7	ND 51.2	ND ND	137 ND (<80)	ND ND
0 to 5 feet	6/23/2015	433.65	4.49	0.00	429.75	0.28 (J)	ND	ND	ND		32.3	106	ND	117	ND
01001001	9/22/2015	433.65	4.49	0.00	429.10	1.2	ND	ND	ND	1.2	45.7	139	ND	236	ND
Screen:	12/10/2015	433.65	3.88	0.00	429.77	ND	ND	ND	ND	ND	33.2	8.7 (J)	ND	ND (<64)	ND
5 to 10 feet	3/9/2016	433.65	3.97	0.00	429.68	ND	ND	ND	ND	ND	1.6		ND (<55)	ND (<64)	ND
	6/8/2016	433.65	4.31	0.00	429.34	ND	ND	ND	ND	ND	2.2	7.5 (J)	ND (<55)	232	ND
	9/14/2016	433.65	4.33	0.00	429.32	ND	ND	ND	ND	ND	10.4	32.6	ND (<100)	ND (<64)	ND
	11/22/2016	433.65	4.37	0.00	429.28	ND	ND	ND	ND	ND	29.7	34.5	ND (<100)	ND (<64)	ND
	3/10/2017	433.65	4.18	0.00	429.47	ND	ND	ND	ND	ND	ND	ND	ND (<100)	ND (<64)	ND (<1.0)
	6/8/2017	433.65	4.31	0.00	429.34	ND	ND	ND	ND		ND	ND	ND (<100)	ND (<64)	ND (<1.0)
	9/7/2017	433.65	3.31	0.00	430.34	ND	ND	ND	ND	ND	ND	ND	ND (<100)	140	ND (<1.1)
	11/1/2017 3/7/2018	433.65 433.65	4.33	0.00	429.32 429.81	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND (<100) ND (<100)	299 105	ND (<1.1)
	6/21/2018	433.65	3.84	0.00	429.81	ND ND	ND ND	ND ND	ND ND		ND	ND	ND (<100) ND (<100)	105 ND (<83)	ND (<1.1) ND (<1.1)
	9/6/2018	433.65	4.01	0.00	429.72	ND	ND	ND	ND	ND	0.62 (J)	ND	ND (<100)	ND (<03)	ND (<1.1)
	7/18/2019	433.65	3.83	0.00	429.82	ND (<0.43)	ND (<0.53)	ND (<0.60)	ND (<0.59)	ND (<2.15)	ND (<0.51)		ND (<100)	ND (<53) ND (<53)	ND (<0.98)
	11/13/2019	433.65		0.00	429.69	ND (<0.43)	ND (<0.53)	ND (<0.60)	ND (<0.59)	ND (<2.15)	ND (<0.51)		ND (<100)	ND (<53)	ND (<2.5)
					AT GNCSG**	5	1,000	700	10.000	NA	20	NA	47	47	0.7
<u> </u>						v	1,000	,	10,000				-1	-11	0.1

Table Notes:

*Elevation is relative to a designated benchmark

(Current Casing elevations surveyed on August 25, 2010.)
Generic Numeric Cleanup Standards for Groundwater (GNCSG) from Appendix F of the Maryland Department of the Environments (MDE) Maryland Environmental Assessment Technology (MEAT) for Leaking Undergound Storage Tanks *The June 18, 2014 TPH-DRO parameters were analyzed out of laboratory holding times; Follow-up samples were collected on June 30, 2014, for analysis of TPH-DRO only +The June 8, 2017 TPH-DRO sample was lost in transit. Follow-up sample was collected on June 21, 2017, for analysis of TPH-DRO only ND (<MDL) = Not Detected above Method Detection Limit. (As of 2012 this changed to mean "Not Detected above Method Detection Limit".) Groundwater elevations corrected for the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness) Values to Elevation = UPH = Limit Phase hydrogenetic to the presence of LPH using the following formula: Water Table Elevation = Water Elevation+(0.75*LPH Thickness)

Values in boldface type exceed applicable MDE MEAT GNCSG LPH = Liquid Phase Hydrocarbons

ND = Not Detected NA = Not Applicable

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, and Xylenes

MTBE = Methyl-tertiary-Butyl Ether

NS = Not Sampled for indicated analyte

¥ = Bottleware broken in shipment. J = Laboratory Estimated Value μg/L = micrograms per liter

† = Samples damaged in shipment, resampled for TPH-DRO on 5/24/12

E= Value Exceeded Laboratory Calibration Range

NM = Not Measured NSVD - Not Surveyed

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
MDE-4	1/19/2015	443.18	0.00	9.89	433.29
	2/25/2015	443.18	0.00	9.99	433.19
Casing:	3/24/2015	443.18	0.00	9.58	433.60
0 to 3 feet	4/20/2015	443.18	0.00	9.41	433.77
	5/27/2015	443.18	0.00	9.51	433.67
Screen:	6/22/2015	443.18	0.00	9.25	433.93
3 to 13 feet	7/28/2015	443.18	0.00	8.94	434.24
	8/24/2015	443.18	0.00	9.14	434.04
	9/21/2015	443.18	0.00	9.28	433.90
	10/29/2015	443.18	0.00	9.03	434.15
	11/18/2015	443.18	0.00	9.73	433.45
	12/9/2015	443.18	0.00	9.58	433.60
	1/12/2016	443.18	0.00	9.31	433.87
	3/8/2016	443.18 443.18	0.00	8.98	434.20
	6/7/2016		0.00	9.03	434.15
	9/13/2016	443.18	0.00	9.48 9.90	433.70
	11/21/2016	443.18 443.18	0.00	9.90	433.28 432.76
	3/9/2017	443.18		9.72	
	6/7/2017 9/6/2017	443.18	0.00	9.72	433.46 433.41
	11/1/2017	443.18	0.00	9.77	433.21
	3/6/2018	443.18	0.00	9.97	433.34
	6/20/2018	443.18	0.00	8.72	434.46
	9/5/2018	443.18	0.00	8.64	434.54
	7/18/2019	443.18	0.00	8.11	435.07
	11/13/2019	443.18	0.00	9.23	433.95
	11/10/2017	110110	0.00	7.20	
MW-1	1/19/2015	453.92	NM	NM	NM
	2/25/2015	453.92	NM	NM	NM
Casing:	3/24/2015	453.92	NM	NM	NM
Unknown	4/20/2015	453.92	0.00	16.71	437.21
	5/27/2015	453.92	0.00	18.75	435.17
Screen:	6/22/2015	453.92	0.00	18.24	435.68
Unknown	7/28/2015	453.92	0.00	17.20	436.72
	8/24/2015	453.92	0.00	17.42	436.50
	9/21/2015	453.92	0.00	18.49	435.43
	10/29/2015	453.92	0.00	18.36	435.56
	11/18/2015	453.92	0.00	19.40	434.52
	12/9/2015	453.92	0.00	19.24	434.68
	1/12/2016	453.92	0.00	18.45	435.47
	3/8/2016	453.92	0.00	18.28	435.64
	6/7/2016	453.92	0.00	18.21	435.71
	9/13/2016	453.92	0.00	18.92	435.00
	11/21/2016	453.92	0.00	19.83	434.09
	3/9/2017	453.92	0.00	20.49	433.43
	6/7/2017	453.92	0.00	19.38	434.54
	9/6/2017	453.92	0.00	19.04	434.88
	11/1/2017	453.92	0.00	19.67	434.25
	3/6/2018	453.92	0.00	20.16	433.76
	6/20/2018 9/5/2018	453.92 453.92	0.00 0.00	17.45 16.71	436.47 437.21
	7/18/2019	453.92	0.00	16.71	437.21 437.40
	11/13/2019	453.92	0.00	16.52	437.40
	11/13/2019	433.92	0.00	10.44	433.48

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
MW-4	1/19/2015	455.10	NM	NM	NM
	2/25/2015	455.10	NM	NM	NM
Casing:	3/24/2015	455.10	NM	NM	NM
0 to 10 feet	4/20/2015	455.10	0.00	20.72	434.38
	5/27/2015	455.10	0.00	20.68	434.42
Screen:	6/22/2015	455.10	0.00	20.38	434.72
10 to 25 feet	7/28/2015	455.10	0.00	19.86	435.24
	8/24/2015	455.10 455.10	0.00	20.08 20.57	435.02 434.53
	9/21/2015 10/29/2015		0.00	20.37	
	11/18/2015	455.10 455.10	0.00	20.26	434.84 433.81
	12/9/2015	455.10	0.00	21.29	433.81 434.02
	1/12/2016	455.10	0.00	20.54	434.56
	3/8/2016	455.10	0.00	20.29	434.81
	6/7/2016	455.10	0.00	20.29	434.82
	9/13/2016	455.10	0.00	20.20	434.23
	11/21/2016	455.10	0.00	21.56	433.54
	3/9/2017	455.10	0.00	22.05	433.05
	9/6/2017	455.10	0.00	20.94	434.16
	6/7/2017	455.10	0.00	21.18	433.92
	11/1/2017	455.10	0.00	21.41	433.69
	3/6/2018	455.10	0.00	21.75	433.35
	6/20/2018	455.10	0.00	19.73	435.37
	9/5/2018	455.10	0.00	19.34	435.76
	7/18/2019	455.10	0.00	18.82	436.28
	11/13/2019	455.10	0.00	20.42	434.68
MW-7	1/19/2015	452.69	0.00	19.21	433.48
	2/25/2015	452.69	0.00	19.06	433.63
Casing:	3/24/2015	452.69	0.00	18.67	434.02
0 to 8 feet	4/20/2015	452.69	0.00	18.47	434.22
0 10 0 1000	5/27/2015	452.69	0.00	15.60	437.09
Screen:	6/22/2015	452.69	0.00	18.29	434.40
8 to 33 feet	7/28/2015	452.69	0.00	17.90	434.79
	8/24/2015	452.69	0.00	18.11	434.58
	9/21/2015	452.69	0.00	18.42	434.27
	10/29/2015	452.69	0.00	18.20	434.49
	11/18/2015	452.69	0.00	18.99	433.70
	12/9/2015	452.69	0.00	18.81	433.88
	1/12/2016	452.69	0.00	18.71	433.98
	3/8/2016	452.69	0.00	18.16	434.53
	6/7/2016	452.69	0.00	18.19	434.50
	9/13/2016	452.69	0.00	18.62	434.07
	11/21/2016	452.69	0.00	19.14	433.55
	3/9/2017	452.69	0.00	19.63	433.06
	6/7/2017 9/6/2017	452.69	0.00	18.89 18.78	433.80
		452.69	0.00	18.78	433.91 433.62
	<u>11/1/2017</u> <u>3/6/2018</u>	452.69 452.69	0.00	19.07	433.38
	6/20/2018	452.69	0.00	19.31	433.38 434.95
	9/5/2018	452.69	0.00	17.38	434.93
	7/18/2019	452.69	0.00	17.38	435.72
	11/13/2019	452.69	0.00	18.28	433.72
	11,15/2017	102.09	0.00	10.20	151.11

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
OW-1	1/19/2015	455.31	0.00	19.33	435.98
	2/25/2015	455.31	0.00	21.66	433.65
Casing:	3/24/2015	455.31	0.00	21.08	434.23
0 to 9 feet	4/20/2015	455.31	0.00	20.66	434.65
	5/27/2015	455.31	0.00	20.59	434.72
Screen:	6/22/2015	455.31	0.00	20.58	434.73
9 to 34 feet	7/28/2015	455.31	0.00	20.18	435.13
	8/24/2015	455.31	0.00	20.40	434.91
	9/21/2015	455.31	0.00	20.73	434.58
	10/29/2015	455.31	0.00	20.55	434.76
	11/18/2015	455.31	0.00	21.38	433.93
	12/9/2015	455.31	0.00	21.23	434.08
	1/12/2016	455.31	0.00	21.06	434.25
	3/8/2016	455.31	0.00	20.54	434.77
	6/7/2016	455.31	0.00	20.58	434.73
	9/13/2016	455.31	0.00	21.03	434.28
	11/21/2016	455.31 455.31	0.00	21.82	433.49
	3/9/2017			22.04	433.27
	9/6/2017	455.31 455.31	0.00	21.27	434.04
	6/7/2017 11/1/2017	455.31	0.00	21.22	434.09 433.78
		455.31			433.54
	3/6/2018 6/20/2018	455.31	0.00	21.77 20.03	435.28
	9/5/2018	455.31	0.00	19.61	435.28
	7/18/2019	455.31	0.00	19.01	436.08
	11/13/2019	455.31	0.00	20.66	434.65
	11/13/2017	433.31	0.00	20.00	434.05
YMW-1	1/19/2015	433.64	0.00	3.66	429.98
	2/25/2015	433.64	0.00	4.01	429.63
Casing:	3/24/2015	433.64	0.00	3.02	430.62
0 to 2 feet	4/20/2015	433.64	0.00	3.34	430.30
	5/27/2015	433.64	0.00	4.08	429.56
Screen:	6/22/2015	433.64	0.00	3.04	430.60
2 to 14 feet	7/28/2015	433.64	0.00	3.04	430.60
	8/24/2015	433.64	0.00	1.51	432.13
	9/21/2015	433.64	0.00	4.94	428.70
	10/29/2015	433.64	0.00	4.63	429.01
	11/18/2015	433.64	0.00	4.45	429.19
	12/9/2015	433.64	0.00	4.37	429.27
	1/12/2016	433.64	0.00	3.31	430.33
	3/8/2016	433.64	0.00	3.31	430.33
	6/7/2016	433.64	0.00	3.90	429.74
	9/13/2016	433.64	0.00	5.47	428.17
	11/21/2016	433.64	0.00	6.21	427.43
	3/9/2017	433.64	0.00	5.40	428.24
	6/7/2017	433.64	0.00	4.25	429.39
	9/6/2017	433.64	0.00	4.44	429.20
	11/1/2017	433.64	0.00	5.37	428.27
	3/6/2018	433.64	0.00	4.16	429.48
	6/20/2018	433.64	0.00	3.08	430.56
	9/5/2018	433.64	0.00	3.35	430.29
	7/18/2019	433.64	0.00	2.73	430.91
	11/13/2019	433.64	0.00	4.19	429.45

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-2	1/19/2015	431.37	0.00	2.86	428.51
	2/25/2015	431.37	0.00	2.84	428.53
Casing:	3/24/2015	431.37	0.00	2.78	428.59
0 to 2 feet	4/20/2015	431.37	0.00	2.71	428.66
	5/27/2015	431.37	0.00	2.78	428.59
Screen:	6/22/2015	431.37	0.00	2.51	428.86
2 to 14 feet	7/28/2015	431.37	0.00	2.41	428.96
	8/24/2015	431.37	0.00	0.61	430.76
	9/21/2015	431.37	0.00	2.58	428.79
	10/29/2015	431.37	0.00	2.31	429.06
	11/18/2015	431.37	0.00	4.02	427.35
	12/9/2015	431.37	0.00	3.94	427.43
	1/12/2016	431.37	0.00	2.90	428.47
	3/8/2016	431.37	0.00	2.97	428.40
	6/7/2016 9/13/2016	431.37	0.00	2.84	428.53
	11/21/2016	431.37 431.37	0.00	2.44	428.93 428.43
	3/9/2017	431.37	0.00	2.94	428.43
	6/7/2017	431.37	0.00	3.10	428.43
	9/6/2017	431.37	0.00	2.65	428.27
	11/1/2017	431.37	0.00	2.67	428.72
	3/6/2018	431.37	0.00	2.85	428.52
	6/20/2018	431.37	0.00	2.58	428.79
	9/5/2018	431.37	0.00	2.50	428.86
	7/18/2019	431.37	0.00	3.01	428.36
	11/13/2019	431.37	0.00	2.61	428.76
YMW-3	1/19/2015	440.39	0.00	8.63	431.76
-	2/25/2015	440.39	0.00	8.87	431.52
Casing:	3/24/2015	440.39	0.00	8.17	432.22
0 to 4.5 feet	4/20/2015	440.39	0.00	8.19	432.20
	5/27/2015	440.39	0.00	8.54	431.85
Screen:	6/22/2015	440.39	0.00	8.54	431.85
4.5 to 19.5 feet	7/28/2015	440.39	0.00	7.76	432.63
	8/24/2015	440.39	0.00	7.97	432.42
	9/21/2015	440.39	0.00	9.21	431.18
	10/29/2015	440.39	0.00	9.00	431.39
	11/18/2015	440.39	0.00	9.09	431.30
	12/9/2015	440.39	0.00	8.83	431.56
	1/12/2016	440.39	0.00	7.97	432.42
	3/8/2016	440.39	0.00	8.63	431.76
	6/7/2016	440.39	0.00	8.86	431.53
	9/13/2016	440.39	0.00	9.54	430.85
	11/21/2016	440.39	0.00	10.44	429.95
	3/9/2017	440.39	0.00	9.55	430.84
	6/7/2017	440.39	0.00	8.82	431.57
	<u>9/6/2017</u> 11/1/2017	440.39 440.39	0.00	<u>8.84</u> 9.34	431.55 431.05
	3/6/2018	440.39	0.00	9.34	431.05
	6/20/2018	440.39	0.00	8.27	432.42
	9/5/2018	440.39	0.00	8.48	432.12
	7/18/2019	440.39	0.00	8.12	431.91
	11/13/2019	440.39	0.00	8.56	432.27
	11/13/2019	170.59	0.00	0.50	101.00

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-4	1/19/2015	433.72	0.00	4.29	429.43
	2/25/2015	433.72	0.00	4.02	429.70
Casing:	3/24/2015	433.72	0.00	4.06	429.66
0 to 2 feet	4/20/2015	433.72	0.00	4.09	429.63
	5/27/2015	433.72	0.00	4.33	429.39
Screen:	6/22/2015	433.72	0.00	3.96	429.76
2 to 17 feet	7/28/2015	433.72	0.00	4.13	429.59
	8/24/2015	433.72	0.00	2.34	431.38
	9/21/2015	433.72	0.00	4.45	429.27
	10/29/2015	433.72	0.00	4.24	429.48
	11/18/2015	433.72	0.00	4.55	429.17
	12/9/2015	433.72	0.00	4.34	429.38
	1/12/2016	433.72	0.00	4.71 4.18	429.01
	3/8/2016 6/7/2016	433.72 433.72	0.00	4.18	429.54 429.54
	9/13/2016	433.72	0.00	4.18	429.34
	11/21/2016	433.72	0.00	4.40	429.20
	3/9/2017	433.72	0.00	4.30	428.87
	6/7/2017	433.72	0.00	4.30	429.42
	9/6/2017	433.72	0.00	4.18	429.54
	11/1/2017	433.72	0.00	4.41	429.34
	3/6/2018	433.72	0.00	4.24	429.48
	6/20/2018	433.72	0.00	3.89	429.83
	9/5/2018	433.72	0.00	4.01	429.71
	7/18/2019	433.72	0.00	3.79	429.93
	11/13/2019	433.72	0.00	4.16	429.56
		ļ <u> </u> ļ		ļ <u> </u>	
YMW-5	1/19/2015	430.70	0.00	3.26	427.44
	2/25/2015	430.70	0.00	3.15	427.55
Casing:	3/24/2015	430.70	0.00	3.05	427.65
0 to 1 feet	4/20/2015	430.70	0.00	3.19	427.51
	5/27/2015	430.70	0.00	3.25	427.45
Screen:	6/22/2015	430.70	0.00	3.05	427.65
1 to 16 feet	7/28/2015	430.70	0.00	3.23	427.47
	8/24/2015	430.70	0.00	1.43	429.27
	9/21/2015	430.70	0.00	3.52	427.18
	10/29/2015	430.70	0.00	3.23	427.47
	11/18/2015	430.70	0.00	3.32	427.38
	12/9/2015	430.70	0.00	3.16	427.54
	1/12/2016	430.70	0.00	2.91	427.79
	3/8/2016	430.70	0.00	2.99	427.71
	6/7/2016	430.70	0.00	3.01	427.69
	9/13/2016	430.70	0.00	3.39	427.31
	11/21/2016	430.70	0.00	3.74	426.96
	3/9/2017 6/7/2017	430.70 430.70	0.00	<u>3.14</u> 3.07	427.56 427.63
	9/6/2017	430.70	0.00	2.98	427.03
	9/6/2017	430.70	0.00	3.23	427.72
	3/6/2018	430.70	0.00	2.83	427.87
	6/20/2018	430.70	0.00	2.67	427.87
	9/5/2018	430.70	0.00	2.74	428.03
	7/18/2019	430.70	0.00	2.74	427.90
	11/13/2019	430.70	0.00	2.30	428.00
	11/13/2017	TJ0./0	0.00	2.70	T20.00

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-6	1/19/2015	432.68	0.00	5.42	427.26
	2/25/2015	432.68	0.00	5.59	427.09
Casing:	3/24/2015	432.68	0.00	5.11	427.57
0 to 3 feet	4/20/2015	432.68	0.00	5.08	427.60
	5/27/2015	432.68	0.00	5.87	426.81
Screen:	6/22/2015	432.68	0.00	5.11	427.57
3 to 18 feet	7/28/2015	432.68	0.00	5.38	427.30
	8/24/2015	432.68	0.00	3.58	429.10
	9/21/2015	432.68	0.00	6.11	426.57
	10/29/2015	432.68	0.00	6.01	426.67
	11/18/2015	432.68	0.00	5.79	426.89
	12/9/2015	432.68	0.00	5.56	427.12
	1/12/2016	432.68	0.00	5.11	427.57
	3/8/2016	432.68	0.00	5.10	427.58
	6/7/2016	432.68	0.00	5.36	427.32
	9/13/2016	432.68	0.00	6.38	426.30
	11/21/2016	432.68	0.00	7.05	425.63
	3/9/2017	432.68	0.00	6.25	426.43
	6/7/2017	432.68	0.00	5.49	427.19
	9/6/2017	432.68	0.00	6.25	426.43
	11/1/2017	432.68	0.00	6.65	426.03
	3/6/2018	432.68	0.00	5.35	427.33
	6/20/2018	432.68	0.00	4.89	427.79
	9/5/2018	432.68	0.00	5.05	427.63
	7/18/2019	432.68	0.00	4.74	427.94
	11/13/2019	432.68	0.00	5.49	427.19
	1 11 0 10 0 1 5	4.4.94.9	0.00	1.5.04	100.10
YMW-7	1/19/2015	449.40	0.00	15.91	433.49
~ .	2/25/2015	449.40	0.00	15.98	433.42
Casing:	3/24/2015	449.40	0.00	15.54	433.86
0 to 18 feet	4/20/2015	449.40	0.00	15.47	433.93
~	5/27/2015	449.40	0.00	15.51	433.89
Screen:	6/22/2015	449.40	0.00	15.22	434.18
18 to 28 feet	7/28/2015	449.40	0.00	14.89	434.51
	8/24/2015	449.40	0.00	15.10	434.30
	9/21/2015	449.40	0.00	15.32	434.08
	10/29/2015	449.40 449.40	0.00	14.97	434.43
	11/18/2015	449.40	0.00	15.83 15.68	433.57
	12/9/2015 1/12/2016	449.40	0.00	15.29	433.72 434.11
	3/8/2016	449.40	0.00	15.13	434.11
		449.40	0.00	15.09	434.27
	6/7/2016 9/13/2016	449.40	0.00	15.47	434.31 433.93
	11/21/2016	449.40		15.69	
	3/9/2017	449.40	0.00	16.31	433.71
	6/7/2017	449.40	0.00	15.24	433.09 434.16
	9/6/2017	449.40	0.00	15.68	434.16
	11/1/2017	449.40	0.00	15.08	433.49
	3/6/2018	449.40	0.00	16.12	433.28
	6/20/2018	449.40	0.00	16.12	433.28
	9/5/2018	449.40	0.00	14.73	434.03
	7/18/2019	449.40			
	11/13/2019	449.40	0.00 0.00	13.96 14.98	435.44 434.42
	11/13/2019	449.40	0.00	14.98	434.42

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YMW-8	1/19/2015	446.91	0.00	13.86	433.05
	2/25/2015	446.91	0.00	14.52	432.39
Casing:	3/24/2015	446.91	0.00	12.91	434.00
0 to 7 feet	4/20/2015	446.91	0.00	13.34	433.57
	5/27/2015	446.91	0.00	13.61	433.30
Screen:	6/22/2015	446.91	0.00	13.44	433.47
7 to 22 feet	7/28/2015	446.91	0.00	13.34	433.57
	8/24/2015	446.91	0.00	13.55	433.36
	9/21/2015	446.91 446.91	0.00	13.85 13.56	433.06
	10/29/2015 11/18/2015	446.91	0.00	13.36	433.35 432.80
	12/9/2015	446.91	0.00	13.94	432.80
	1/12/2016	446.91	0.00	13.54	432.97
	3/8/2016	446.91	0.00	13.05	433.86
	6/7/2016	446.91	0.00	13.52	433.39
	9/13/2016	446.91	0.00	14.03	432.88
	11/21/2016	446.91	0.00	14.39	432.52
	3/9/2017	446.91	0.00	14.61	432.30
	6/7/2017	446.91	0.00	14.07	432.84
	9/6/2017	446.91	0.00	14.28	432.63
	11/1/2017	446.91	0.00	14.43	432.48
	3/6/2018	446.91	0.00	14.07	432.84
	6/20/2018	446.91	0.00	12.80	434.11
	9/5/2018	446.91	0.00	12.99	433.92
	7/18/2019	446.91	0.00	12.57	434.34
	11/13/2019	446.91	0.00	13.63	433.28
YMW-9	1/19/2015	436.71	0.00	5.69	431.02
	2/25/2015	436.71	0.00	5.93	430.78
Casing:	3/24/2015	436.71	0.00	5.41	431.30
0 to 2.5 feet	4/20/2015	436.71	0.00	4.80	431.91
	5/27/2015	436.71	0.00	6.02	430.69
Screen:	6/22/2015	436.71	0.00	5.81	430.90
2.5 to 17.5 feet	7/28/2015	436.71	0.00	5.94	430.77
	8/24/2015	436.71	0.00	4.14	432.57
	9/21/2015	436.71	0.00	6.17	430.54
	10/29/2015	436.71	0.00	5.99	430.72
	11/18/2015 12/9/2015	436.71	0.00 0.00	6.13	430.58 430.85
	1/12/2015	436.71 436.71	0.00	5.86 5.04	430.83
	3/8/2016	436.71	0.00	5.43	431.28
	6/7/2016	436.71	0.00	5.93	431.28
	9/13/2016	436.71	0.00	6.44	430.27
	11/21/2016	436.71	0.00	6.50	430.21
	3/9/2017	436.71	0.00	6.23	430.48
	6/7/2017	436.71	0.00	6.13	430.58
	9/6/2017	436.71	0.00	6.42	430.29
	11/1/2017	436.71	0.00	6.34	430.37
	3/6/2018	436.71	0.00	5.29	431.42
	6/20/2018	436.71	0.00	5.73	430.98
	9/5/2018	436.71	0.00	5.88	430.83
	7/18/2019	436.71	0.00	5.65	431.06
	11/13/2019	436.71	0.00	5.87	430.84

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YP-1	1/19/2015	440.41	0.00	9.25	431.16
	2/25/2015	440.41	0.00	9.25	431.16
Casing:	3/24/2015	440.41	0.00	9.26	431.15
0 to 8 feet	4/20/2015	440.41	0.00	9.23	431.18
	5/27/2015	440.41	0.00	9.34	431.07
Screen:	6/22/2015	440.41	0.00	9.18	431.23
8 to 13 feet	7/28/2015	440.41	0.00	8.79	431.62
	8/24/2015	440.41	0.00	8.99	431.42
	9/21/2015	440.41	0.00	9.20	431.21
	10/29/2015	440.41	0.00	8.96	431.45
	11/18/2015	440.41	0.00	9.30	431.11
	12/9/2015	440.41	0.00	9.17	431.24
	1/12/2016	440.41	0.00	9.14	431.27
	3/8/2016	440.41	0.00	9.24	431.17
	6/7/2016	440.41	0.00	9.14	431.27
	9/13/2016	440.41	0.00	8.18	432.23
	11/21/2016	440.41	0.00	9.25	431.16
	3/10/2017	440.41	0.00	9.39	431.02
	6/8/2017	440.41	0.00	9.34	431.07
	9/7/2017	440.41	0.00	9.29	431.12
	11/2/2017	440.41	0.00	9.32	431.09
	3/7/2018	440.41	0.00	9.41	431.00
	6/21/2018	440.41	0.00	9.14	431.27
	9/6/2018	440.41	0.00	9.01	431.40
	7/18/2019	440.41	0.00	8.93	431.48
	11/13/2019	440.41	0.00	9.16	431.25
YP-2	1/19/2015	438.35	0.00	8.27	430.08
	2/25/2015	438.35	0.00	8.09	430.26
Casing:	3/24/2015	438.35	0.00	8.05	430.30
0 to 7 feet	4/20/2015	438.35	0.00	8.01	430.34
	5/27/2015	438.35	0.00	8.36	429.99
Screen:	6/22/2015	438.35	0.00	7.98	430.37
7 to 12 feet	7/28/2015	438.35	0.00	8.08	430.27
	8/24/2015	438.35	0.00	8.28	430.07
	9/21/2015	438.35	0.00	8.13	430.22
	10/29/2015	438.35	0.00	7.91	430.44
	11/18/2015	438.35	0.00	8.36	429.99
	12/9/2015	438.35	0.00	8.25	430.10
	1/12/2016	438.35	0.00	8.17	430.18
	3/8/2016	438.35	0.00	8.15	430.20
	6/7/2016	438.35	0.00	8.07	430.28
	9/13/2016	438.35	0.00	8.07	430.28
	11/21/2016	438.35	0.00	8.11	430.24
	3/10/2017	438.35	0.00	8.11	430.24
	6/8/2017	438.35	0.00	8.23	430.12
	9/7/2017	438.35	0.00	8.10	430.25
	11/2/2017	438.35	0.00	8.08	430.27
	3/7/2018	438.35	0.00	8.12	430.23
	6/21/2018	438.35	0.00	8.13	430.22
	9/6/2018	438.35	0.00	8.16	430.19
	7/18/2019	438.35	0.00	8.03	430.32
	11/13/2019	438.35	0.00	8.16	430.19

$\begin{array}{c} \begin{array}{c} 2/25 \\ 3/24 \\ 0 \ to \ 5.5 \ feet \\ \hline 4/20 \\ 5/27 \\ Screen: \\ 6/22 \\ 5.5 \ to \ 10.5 \ feet \\ \hline 7/28 \\ 8/24 \\ 9/21 \\ \hline 10/29 \\ 11/18 \\ 12/9 \\ 1/12 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ 9/13 \\ 11/21 \\ 3/8 \\ 6/7 \\ \end{array}$	2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2015 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2016 4. 2017 4.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \text{Casing:} & 3/24/\\ 0 \text{ to 5.5 feet} & 4/20/\\ & 5/27/\\ \text{Screen:} & 6/22/\\ 5.5 \text{ to 10.5 feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & 11/22\\ & 3/24/\\ & 0 \text{ to 8 feet} & 4/20/\\ & 5/27/\\ & \text{Screen:} & 6/22/\\ & 8 \text{ to 13 feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/2 \end{array}$	2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccc} 0 \text{ to } 5.5 \text{ feet} & \frac{4/20}{5/27/} \\ \text{Screen:} & 6/22/\\ 5.5 \text{ to } 10.5 \text{ feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & & 1/12/\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & & 1/12/\\ & 3/10/\\ & & 6/22/\\ & & & & \\ & & & & \\ & & & & \\ & & & &$	2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccc} 0 \text{ to } 5.5 \text{ feet} & \frac{4/20}{5/27/} \\ \text{Screen:} & 6/22/\\ 5.5 \text{ to } 10.5 \text{ feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/13/\\ & & 1/12/\\ & 3/10/\\ & 6/21/\\ & 9/13/\\ & & 1/12/\\ & 3/10/\\ & & 6/22/\\ & & & & \\ & & & & \\ & & & & \\ & & & &$	2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} & 5/27/\\ Screen: \\ & 6/22/\\ \hline 5.5 \text{ to } 10.5 \text{ feet} \\ \hline 7/28/\\ & 8/24/\\ & 9/21/\\ \hline 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 1/21\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 1/121\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/21\\ & 3/7/\\ & 6/21/\\ & 9/6/\\ & 7/18/\\ & 11/13\\ \hline & YP-4 \\ & 1/19/\\ & 2/25/\\ & 7/18/\\ & 11/13\\ \hline & YP-4 \\ & 1/19/\\ & 3/27/\\ & Screen: \\ & 6/22/\\ & Screen: \\ & 6/22/\\ & 8 \text{ to } 13 \text{ feet} \\ \hline & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/2 \end{array}$	2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} \text{Screen:} & 6/22/\\ \hline 7/28/\\ \hline 5.5 \text{ to } 10.5 \text{ feet} & 7/28/\\ \hline 8/24/\\ 9/21/\\ \hline 10/29\\ \hline 11/18\\ \hline 12/9/\\ \hline 1/12/\\ \hline 3/8/\\ 6/7/\\ 9/13/\\ \hline 11/21\\ \hline 3/10/\\ 6/8/\\ 9/7/\\ \hline 11/21\\ \hline 3/10/\\ 6/8/\\ 9/7/\\ \hline 11/22\\ \hline 3/7/\\ 6/21/\\ 9/6/\\ \hline 7/18/\\ \hline 11/13\\ \hline \\ \hline \\ YP-4 & 1/19/\\ 2/25/\\ Casing: & 3/24/\\ 0 \text{ to } 8 \text{ feet} & 4/20/\\ \hline 5/27/\\ \text{Screen:} & 6/22/\\ 8 \text{ to } 13 \text{ feet} & 7/28/\\ 8 \text{ to } 13 \text{ feet} & 7/28/\\ 8/24/\\ 9/21/\\ \hline 10/29\\ \hline 11/18\\ \hline 2/29/\\ \hline 11/18\\ \hline 2/29/\\ \hline 11/18\\ \hline 2/29/\\ \hline 11/18\\ \hline 2/29/\\ \hline 1/12/\\ 3/8/\\ 6/7/2 \end{array}$	2015 4 2015 4 2015 4 2015 4 2015 4 2015 4 /2015 4 /2015 4 /2015 4 /2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.0 .00 5.1 .00 5.1 .00 4.8 .00 5.4 .00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2015 4 2015 4 2015 4 /2015 4 /2015 4 /2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.1 .00 5.1 .00 4.8 .00 5.4 .00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2015 4 2015 4 2015 4 /2015 4 /2015 4 /2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.1 .00 5.1 .00 4.8 .00 5.4 .00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c cccc} & 10/29 \\ & 11/18 \\ & 12/9/ \\ & 1/12/ \\ & 3/8/ \\ & 6/7/ \\ & 9/13/ \\ & 6/7/ \\ & 9/13/ \\ & 11/21 \\ & 3/10/ \\ & 6/8/ \\ & 9/7/ \\ & 11/21 \\ & 3/10/ \\ & 6/8/ \\ & 9/7/ \\ & 11/21 \\ & 3/7/ \\ & 6/21/ \\ & 9/6/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 3/2/2 \\ & 7/18/ \\ & 11/13 \\ \hline \\ & Screen: & 6/22 \\ & 8 to 13 feet & 7/28/ \\ & 8/24/ \\ & 9/21/ \\ & 10/29 \\ & 11/18 \\ & 12/9/ \\ & 1/12/ \\ & 3/8/ \\ & 6/7/2 \\ \hline \end{array}$	/2015 4 /2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 4.8 .00 5.4 .00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.3	38 431.63 40 431.11 27 431.24 93 431.58 74 431.77 92 431.49
$\begin{array}{c cccc} & 10/29 \\ & 11/18 \\ & 12/9/ \\ & 1/12/ \\ & 3/8/ \\ & 6/7/ \\ & 9/13/ \\ & 6/7/ \\ & 9/13/ \\ & 11/21 \\ & 3/10/ \\ & 6/8/ \\ & 9/7/ \\ & 11/21 \\ & 3/10/ \\ & 6/8/ \\ & 9/7/ \\ & 11/21 \\ & 3/7/ \\ & 6/21/ \\ & 9/6/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 2/25/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & YP-4 & 1/19/ \\ & 3/2/2 \\ & 7/18/ \\ & 11/13 \\ \hline \\ & Screen: & 6/22 \\ & 8 to 13 feet & 7/28/ \\ & 8/24/ \\ & 9/21/ \\ & 10/29 \\ & 11/18 \\ & 12/9/ \\ & 1/12/ \\ & 3/8/ \\ & 6/7/2 \\ \hline \end{array}$	/2015 4 /2015 4 2015 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2016 4 2017 4	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.4 .00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.0 .00 5.3	40 431.11 27 431.24 93 431.58 74 431.77 92 431.49
$\begin{array}{c cccc} & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 0/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/22\\ & 3/7/\\ & 6/21/\\ & 9/6/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 2/25/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 2/25/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 3/2/2/\\ & 5/27/\\ & Screen: & 6/22/\\ & Screen: & 6/22/\\ & Screen: & 6/22/\\ & 8 to 13 feet & 7/28/\\ & 8/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/2\\ \hline \end{array}$	2015 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2017 4:	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.0	27 431.24 93 431.58 74 431.77 92 431.49
$\begin{array}{c cccc} & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/\\ & 9/13/\\ & 0/13/\\ & 11/21\\ & 3/10/\\ & 6/8/\\ & 9/7/\\ & 11/22\\ & 3/7/\\ & 6/21/\\ & 9/6/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 2/25/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 2/25/\\ & 7/18/\\ & 11/13\\ \hline \\ & YP-4 & 1/19/\\ & 3/2/2/\\ & 5/27/\\ & Screen: & 6/22/\\ & Screen: & 6/22/\\ & Screen: & 6/22/\\ & 8 to 13 feet & 7/28/\\ & 8/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/\\ & 6/7/2\\ \hline \end{array}$	2015 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2017 4:	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.2 .00 4.9 .00 4.7 .00 5.0 .00 5.3	27 431.24 93 431.58 74 431.77 92 431.49
$\begin{array}{c c} 1/12/\\3/8/\\6/7/\\9/13/\\11/21\\3/10/\\6/8/\\9/7/\\11/22\\3/7/\\6/21/\\9/6/\\7/18/\\11/13\\\hline\\ \hline\\ YP-4&1/19/\\9/6/\\7/18/\\11/13\\\hline\\ \hline\\ YP-4&1/19/\\9/6/\\7/18/\\11/13\\\hline\\ \hline\\ Screen:&6/22/\\8 to 13 feet&7/28/\\8 to 13 feet&7/28/\\8/24/\\9/21/\\10/29\\11/18\\12/9/\\1/12/\\3/8/\\6/7/2\\\hline\end{array}$	2016 4: 2016 4: 2016 4: 2016 4: 2016 4: 2016 4: /2016 4: /2016 4: /2017 4:	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 4.7 .00 5.0 .00 5.3	93 431.58 74 431.77 02 431.49
$\begin{array}{c} 3/8/,\\ 6/7/,\\ 9/13/\\ 11/21\\ 3/10/\\ 6/8/,\\ 9/7/,\\ 11/2/\\ 3/7/,\\ 6/21/\\ 9/6/,\\ 7/18/\\ 11/13\\\\\hline\\ YP-4 & 1/19/\\ 2/25/\\ Casing: & 3/24/\\ 0 \text{ to 8 feet} & 4/20/\\ 5/27/\\ Screen: & 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ 8 \text{ to 13 feet} & 7/28/\\ 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/,\\ 6/7/2\\ \end{array}$	2016 4. 2016 4. 2016 4. /2016 4. /2016 4. /2017 4.	36.51 0. 36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 4.7 .00 5.0 .00 5.3	74 431.77 02 431.49
$\begin{array}{c} 6/7/2 \\ 9/13/\\ 11/21 \\ 3/10/\\ 6/8/2 \\ 9/7/2 \\ 11/2/\\ 3/7/2 \\ 6/21/\\ 9/6/2 \\ 7/18/\\ 11/13 \\ \hline \\ YP-4 \\ 1/19/\\ 2/25/\\ Casing: \\ 3/24/\\ 0 \text{ to 8 feet} \\ 4/20/\\ 5/27/\\ Screen: \\ 6/22/\\ 8 \text{ to 13 feet} \\ 7/28/\\ 8/24/\\ 9/21/\\ 10/29 \\ 11/18 \\ 12/9/\\ 1/12/\\ 3/8/2 \\ 6/7/2 \\ \end{array}$	2016 4. 2016 4. /2016 4. /2016 4. /2017 4.	36.51 0. 36.51 0. 36.51 0. 36.51 0.	.00 5.0 .00 5.3)2 431.49
$\begin{array}{c} 9/13/\\ 11/21\\ 3/10/\\ 6/8/2\\ 9/7/2\\ 11/2/\\ 3/7/2\\ 6/21/\\ 9/6/2\\ 7/18/\\ 11/13\\ \hline\\ \hline\\ YP-4 & 1/19/\\ 2/25/\\ Casing: & 3/24/\\ 0 \text{ to 8 feet} & 4/20/\\ 5/27/\\ Screen: & 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ 8 \text{ to 13 feet} & 7/28/\\ 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/2\\ 6/7/2\\ \end{array}$	2016 41 /2016 41 /2017 41	36.51 0. 36.51 0.	.00 5.3	
$\begin{array}{c cccc} & 11/21 \\ & 3/10/ \\ & 6/8/ \\ & 9/7/ \\ & 11/2/ \\ & 3/7/ \\ & 6/21/ \\ & 3/7/ \\ & 6/21/ \\ & 9/6/ \\ & 7/18/ \\ & 11/13 \\ \hline \\ & & 11/13 \\ \hline \\ & & & & \\ \hline \\ & & & & \\ & & & \\ \hline \\ & & & &$	/2016 43 /2017 43	36.51 0.	00 ((32 431.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2017 4.		.00 1 6.6	65 429.86
$\begin{array}{c} 6/8/2 \\ 9/7/2 \\ 11/2/ \\ 3/7/2 \\ 6/21/ \\ 9/6/2 \\ 7/18/ \\ 11/13 \\ \hline \\ \hline \\ YP-4 \\ 1/19/ \\ 2/25/ \\ Casing: \\ 3/24/ \\ 0 to 8 feet \\ 4/20/ \\ 5/27/ \\ Screen: \\ 6/22/ \\ 8 to 13 feet \\ 7/28/ \\ 8 to 13 feet \\ 7/28/ \\ 8/24/ \\ 9/21/ \\ 10/29 \\ 11/18 \\ 12/9/ \\ 1/12/ \\ 3/8/2 \\ 6/7/2 \\ \end{array}$.00 5.6	
$\begin{array}{c c} 9/7/2 \\ \hline 11/2/ \\ 3/7/2 \\ \hline 6/21/ \\ 9/6/2 \\ \hline 7/18/ \\ \hline 11/13 \\ \hline \\ \hline \\ YP-4 \\ 1/19/ \\ 2/25/ \\ Casing: \\ 3/24/ \\ 0 to 8 feet \\ 4/20/ \\ 5/27/ \\ Screen: \\ 6/22/ \\ 8 to 13 feet \\ \hline 7/28/ \\ 8/24/ \\ 9/21/ \\ 10/28/ \\ 8/24/ \\ 9/21/ \\ 10/29 \\ 11/18 \\ 12/9/ \\ 1/12/ \\ 3/8/2 \\ 6/7/2 \\ \end{array}$	2017 4		.00 5.2	
$\begin{array}{c c} 11/2/\\3/7/2\\6/21/\\9/6/2\\7/18/\\11/13\\\hline\\ YP-4&1/19/\\2/25/\\Casing:&3/24/\\0 to 8 feet&4/20/\\5/27/\\Screen:&6/22/\\8 to 13 feet&7/28/\\8/24/\\9/21/\\10/29\\11/18\\12/9/\\11/18\\12/9/\\1/12/\\3/8/2\\6/7/2\\\end{array}$.00 5.1	
$\begin{array}{c c} & 3/7/2 \\ & 6/21/ \\ & 9/6/2 \\ \hline & 7/18/ \\ \hline & 11/13 \\ \hline \\ & 11/13 \\ \hline \\ & 2/25/ \\ Casing: & 3/24/ \\ 0 \text{ to 8 feet} & 4/20/ \\ \hline & 5/27/ \\ Screen: & 6/22/ \\ 8 \text{ to 13 feet} & 7/28/ \\ \hline & 8/24/ \\ \hline & 9/21/ \\ \hline & 10/29 \\ \hline & 11/18 \\ \hline & 12/9/ \\ \hline & 1/12/ \\ \hline & 3/8/2 \\ \hline & 6/7/2 \\ \end{array}$.00 5.9	
$\begin{array}{c c} 6/21/\\ 9/6/2\\ 7/18/\\ 11/13\\ \hline \\ \hline \\ \hline \\ \hline \\ YP-4 & 1/19/\\ 2/25/\\ Casing: & 3/24/\\ 0 \text{ to 8 feet} & 4/20/\\ 5/27/\\ \text{Screen: } 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/2\\ 6/7/2\\ \end{array}$.00 4.9	
9/6// 7/18/ 11/13 YP-4 1/19/ 2/25/ 2/25/ Casing: 0 to 8 feet 4/20/ 5/27/ Screen: 8 to 13 feet 7/28/ 8/24/ 9/21/ 10/29 11/18 12/9/ 1/12/ 3/8/ 6/7/2			.00 4.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.00 4.7	
YP-4 1/19/ 2/25/ 2/25/ Casing: 0 to 8 feet 4/20/ 5/27/ Screen: 8 to 13 feet 7/28/ 8/24/ 9/21/ 10/29 11/13 12/9/ 11/18 12/9/ 11/12/ 3/8/2 1/12/ 3/8/2			.00 4.4	
$\begin{array}{c} 2/25/\\ Casing: 3/24/\\ 0 \text{ to 8 feet} 4/20/\\ 5/27/\\ \text{Screen: } 6/22/\\ 8 \text{ to 13 feet} 7/28/\\ 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/\\ 6/7/2\end{array}$	/2019 43	36.51 0.	.00 5.0	03 431.48
$\begin{array}{c} 2/25/\\ Casing: 3/24/\\ 0 \text{ to 8 feet} 4/20/\\ 5/27/\\ \text{Screen: } 6/22/\\ 8 \text{ to 13 feet} 7/28/\\ 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/\\ 6/7/2\end{array}$	·			
$\begin{array}{c} \text{Casing:} & 3/24/\\ 0 \text{ to 8 feet} & 4/20/\\ & 5/27/\\ \text{Screen:} & 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/2\\ & 6/7/2 \end{array}$	2015 44	41.83 0.	.00 9.1	432.70
$\begin{array}{c cccc} 0 \text{ to 8 feet} & \frac{4/20/}{5/27/} \\ \text{Screen:} & 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/2\\ & 6/7/2 \end{array}$	2015 44	41.83 0.	.00 9.3	32 432.51
$\begin{array}{c cccc} 0 \text{ to 8 feet} & \frac{4/20/}{5/27/} \\ \text{Screen:} & 6/22/\\ 8 \text{ to 13 feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/2\\ & 6/7/2 \end{array}$	2015 44	41.83 0.	.00 8.2	433.58
$\begin{array}{c} \text{Screen:} & 6/22/\\ 8 \text{ to } 13 \text{ feet} & 7/28/\\ & 8/24/\\ & 9/21/\\ & 10/29\\ & 11/18\\ & 12/9/\\ & 1/12/\\ & 3/8/2\\ & 6/7/2 \end{array}$	2015 44	41.83 0.	.00 8.7	433.09
$\begin{array}{c} 8 \text{ to } 13 \text{ feet} \\ \hline 8/24/\\ 9/21/\\ 10/29\\ 11/18\\ 12/9/\\ 1/12/\\ 3/8/\\ 6/7/2 \end{array}$	2015 44	41.83 0.	.00 9.0	07 432.76
8/24/ 9/21/ 10/29 11/18 12/9/ 1/12/ 3/8/2 6/7/2	2015 44	41.83 0.	.00 8.9	96 432.87
9/21/ 10/29 11/18 12/9/ 1/12/ 3/8/2 6/7/2	2015 44	41.83 0.	.00 8.2	433.56
10/29 11/18 12/9/ 1/12/ 3/8/2 6/7/2	2015 44	41.83 0.	.00 9.1	432.65
11/18 12/9/ 1/12/ 3/8/2 6/7/2	2015 44	41.83 0.	.00 9.3	432.52
12/9/ 1/12/ 3/8/2 6/7/2	/2015 44	41.83 0.	.00 9.1	432.72
1/12/ 3/8/2 6/7/2	/2015 44	41.83 0.	.00 9.4	41 432.42
3/8/2			.00 9.2	
3/8/2	2016 44	41.83 0.	.00 8.7	433.05
		41.83 0.	.00 8.5	
0/10		41.83 0.	.00 9.0	432.81
9/13/		41.83 0.	.00 9.5	
	2016 44	41.83 0.	.00 9.7	432.09
3/10/	2016 44 2016 44	11.05	.00 9.9	431.92
6/8/2	2016 44 '2016 44 /2016 44		0.0	432.52
9/7/2	2016 44 2016 44 /2016 44 /2017 44	41.83 0.	.00 9.3	432.11
11/2/	2016 44 2016 44 /2016 44 /2017 44 2017 44	41.83 0. 41.83 0.	.00 9.3 .00 9.7	
3/7/2	2016 44 2016 44 /2016 44 /2017 44 2017 44 2017 44 2017 44 2017 44	41.83 0. 41.83 0. 41.83 0.		432.01
6/21/	2016 44 2016 44 /2016 44 /2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44	41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0.	.00 9.7	
9/6/2	2016 44 2016 44 /2016 44 /2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2018 44	41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0.	.00 9.7 .00 9.8	23 432.60
7/18/	2016 44 2016 44 /2016 44 /2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2018 44	41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0.	.00 9.7 .00 9.8 .00 9.2	23 432.60 48 433.35
11/13	2016 44 2016 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2017 44 2018 44 2018 44 2018 44	41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0. 41.83 0.	.00 9.7 .00 9.8 .00 9.2 .00 8.4	23 432.60 48 433.35 51 433.22

Monitoring Well/Piezometer Identification	Gauging Date	Top of Casing Elevation (ft)	LPH Thickness (ft)	Depth to Groundwater (ft)	Corrected Groundwater Table Elevation (ft)
YP-5	1/19/2015	433.65	0.00	5.50	428.15
	2/25/2015	433.65	0.00	5.79	427.86
Casing:	3/24/2015	433.65	0.00	3.90	429.75
0 to 5 feet	4/20/2015	433.65	0.00	4.05	429.60
	5/27/2015	433.65	0.00	4.21	429.44
Screen:	6/22/2015	433.65	0.00	4.49	429.16
5 to 10 feet	7/28/2015	433.65	0.00	5.48	428.17
	8/24/2015	433.65	0.00	3.68	429.97
	9/21/2015	433.65	0.00	4.12	429.53
	10/29/2015	433.65	0.00	4.02	429.63
	11/18/2015	433.65	0.00	4.02	429.63
	12/9/2015	433.65	0.00	3.88	429.77
	1/12/2016	433.65	0.00	4.69	428.96
	3/8/2016	433.65	0.00	3.97	429.68
	6/7/2016	433.65	0.00	4.31	429.34
	9/13/2016	433.65	0.00	4.33	429.32
	11/21/2016	433.65	0.00	4.37	429.28
	3/10/2017	433.65	0.00	4.18	429.47
	6/8/2017	433.65	0.00	4.31	429.34
	9/7/2017	433.65	0.00	3.31	430.34
	11/2/2017	433.65	0.00	4.33	429.32
	3/7/2018	433.65	0.00	3.84	429.81
	6/21/2018	433.65	0.00	3.93	429.72
	9/6/2018	433.65	0.00	4.01	429.64
	7/18/2019	433.65	0.00	3.83	429.82
	11/13/2019	433.65	0.00	3.96	429.69

 $\label{eq:states} \begin{array}{l} \underline{Notes:} \\ ft = feet \\ LPH = Liquid Phase Hydrocarbons \\ NM = Not Monitored (Well not accessible) \end{array}$

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/11/2017	0.0	0.0
	1/17/2017	0.0	0.0
	1/25/2017	0.0 0.0	0.0
	2/7/2017 2/21/2017	0.0	0.0
	3/1/2017	0.0	0.0
	3/10/2017	0.0	0.0
	3/23/2017	0.0	0.0
	4/4/2017	0.0	0.0
	4/19/2017	0.0	0.0
	5/25/2017	0.0 0.0	0.0 0.0
	<u>6/1/2017</u> <u>6/8/2017</u>	0.0	0.0
	6/21/2017	0.0	0.0
	6/29/2017	0.0	0.0
	7/11/2017	0.0	0.0
	7/20/2017	0.0	0.0
	7/28/2017	0.0	0.0
	8/10/2017	0.0	0.0
	8/18/2017	0.0 0.0	0.0 0.0
	<u>9/8/2017</u> <u>9/18/2017</u>	0.0	0.0
	10/3/2017	0.0	0.0
	10/17/2017	0.0	0.0
	10/27/2017	0.0	0.0
	11/2/2017	0.0	0.0
	11/9/2017	0.0	0.0
	11/20/2017	0.0	0.0
	11/28/2017	0.0	0.0
	12/8/2017 1/4/2018	0.0 0.0	0.0
	1/11/2018	0.0	0.0
Yakona Road Curb Inlet	1/22/2018	0.0	0.0
	1/30/2018	0.0	0.0
	2/7/2018	0.0	0.0
	2/14/2018	0.0	0.0
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.0
	<u>3/7/2018</u> <u>3/14/2018</u>	0.0 0.0	0.0 0.0
	3/21/2018	0.0	0.0
	3/29/2018	0.0	0.0
	4/3/2018	0.0	0.0
	4/11/2018	0.0	0.0
	4/18/2018	0.0	0.0
	4/26/2018	0.0	0.0
	5/2/2018	0.0	0.0
	5/9/2018 5/15/2018	0.0 0.0	0.0
	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
[6/21/2018	0.0	0.0
	6/28/2018	0.0	0.0
	7/3/2018	0.0	0.0
	7/12/2018 7/18/2018	0.0 0.0	0.0 0.0
	8/1/2018	0.0	0.0
	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0

Location	D (Breathing Zone	Below Grade
(Corresponds with Site Plan)	Date	Readings (ppm)	Readings (ppm)
	9/12/2018	(ppin) 0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0
	10/3/2018	0.0	0.0
	10/10/2018	0.0	0.0
	<u>10/17/2018</u> 10/24/2018	0.0 0.0	0.0 0.0
	10/24/2018	0.0	0.0
	11/7/2018	0.0	0.0
	11/14/2018	0.0	0.0
	11/27/2018	0.0	0.0
	12/4/2018	0.0	0.0
	<u>12/12/2018</u> 12/26/2018	0.0 0.0	0.0 0.0
	1/3/2019	0.0	0.0
	1/10/2019	0.0	0.0
	1/16/2019	0.0	0.0
	1/24/2019	0.0	0.0
	1/30/2019	0.0	0.0
	2/6/2019 2/15/2019	0.0 0.0	0.0 0.0
	2/21/2019	0.0	0.0
	2/27/2019	0.0	0.0
	3/6/2019	0.0	0.0
	3/13/2019	0.0	0.0
	3/20/2019	0.0	0.0
	3/27/2019 4/3/2019	0.0 0.0	0.0 0.0
	4/9/2019	0.0	0.0
	4/17/2019	0.0	0.0
	4/24/2019	0.0	0.0
Yakona Road Curb Inlet	5/1/2019	0.0	0.0
(continued)	5/8/2019	0.0	0.0
	5/15/2019 5/22/2019	0.0 0.0	0.0 0.0
	5/29/2019	0.0	0.0
	6/5/2019	0.0	0.0
	6/12/2019	0.0	0.0
	6/19/2019	0.0	0.0
	6/26/2019	0.0	0.0
	7/2/2019 7/10/2019	0.0 0.0	0.0 0.0
	7/19/2019	0.0	0.0
	7/24/2019	0.0	0.0
	7/31/2019	0.0	0.0
	8/5/2019	0.0	0.0
	8/13/2019 8/21/2019	0.0 0.0	0.0 0.0
	8/28/2019	0.0	0.0
	9/4/2019	0.0	0.0
	9/11/2019	0.0	0.0
	9/18/2019	0.0	0.0
	9/24/2019	0.0	0.0
	<u>10/1/2019</u> 10/9/2019	0.0 0.0	0.0 0.0
	10/16/2019	0.0	0.0
	10/23/2019	0.0	0.0
	11/14/2019	0.0	0.0
	11/19/2019	0.0	0.0
	11/26/2019	0.0	0.0
	12/4/2019 12/11/2019	0.0 0.0	0.0 0.0
	12/11/2019	0.0	0.0
	12/23/2019	0.0	0.0
		•	

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/11/2017	0.0	0.0
	1/17/2017	0.0	0.0
	1/25/2017	0.0	0.0
-	2/7/2017 2/21/2017	0.0 0.0	0.0 0.0
-	3/1/2017	0.0	0.0
-	3/10/2017	0.0	0.0
	3/23/2017	0.0	0.0
	4/4/2017	0.0	0.0
	4/19/2017	0.0	0.0
-	5/25/2017	0.0	0.0
-	6/1/2017 6/8/2017	0.0 0.0	0.0 0.0
	6/21/2017	0.0	0.0
-	6/29/2017	0.0	0.0
	7/11/2017	0.0	0.0
-	7/20/2017	0.0	0.0
	7/28/2017	0.0	0.0
Ļ	8/10/2017	0.0	0.0
-	8/18/2017	0.0	0.0
-	9/8/2017 9/18/2017	0.0 0.0	0.0
	10/3/2017	0.0	0.0
-	10/17/2017	0.0	0.0
	10/27/2017	0.0	0.0
	11/2/2017	0.0	0.0
	11/9/2017	0.0	0.0
	11/20/2017	0.0	0.0
	11/28/2017	0.0	0.0
-	12/8/2017	0.0 0.0	0.0
-	1/4/2018 1/11/2018	0.0	0.0
Manhole 3	1/22/2018	0.0	0.0
	1/30/2018	0.0	0.0
-	2/7/2018	0.0	0.0
	2/14/2018	0.0	0.0
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.0
-	3/7/2018 3/14/2018	0.0 0.0	0.0
-	3/21/2018	0.0	0.0
4	3/29/2018	0.0	0.0
	4/3/2018	0.0	0.0
1	4/11/2018	0.0	0.0
	4/18/2018	0.0	0.0
Ļ	4/26/2018	0.0	0.0
4	5/2/2018	0.0	0.0
	5/9/2018 5/15/2018	0.0 0.0	0.0
+	5/23/2018	0.0	0.0
1	5/31/2018	0.0	0.0
1	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
ļ	6/28/2018	0.0	0.0
4	7/3/2018	0.0	0.0
4	7/12/2018 7/18/2018	0.0 0.0	0.0
4	8/1/2018	0.0	0.0
1	8/8/2018	0.0	0.0
1	8/15/2018	0.0	0.0
1	8/22/2018	0.0	0.0
	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0
	10/3/2018	0.0	0.0
	10/10/2018 10/17/2018	0.0 0.0	0.0 0.0
	10/24/2018	0.0	0.0
	10/31/2018	0.0	0.0
	11/7/2018	0.0	0.0
	11/14/2018	0.0	0.0
	11/27/2018	0.0 0.0	0.0 0.0
	12/4/2018 12/12/2018	0.0	0.0
	12/26/2018	0.0	0.0
	1/3/2019	0.0	0.0
	1/10/2019	0.0	0.0
	1/16/2019	0.0	0.0
	1/24/2019 1/30/2019	0.0 0.0	0.0 0.0
	2/6/2019	0.0	0.0
	2/15/2019	0.0	0.0
	2/21/2019	0.0	12.8
	2/27/2019	0.0	74.2
	3/6/2019	0.0	54.9
	3/13/2019	0.0	0.0
	3/20/2019 3/27/2019	0.0 0.0	0.0 0.0
	4/3/2019	0.0	0.0
	4/9/2019	0.0	0.0
	4/17/2019	0.0	0.0
	4/24/2019	0.0	0.0
Manhole 3 (continued)	5/1/2019	0.0	0.0
	5/8/2019 5/15/2019	0.0 0.0	0.0 0.0
	5/22/2019	0.0	0.0
	5/29/2019	0.0	0.0
	6/5/2019	0.0	0.0
	6/12/2019	0.0	0.0
	6/19/2019	0.0	0.0
	6/26/2019 7/2/2019	0.0	0.0
	7/12/2019	0.0	0.0
	7/19/2019	0.0	0.0
	7/24/2019	0.0	0.0
	7/31/2019	0.0	0.0
	8/5/2019	0.0	0.0
	8/13/2019	0.0	0.0
	8/21/2019 8/28/2019	0.0 0.0	0.0 0.0
	9/4/2019	0.0	0.0
	9/11/2019	0.0	0.0
	9/18/2019	0.0	0.0
	9/24/2019	0.0	0.0
	10/1/2019	0.0	0.0
	10/9/2019 10/16/2019	0.0 0.0	0.0 0.0
	10/10/2019	0.0	0.0
	11/14/2019	0.0	0.0
	11/19/2019	0.0	0.0
	11/26/2019	0.0	0.0
	12/4/2019	0.0	0.0
	12/11/2019	0.0	0.0
	12/18/2019 12/23/2019	0.0 0.0	0.0 0.0
	12/23/2019	0.0	0.0

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/11/2017	0.0	5.8
	1/17/2017	0.0	2.6
	1/25/2017	0.0	1.6
	2/7/2017 2/21/2017	0.0	<u> </u>
	3/1/2017	0.0 0.0	4.5
	3/10/2017	0.0	20.0
F	3/23/2017	0.0	2.6
	4/4/2017	0.0	270.4
	4/19/2017	0.0	20.1
	5/25/2017	0.0	115.0
-	6/1/2017 6/8/2017	0.0 0.0	71.0 7.0
	6/21/2017	0.0	59.7
	6/29/2017	0.0	83.1
- F	7/11/2017	0.0	75.2
	7/20/2017	0.0	61.3
	7/28/2017	0.0	1.7
Ļ	8/10/2017	0.0	41.6
	8/18/2017	0.0	<u>58.7</u> 36.1
-	9/8/2017 9/18/2017	0.0	81.9
	10/3/2017	0.0	2.8
	10/17/2017	0.0	0.9
	10/27/2017	0.0	6.8
	11/2/2017	0.0	28.7
	11/9/2017	0.0	0.5
	11/20/2017	0.0	1.8
	11/28/2017	0.0	3.4
	12/8/2017 1/4/2018	0.0 0.0	3.8
	1/11/2018	0.0	3.1
Manhole 21	1/22/2018	0.0	9.4
	1/30/2018	0.0	0.2
	2/7/2018	0.0	2.2
Ļ	2/14/2018	0.0	7.9
	2/21/2018	0.0	29.6
-	2/28/2018 3/7/2018	0.0 0.0	38.4
	3/14/2018	0.0	4.1
-	3/21/2018	0.0	2.2
	3/29/2018	0.0	14.6
	4/3/2018	0.0	13.2
	4/11/2018	0.0	4.1
Ļ	4/18/2018	0.0	31.8
4	4/26/2018 5/2/2018	0.0 0.0	4.6 8.2
4	5/9/2018	0.0	29.7
4	5/15/2018	0.0	39.6
ŀ	5/23/2018	0.0	36.2
	5/31/2018	0.0	1.5
	6/6/2018	0.0	4.4
	6/13/2018	0.0	5.8
4	6/21/2018	0.0	29.6 28.4
Ļ	6/28/2018 7/3/2018	0.0 0.0	28.4
4	7/12/2018	0.0	31.5
4	7/18/2018	0.0	0.2
ŀ	8/1/2018	0.0	24.9
E E E E E E E E E E E E E E E E E E E	8/8/2018	0.0	20.3
	8/15/2018	0.0	30.7
Ļ	8/22/2018	0.0	20.4
Ļ	8/29/2018	0.0	30.8
	9/6/2018	0.0	37.1

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	9/12/2018	0.0	29.7
	9/19/2018	0.0	21.7
	9/25/2018	0.0	168.3
-	10/3/2018 10/10/2018	0.0 0.0	<u>56.8</u> 17.7
	10/17/2018	0.0	43.8
	10/24/2018	0.0	52.7
	10/31/2018	0.0	68.2
	11/7/2018	0.0	174.0
	11/14/2018	0.0	192.7
-	<u>11/27/2018</u> 12/4/2018	0.0 0.0	<u> </u>
-	12/4/2018	0.0	158.0
-	12/26/2018	0.0	49.6
	1/3/2019	0.0	193.0
	1/10/2019	0.0	97.1
	1/16/2019	0.0	214.0
	1/24/2019	0.0	244.0
Ļ	1/30/2019	0.0	172.0
4	2/6/2019 2/15/2019	0.0	407.1 168.2
-	2/13/2019	0.0	0.9
-	2/27/2019	0.0	15.1
F	3/6/2019	0.0	19.4
-	3/13/2019	0.0	101.2
	3/20/2019	0.0	190.4
	3/27/2019	0.0	42.7
-	4/3/2019 4/9/2019	0.0 0.0	<u>68.7</u> 28.7
4	4/9/2019	0.0	19.7
-	4/24/2019	0.0	38.1
Markels 21 (continued)	5/1/2019	0.0	29.8
Manhole 21 (continued)	5/8/2019	0.0	42.1
	5/15/2019	0.0	42.7
	5/22/2019	0.0	35.9
-	5/29/2019 6/5/2019	0.0 0.0	<u>62.4</u> 26.8
4	6/12/2019	0.0	15.8
-	6/19/2019	0.0	21.4
	6/26/2019	0.0	20.9
	7/2/2019	0.0	2.4
	7/10/2019	0.0	9.5
	7/19/2019	0.0	5.9
4	7/24/2019 7/31/2019	0.0 0.0	1.4
	8/5/2019	0.0	0.3
1	8/13/2019	0.0	0.7
	8/21/2019	0.0	0.9
	8/28/2019	0.0	0.5
Ļ	9/4/2019	0.0	0.4
4	9/11/2019 9/18/2019	0.0 0.0	3.6 4.3
4	9/18/2019 9/24/2019	0.0	4.5
4	10/1/2019	0.0	1.1
1	10/9/2019	0.0	1.1
	10/16/2019	0.0	18.7
	10/23/2019	0.0	7.1
Ļ	11/14/2019	0.0	7.3
4	11/19/2019	0.0	2.4
4	11/26/2019 12/4/2019	0.0	0.6 3.6
4	12/11/2019	0.0	2.1
4	12/18/2019	0.0	0.0
	12/23/2019	0.0	0.0

Location (Corresponds with Site Blon)	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	1/11/2017	0.0	17.7
	1/17/2017	0.0	23.7
-	1/25/2017	0.0	525.0
-	2/7/2017 2/21/2017	0.0 0.0	<u>105.7</u> 210.8
	3/1/2017	0.0	754.6
	3/10/2017	0.0	79.8
	3/23/2017	0.0	82.6
	4/4/2017	0.0	1.9
	4/19/2017	0.0	0.5
-	5/25/2017	0.0 0.0	0.0
-	6/1/2017 6/8/2017	0.0	40.1
-	6/21/2017	0.0	0.0
	6/29/2017	0.0	0.0
	7/11/2017	0.0	0.0
	7/20/2017	0.0	0.0
	7/28/2017	0.0	2.3
	8/10/2017	0.0	0.2
4	8/18/2017 9/8/2017	0.0	0.0 0.4
-	9/8/2017 9/18/2017	0.0	3.1
-	10/3/2017	0.0	0.5
	10/17/2017	0.0	58.6
	10/27/2017	0.0	24.9
	11/2/2017	0.0	0.7
	11/9/2017	0.0	70.1
	11/20/2017	0.0	52.8
-	11/28/2017 12/8/2017	0.0 0.0	<u>32.7</u> 45.7
	1/4/2018	0.0	0.0
	1/11/2018	0.0	37.4
Manhole 22	1/22/2018	0.0	5.3
	1/30/2018	0.0	4.6
	2/7/2018	0.0	22.5
	2/14/2018	0.0	68.3
	2/21/2018	0.0	115.8
-	2/28/2018 3/7/2018	0.0	<u>113.5</u> 48.1
-	3/14/2018	0.0	70.3
-	3/21/2018	0.0	58.2
	3/29/2018	0.0	79.6
-	4/3/2018	0.0	200.0
ļ	4/11/2018	0.0	101.9
ļ	4/18/2018	0.0	0.3
	4/26/2018 5/2/2018	0.0 0.0	2.7 0.1
	5/9/2018	0.0	0.0
-	5/15/2018	0.0	0.0
	5/23/2018	0.0	0.0
	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
ļ	6/13/2018	0.0	0.0
4	6/21/2018	0.0	0.0
4	6/28/2018 7/3/2018	0.0 0.0	0.0
4	7/12/2018	0.0	0.0
4	7/18/2018	0.0	0.0
1	8/1/2018	0.0	0.0
1	8/8/2018	0.0	0.0
	8/15/2018	0.0	0.0
	8/22/2018	0.0	0.0
ļ	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	9/12/2018	0.0	0.0
-	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0
-	10/3/2018 10/10/2018	0.0 0.0	0.0
	10/17/2018	0.0	0.0
	10/24/2018	0.0	0.0
	10/31/2018	0.0	0.0
	11/7/2018	0.0	81.7
-	11/14/2018	0.0	115.0
-	11/27/2018 12/4/2018	0.0 0.0	<u>163.0</u> 58.1
-	12/12/2018	0.0	217.0
	12/26/2018	0.0	15.6
-	1/3/2019	0.0	473.0
	1/10/2019	0.0	252.0
-	1/16/2019	0.0	581.0
-	1/24/2019 1/30/2019	0.0 0.0	407.0 414.0
-	2/6/2019	0.0	67.8
	2/15/2019	0.0	180.9
-	2/21/2019	0.0	4.6
	2/27/2019	0.0	19.8
	3/6/2019	0.0	34.1
-	3/13/2019 3/20/2019	0.0 0.0	28.9 70.1
-	3/27/2019	0.0	1.3
-	4/3/2019	0.0	6.1
	4/9/2019	0.0	0.0
	4/17/2019	0.0	0.0
	4/24/2019	0.0	0.0
Manhole 22 (continued)	5/1/2019 5/8/2019	0.0	0.0
-	5/15/2019	0.0 0.0	0.0
-	5/22/2019	0.0	0.0
	5/29/2019	0.0	0.0
-	6/5/2019	0.0	0.0
	6/12/2019	0.0	25.1
-	6/19/2019	0.0	29.7
-	6/26/2019 7/2/2019	0.0 0.0	23.4 26.2
-	7/10/2019	0.0	20.2
	7/19/2019	0.0	84.7
-	7/24/2019	0.0	0.9
	7/31/2019	0.0	0.0
	8/5/2019	0.0	1.8
-	8/13/2019 8/21/2019	0.0 0.0	0.3 3.1
	8/28/2019	0.0	0.8
	9/4/2019	0.0	0.0
	9/11/2019	0.0	0.0
	9/18/2019	0.0	0.0
Ļ	9/24/2019	0.0	0.0
4	10/1/2019 10/9/2019	0.0 0.0	0.0 0.2
4	10/9/2019	0.0	0.2
4	10/23/2019	0.0	0.0
1	11/14/2019	0.0	0.0
	11/19/2019	0.0	10.4
	11/26/2019	0.0	35.6
Ļ	12/4/2019	0.0	51.7
4	12/11/2019	0.0	29.4
4	12/18/2019 12/23/2019	0.0 0.0	0.0
I	12/23/2017	0.0	0.0

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings (ppm)	Below Grade Readings (ppm)
	1/11/2017	0.0	25.2
-	1/11/2017 1/17/2017	0.0	7.3
4	1/25/2017	0.0	2.3
	2/7/2017	0.0	6.6
-	2/21/2017	0.0	0.7
-	3/1/2017	0.0	2.1
	3/10/2017	0.0	33.8
	3/23/2017	0.0	27.4
	4/4/2017	0.0	10.3
	4/19/2017	0.0	0.0
	5/25/2017	0.0	0.0
	6/1/2017	0.0	0.0
	6/8/2017	0.0	14.4
-	6/21/2017	0.0 0.0	0.0 0.0
-	6/29/2017 7/11/2017	0.0	0.0
4	7/20/2017	0.0	0.0
	7/28/2017	0.0	0.0
4	8/10/2017	0.0	0.0
1	8/18/2017	0.0	0.0
1	9/8/2017	0.0	0.3
F	9/18/2017	0.0	3.5
	10/3/2017	0.0	2.3
	10/17/2017	0.0	3.2
	10/27/2017	0.0	1.6
	11/2/2017	0.0	2.8
	11/9/2017	0.0	21.4
-	11/20/2017	0.0	1.2
-	<u>11/28/2017</u> 12/8/2017	0.0 0.0	<u>1.3</u> 4.0
-	1/4/2018	0.0	4.0
-	1/11/2018	0.0	8.1
Manhole 23	1/22/2018	0.0	20.1
-	1/30/2018	0.0	13.1
F	2/7/2018	0.0	19.1
	2/14/2018	0.0	25.1
	2/21/2018	0.0	9.2
	2/28/2018	0.0	26.1
	3/7/2018	0.0	73.4
	3/14/2018	0.0	6.8
	3/21/2018	0.0	3.7
-	3/29/2018	0.0	102.8
-	4/3/2018 4/11/2018	0.0	88.9 7.8
-	4/11/2018	0.0	0.1
-	4/26/2018	0.0	2.0
-	5/2/2018	0.0	0.0
-	5/9/2018	0.0	0.5
	5/15/2018	0.0	1.9
	5/23/2018	0.0	0.6
ſ	5/31/2018	0.0	0.0
	6/6/2018	0.0	0.0
	6/13/2018	0.0	0.0
Ļ	6/21/2018	0.0	0.0
ļ	6/28/2018	0.0	0.9
4	7/3/2018	0.0	2.3
4	7/12/2018 7/18/2018	0.0 0.0	<u>12.6</u> 9.5
4	8/1/2018	0.0	9.5
4	8/8/2018	0.0	0.0
4	8/15/2018	0.0	0.0
4	8/22/2018	0.0	0.0
4	8/29/2018	0.0	0.0
1	9/6/2018	0.0	0.0
		• •	

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings (ppm)	Below Grade Readings (ppm)
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0
	10/3/2018	0.0	0.0
	10/10/2018	0.0	0.0
	10/17/2018	0.0	0.2
	10/24/2018	0.0	0.0
	10/31/2018	0.0	0.0
	11/7/2018	0.0	425.0
	11/14/2018	0.0	501.0
	11/27/2018	0.0	191.0
	12/4/2018	0.0	29.5
	12/12/2018	0.0	518.0
	12/26/2018	0.0	45.4
	1/3/2019	0.0	590.0
	1/10/2019	0.0	382.0
	1/16/2019	0.0	317.0
	1/24/2019	0.0 0.0	723.0 591.0
	1/30/2019	0.0	368.7
	2/6/2019	0.0	205.1
	2/15/2019 2/21/2019	0.0	65.7
	2/27/2019	0.0	34.4
	3/6/2019	0.0	61.7
	3/13/2019	0.0	23.1
	3/20/2019	0.0	23.8
	3/27/2019	0.0	1.4
	4/3/2019	0.0	0.4
	4/9/2019	0.0	0.0
	4/17/2019	0.0	0.0
	4/24/2019	0.0	0.4
	5/1/2019	0.0	0.0
Manhole 23 (continued)	5/8/2019	0.0	0.0
	5/15/2019	0.0	0.0
	5/22/2019	0.0	0.0
	5/29/2019	0.0	0.0
	6/5/2019	0.0	0.0
	6/12/2019	0.0	6.9
	6/19/2019	0.0	2.7
	6/26/2019	0.0	1.1
	7/2/2019	0.0	51.7
	7/10/2019	0.0	5.1
	7/19/2019	0.0	57.9
	7/24/2019	0.0	62.9
	7/31/2019	0.0	49.1
	8/5/2019	0.0	29.7
	8/13/2019	0.0	14.1
	8/21/2019	0.0	17.4
	8/28/2019	0.0	55.7
	9/4/2019	0.0	16.8
	9/11/2019	0.0 0.0	0.0 0.0
	9/18/2019 9/24/2019	0.0	0.0
	10/1/2019	0.0	0.0
	10/9/2019	0.0	4.9
	10/16/2019	0.0	1.4
	10/23/2019	0.0	0.4
	11/14/2019	0.0	0.4
	11/19/2019	0.0	6.8
	11/26/2019	0.0	18.1
	12/4/2019	0.0	25.2
	12/11/2019	0.0	15.4
	12/18/2019	0.0	0.0
	12/23/2019	0.0	0.0
		•	-

Location (Corresponds with Site Plan)	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Fian)		(ppm)	(ppm)
-	1/11/2017	0.0	38.2
	1/17/2017	0.0	42.1
-	1/25/2017 2/7/2017	0.0 0.0	0.2
-	2/21/2017	0.0	0.5
-	3/1/2017	0.0	0.0
	3/10/2017	0.0	2.4
-	3/23/2017	0.0	75.1
	4/4/2017	0.0	0.0
	4/19/2017	0.0	0.0
-	5/25/2017 6/1/2017	0.0 0.0	0.0
	6/8/2017	0.0	1.5
	6/21/2017	0.0	0.0
	6/29/2017	0.0	0.0
	7/11/2017	0.0	0.0
	7/20/2017	0.0	0.0
4	7/28/2017	0.0	0.0
4	8/10/2017 8/18/2017	0.0 0.0	0.0
+	9/8/2017	0.0	0.0
1	9/18/2017	0.0	0.0
1	10/3/2017	0.0	2.1
	10/17/2017	0.0	2.8
	10/27/2017	0.0	2.1
	11/2/2017	0.0	5.7
-	11/9/2017 11/20/2017	0.0 0.0	<u> </u>
-	11/28/2017	0.0	18.2
	12/8/2017	0.0	37.1
	1/4/2018	0.0	9.2
Manhole 24	1/11/2018	0.0	29.7
	1/22/2018	0.0	16.8
	1/30/2018	0.0	40.7
-	2/7/2018 2/14/2018	0.0 0.0	<u> </u>
	2/21/2018	0.0	0.0
	2/28/2018	0.0	0.7
	3/7/2018	0.0	40.8
	3/14/2018	0.0	55.2
	3/21/2018	0.0	15.9
	3/29/2018	0.0 0.0	5.1 28.7
ł	4/3/2018 4/11/2018	0.0	12.6
1	4/18/2018	0.0	1.9
1	4/26/2018	0.0	1.0
	5/2/2018	0.0	0.0
ļ	5/9/2018	0.0	0.2
4	5/15/2018	0.0	0.0
4	5/23/2018 5/31/2018	0.0 0.0	0.0
4	6/6/2018	0.0	0.0
1	6/13/2018	0.0	0.0
	6/21/2018	0.0	0.0
Į.	6/28/2018	0.0	0.0
ļ	7/3/2018	0.0	0.0
4	7/12/2018 7/18/2018	0.0 0.0	0.3
4	8/1/2018	0.0	0.4
+	8/8/2018	0.0	0.0
1	8/15/2018	0.0	0.0
1	8/22/2018	0.0	0.0
ľ	8/29/2018	0.0	0.0
	9/6/2018	0.0	0.0

TABLE 3MONTHLY PID SCREENING RESULTS SUMMARYRidgely Manor ParkTowson, MDCase No. 1991-2100-BA

Location	Date	Breathing Zone Readings	Below Grade Readings
(Corresponds with Site Plan)		(ppm)	(ppm)
	9/12/2018	0.0	0.0
	9/19/2018	0.0	0.0
	9/25/2018	0.0	0.0
	10/3/2018 10/10/2018	0.0 0.0	0.0 0.0
	10/17/2018	0.0	1.1
	10/24/2018	0.0	0.0
	10/31/2018	0.0	0.0
	11/7/2018	0.0	11.5
	11/14/2018	0.0	83.0
	<u>11/27/2018</u> 12/4/2018	0.0 0.0	275.0 61.8
	12/12/2018	0.0	327.0
	12/26/2018	0.0	48.5
	1/3/2019	0.0	798.0
	1/10/2019	0.0	515.0
	1/16/2019	0.0	633.0
	<u>1/24/2019</u> 1/30/2019	0.0 0.0	518.0 382.0
	2/6/2019	0.0	78.0
	2/15/2019	0.0	290.4
	2/21/2019	0.0	28.2
	2/27/2019	0.0	57.1
	3/6/2019	0.0	49.8
	3/13/2019	0.0 0.0	20.8 19.1
	<u>3/20/2019</u> <u>3/27/2019</u>	0.0	55.7
	4/3/2019	0.0	0.5
	4/9/2019	0.0	0.0
	4/17/2019	0.0	0.0
	4/24/2019	0.0	0.0
Manhole 24 (continued)	5/1/2019	0.0	0.0
, , , , , , , , , , , , , , , , , , ,	5/8/2019	0.0 0.0	0.0 0.0
	5/15/2019 5/22/2019	0.0	0.0
	5/29/2019	0.0	0.0
	6/5/2019	0.0	0.0
	6/12/2019	0.0	2.2
	6/19/2019	0.0	0.0
	6/26/2019	0.0	0.0
	7/2/2019 7/10/2019	0.0 0.0	0.0 0.7
	7/19/2019	0.0	0.7
	7/24/2019	0.0	0.6
	7/31/2019	0.0	0.4
	8/5/2019	0.0	0.0
	8/13/2019	0.0	0.0
	8/21/2019	0.0	0.0
	8/28/2019 9/4/2019	0.0 0.0	0.0 0.0
	9/11/2019	0.0	0.0
	9/18/2019	0.0	0.0
	9/24/2019	0.0	0.0
	10/1/2019	0.0	0.0
	10/9/2019	0.0	5.7
	10/16/2019	0.0 0.0	20.1
	<u>10/23/2019</u> 11/14/2019	0.0	6.1
	11/19/2019	0.0	13.1
	11/26/2019	0.0	24.7
	12/4/2019	0.0	13.7
	12/11/2019	0.0	19.8
	12/18/2019	0.0	0.0
	12/23/2019	0.0	0.0

Notes:

ppm = parts per million

TABLE 4 GROUNDWATER TREATMENT SYSTEM DISCHARGE SUMMARY Ridgely Manor Park Towson, MD Case No. 1991-2100-BA NPDES Permit # MDG915958

Month Year	Monthly Discharge Volume (gallons)	Cumulative Discharge Volume (gallons)
January 2015	51,520	51,520
February 2015	41,600	93,120
March 2015	31,090	124,210
April 2015	18,940	143,150
May 2015	23,180	166,330
June 2015	36,940	203,270
July 2015	24,170	227,440
August 2015	29,460	256,900
September 2015	24,570	281,470
October 2015	18,540	300,010
November 2015	27,850	327,860
December 2015	45,180	373,040
January 2016	35,570	408,610
February 2016	33,300	441,910
March 2016	38,030	479,940
April 2016	54,020	533,960
May 2016	75,280	609,240
June 2016	54,560	663,800
July 2016	37,250	701,050
August 2016	32,410	733,460
September 2016	39,190	772,650
October 2016	34,620	807,270
November 2016	42,680	849,950
December 2016	45,380	895,330
January 2017	57,450	952,780
February 2017	30,100	982,880
March 2017	35,940	1,018,820
April 2017	32,050	1,050,870
May 2017	50,660	1,101,530
June 2017	48,510	1,150,040
July 2017	67,450	1,217,490
August 2017	41,410	1,258,900
September 2017	52,870	1,311,770
October 2017	47,560	1,359,330
November 2017	35,300	1,394,630
December 2017	38,470	1,433,100
January 2018	51,060	1,484,160
February 2018	29,770	1,513,930
March 2018	41,760	1,555,690
April 2018	37,050	1,592,740
	37,120	1,629,860
June 2018	36,080	1,665,940
July 2018	32,020	1,697,960
August 2018	43,500	1,741,460
September 2018	44,960	1,786,420
October 2018	52,550	1,838,970
November 2018	42,510	1,881,480
December 2018	40,490	1,921,970
January 2019	43,930	1,965,900
February 2019	46,710	2,012,610
March 2019	45,230	2,057,840
April 2019	45,490	2,103,330
May 2019	83,670	2,187,000
June 2019	43,460	2,230,460
July 2019	69,230	2,299,690
August 2019	50,770	2,350,460
September 2019	65,450	2,415,910
October 2019	92,570	2,508,480
November 2019	57,370	2,565,850
December 2019	36,980	2,602,830

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/19/2015	1.1	7.7	77.6	107	193.4	11.8	1.42	0.898	2.318	49.3
EFF	1/19/2015	ND	ND	ND	ND	ND	2.7	ND	ND	ND	ND
INN	1/26/2015	0.48 (J)	4.4	35.2	68.7	108.78 (J)	ND	0.973	0.454	1.427	35.1
EFF	1/26/2015	0.26 (J)	2.3	15.7	38.5	56.76 (J)	6.8	0.418	0.267	0.685	12.3
					1		I	I		T	1
INN	2/4/2015	1.2	10.9	96.1	173	281.2	12.4	1.70	1.21	2.91	60.1
EFF	2/4/2015	ND	0.74 (J)	1.6	16.0	18.34 (J)	7.0	ND	ND	ND	0.84 (J)
INN	2/20/2015	0.90	8.7	81.5	167	258.10	14.5	1.79	0.826	2.616	62.5
EFF	2/20/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	3/3/2015	0.77	8.6	71.1	152	232.47	10.9	1.51	0.573	2.083	47.3
EFF	3/3/2015	ND	ND	ND	ND	ND	0.88 (J)	ND	ND	2.005 ND	ND
INF	3/30/2015	1.6	15.3	100	352	468.9	11.5	2.33	0.779	3.109	51.3
EFF	3/30/2015	ND	ND	ND	ND	ND	0.97 (J)	ND	ND	ND	ND
INF	4/7/2015	1.9	16.7	143	439	600.6	12.5	3.52	0.870	4.390	94.1
EFF	4/7/2015	ND	ND	ND	ND	ND	0.59 (J)	ND	ND	ND	ND
INF	4/27/2015	1.7	ND	ND	ND	1.7	ND	2.51	1.24	3.75	79.7
EFF	4/27/2013	ND	ND	ND	ND	ND	0.41 (J)	ND	ND	3.73 ND	/9./ ND
LIII	112/12013	нв	T(D)	нв	ПD	ne	0.11(0)	ПЪ	ПЪ	ПВ	ПВ
INN	5/4/2015	1.4	15.3	117	340	473.7	11.9	2.02	0.873	2.893	76.6
EFF	5/4/2015	ND	ND	ND	ND	ND	1.0	ND	0.192	0.192	ND
INF	5/18/2015	1.7	20.9	141	417	580.6	12.8	3.58	1.17	4.75	71.3
EFF	5/18/2015	ND	ND	ND	0.37 (J)	0.37 (J)	2.2	ND	ND	ND	ND
INF	6/2/2015	0.83	8.7	75.3	250	334.83	6.2	1.45	0.461	1.911	38.2
EFF	6/2/2013	0.83 ND	8.7 ND	75.5 ND	ND		1.5	ND	0.461	0.114	58.2 ND
111	0/2/2015	112	112			112	1.0	1.2	0.111		
INF	6/23/2015	1.6	14.7	116	343	475.3	ND	1.45	0.937	2.387	69.3
EFF	6/23/2015	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/6/2015	1.7	13.1	109	355	478.8	11.6	2.20	1.02	3.22	67.4
EFF	7/6/2015	ND	ND	ND	0.27 (J)	0.27 (J)	3.8	ND	0.212	0.212	ND
INF	7/21/2015	1.4	10.4	81.4	278	371.2	7.0	2.03	0.943	2.973	58.7
EFF	7/21/2015	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
INN	8/3/2015	2.3	17.7	125	430	575.0	12.4	3.08	0.812	3.892	72.9
EFF	8/3/2015	ND	ND	ND	ND	ND	3.0	ND	ND	ND	ND
INF	8/20/2015	1.1	5.9	22.4	81.3	110.7	5.3	0.476	0.206	0.682	3.6 (J)
EFF	8/20/2015	ND	ND	ND	ND	ND	2.5	ND	0.239	0.032	ND
INF	9/9/2015	3.1	25.5	144	446	618.6	11.2	3.15	1.27	4.42	50.8
EFF	9/9/2015	ND	ND	ND	ND	ND	2.4	ND	0.448	0.448	ND
INN	9/22/2015	2.6	14.4	93.4	272	382.4	8.5	3.16	0.971	4.131	65.8
EFF	9/22/2013	ND	ND	93.4 ND	ND	ND	2.6	ND	0.0953	0.0953	ND
DE	10/5/2015	2.1	14.5	105	200			2.00	0.000	2,200	50.1
INF EFF	10/7/2015 10/7/2015	3.1 ND	14.7 ND	105 ND	298 ND	420.8 ND	10.3 2.1	2.09 ND	0.290	2.380 0.0987	58.1 ND
									1		
INF	10/13/2015	2.8	11.7	88.8	263	366.3	10.2	2.82	1.40	4.22	48.0
EFF	10/13/2015	ND	ND	ND	ND	ND	1.9	ND	0.105	0.105	ND
INN	11/10/2015	2.0	9.1	71.9	177	260.0	ND	1.98	0.807	2.787	35.7
EFF	11/10/2015	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
INF	12/2/2015	1.9	4.3	48.7	106	160.9	7.3	1.02	0.502	1.522	39.7
EFF	12/2/2015	ND	ND	ND	ND	ND	3.8	ND	ND	ND	ND
INF	12/16/2015	1.8	5.0	57.4	111	175.2	7.6	1.17	0.527	1.697	51.0
EFF	12/16/2015	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND
INF	1/6/2016	2.4	7.0	86.8	144	240.2	7.2	1.90	0.627	2.527	41.2
EFF	1/6/2016	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/12/2016	1.2	3.7	36.5	83.2	124.6	5.4	1.31	0.376	1.686	21.0
EFF	1/12/2016	ND	ND	ND	ND	ND	3.1	ND	ND	ND	ND
INF	2/3/2016	0.86	3.3	26.6	66.1	96.86	3.2	0.668	0.340	1.008	17.5
EFF	2/3/2016	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INF	2/9/2016	2.6	11.8	96.2	219	329.6	7.1	1.79	0.665	2.455	49.6
EFF	2/9/2016	ND	ND	ND	ND	ND	2.1	ND	0.0850	0.0850	ND
				1	1			1		I	-
INF	3/3/2016	3.1	12.2	112	367	494.3	7.6	2.71	0.717	3.427	68.5
EFF	3/3/2016	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND
INF	3/9/2016	3.1	14.1	125	377	519.2	6.6	3.03	0.665	3.695	76.7
EFF	3/9/2016	ND	ND	ND	0.78 (J)	0.78 (J)	6.2	ND	ND	ND	ND
INN	4/6/2016	4.6	35.1	156	505	700.7	7.3	3.78	0.947	4.727	75.3
EFF	4/6/2016	ND	0.32 (J)	0.75 (J)	2.3	3.37 (J)	2.4	ND	ND	ND	ND
								1		I	1
INF	4/12/2016	4.3	29.0	109	439	581.3	7.4	2.83	0.994	3.824	74.9
EFF	4/12/2016	ND	0.17 (J)	0.41 (J)	1.4	1.98 (J)	1.4	ND	ND	ND	ND
INN	5/4/2016	2.7	23.1	123	358	506.8	5.0	2.43	0.656	3.086	63.2
EFF	5/4/2016	ND	0.40 (J)	0.94 (J)	3.6	4.94 (J)	3.7	ND	ND	ND	ND
INN	5/12/2016	3.8	29.2	166	388	587.0	7.4	3.28	1.40	4.68	76.1
EFF	5/12/2016	0.22 (J)	0.58 (J)	1.2	3.1	5.1 (J)	5.8	ND	0.269	0.269	ND
DDL	6/0/2016	1.6	22.2	105	166	(00.0	5.2	2.24	0.777	4.017	0.6.0
INN EFF	6/8/2016 6/8/2016	4.6	33.2 1.4	187 3.5	466	690.8 15.80	7.3 7.2	3.24 0.226	0.777 ND	4.017 0.226	86.0 ND
ЕГГ	0/8/2010	0.50	1.4	5.5	10.4	15.80	1.2	0.220	ND	0.220	ND
INN	6/14/2016	4.9	30.1	164	422	621.0	7.2	2.94	0.822	3.762	74.4
EFF	6/14/2016	0.83	3.0	8.1	20.5	32.43	4.9	0.316	ND	0.316	ND
INN	7/7/2016	3.9	22.1	144	353	523.0	ND	2.64	1.11	3.75	73.8
EFF	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/12/2016	2.2	11.6	68.8	203	285.6	3.5	1.66	0.957	2.617	42.9
EFF	7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	8/3/2016	3.0	7.0	36.3	147	193.3	4.7	1.28	0.810	2.090	41.4
EFF	8/3/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	8/17/2016	3.5	12.4	81.5	273	370.4	5.2	2.10	0.792	2.892	63.1
EFF	8/17/2016	ND	ND	ND	ND	0.00	0.70 (J)	ND	ND	ND	ND
DDI	0/0/2016	4.2	10.2		262	244.4		226	0.000	2.062	(1.0
INN EFF	9/8/2016 9/8/2016	4.3 ND	10.2 ND	88.9 0.36 (J)	263 0.40 (J)	366.4 0.76 (J)	5.6 1.4	2.26 ND	0.802 ND	3.062 ND	61.0 ND
	9/8/2010	ND	ND	0.50 (5)	0.40 (3)	0.70 (3)	1.7	ND	ND	ND	ND
INN	9/14/2016	3.8	8.4	84.9	218	315.1	4.7	1.92	1.06	2.980	58.2
EFF	9/14/2016	ND	ND	0.30 (J)	0.59 (J)	0.89 (J)	0.84	ND	ND	ND	ND
INN	10/12/2016	4.4	5.0	15.4	79.2	104.0	5.4	1.24	0.704	1.94	6.1
EFF	10/12/2016	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND
INN	10/18/2016	4.9	6.8	46.0	177	234.7	4.9	2.72	1.06	3.78	53.7
EFF	10/18/2016	ND	ND	0.36 (J)	0.50 (J)	0.86 (J)	1.80	ND	ND	ND	ND
INN	11/3/2016	6.7	7.4	61.0	164	239.1	4.4	2.89	1.01	3.90	65.3
EFF	11/3/2016	ND	ND	0.35 (J)	ND	0.35 (J)	1.70	ND	ND	ND	ND
INN	11/8/2016	7.5	8.1	28.3	193	236.9	4.1	3.75	1.36	5.11	83.1
EFF	11/8/2016	ND	ND	ND	ND	ND	1.40	ND	ND	ND	ND
INN	12/7/2016	2.2	1.4	10.4	23.9	37.9	3.5	0.971	0.329	1.300	8.3
EFF	12/7/2016	ND	ND	ND	ND	ND	3.10	ND	ND	ND	ND
ININ	12/15/2016	2.0	2.2	24.2	26.7	561	4.2	ND	0.486	0.496	19.2
INN EFF	12/15/2016	2.9 ND	2.3 ND	24.2 ND	26.7 ND	56.1 ND	4.3	ND ND	0.486 ND	0.486 ND	18.2 ND
				1112		112	2.5	112		112	112
INN	1/4/2017	2.7	5.3	26.6	34.7	69.3	4.7	1.12	0.46	1.58	13.8
EFF	1/4/2017	ND	ND	ND	ND	ND	1.40	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/11/2017	3.5	4.7	44.2	43.1	95.5	5.4	1.12	0.367	1.49	18.8
EFF	1/11/2017	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND
INN	2/7/2017	3.9	4.3	53.6	59.0	120.8	5.5	1.58	0.464	2.04	21.1
EFF	2/7/2017	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	2/21/2017	3.1	3.3	47.1	60.5	114.0	5.2	1.62	0.394	2.01	17.5
EFF	2/21/2017	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND
DDI	2/1/2017	2.0	2.2	40.6	(5.0	120.0	5.2	1.54	0.222	1.07	17.0
INN EFF	3/1/2017 3/1/2017	3.0 ND	3.3 ND	49.6 0.24 (J)	65.0 ND	120.9 0.24 (J)	5.3 2.5	1.54 ND	0.322 ND	1.86 ND	17.0 ND
LIII	5/11/2017	ПВ	T(D)	0.21(0)	nb	0.21(3)	2.0	THE .	TID .	T(D)	TID .
INN	3/10/2017	2.9	3.0	40.3	59.1	105.3	5.8	1.09	0.444	1.53	21.0
EFF	3/10/2017	0.28 (J)	ND	0.58 (J)	1.2	2.06 (J)	2.5	0.123	ND	0.123	ND
INN	4/4/2017	2.1	4.7	53	187	246.8	6.8	2.07	0.708	2.778	24.9
EFF	4/4/2017	0.31 (J)	ND	0.51 (J)	2.8	3.62 (J)	3.9	0.113	ND	0.113	ND
INN	4/11/2017	2.3	6.2	59.2	168	235.7	8.1	1.63	1.140	2.770	31.8
EFF	4/11/2017	0.55	0.37 (J)	0.95 (J)	4.9	6.77 (J)	3.4	ND	0.114	0.114	ND
INN	5/3/2017	2.0	2.6	43.7	114	162.3	6.2	1.53	0.905	2.435	34.0
EFF	5/3/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			2.2		107		6.0	1.00	0.010	1.000	
INN EFF	5/16/2017 5/16/2017	1.6 ND	2.2 ND	31.6 ND	107 ND	142.4 ND	6.3 ND	1.09 ND	0.813 ND	1.903 ND	34.3 ND
LFF	5/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	6/1/2017	2.5	4.0	50.5	202	259.0	5.9	1.95	1.03	2.98	47.1
EFF	6/1/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	6/8/2017	2.7	6.0	76	440	524.7	5.1	3.34	1.84	5.18	72.5
EFF	6/8/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	7/11/2017	1.4	2.8	29.6	159	192.8	4.5	0.857	1.63	2.49	41.4
EFF	7/11/2017	1.4 ND	2.8 ND	29.6 ND	ND	192.8 ND	4.5 ND	0.857 ND	1.63 ND	2.49 ND	41.4 ND
								- I	I		
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (μg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/20/2017	1.4	2.8	31.3	167	202.5	4.2	1.23	1.47	2.70	58.5
EFF	7/20/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9
INN	8/10/2017	1.8	3.2	30.6	129	164.6	4.8	1.06	0.991	2.051	33.8
EFF	8/10/2017	ND	ND	ND	ND	ND	2.2	ND	ND	ND	ND
INN	8/18/2017	0.7	1.4	11.9	47.3	61.3	3.4	0.39	0.64	1.02	23.5
EFF	8/18/2017	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND
INN	9/7/2017	2.5	4.6	42.6	238	287.7	ND	1.97	2.19	4.16	82.5
EFF	9/7/2017	ND	1.4	0.38 (J)	2.4	4.18 (J)	243.0	ND	ND	ND	ND
INN	9/18/2017	3.6	6.5	57.0	167	234.1	4.2	1.23	1.47	2.70	68.9
EFF	9/18/2017	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND
INN	10/3/2017	3.4	5.5	44.2	157	210.1	3.7	1.82	1.22	3.04	64.3
EFF	10/3/2017	ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND
DDI	10/15/2015	2.2	2.5	21.4	05.0	100.4	2.0	1.04	0.755	2.00	24.0
INN EFF	10/17/2017 10/17/2017	2.3 ND	3.5 ND	31.4 ND	95.2 ND	132.4 ND	3.9 1.6	1.24 ND	0.755 ND	2.00 ND	34.8 ND
LIT	10/17/2017	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND
INN	11/2/2017	2.7	3.0	19.3	86.1	111.1	5.9	1.05	2.780	3.83	24.9
EFF	11/2/2017	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	11/9/2017	1.4	1.5	10.3	47.1	60.3	4.4	0.643	1.20	1.84	13.4
EFF	11/9/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
INN	12/8/2017	2.9	2.2	42.1	75.2	123.5	5.4	1.18	1.04	2.22	33.8
EFF	12/8/2017	2.9 ND	3.3 ND	42.1 ND	0.22 (J)	0.22 (J)	2.3	1.18 ND	1.04 ND	2.22 ND	33.8 ND
	12/0/2017	ПВ	ПВ	ПВ	0.22 (5)	0.22 (3)	2.5	ПЪ	ЦВ	ПВ	ПВ
INN	12/21/2017	3.4	3.3	33.0	54.4	94.1	5.7	0.871	4.72	5.59	29.0
EFF	12/21/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
INN	1/11/2018	1.1	0.98 (J)	9.3	17.2	28.6 (J)	5.2	0.315	1.72	2.035	17.5
EFF	1/11/2018	ND	ND	0.24 (J)	0.42 (J)	0.66 (J)	2.7	ND	0.0893	0.0893	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/22/2018	2.5	2.2	22.3	32.2	59.2	5.2	0.358	1.48	1.838	15.2
EFF	1/22/2018	ND	ND	ND	ND	ND	2.2	ND	0.133	0.133	ND
INN	2/7/2018	2.0	2.1	18.7	33.1	55.9	5.8	0.656	1.22	1.876	14.3
EFF	2/7/2018	ND	ND	ND	ND	ND	2.0	ND	ND	ND	ND
INN	2/14/2018	1.3	2.5	17.1	44.9	65.8	6.3	0.731	1.05	1.781	8.4
EFF	2/14/2018	ND	ND	0.33 (J)	0.99 (J)	1.32 (J)	3.3	ND	0.108	0.108	ND
INN	3/7/2018	2.1	7.8	49.3	137	196.2	6.3	0.970	2.49	3.460	22.9
EFF	3/7/2018	ND	ND	0.33 (J)	1.2	196.2 1.5 (J)	3.5	0.970 ND		3.460 ND	22.9 ND
DDI	2/14/2010	2.2			140	214.1	5 0	1.00	1.01	2.20	
INN EFF	3/14/2018 3/14/2018	2.3 0.29 (J)	7.6 0.58 (J)	55.2 0.63 (J)	149 15.4	214.1 16.9 (J)	5.8 3.6	1.29 0.196 (J)	1.01 0.173	2.30 0.369 (J)	28.3 ND
	5/14/2010	0.29 (3)	0.50 (5)	0.05 (5)	15.4	10.9 (5)	5.0	0.170 (3)	0.175	0.507 (3)	ND
INN	4/3/2018	2.3	6.3	59.2	162	230	6.3	1.35	0.755	2.11	27.8
EFF	4/3/2018	0.19 (J)	ND	0.60 (J)	2.5	3.3 (J)	3.0	0.110 (J)	0.0990	0.209 (J)	ND
INN	4/11/2018	2.5	5.8	70.6	188	267	5.4	1.41	0.933	2.34	31.1
EFF	4/11/2018	0.53	1.1	5.5	31.4	38.5	3.1	0.301	0.304	0.605	2.5 (J)
INN	5/2/2018	1.7	4.9	51.1	190	248	4.9	1.84	0.889	2.73	40.8
EFF	5/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	5/9/2018	2.8	7.6	80.5	302	393	6.8	2.15	1.46	3.61	50.6
EFF	5/9/2018	ND	ND	ND	ND	ND	ND	ND	0.179	0.179	ND
INN	6/6/2018	2.1	7.3	48.2	241	299	4.8	1.54	0.907	2.45	35.2
EFF	6/6/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	6/13/2018	2.0	6.8	39.5	214	262	4.4	1.47	0.728	2.20	34.3
EFF	6/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	7/3/2018	2.4	9.2	47.9	256	316	4.5	1.81	0.913	2.72	43.2
EFF	7/3/2018	ND	ND	ND	0.29 (J)	0.29 (J)	0.39 (J)	ND	ND	ND	ND
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/12/2018	3.0	9.5	50.9	271	334	5.2	1.82	0.728	2.55	55.6
EFF	7/12/2018	ND	ND	ND	ND	ND	0.41 (J)	ND	ND	ND	ND
INN	8/1/2018	3.0	6.6	36.2	181	227	4.6	1.58	ND	1.58	35.0
EFF	8/1/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	8/8/2018	3.9	9.0	52.8	234	300	5.6	1.81	0.851	2.66	47.2
EFF	8/8/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	9/4/2018	4.6	8.0	59.1	191	263	4.5	1.88	0.716	2.60	42.9
EFF	9/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	9/12/2018	4.0	5.8	43.0	181	234	4.5	1.61	0.315	1.93	34.7
EFF	9/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
INN	10/3/2018	4.1	6.7	39.6	263	313	3.8	1.88	0.974	2.85	55.5
EFF	10/3/2018	4.1 ND (< 0.43)	0.7 ND (< 0.53)	39.6 ND (< 0.60)	203 ND (< 0.59)	ND	0.65 (J)	ND (< 0.10)	0.9/4 ND (< 0.050)	2.85 ND (< 0.15)	ND (< 0.98)
DDI	10/10/2019	4.0	()	44.6	2(2	217.0	2.7	1.00	0.(77	2.27	52.7
INN EFF	10/10/2018 10/10/2018	4.0 ND (< 0.43)	6.3 ND (< 0.53)	44.6 ND (< 0.60)	263 ND (< 0.59)	317.9 ND	3.7 0.95 (J)	1.69 ND (< 0.10)	0.677 ND (< 0.053)	2.37 ND (< 0.15)	52.7 ND (< 0.98)
									•		
INN	11/7/2018	3.9	6.2	45.4	210	265.5	3.2	1.23	0.614	1.84	36.5
EFF	11/7/2018	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND	0.65 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
INN	11/14/2018	2.6	3.9	25.3	158	189.8	2.4	0.850	0.672	1.522	26.3
EFF	11/14/2018	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND	0.60 (J)	ND (< 0.10)	ND (< 0.050)	ND (< 0.15)	ND (< 0.98)
INN	12/4/2018	5.7	11.8	90.7	363	471.2	4.2	2.51	1.63	4.14	34.7
EFF	12/4/2018	ND (< 0.43)	ND (< 0.53)	1.3	5.0	6.3	0.73 (J)	ND (< 0.10)	ND (< 0.048)	ND (< 0.15)	ND (< 0.98)
	I		1	I				I	1		
INN	12/12/2018	5.7	12.3	101	437	556.0	4.8	2.05	1.12	3.17	76.9
EFF	12/12/2018	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND	1.1	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
INN	1/3/2019	5.1	9.9	55.4	377	447	3.9	1.94	0.707	2.65	58.1
EFF	1/3/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.98 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (Total) (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	1/10/2019	4.8	12.3	119	439	575	3.5	2.25	1.32	3.57	76.9
EFF	1/10/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.94 (J)	ND (< 0.10)	ND (< 0.052)	ND (< 0.15)	ND (< 0.98)
	1		r	1	1		r	1	r	r	
INN	2/6/2019	4.1	9.9	96.2	374	484	3.3	2.19	0.871	3.06	75.0
EFF	2/6/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.80 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
INN	2/15/2019	2.9	6.7	61.0	280	351	2.9	2.25	0.963	3.21	39.3
EFF	2/15/2019	ND (< 0.43)	0.7 ND (< 0.53)	ND (< 0.60)	4.5	< 6.1	1.0	ND (< 0.10)	0.903 ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
LFF	2/13/2019	ND (< 0.43)	ND (< 0.55)	ND (< 0.00)	4.3	< 0.1	1.0	ND(< 0.10)	ND (< 0.055)	ND(< 0.13)	ND (< 0.98)
INN	3/6/2019	1.9	2.5	9.5	230	244	2.9	1.56	0.992	2.55	9.8
EFF	3/6/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	1.7	< 3.3	1.0	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
										-	
INN	3/13/2019	3.5	7.4	44.8	350	406	3.5	2.36	1.18	3.54	43.3
EFF	3/13/2019	ND (< 0.43)	ND (< 0.53)	0.93 (J)	8.3	< 10.2	1.1	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
DDI	4/2/2010	4.5	12.0	110	410	540	2.5	2.20	1.00	4.27	767
INN	4/3/2019	4.5	13.8	112	419	549	2.5	3.29	1.08	4.37	76.7
EFF	4/3/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	1.4	< 3.0	0.97 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
INN	4/17/2019	4.9	13.9	118	532	669	3.0	3.13	0.972	4.10	67.4
EFF	4/17/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	ND (< 0.51)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 0.98)
				•				•			
INN	5/1/2019	4.8	12.4	102	492	611	2.7	3.04	1.50	4.54	63.6
EFF	5/1/2019	ND (< 0.43)	0.80 (J)	ND (< 0.60)	ND (< 0.59)	< 2.42	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
DDI	5/8/2019	6.3	17.1	142	499	664	3.5	3.17	1.1.1	4.28	87.6
INN EFF									1.11	-	
EFF	5/8/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
INN	6/5/2019	4.4	11.2	91.9	455	563	3.3	2.60	1.06	3.66	69.3
EFF	6/5/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	0.63 (J)	< 2.19	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
								/	· · · · /	• • • • •	
INN	6/12/2019	4.8	12.3	100	456	573	2.9	2.94	1.14	4.08	77.0
EFF	6/12/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	3.0	4.6	ND (< 0.51)	ND (< 0.042)	ND (< 0.050)	ND (< 0.092)	ND (< 0.98)
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

Page 10 of 11

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (Total) (µg/L)	Total BTEX (μg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	7/10/2019	4.0	7.7	48.9	328	389	2.7	1.88	0.92	2.80	57.5
EFF	7/10/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
INN	7/19/2019	3.2	6.1	49.0	270	328.3	2.3	1.81	0.77	2.58	50.3
EFF	7/19/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
INN	8/5/2019	3.4	5.3	24.6	203	236.3	0.68 (J)	1.77	0.81	2.58	57.6
EFF	8/5/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.68 (J)	ND (< 0.042)	0.109	0.151	ND (< 0.98)
LII	0/5/2019	$\operatorname{ND}(<0.43)$	(0.55)	ND(<0.00)	$\operatorname{ND}((0.5))$	ND (*2.15)	0.00 (3)	ND (< 0.042)	0.109	0.151	ND (< 0.96)
INN	8/13/2019	2.9	3.1	10.5	90.6	107.1	2.9	1.10	0.693	1.79	27.9
EFF	8/13/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.62 (J)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
	1		r	l.	1		r	1	r	1	
INN	9/4/2019	2.6	1.9	7.3	32.2	44.0	3.2	0.720	0.356	1.08	17.0
EFF	9/4/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	ND (< 0.51)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
INN	9/11/2019	3.1	2.2	26.6	35.9	67.8	2.9	0.895	0.435	1.330	11.7
EFF	9/11/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.74 (J)	ND (< 0.042)	0.433 ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
EIT	9/11/2019	ND(<0.43)	ND(< 0.55)	ND(< 0.00)	ND(<0.59)	ND (< 2.13)	0.74 (J)	ND (< 0.042)	ND (< 0.055)	ND (< 0.095)	ND (< 0.98)
INN	10/1/2019	4.1	4.3	10.6	71.9	90.9	2.6	1.25	0.625	1.875	29.4
EFF	10/1/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.84 (J)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
	1			I	1			T	I	I	
INN	10/9/2019	3.6	2.9	19.1	57.0	82.6	2.6	1.24	0.386	1.626	23.2
EFF	10/9/2019	0.48 (J)	ND (< 0.53)	ND (< 0.60)	1.0	<2.61	0.85 (J)	ND (< 0.042)	ND (< 0.053)	ND (< 0.095)	ND (< 0.98)
INN	11/14/2019	2.7	3.6	37.0	104	147	3.4	1.47	0.628	2.098	45.1
EFF	11/14/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.59 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 2.5)
			()						(• • • • •)		
INN	11/19/2019	2.9	4.2	43.2	117	167	3.4	1.33	0.646	1.976	47.5
EFF	11/19/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	0.79 (J)	<2.35	0.78 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 2.5)
	10///0010			264			• •	0.60.5	0.4.50		160
INN	12/4/2019	1.4	2.2	26.4	56.4	86.4	2.0	0.695	0.158	0.853	16.9
EFF	12/4/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.67 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 2.5)
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

TABLE 5 GROUNDWATER TREATMENT SYSTEM SAMPLING RESULTS SUMMARY Ridgely Manor Park Towson, MD Case # 1991-2100-BA NPDES Permit # MDG915958

Groundwater Treatment System Sample Identification	Groundwater Treatment System Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (Total) (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)	Naphthalene (µg/L)
INN	12/11/2019	1.7	2.6	31.5	62.4	98.2	2.0	0.778	0.334	1.112	19.4
EFF	12/11/2019	ND (< 0.43)	ND (< 0.53)	ND (< 0.60)	ND (< 0.59)	ND (< 2.15)	0.62 (J)	ND (< 0.10)	ND (< 0.053)	ND (< 0.15)	ND (< 2.5)
											-
	NPDES Permit Limits*	5	NL	NL	NL	100	NL	NL	NL	15	NL

*Effluent Limitations listed in NPDES Permit # MDG915958

EFF = Effluent Sample (Post-filtration)

INF = Influent Sample (Pre-filtration)

INN = Influent Sample (Pre-filtration)

ND = Constituent Compound Not Detected

NL = No limit listed in NPDES permit

NA = Not Analyzed

(J) = Laboratory-Estimated Value

 $\mu g/L = micrograms/Liter$

MTBE = Methyl-Tertiary-Butyl Ether

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbons

DRO = Diesel Range Organics

GRO = Gasoline Range Organics

ND (< MDL) = Not Detected above Method Detection Limit

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

12/03/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC98692

Sampling Date: 11/13/19

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 61

SQ1

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 61 JC98692

Table of Contents

1 2 3 4

1	
	-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	8
3.1: JC98692-1: MW-4	9
3.2: JC98692-2: MW-7	14
3.3: JC98692-3: YMW-1	19
3.4: JC98692-4: YMW-2	24
3.5: JC98692-5: YMW-3	29
3.6: JC98692-6: YMW-4	34
3.7: JC98692-7: YMW-8	39
3.8: JC98692-8: YP-1	44
3.9: JC98692-9: YP-2	49
3.10: JC98692-10: YP-5	54
Section 4: Misc. Forms	59
4.1: Chain of Custody	60

Sample Summary

EMS Environmental, Inc.

Job No: JC98692

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matı Code		Client Sample ID
This report co Organics ND		Its reported a = Not detect			ected. The followin L	g applies:
JC98692-1	11/13/19	15:00 RL	11/15/19	AQ	Ground Water	MW-4
JC98692-2	11/13/19	14:30 RL	11/15/19	AQ	Ground Water	MW-7
JC98692-3	11/13/19	11:30 RL	11/15/19	AQ	Ground Water	YMW-1
JC98692-4	11/13/19	12:15 RL	11/15/19	AQ	Ground Water	YMW-2
JC98692-5	11/13/19	11:50 RL	11/15/19	AQ	Ground Water	YMW-3
JC98692-6	11/13/19	13:00 RL	11/15/19	AQ	Ground Water	YMW-4
JC98692-7	11/13/19	12:40 RL	11/15/19	AQ	Ground Water	YMW-8
JC98692-8	11/13/19	13:45 RL	11/15/19	AQ	Ground Water	YP-1
JC98692-9	11/13/19	14:10 RL	11/15/19	AQ	Ground Water	YP-2
JC98692-10	11/13/19	13:20 RL	11/15/19	AQ	Ground Water	YP-5

Summary of Hits

Job Number:	JC98692
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	11/13/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC98692-1 MW-4					
Benzene	8.4	0.50	0.43	ug/l	SW846 8260C
Di-Isopropyl ether	1.7 J	2.0	0.68	ug/l	SW846 8260C
Ethylbenzene	37.5	1.0	0.60	ug/l	SW846 8260C
Isopropylbenzene	2.6	1.0	0.65	ug/l	SW846 8260C
Methyl Tert Butyl Ether	0.64 J	1.0	0.51	ug/l	SW846 8260C
Naphthalene	19.9	5.0	2.5	ug/l	SW846 8260C
n-Propylbenzene	4.5	2.0	0.60	ug/l	SW846 8260C
Tert Butyl Alcohol	16.8	10	5.8	ug/l	SW846 8260C
tert-Butyl Ethyl Ether	1.3 J	2.0	0.56	ug/l	SW846 8260C
Toluene	4.5	1.0	0.53	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	19.3	2.0	1.0	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	1.1 J	2.0	1.0	ug/l	SW846 8260C
m,p-Xylene	5.5	1.0	0.78	ug/l	SW846 8260C
o-Xylene	1.1	1.0	0.59	ug/l	SW846 8260C
Xylene (total)	6.6	1.0	0.59	ug/l	SW846 8260C
TPH-GRO (C6-C10)	0.507	0.20	0.10	mg/l	SW846 8015D
TPH-DRO (C10-C28)	0.168	0.083	0.053	mg/l	SW846 8015D
JC98692-2 MW-7					
Benzene	15.7	0.50	0.43	ug/l	SW846 8260C
n-Butylbenzene	2.2	2.0	0.52	ug/l	SW846 8260C
sec-Butylbenzene	2.9	2.0	0.62	ug/l	SW846 8260C
Di-Isopropyl ether	1.3 J	2.0	0.68	ug/l	SW846 8260C
Ethylbenzene	112	1.0	0.60	ug/l	SW846 8260C
Isopropylbenzene	14.9	1.0	0.65	ug/l	SW846 8260C
p-Isopropyltoluene	0.88 J	2.0	0.66	ug/l	SW846 8260C
Methyl Tert Butyl Ether	0.80 J	1.0	0.51	ug/l	SW846 8260C
Naphthalene	55.7	5.0	2.5	ug/l	SW846 8260C
n-Propylbenzene	43.5	2.0	0.60	ug/l	SW846 8260C
Tert Butyl Alcohol	45.5 8.0 J	10	5.8	ug/l	SW846 8260C
Toluene	12.5	1.0	0.53	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	176	20	10	ug/l	SW846 8260C
1,3,5-Trimethylbenzene	26.8	2.0	1.0	ug/l	SW846 8260C
m,p-Xylene	91.5	1.0	0.78	ug/l	SW846 8260C
o-Xylene	5.4	1.0	0.78	ug/l	SW846 8260C
Xylene (total)	96.9	1.0	0.59		SW846 8260C
TPH-GRO (C6-C10)	2.54	0.20	0.39	ug/l mg/l	SW846 8015D
TPH-DRO (C10-C28)	1.38	0.20	0.10	mg/1	SW846 8015D SW846 8015D
JC98692-3 YMW-1				-	
Isopropylbenzene	0.98 J	1.0	0.65	ug/l	SW846 8260C
isopropyioenzene	0.700	1.0	0.05	м Б/ 1	511010 02000

Ν

Summary of Hits

Job Number:	JC98692
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	11/13/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TPH-GRO (C6-C10)	0.128 J	0.20	0.10	mg/l	SW846 8015D
JC98692-4 YMW-2					
Di-Isopropyl ether Methyl Tert Butyl Ether Tert Butyl Alcohol TPH-GRO (C6-C10) TPH-DRO (C10-C28)	1.4 J 9.4 27.5 0.337 0.178	2.0 1.0 10 0.20 0.083	0.68 0.51 5.8 0.10 0.053	ug/l ug/l ug/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
JC98692-5 YMW-3					
No hits reported in this sample.					
JC98692-6 YMW-4					
Benzene sec-Butylbenzene Di-Isopropyl ether Isopropylbenzene Methyl Tert Butyl Ether n-Propylbenzene Tert Butyl Alcohol Toluene m, p-Xylene Xylene (total) TPH-GRO (C6-C10) TPH-DRO (C10-C28)	8.7 1.3 J 4.6 1.1 6.6 0.90 J 120 0.60 J 2.5 2.5 0.764 0.582	$\begin{array}{c} 0.50\\ 2.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.20\\ 0.083 \end{array}$	$\begin{array}{c} 0.43 \\ 0.62 \\ 0.68 \\ 0.65 \\ 0.51 \\ 0.60 \\ 5.8 \\ 0.53 \\ 0.78 \\ 0.59 \\ 0.10 \\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8015D SW846 8015D
Benzene ^a n-Butylbenzene ^a sec-Butylbenzene ^a 1,2-Dichloroethane ^a Ethylbenzene ^a Isopropylbenzene ^a p-Isopropyltoluene ^a Methyl Tert Butyl Ether ^a Naphthalene ^a n-Propylbenzene ^a Toluene ^a 1,2,4-Trimethylbenzene ^a 1,3,5-Trimethylbenzene ^a m,p-Xylene ^a	26.8 13.3 8.8 J 3.2 J 673 55.9 11.5 19.8 217 176 46.1 846 181 926	$\begin{array}{c} 2.5 \\ 10 \\ 10 \\ 5.0 \\ 5.0 \\ 5.0 \\ 10 \\ 5.0 \\ 25 \\ 10 \\ 5.0 \\ 10 \\ 10 \\ 5.0 \end{array}$	2.1 2.6 3.1 3.0 3.0 3.2 3.3 2.5 13 3.0 2.7 5.0 5.0 3.9	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260C SW846 8260C

Ν

Summary of Hits

Job Number:	JC98692
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	11/13/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
o-Xylene ^a	76.8	5.0	3.0	ug/l	SW846 8260C
Xylene (total) ^a	1000	5.0	3.0	ug/l	SW846 8260C
TPH-GRO (C6-C10)	9.19	0.20	0.10	mg/l	SW846 8015D
TPH-DRO (C10-C28)	2.94	0.083	0.053	mg/l	SW846 8015D
JC98692-8 YP-1					
Acetone ^a	26.2	20	12	ug/l	SW846 8260C
Benzene ^a	4.6	1.0	0.85	ug/l	SW846 8260C
n-Butylbenzene ^a	15.5	4.0	1.0	ug/l	SW846 8260C
sec-Butylbenzene ^a	9.5	4.0	1.2	ug/l	SW846 8260C
Ethylbenzene	602	20	12	ug/l	SW846 8260C
Isopropylbenzene ^a	50.2	2.0	1.3	ug/l	SW846 8260C
p-Isopropyltoluene ^a	2.8 J	4.0	1.3	ug/l	SW846 8260C
Methyl Tert Butyl Ether ^a	2.0	2.0	1.0	ug/l	SW846 8260C
Naphthalene ^a	237	10	5.0	ug/l	SW846 8260C
n-Propylbenzene ^a	166	4.0	1.2	ug/l	SW846 8260C
Tert Butyl Alcohol ^a	13.5 J	20	12	ug/l	SW846 8260C
Toluene ^a	9.8	2.0	1.1	ug/l	SW846 8260C
1,2,4-Trimethylbenzene ^a	106	4.0	2.0	ug/l	SW846 8260C
1,3,5-Trimethylbenzene ^a	70.5	4.0	2.0	ug/l	SW846 8260C
m,p-Xylene ^a	154	2.0	1.6	ug/l	SW846 8260C
o-Xylene ^a	2.8	2.0	1.2	ug/l	SW846 8260C
Xylene (total) ^a	157	2.0	1.2	ug/l	SW846 8260C
TPH-GRO (C6-C10)	6.35	0.20	0.10	mg/l	SW846 8015D
TPH-DRO (C10-C28)	2.02	0.083	0.053	mg/l	SW846 8015D
JC98692-9 YP-2					
Benzene	6.5	0.50	0.43	ug/l	SW846 8260C
sec-Butylbenzene	1.6 J	2.0	0.62	ug/l	SW846 8260C
Di-Isopropyl ether	1.0 J	2.0	0.68	ug/l	SW846 8260C
1,2-Dichloroethane	0.95 J	1.0	0.60	ug/l	SW846 8260C
Isopropylbenzene	0.70 J	1.0	0.65	ug/l	SW846 8260C
Methyl Tert Butyl Ether	16.1	1.0	0.51	ug/l	SW846 8260C
Naphthalene	6.3	5.0	2.5	ug/l	SW846 8260C
Tert Butyl Alcohol	15.0	10	5.8	ug/l	SW846 8260C
1,2,4-Trimethylbenzene	6.1	2.0	1.0	ug/l	SW846 8260C
TPH-GRO (C6-C10)	0.422	0.20	0.10	mg/l	SW846 8015D
TPH-DRO (C10-C28)	0.248	0.083	0.053	mg/l	SW846 8015D
JC98692-10 YP-5					
Acetone	8.8 J	10	6.0	ug/l	SW846 8260C

Ν

Summary of Hits Job Number: JC98692

Job Number:JC98692Account:EMS Environmental, Inc.Project:HESS #20204, 1613 East Joppa Road, Towson, MDCollected:11/13/19

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	RL	MDL	Units	Method

(a) Diluted due to high concentration of target compound.

N

Dayton, NJ

ယ Section 3

Sample Results

Report of Analysis

		W-4			-		
Lab Sam	ple ID: JC	98692-1			Da	ate Sampled: 11	/13/19
Matrix:	AC	Q - Ground Wa	ater		Da	ate Received: 11	/15/19
Method:	SV	/846 8260C			Pe	ercent Solids: n/	a
Project:	HI	ESS #20204, 1	613 East Joppa Road	l, Tow	son, MD		
	File ID	DF	Analyzad	D _V	Prop Data	Drop Botch	Analytical Ratak
D //1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	File ID 2C171822.		Analyzed 11/22/19 03:22	•	Prep Date n/a	Prep Batch n/a	Analytical Batch V2C7722
Run #1 Run #2			•	•	-	-	-
		D 1	•	•	-	-	-
	2C171822.	D 1	•	•	-	-	-

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	8.4	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	1.7	2.0	0.68	ug/l	J
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

Client Sample ID:	MW-4		
Lab Sample ID:	JC98692-1	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	37.5	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	2.6	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.64	1.0	0.51	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	19.9	5.0	2.5	ug/l	
103-65-1	n-Propylbenzene	4.5	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	16.8	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	1.3	2.0	0.56	ug/l	J
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	4.5	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	19.3	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	1.1	2.0	1.0	ug/l	J
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	5.5	1.0	0.78	ug/l	
95-47-6	o-Xylene	1.1	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	6.6	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	99%		80-1	20%	

ND = Not detected MDL = Method Detection Limit J

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

<u>ω</u>

10 of 61

JC98692

Report of Analysis

Client Sample ID:	MW-4		
Lab Sample ID:	JC98692-1	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
5			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	97%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	95%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω -

ω

11 of 61

SGS

			Report	UI AII	ai y 515			1 age 1 01 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC9 AQ SW8	8692-1 - Ground Wat 846 8015D	er 13 East Joppa Roa	d, Towso	on, MD	Date	Sampled: Received: ent Solids:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID LM101930.I	DF D 1	Analyzed 11/20/19 12:31	By XPL	Prep D n/a	ate	Prep Bate n/a	h Analytical Batch GLM4233
Run #1 Run #2	Purge Volu 5.0 ml	ne						
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO	(C6-C10)	0.507	0.20	0.10	mg/l		
CAS No.	Surrogate 1	Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluo	otoluene	103%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

<u>ω</u>

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC98 AQ SW8	8692-1 - Ground Wat 46 8015D S	er W846 3510C 13 East Joppa Roac	l, Towsc	on, MD	Date	Received: 1	1/13/19 1/15/19 1⁄a
Run #1 Run #2	File ID 2Z78137.D	DF 1	Analyzed 11/20/19 00:18	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volur 300 ml	ne Final Vo 1.0 ml	olume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO	(C10-C28)	0.168	0.083	0.053	mg/l		
CAS No.	Surrogate I	Recoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androsta		65% 57%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

Client Sa Lab Sam Matrix:	ple ID: JC986		ater			Date Sampled: 11 Date Received: 11	/13/19 /15/19
Method:	•	6 8260C			-	Percent Solids: n/	
Project:	HESS	#20204, 1	613 East Joppa Road	l, Tow	son, MD		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2C171823.D	1	11/22/19 03:51	BK	n/a	n/a	V2C7722
Run #2	3B157321.D	10	11/27/19 14:29	JP	n/a	n/a	V3B7075
	Purge Volume	9					
Run #1	Purge Volume 5.0 ml	9					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	15.7	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	2.2	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	2.9	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	1.3	2.0	0.68	ug/l	J
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

ω

Page 1 of 3

E = Indicates value exceeds calibration range

Client Sample ID:	MW-7		
Lab Sample ID:	JC98692-2	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	112	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	14.9	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	0.88	2.0	0.66	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	0.80	1.0	0.51	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	55.7	5.0	2.5	ug/l	
103-65-1	n-Propylbenzene	43.5	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	8.0	10	5.8	ug/l	J
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	12.5	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	176 ^b	20	10	ug/l	
108-67-8	1,3,5-Trimethylbenzene	26.8	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	91.5	1.0	0.78	ug/l	
95-47-6	o-Xylene	5.4	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	96.9	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
1868-53-7	Dibromofluoromethane	101%	100%	80-	120%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.2

15 of 61

JC98692

Page	3 of 3

Client Sample ID:	MW-7		
Lab Sample ID:	JC98692-2	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	94%	100%	81-124%
2037-26-5	Toluene-D8	101%	102%	80-120%
460-00-4	4-Bromofluorobenzene	99%	93%	80-120%

(a) Associated CCV outside of control limits high, sample was ND.

(b) Result is from Run# 2

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

JC98692

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ad, Towso	on, MD	Date	1	./13/19 ./15/19 a
Run #1 Run #2	File ID DF LM101937.D 1	Analyzed 11/20/19 15:24	By 4 XPL	Prep Da n/a	te	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	2.54	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S		
98-08-8	aaa-Trifluorotoluene	101%		55-13	0%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - (SW84	92-2 Ground Wate 6 8015D SV		d, Towsc	on, MD	Date	~~	1/13/19 1/15/19 a
Run #1 Run #2	File ID 2Z78138.D	DF 1	Analyzed 11/20/19 00:52	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volume 300 ml	e Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	210-C28)	1.38	0.083	0.053	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	55% 39%		22-1 10-1	40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JC A(SV	1W-1 98692-3 9 - Ground W 7846 8260C 785 #20204 1	ater 613 East Joppa Road	t Tow]	Date Sampled:11Date Received:11Percent Solids:n/	
Run #1 Run #2	File ID 2C171838.	DF	Analyzed 11/22/19 11:14	By	Prep Date n/a	Prep Batch n/a	Analytical Batch V2C7723
Run #1 Run #2	Purge Vol 5.0 ml	ime					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ယ ယ

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-1		
Lab Sample ID:	JC98692-3	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Compound Result RL		RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	0.98	1.0	0.65	ug/l	J
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	2.5	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene b	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%		80-1	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ယ ပ

20 of 61

JC98692

Report of Analysis

Client Sample ID:	YMW-1		
Lab Sample ID:	JC98692-3	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	97%		81-124%
2037-26-5	Toluene-D8	100%		80-120%
460-00-4	4-Bromofluorobenzene	95%		80-120%

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ad, Tows	on, MD	Date	1	a/13/19 a/15/19 a
Run #1 Run #2	File ID DF LM101931.D 1	Analyzed 11/20/19 12:53	By 3 XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.128	0.20	0.10	mg/l	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	95%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ယ သ

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - SW84	592-3 Ground Wate 6 8015D SV		d, Towsc	on, MD	Date	Sampled: Received: ent Solids:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID 2Z78139.D	DF 1	Analyzed 11/20/19 01:26	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	n Analytical Batch G2Z2957
Run #1 Run #2	Initial Volum 300 ml	e Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	62% 48%		22-1 10-1	40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ယ

ω

Client San Lab Samj Matrix: Method: Project:	ple ID: JC986 AQ - 0 SW84	Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2C171825.D	DF 1	Analyzed 11/22/19 04:48	By BK	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2C7722
Run #1	Purge Volume 5.0 ml	2					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	1.4	2.0	0.68	ug/l	J
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-2		
Lab Sample ID:	JC98692-4	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropene ND 1.0 0.52 ug/l 10661-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.66 ug/l 98-82-8 Hexhyler berbraide ND 2.0 1.0 ug/l 1634-04-4 Methylene bromide ND 2.0 1.0 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 17-90-2 Methylene bromide ND 2.0 0.60 ug/l 100	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.643 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87.82-8 Isopropylbenzene ND 2.0 0.56 ug/l 98.82-8 Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methylene bromide ND 2.0 1.0 ug/l 174-95-3 Methylene chloride ND 2.0 1.0 ug/l 191-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 108-10-1 +Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-20-3 Methylene bromide ND 2.0 1.0 ug/l 100-42-5 Methylene chloride ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.60 ug/l 100-42-5			ND	1.0	0.52	-	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.61 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 1.0 ug/1 74-95-3 Methylene bromide ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 0.60 ug/1 91-20-3 Naphthalene ND 2.0 0.60 ug/1 92-45-5 Styrene ND 1.0 0.70 ug/1 92-45-5 Tert Butyl Alcohol			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 5.0 1.9 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.60 ug/l 104-42-5 Styrene ND 1.0 0.60 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.64 ug/l 637-92-3 tert-Mu	10061-01-5			1.0	0.47	-	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyloluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 103-58 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,							
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 94-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 994-05-8 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4	100-41-4		ND	1.0	0.60		
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 2.0 0.60 ug/l 104-25-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 126-56	87-68-3		ND	2.0	0.56	-	
99-87-6 p-Isorropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenz	98-82-8	Isopropylbenzene	ND	1.0	0.65	0	
1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 75-09-2 Methylene chloride ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/1 79-34-5 1, 1, 2.7 Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1, 2.4-Trichlorobenzene ^a ND 1.0 0.53 ug/1 120-82-1 <td>99-87-6</td> <td></td> <td>ND</td> <td>2.0</td> <td>0.66</td> <td>-</td> <td></td>	99-87-6		ND	2.0	0.66	-	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 75-09-2 Methylene chloride ND 2.0 1.0 ug/1 91-20-3 Maphthalene ND 5.0 2.5 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/1 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/1 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichloroethane ND 1.0 0.53 ug/1 120-86-1 1,1,	1634-04-4		9.4	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene a ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4	108-10-1		ND	5.0	1.9	-	
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1, 2, 4-Trichlorobenzene a ND 1.0 0.50 ug/l 175-56 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 170-05 1, 1, 2-Trichloropthane ND 1.0 0.53 ug/l 19-01-6 <td>74-95-3</td> <td></td> <td>ND</td> <td>1.0</td> <td></td> <td></td> <td></td>	74-95-3		ND	1.0			
91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 1120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-1	75-09-2	Methylene chloride	ND	2.0	1.0		
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.54 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichloroptopane ND 2.0 0.70 ug/l 96-18-4	91-20-3		ND	5.0	2.5	-	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 171-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 0.70 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60		
75-65-0 Tert Butyl Alcohol 27.5 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 17-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/1 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/1	100-42-5		ND	1.0	0.70		
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	75-65-0		27.5	10	5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l <	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47		
630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ^a ND 1.0 0.54 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79 ug/l </td <td>637-92-3</td> <td></td> <td>ND</td> <td>2.0</td> <td>0.56</td> <td>-</td> <td></td>	637-92-3		ND	2.0	0.56	-	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 130-20-7 Vinyl chloride ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60		
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 130-20-7 Viplene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	-	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	ug/l	
71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichloroethene ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	-	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5		ND	1.0	0.53		
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0		
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	-	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	-	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits			ND	1.0	0.78	-	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
	1330-20-7		ND	1.0	0.59	-	
1868-53-7 Dibromofluoromethane 100% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	1868-53-7	Dibromofluoromethane	100%		80-12	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.4

25 of 61

JC98692

Report of Analysis

Client Sample ID:	YMW-2		
Lab Sample ID:	JC98692-4	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
Ŭ			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	96%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	93%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.4

26 of 61 SGS

			Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98692-4 AQ - Grou SW846 80	nd Water 15D	East Joppa Road	1, Towso	n, MD	Date	Received:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID D LM101932.D 1		Analyzed 11/20/19 13:22	By XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C1	10)	0.337	0.20	0.10	mg/l		
CAS No.	Surrogate Recove	eries	Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotolue	ne	97%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - 0 SW84	592-4 Ground Wate 6 8015D S	er W846 3510C 13 East Joppa Road	d, Towsc	on, MD	Date	Received: 1	1/13/19 1/15/19 n/a
Run #1 Run #2	File ID 2Z78140.D	DF 1	Analyzed 11/20/19 02:00	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volume 300 ml	e Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	0.178	0.083	0.053	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	66% 49%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

3.4

Lab Sam Matrix: Method:	AQ -	692-5 Ground W 46 8260C	ater		D	ate Sampled: 11 ate Received: 11 ercent Solids: n/	
Project:			613 East Joppa Road	l, Tow	-		u
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	2C171826.D	1	11/22/19 05:17	BK	n/a	n/a	V2C7722
	Purge Volum	e					
Run #1	5.0 ml						

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

29 of 61

JC98692

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-3		
Lab Sample ID:	JC98692-5	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropene ND 1.0 0.52 ug/l 10661-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropyltoluene ND 1.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 104-5-5 Styrene ND 1.0 0.60 ug/l 100-42-5	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 98-82-8 Isopropylbenzene ND 2.0 0.66 ug/l 108-10-1 4-Methyl Tert Butyl Ether ND 1.0 0.43 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 2.0 0.66 ug/l 108-10-3 Methylene chloride ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.60 ug/l 104-2-5	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1, 3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-87-6 p-Isopropylbenzene ND 1.0 0.65 ug/l 1034-04-4 Methyl Tert Butyl Ether ND 1.0 0.48 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 108-10-1 4-Methyl-repentanone(MIBK) ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-65-1 n-Propylbenzene ND 1.0 0.60 ug/l	594-20-7				0.52	0	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 2.0 1.0 ug/1 91-20-3 Naphthalene ND 2.0 1.0 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 100-42-5 Styrene ND 1.0 0.60 ug/1 104-45-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether			ND	1.0	0.82	-	
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/1 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/1 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 75-09-2 Methylene bromide ND 2.0 0.60 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.48 ug/1 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/1 104-2-5 Styrene ND 1.0 0.60 ug/1 104-2-5 Styrene ND 1.0 0.60 ug/1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/1 104-5-8 tert-	10061-01-5		ND	1.0	0.47	0	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbonzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 108-10-1 4-Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 105-54 nert-Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Autyl Ethyl Ether ND 1.0 0.60 ug/l 127-18-4 Tetrachloro	10061-02-6		ND	1.0	0.43	-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 100-42-5 Styrene ND 1.0 0.48 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Butyl Alcohol ND 1.0 0.65 ug/l 637-92-3 tert-Butyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane	100-41-4		ND	1.0	0.60		
98-82-8 Isopropylbenzene ND 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-25 Styrene ND 2.0 0.60 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-88-3	87-68-3	Hexachlorobutadiene	ND	2.0	0.56	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 637-92-3 tert-Butyl Alcohol ND 1.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 120-82-1	98-82-8	Isopropylbenzene	ND	1.0	0.65	-	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Tr	99-87-6	p-Isopropyltoluene	ND	2.0	0.66		
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 127-18-4 Tetrachlorobenzene ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Tr	1634-04-4		ND	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-tertachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene a ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 19-0-05 1,	108-10-1		ND	5.0	1.9	-	
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1, 1, 2.7-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1, 1, 2.7-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 171-55-6 1, 1, 1-Trichloroethane ND 1.0 0.54 ug/l 19-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 19-01-6	74-95-3		ND	1.0	0.48		
91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloropthane ND 1.0 0.53 ug/l 75-69-4 Trichloropthane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloro	75-09-2	Methylene chloride	ND	2.0	1.0		
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/1 100-42-5 Styrene ND 1.0 0.70 ug/1 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.54 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 96-18-4 1,2.3-Trichloroptopane ND 2.0 0.70 ug/1 95-63-6 1,2.4	91-20-3		ND	5.0	2.5	-	
100-42-5 Styrne ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 1120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/l 1120-82-1 1, 2, 4-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 0.70 ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.60	-	
75-65-0 Tert Butyl Alcohol ND 10 5.8 ug/1 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/1 630-20-6 1,1,2.7-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichloroethane ND 1.0 0.54 ug/1 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/1 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/1	100-42-5		ND	1.0	0.70		
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2.7-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.7-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	75-65-0		ND	10	5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	-	
630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1, 2, 4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79	637-92-3		ND	2.0	0.56	-	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene a ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 108-67-6 o-Xylene ND 1.0 0.79 ug/l 1330-2	630-20-6		ND	1.0	0.60		
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.78 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 1330-20-7 Xylene ND 1.0 0.59 ug/l 1330-20-7	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	-	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l 1330-20-7 <t< td=""><td>127-18-4</td><td>Tetrachloroethene</td><td>ND</td><td>1.0</td><td>0.90</td><td>-</td><td></td></t<>	127-18-4	Tetrachloroethene	ND	1.0	0.90	-	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53		
120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50		
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1		ND	1.0	0.50	-	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54		
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	-	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6		ND	1.0	0.53		
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	-	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	-	
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	95-63-6		ND	2.0	1.0		
75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	-	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			ND	1.0	0.78	0	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	-	
	1330-20-7	Xylene (total)	ND	1.0	0.59		
1868-53-7 Dibromofluoromethane 100% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	100%		80-1	20%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Report of Analysis

Client Sample ID:	YMW-3		
Lab Sample ID:	JC98692-5	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
U U			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	97%		81-124%
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	101% 94%		80-120% 80-120%
400-00-4	4-Bromonuorobenzene	94%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

		Re	port of Ar	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98692-5 AQ - Grou SW846 80	nd Water	opa Road, Tows	son, MD	Date	1	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID I LM101933.D 1	DF Analyze 11/20/1	ed By 9 13:43 XPL	Prep Da n/a	te	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Resu	ılt RL	MDL	Units	Q	
	TPH-GRO (C6-C	10) ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recove	eries Run	# 1 Run# 2	2 Limit	s		
98-08-8	aaa-Trifluorotoluene 95% 55-1				0%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - SW84	92-5 Ground Wate 6 8015D SV		d, Towsc	on, MD	Date	Sampled: Received: ent Solids:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID 2Z78141.D	DF 1	Analyzed 11/20/19 02:35	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batc OP24095	h Analytical Batch G2Z2957
Run #1 Run #2	Initial Volum 300 ml	e Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	210-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Ro	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	50% 34%			40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω 5

Lab Sam Matrix: Method:	AQ	8692-6 - Ground W 846 8260C	ater		D	ate Sampled: 11 ate Received: 11 ercent Solids: n/	
Project:	HE	SS #20204, 1	613 East Joppa Road	l, Tow	son, MD		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	2C171827.I) 1	11/22/19 05:45	BK	n/a	n/a	V2C7722
	Purge Volu	me					
Run #1 Run #2	5.0 ml						

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	8.7	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	1.3	2.0	0.62	ug/l	J
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	4.6	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 3

E = Indicates value exceeds calibration range

Client Sample ID:	YMW-4		
Lab Sample ID:	JC98692-6	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 98-82-8 Isopropylbenzene 1.1 1.0 0.65 ug/l 98-82-8 Isopropylbuene ND 2.0 0.66 ug/l 1634-04-4 Methyl-Tert Butyl Ether 6.6 1.0 0.51 ug/l 174-95-3 Methylene bromide ND 1.0 0.48 ug/l 74-95-3 Methylene bromide ND 1.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 100-42-5 Styrene ND 1.0 0.60 ug/l J<	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2.2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 2.0 0.56 ug/l 100-41-4 Ethylbenzene ND 2.0 0.56 ug/l 1634-04-4 MethylTert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l	142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis.1, 3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.66 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene 1.1 1.0 0.66 ug/1 108-10-1 4-Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 2.5 ug/1 108-51 n-Propylbenzene 0.90 2.0 0.60 ug/1 J 100-42-5 Styrene ND 1.0 0.70 ug/1 163-02-6 1,1,1,2/Tetrachloroethane ND 1.0 0.60 ug/1 103-320-6 1,1,1,2.2-Tetrachloroethane ND 1.0 0.60			ND	1.0	0.52	0	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.66 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 1.1 1.0 0.66 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 0.66 ug/l 91-20-3 Naphthalene ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 92-405-8 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 92-405-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 93-4-51 1,1	563-58-6			1.0	0.82		
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 1.1 1.0 0.65 ug/l 98-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Butyl Alcohol 120 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 </td <td>10061-01-5</td> <td></td> <td></td> <td>1.0</td> <td>0.47</td> <td>-</td> <td></td>	10061-01-5			1.0	0.47	-	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 1.1 1.0 0.65 ug/l 99-87-6 p-Isopropyloluene ND 2.0 0.66 ug/l 1034-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphtalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.7etrachloroethane ND 1.0 0.53 ug/l <t< td=""><td></td><td></td><td></td><td>1.0</td><td></td><td>0</td><td></td></t<>				1.0		0	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 1.1 1.0 0.65 ug/l 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 127-184 Tetrachloroethane ND 1.0 0.60 ug/l 127-184 Tetrachloroethane ND 1.0 0.50 ug/l 108-8	100-41-4		ND	1.0	0.60		
98-82-8 Isopropylbenzene 1.1 1.0 0.65 ug/1 99-87-6 p-Isopropylboluene ND 2.0 0.66 ug/1 1634-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 74-95-3 Methylene bromide ND 1.0 0.48 ug/1 91-20-3 Naphthalene ND 5.0 2.5 ug/1 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/1 J 100-42-5 Styrene ND 1.0 0.70 ug/1 J 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/1 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/1 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/1 108-88-3 Toluene 0.60 1.0 0.53 ug/1 J 108-88-3 Toluene ND 1.0 0.50 ug/1	87-68-3		ND	2.0	0.56	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l 1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.66 ug/l 1 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 1 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 1 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.53 ug/l 1 108-88-3 Toluene 0.60	98-82-8	Isopropylbenzene	1.1	1.0	0.65		
1634-04-4 Methyl Tert Butyl Ether 6.6 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 179-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 120-82-1 1, 2, 4-Trichlorobenzene ND 1.0 0.50 ug/	99-87-6		ND	2.0	0.66	0	
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 75-65-0 Tert Butyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 103-88-83 Toluene ND 1.0 0.60 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.53 ug/l 1	1634-04-4		6.6	1.0	0.51		
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1, 2, 3-Trichlorobenzene a ND 1.0 0.50 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l			ND	5.0	1.9		
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 994-05-8 tert-Amyl Alcohol 120 10 5.8 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.66 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.54 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroptonane ND 1.0 0.53 ug/l	74-95-3		ND	1.0			
91-20-3 Naphthalene ND 5.0 2.5 ug/l 103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l J 994-05-8 tert-Amyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.50 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 2.0 0.84 ug/l	75-09-2		ND	2.0	1.0	-	
103-65-1 n-Propylbenzene 0.90 2.0 0.60 ug/l J 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 2.0 0.70 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l <td>91-20-3</td> <td></td> <td>ND</td> <td>5.0</td> <td>2.5</td> <td></td> <td></td>	91-20-3		ND	5.0	2.5		
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 79-01-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l	103-65-1	n-Propylbenzene	0.90	2.0	0.60	-	J
75-65-0 Tert Butyl Alcohol 120 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l <td>100-42-5</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.70</td> <td>-</td> <td></td>	100-42-5		ND	1.0	0.70	-	
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l	75-65-0		120	10	5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.65 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug	994-05-8		ND	2.0	0.47		
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.90 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	-	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloroptopane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 1300-20-7 Xylene 2.5 1.0 0.78 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l <t< td=""><td>630-20-6</td><td></td><td>ND</td><td>1.0</td><td>0.60</td><td></td><td></td></t<>	630-20-6		ND	1.0	0.60		
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloroptopane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.79 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l 1330-20-7 X	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65		
108-88-3 Toluene 0.60 1.0 0.53 ug/l J 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.54 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.79 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	-	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 95-47-6 o-Xylene 2.5 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	108-88-3	Toluene	0.60	1.0	0.53	-	J
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50		
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries	75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene 2.5 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits		m,p-Xylene	2.5	1.0	0.78	ug/l	
1330-20-7 Xylene (total) 2.5 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
	1330-20-7	Xylene (total)	2.5	1.0	0.59		
1868-53-7 Dibromofluoromethane 99% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	1868-53-7	Dibromofluoromethane	99%		80-12	20%	

ND = Not detectedMDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

Report of Analysis

Client Sample ID:	YMW-4		
Lab Sample ID:	JC98692-6	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	95%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	95%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.6

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98692-6 AQ - Groun SW846 801		ad, Towsc	on, MD	Date	e Received: 1	1/13/19 1/15/19 /a
Run #1 Run #2	File ID D LM101934.D 1	F Analyzed 11/20/19 14:12	By 2 XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C1	0) 0.764	0.20	0.10	mg/l		
CAS No.	Surrogate Recover	ries Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene 97% 55-130%						

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JC98 AQ - SW8	692-6 Ground Wat 46 8015D S	er W846 3510C 13 East Joppa Roac	l, Towsc	on, MD	Date	I	1/13/19 1/15/19 /a
Run #1 Run #2	File ID 2Z78142.D	DF 1	Analyzed 11/20/19 03:09	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volum 300 ml	ne Final Vo 1.0 ml	blume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C10-C28)	0.582	0.083	0.053	mg/l		
CAS No.	Surrogate I	Recoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androsta		68% 53%		22-1 10-1	40% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

3.6

Lab Samp Matrix: Method:	AQ	98692-7 - Ground W 846 8260C	ater		Ι	Date Sampled:11Date Received:11Percent Solids:n/	
Project:	HE	SS #20204, 1	613 East Joppa Road	l, Tows	son, MD		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a Run #2	2C171828.I) 5	11/22/19 06:14	BK	n/a	n/a	V2C7722
	Purge Volu	me					
Run #1	5.0 ml						

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	30	ug/l	
71-43-2	Benzene	26.8	2.5	2.1	ug/l	
108-86-1	Bromobenzene	ND	5.0	2.7	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.4	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	2.9	ug/l	
75-25-2	Bromoform	ND	5.0	3.2	ug/l	
74-83-9	Bromomethane	ND	10	8.2	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	34	ug/l	
104-51-8	n-Butylbenzene	13.3	10	2.6	ug/l	
135-98-8	sec-Butylbenzene	8.8	10	3.1	ug/l	J
98-06-6	tert-Butylbenzene	ND	10	3.4	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	2.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	2.8	ug/l	
75-00-3	Chloroethane	ND	5.0	3.6	ug/l	
67-66-3	Chloroform	ND	5.0	2.5	ug/l	
74-87-3	Chloromethane	ND	5.0	3.8	ug/l	
95-49-8	o-Chlorotoluene	ND	10	3.2	ug/l	
106-43-4	p-Chlorotoluene	ND	10	3.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	10	3.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	6.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	2.8	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	2.4	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	2.7	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	2.7	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	2.5	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	6.8	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	2.8	ug/l	
107-06-2	1,2-Dichloroethane	3.2	5.0	3.0	ug/l	J
75-35-4	1,1-Dichloroethene	ND	5.0	3.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	5.0	2.5	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	2.7	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.5	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

3.7 ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	YMW-8		
Lab Sample ID:	JC98692-7	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1, 3-Dichloropropane ND 5.0 2.1 ug/l 594-20-7 2, 2-Dichloropropane ND 5.0 2.6 ug/l 563-58-6 1, 1-Dichloropropene ND 5.0 2.4 ug/l 10061-01-5 cis-1, 3-Dichloropropene ND 5.0 2.4 ug/l 10061-02-6 trans-1, 3-Dichloropropene ND 10 2.8 ug/l 10041-44 Ethylbenzene 673 5.0 3.2 ug/l 98-82-8 Isopropylbenzene 55.9 5.0 3.2 ug/l 98-82-8 Isopropylbenzene 55.9 5.0 2.5 ug/l 98-82-8 Isopropylbenzene 15.5 10 3.3 ug/l 98-82-8 Isopropylbenzene 15.0 2.4 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 2.5 ug/l 91-90-2 Methylene bromide ND 10 5.0 2.4 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 100-42-5 Styrene	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 5.0 2.6 ug/l 563-58-6 1,1-Dichloropropene ND 5.0 4.1 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 5.0 2.4 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 5.0 2.2 ug/l 100-41-4 Ethylbenzene 673 5.0 3.0 ug/l 87.68-3 Hexachlorobutadiene ND 10 2.8 ug/l 98.82-8 Isopropylbenzene 55.9 5.0 3.2 ug/l 108-10-1 4-Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 25 9.3 ug/l 108-10-1 4-Methyl-pentanone(MIBK) ND 5.0 2.4 ug/l 75-09-2 Methylene bromide ND 10 5.0 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 104-2-5 Styrene ND 10 2.4 ug/l 103-62-0	142-28-9	1,3-Dichloropropane	ND	5.0	2.1	ug/l	
563-58-6 1, 1-Dichloropropene ND 5.0 4.1 ug/l 10061-01-5 cis-1, 3-Dichloropropene ND 5.0 2.4 ug/l 10061-02-6 trans-1, 3-Dichloropropene ND 5.0 2.2 ug/l 100-41-4 Ethylbenzene 673 5.0 3.0 ug/l 87-68-3 Hexachlorobutadiene ND 10 2.8 ug/l 98-87-6 p-Isopropylbenzene 55.9 5.0 3.2 ug/l 108-10-1 4-Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 2.4 ug/l 108-10-1 4-Methylene bromide ND 10 5.0 ug/l 108-10-1 4-Methylene bromide ND 10 2.4 ug/l 103-120-3 Methylene bromide ND 10 2.4 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
10061-01-5cis-1,3-DichloropropeneND5.02.4ug/l10061-02-6trans-1,3-DichloropropeneND5.02.2ug/l100-41-4Ethylbenzene6735.03.0ug/l87-68-3HexachlorobutadieneND102.8ug/l98-82-8Isopropylbenzene55.95.03.2ug/l99-87-6p-Isopropyltoluene11.5103.3ug/l1634-04-4Methyl Tert Butyl Ether19.85.02.5ug/l108-10-14-Methyl-2-pentanone(MIBK)ND259.3ug/l74-95-3Methylene bromideND105.0ug/l103-65-1n-Propylbenzene176103.0ug/l100-42-5StyreneND5.02.5ug/l100-42-5StyreneND5.03.5ug/l100-42-5StyreneND102.4ug/l630-20-61,1,2-TetrachloroethaneND5.03.0ug/l107-18-4TetrachloroethaneND5.03.3ug/l127-18-4TetrachloroethaneND5.02.7ug/l120-82.11,2,4-TrichlorobenzeneND5.02.7ug/l121-18-4TetrachloroethaneND5.02.7ug/l120-82.11,2,4-TrichlorobenzeneND5.02.7ug/l127-18-4TetrachloroethaneND5.02.7ug/l120-82.1 <td< td=""><td></td><td></td><td>ND</td><td>5.0</td><td>4.1</td><td></td><td></td></td<>			ND	5.0	4.1		
10061-02-6trans-1, 3-DichloropropeneND5.02.2ug/l100-41-4Ethylbenzene6735.03.0ug/l87-68-3HexachlorobutadieneND102.8ug/l98-82-8Isopropylbenzene55.95.03.2ug/l99-87-6p-Isopropyltoluene11.5103.3ug/l1634-04-4Methyl Tert Butyl Ether19.85.02.5ug/l108-10-14-Methyl-2-pentanone(MIBK)ND259.3ug/l74-95-3Methylene bromideND105.0ug/l75-09-2Methylene chlorideND105.0ug/l103-65-1n-Propylbenzene176103.0ug/l103-65-1n-PropylbenzeneND5.03.5ug/l100-42-5StyreneND5.03.5ug/l630-20-61, 1, 1, 2-TetrachloroethaneND5.03.3ug/l630-20-61, 1, 1, 2-TetrachloroethaneND5.03.3ug/l127-18-4TetrachloroethaneND5.02.5ug/l108-88-3Toluene46.15.02.7ug/l108-88-3TolueneND5.02.5ug/l120-82-11, 2, 4-TrichlorobenzeneND5.02.5ug/l120-82-11, 2, 4-TrichlorobenzeneND5.02.5ug/l120-84-3TolueneND5.02.7ug/l120-95 <t< td=""><td>10061-01-5</td><td></td><td>ND</td><td>5.0</td><td>2.4</td><td>-</td><td></td></t<>	10061-01-5		ND	5.0	2.4	-	
100-41-4 Ethylbenzene 673 5.0 3.0 ug/l 87-68-3 Hexachlorobutadiene ND 10 2.8 ug/l 98-82-8 Isopropylbenzene 55.9 5.0 3.2 ug/l 99-87-6 p-Isopropyltoluene 11.5 10 3.3 ug/l 108-10-1 4-Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 74-95-3 Methylene bromide ND 5.0 2.4 ug/l 91-20-3 Naphtalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 2.4 ug/l 103-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Amyl Methyl Ether ND 5.0 3.3 ug/l 108-88-3 Toluene 46	10061-02-6		ND	5.0	2.2	-	
87-68-3 Hexachlorobutadiene ND 10 2.8 ug/l 98-82-8 Isopropylbenzene 55.9 5.0 3.2 ug/l 99-87-6 p-Isopropylbenzene 11.5 10 3.3 ug/l 1634-04-4 Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 74-95-3 Methylene bromide ND 5.0 2.4 ug/l 91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 50 2.9 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 5.0 3.3 ug/l 127-18-4 Tetrachloroethane ND 5.0 3.3 ug/l 127-18-4 Tetrac	100-41-4	Ethylbenzene	673	5.0	3.0		
98-82-8 Isopropylbenzene 55.9 5.0 3.2 ug/1 99-87-6 p-Isopropyltoluene 11.5 10 3.3 ug/1 1634-04-4 Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/1 74-95-3 Methylene bromide ND 5.0 2.4 ug/1 91-20-3 Naphthalene 217 25 13 ug/1 103-65-1 n-Propylbenzene 176 10 3.0 ug/1 100-42-5 Styrene ND 50 2.9 ug/1 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/1 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 3.3 ug/1 127-18-4 Tetrachloroethane ND 5.0 3.3 ug/1 120-82-1 1,2,4-Trichlorobenzene ND 5.0 2.5 ug/1 120-82-1 1,2,3-Trichlorobenzene b ND 5.0 2.5 ug/1 120-82-1	87-68-3	Hexachlorobutadiene	ND	10	2.8	-	
99-87-6 p-Isopropyltoluene 11.5 10 3.3 ug/l 1634-04-4 Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 74-95-3 Methylene bromide ND 10 5.0 2.4 ug/l 75-09-2 Methylene chloride ND 10 5.0 ug/l 91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.8 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 5.0 3.0 ug/l 127-18-4 Tetrachloroethane ND 5.0 2.7 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichloroethane ND 5.0 2.7 ug/l 120-82	98-82-8		55.9	5.0			
1634-04-4 Methyl Tert Butyl Ether 19.8 5.0 2.5 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 74-95-3 Methylene bromide ND 5.0 2.4 ug/l 74-95-3 Methylene bromide ND 10 5.0 ug/l 91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 50 2.9 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 5.0 3.0 ug/l 637-92-3 tert-Amyl Methyl Ether ND 5.0 3.0 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 120-82-1 1,2,4-Trichlorobenze	99-87-6		11.5	10	3.3		
108-10-1 4-Methyl-2-pentanone(MIBK) ND 25 9.3 ug/l 74-95-3 Methylene bromide ND 5.0 2.4 ug/l 75-09-2 Methylene chloride ND 10 5.0 ug/l 91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 75-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1,1,2.7-tertachloroethane ND 5.0 3.0 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 108-88-3 Toluene ND 5.0 2.5 ug/l 108-88-3 Toluene ND 5.0 2.7 ug/l 120-82-1 1,2,4-Trichlorobenzene ND <td>1634-04-4</td> <td></td> <td>19.8</td> <td>5.0</td> <td>2.5</td> <td>-</td> <td></td>	1634-04-4		19.8	5.0	2.5	-	
74-95-3 Methylene bromide ND 5.0 2.4 ug/l 75-09-2 Methylene chloride ND 10 5.0 ug/l 91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 75-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 5.0 3.3 ug/l 108-88-3 Toluene MO 5.0 2.7 ug/l 108-88-3 Toluene ND 5.0 2.7 ug/l 120-82-1 1, 2, 4-Trichlorobenzene b ND 5.0 2.7 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 5.0 2.7 ug/l 19-00-5 1, 1, 2-Trichloroethane <td></td> <td></td> <td>ND</td> <td>25</td> <td>9.3</td> <td>-</td> <td></td>			ND	25	9.3	-	
75-09-2 Methylene chloride ND 10 5.0 ug/1 91-20-3 Naphthalene 217 25 13 ug/1 103-65-1 n-Propylbenzene 176 10 3.0 ug/1 100-42-5 Styrene ND 5.0 3.5 ug/1 75-65-0 Tert Butyl Alcohol ND 50 29 ug/1 637-92-3 tert-Amyl Methyl Ether ND 10 2.4 ug/1 630-20-6 1, 1, 2.7-Tetrachloroethane ND 5.0 3.0 ug/1 79-34-5 1, 1, 2.2-Tetrachloroethane ND 5.0 3.0 ug/1 108-88-3 Toluene 46.1 5.0 2.7 ug/1 108-88-3 Toluene MD 5.0 2.5 ug/1 108-88-3 Toluene ND 5.0 2.5 ug/1 108-88-1 1, 2, 4-Trichlorobenzene ND 5.0 2.7 ug/1 17-55-6 1, 1, 1-Trichloroethane ND 5.0 2.7 ug/1 19-00-5 1, 1, 2-Trichloroethane ND </td <td>74-95-3</td> <td></td> <td>ND</td> <td>5.0</td> <td>2.4</td> <td>-</td> <td></td>	74-95-3		ND	5.0	2.4	-	
91-20-3 Naphthalene 217 25 13 ug/l 103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 994-05-8 tert-Amyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1, 1, 2.7-tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 5.0 4.5 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 5.0 2.5 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichlorofluoromethane ND 5.0 2.6 ug/l 95-63-6 <t< td=""><td>75-09-2</td><td></td><td>ND</td><td>10</td><td>5.0</td><td>-</td><td></td></t<>	75-09-2		ND	10	5.0	-	
103-65-1 n-Propylbenzene 176 10 3.0 ug/l 100-42-5 Styrene ND 5.0 3.5 ug/l 75-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 5.0 3.3 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene ^b ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.6 ug/l 75-69-4 Trichloroptopane ND 10 4.2 ug/l 96-18-4 1,2,3-Trich	91-20-3	Naphthalene	217	25	13	-	
100-42-5 Styrene ND 5.0 3.5 ug/l 75-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 5.0 3.3 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1, 2, 4-Trichlorobenzene b ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.6 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 10 4.2 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 10 3.5 ug/l 95-63-6 <td>103-65-1</td> <td>n-Propylbenzene</td> <td>176</td> <td>10</td> <td>3.0</td> <td>-</td> <td></td>	103-65-1	n-Propylbenzene	176	10	3.0	-	
75-65-0 Tert Butyl Alcohol ND 50 29 ug/l 994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 5.0 3.3 ug/l 127-18-4 Tetrachloroethane ND 5.0 2.5 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene b ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichlorofluoromethane ND 5.0 2.7 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 4.2 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 1	100-42-5		ND	5.0			
994-05-8 tert-Amyl Methyl Ether ND 10 2.4 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 5.0 3.3 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene b ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 4.2 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 108-	75-65-0		ND	50	29	-	
637-92-3 tert-Butyl Ethyl Ether ND 10 2.8 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 5.0 3.3 ug/l 127-18-4 Tetrachloroethene ND 5.0 4.5 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene ^b ND 5.0 2.5 ug/l 79-00-5 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 2.6 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 4.2 ug/l 95-63-6 1,2,4-Trimethylbenzene 181 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 3.9 ug/l	994-05-8		ND	10	2.4	-	
630-20-6 1, 1, 1, 2-Tetrachloroethane ND 5.0 3.0 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 5.0 3.3 ug/l 127-18-4 Tetrachloroethene ND 5.0 4.5 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1, 2, 4-Trichlorobenzene b ND 5.0 2.7 ug/l 79-05-5 1, 1, 1-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethane ND 5.0 2.7 ug/l 75-69-4 Trichloroethane ND 5.0 2.6 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 10 4.2 ug/l 95-63-6 1, 2, 4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1, 3, 5-Trimethylbenzene 181 10 5.0 ug/l 108-67-8 1, 3, 5-Trimethylbenzene 926 5.0 3.9 ug/l <	637-92-3	tert-Butyl Ethyl Ether	ND	10	2.8		
79-34-5 1,1,2,2-Tetrachloroethane ND 5.0 3.3 ug/l 127-18-4 Tetrachloroethene ND 5.0 4.5 ug/l 108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene b ND 5.0 2.5 ug/l 71-55-6 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.7 ug/l 75-69-4 Trichlorofluoromethane ND 5.0 2.6 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 175-01-4 Vinyl chloride ND 5.0 3.0 ug/l 1330-20-7 <td>630-20-6</td> <td></td> <td>ND</td> <td>5.0</td> <td>3.0</td> <td>-</td> <td></td>	630-20-6		ND	5.0	3.0	-	
108-88-3 Toluene 46.1 5.0 2.7 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene b ND 5.0 2.5 ug/l 71-55-6 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.7 ug/l 75-69-4 Trichloroethene ND 5.0 2.6 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 4.2 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	3.3		
87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 2.5 ug/l 71-55-6 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	127-18-4	Tetrachloroethene	ND	5.0	4.5	-	
87-61-6 1,2,3-Trichlorobenzene ND 5.0 2.5 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 5.0 2.5 ug/l 71-55-6 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	108-88-3	Toluene	46.1	5.0	2.7	ug/l	
120-82-1 1,2,4-Trichlorobenzene b ND 5.0 2.5 ug/l 71-55-6 1,1,1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5		
71-55-6 1, 1, 1-Trichloroethane ND 5.0 2.7 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	120-82-1	1,2,4-Trichlorobenzene ^b	ND	5.0	2.5	-	
79-00-5 1,1,2-Trichloroethane ND 5.0 2.7 ug/l 79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	71-55-6		ND	5.0	2.7	-	
79-01-6 Trichloroethene ND 5.0 2.6 ug/l 75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	79-00-5	1,1,2-Trichloroethane	ND	5.0	2.7		
75-69-4 Trichlorofluoromethane ND 10 4.2 ug/l 96-18-4 1,2,3-Trichloropropane ND 10 3.5 ug/l 95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	79-01-6	Trichloroethene	ND	5.0	2.6	-	
95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	75-69-4	Trichlorofluoromethane	ND	10	4.2		
95-63-6 1,2,4-Trimethylbenzene 846 10 5.0 ug/l 108-67-8 1,3,5-Trimethylbenzene 181 10 5.0 ug/l 75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m,p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l	96-18-4	1,2,3-Trichloropropane	ND	10	3.5	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 5.0 3.9 ug/l 95-47-6 o-Xylene 926 5.0 3.9 ug/l 1330-20-7 Xylene (total) 76.8 5.0 3.0 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-63-6		846	10	5.0		
75-01-4 Vinyl chloride ND 5.0 3.9 ug/l m, p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	108-67-8	1,3,5-Trimethylbenzene	181	10	5.0	ug/l	
m, p-Xylene 926 5.0 3.9 ug/l 95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4	Vinyl chloride	ND	5.0	3.9	-	
95-47-6 o-Xylene 76.8 5.0 3.0 ug/l 1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			926	5.0	3.9		
1330-20-7 Xylene (total) 1000 5.0 3.0 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6	o-Xylene	76.8	5.0	3.0	-	
	1330-20-7	Xylene (total)	1000	5.0	3.0	-	
1868-53-7 Dibromofluoromethane 100% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	100%		80-1	20%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.7

40 of 61

JC98692

Report of Analysis

Client Sample ID:	YMW-8		
Lab Sample ID:	JC98692-7	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	96%		81-124%
2037-26-5	Toluene-D8	102%		80-120%
460-00-4	4-Bromofluorobenzene	98%		80-120%

(a) Diluted due to high concentration of target compound.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ıd, Towso	on, MD	Date	1	./13/19 ./15/19 a
Run #1 Run #2	File ID DF LM101935.D 1	Analyzed 11/20/19 14:34	By 4 XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	9.19	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	102%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

			Report	of Ana	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC986 AQ - SW84	592-7 Ground Wat 6 8015D S	er W846 3510C 13 East Joppa Road	l, Towsc	n, MD	Date	Received:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID 2Z78143.D	DF 1	Analyzed 11/20/19 03:43	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volum 300 ml	e Final Vo 1.0 ml	olume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	2.94	0.083	0.053	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstar	le	68% 55%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Report of	Analysis
------------------	----------

Client Sar Lab Samp	-	692-8		Da	ate Sampled: 1	1/13/19	
Matrix:	AQ -	Ground Wa	ater		Da	ate Received: 1	1/15/19
Method:	SW84	46 8260C			Pe	ercent Solids: n/	′a
Project:	HES	5 #20204, 1	613 East Joppa Road	l, Tows	son, MD		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	2C171829.D	2	11/22/19 06:42	BK	n/a	n/a	V2C7722
Run #1 ^a Run #2		2 20	11/22/19 06:42 11/22/19 16:01		n/a n/a	n/a n/a	V2C7722 V2C7723
	2C171829.D	20					. = = = =
	2C171829.D 2C171848.D	20					. = = =

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	26.2	20	12	ug/l	
71-43-2	Benzene	4.6	1.0	0.85	ug/l	
108-86-1	Bromobenzene	ND	2.0	1.1	ug/l	
74-97-5	Bromochloromethane	ND	2.0	0.96	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	1.2	ug/l	
75-25-2	Bromoform	ND	2.0	1.3	ug/l	
74-83-9	Bromomethane	ND	4.0	3.3	ug/l	
78-93-3	2-Butanone (MEK)	ND	20	14	ug/l	
104-51-8	n-Butylbenzene	15.5	4.0	1.0	ug/l	
135-98-8	sec-Butylbenzene	9.5	4.0	1.2	ug/l	
98-06-6	tert-Butylbenzene	ND	4.0	1.4	ug/l	
56-23-5	Carbon tetrachloride	ND	2.0	1.1	ug/l	
108-90-7	Chlorobenzene	ND	2.0	1.1	ug/l	
75-00-3	Chloroethane	ND	2.0	1.5	ug/l	
67-66-3	Chloroform	ND	2.0	1.0	ug/l	
74-87-3	Chloromethane	ND	2.0	1.5	ug/l	
95-49-8	o-Chlorotoluene	ND	4.0	1.3	ug/l	
106-43-4	p-Chlorotoluene	ND	4.0	1.2	ug/l	
108-20-3	Di-Isopropyl ether	ND	4.0	1.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	4.0	2.4	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	1.1	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.95	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.0	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	1.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	4.0	2.7	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	1.1	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.0	1.2	ug/l	
75-35-4	1,1-Dichloroethene	ND	2.0	1.2	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	2.0	1.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	2.0	1.1	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	1.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Lab Sample ID: Jo	IC98692-8	Date Sampled:	11/13/19
Matrix: A	AQ - Ground Water	Date Received:	11/15/19
Method: S	SW846 8260C	Percent Solids:	n/a
Project: H	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	2.0	0.85	ug/l	
594-20-7	2,2-Dichloropropane	ND	2.0	1.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	2.0	1.6	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.94	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.86	ug/l	
100-41-4	Ethylbenzene	602 ^b	20	12	ug/l	
87-68-3	Hexachlorobutadiene	ND	4.0	1.1	ug/l	
98-82-8	Isopropylbenzene	50.2	2.0	1.3	ug/l	
99-87-6	p-Isopropyltoluene	2.8	4.0	1.3	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	2.0	2.0	1.0	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	10	3.7	ug/l	
74-95-3	Methylene bromide	ND	2.0	0.96	ug/l	
75-09-2	Methylene chloride	ND	4.0	2.0	ug/l	
91-20-3	Naphthalene	237	10	5.0	ug/l	
103-65-1	n-Propylbenzene	166	4.0	1.2	ug/l	
100-42-5	Styrene	ND	2.0	1.4	ug/l	
75-65-0	Tert Butyl Alcohol	13.5	20	12	ug/l	J
994-05-8	tert-Amyl Methyl Ether	ND	4.0	0.94	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	4.0	1.1	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.0	1.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	1.3	ug/l	
127-18-4	Tetrachloroethene	ND	2.0	1.8	ug/l	
108-88-3	Toluene	9.8	2.0	1.1	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	1.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^c	ND	2.0	1.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	1.1	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	1.1	ug/l	
79-01-6	Trichloroethene	ND	2.0	1.1	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	1.7	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	4.0	1.4	ug/l	
95-63-6	1,2,4-Trimethylbenzene	106	4.0	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	70.5	4.0	2.0	ug/l	
75-01-4	Vinyl chloride	ND	2.0	1.6	ug/l	
	m,p-Xylene	154	2.0	1.6	ug/l	
95-47-6	o-Xylene	2.8	2.0	1.2	ug/l	
1330-20-7	Xylene (total)	157	2.0	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	100%	100%	80-12	20%	

Page 2 of 3

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	YP-1		
Lab Sample ID:	JC98692-8	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
17060-07-0	1,2-Dichloroethane-D4	95%	97%	81-124%
2037-26-5	Toluene-D8	100%	102%	80-120%
460-00-4	4-Bromofluorobenzene	99%	93%	80-120%

(a) Diluted due to high concentration of target compound.

(b) Result is from Run# 2

(c) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω. 8

ω

JC98692

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	-		ad, Towso	on, MD	Date	L	./13/19 ./15/19 a
Run #1 Run #2	File ID DF LM101938.D 1	Analyzed 11/20/19 15:4	By 6 XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	6.35	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluene	104%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - 0 SW84	Ground Wate 6 8015D SV	er W846 3510C 3 East Joppa Road	d, Towsc	on, MD	Date	1	1/13/19 1/15/19 a
Run #1 Run #2	File ID 2Z78144.D	DF 1	Analyzed 11/20/19 04:17	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volume 300 ml	e Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	2.02	0.083	0.053	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	54% 46%			40% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ယ အ

Client San Lab Samj Matrix: Method:	AQ	2 8692-9 - Ground Wa 846 8260C	ater			Date Sampled: 11 Date Received: 11 Percent Solids: n/	
Project:			613 East Joppa Road	l, Tow			a
Run #1	File ID 2C171830.D	DF 1	Analyzed 11/22/19 07:11	By BK	Prep Date n/a	Prep Batch n/a	Analytical Batch V2C7722
Run #2							
Run #1 Run #2	Purge Volu 5.0 ml	ne					

Report of Analysis

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	6.5	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	1.6	2.0	0.62	ug/l	J
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	1.0	2.0	0.68	ug/l	J
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	0.95	1.0	0.60	ug/l	J
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.9 Page 1 of 3

E = Indicates value exceeds calibration range

Client Sample ID:	YP-2		
Lab Sample ID:	JC98692-9	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

142-28-9 1,3-Dichloropropane ND 1.0 0.43 ug/l 594-20-7 2,2-Dichloropropene ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.47 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.43 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.66 ug/l 87-88-3 Isopropylbenzene 0.70 1.0 0.65 ug/l J 99-87-6 p-Isopropyltouene ND 2.0 0.66 ug/l I 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l I 74-95-3 Methylene bromide ND 2.0 1.0 ug/l I 103-65-1 n-Propylbenzene ND 2.0 0.66 ug/l I 100-42-5 Styrene ND 1.0 0.70 ug/l I 637-92-3 tert-Butyl Alcohol 1	CAS No.	Compound	Result	RL	MDL	Units	Q
594-20-7 2,2-Dichloropropane ND 1.0 0.52 ug/l 563-58-6 1,1-Dichloropropene ND 1.0 0.82 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 100-41-4 Ethylbenzene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 0.70 1.0 0.65 ug/l 98-87-6 p-Isopropyloluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 75-09-2 Methylene chloride ND 2.0 0.60 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.60 ug/l 91-20-3 Naphthalene ND 2.0 0.60 ug/l 103-62-1	142-28-9	1.3-Dichloropropane	ND	1.0	0.43	ug/l	
563-58-6 1, 1-Dichloropropene ND 1.0 0.82 ug/1 10061-01-5 cis.1, 3-Dichloropropene ND 1.0 0.47 ug/1 10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/1 100-41-4 Ethylbenzene ND 1.0 0.60 ug/1 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/1 98-87-6 p-Isopropylbenzene 0.70 1.0 0.65 ug/1 108-10-1 4-Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/1 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/1 108-10-1 4-Methyl-Depromide ND 1.0 0.48 ug/1 108-10-1 4-Methyl-Depromide ND 2.0 1.0 ug/1 108-5-1 n-Propylbenzene ND 2.0 0.60 ug/1 10-42-5 Styrene ND 1.0 0.60 ug/1 10-42-5							
10061-01-5cis-1,3-DichloropropeneND1.0 0.47 $ug/1$ 10061-02-6trans-1,3-DichloropropeneND1.0 0.43 $ug/1$ 100-41-4EthylbenzeneND1.0 0.60 $ug/1$ 87-68-3HexachlorobutadieneND2.0 0.56 $ug/1$ 98-82-8Isopropylbenzene 0.70 1.0 0.65 $ug/1$ 99-87-6p-IsopropyltolueneND 2.0 0.666 $ug/1$ 1634-04-4Methyl Tert Butyl Ether16.1 1.0 0.51 $ug/1$ 164-04-4Methyl-epernataone(MIBK)ND 5.0 1.9 $ug/1$ 74-95-3Methylene bromideND 2.0 1.0 $ug/1$ 175-09-2Methylene chlorideND 2.0 1.0 $ug/1$ 100-42-5StyreneND 2.0 0.60 $ug/1$ 100-42-5StyreneND 1.0 0.70 $ug/1$ 100-42-5StyreneND 2.0 0.47 $ug/1$ 100-42-5StyreneND 1.0 0.60 $ug/1$ 100-42-5StyreneND 1.0 0.60 $ug/1$ 100-42-5StyreneND 1.0 0.60 $ug/1$ 100-42-5StyreneND 1.0 0.60 $ug/1$ 102-42-5StyreneND 1.0 0.65 $ug/1$ 103-65-1n-1, 1, 2-TetrachloroethaneND 1.0 0.60 $ug/1$ 109-32-3tert-Amyl Methyl Ether			ND	1.0	0.82		
10061-02-6 trans-1, 3-Dichloropropene ND 1.0 0.43 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 0.70 1.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 0.66 ug/l 103-65-1 n-Propylbenzene ND 2.0 1.0 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-2-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Butyl Alcohol 15.0 10 5.8 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 637-92-3				1.0			
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l 87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 0.70 1.0 0.65 ug/l 99-87-6 p-Isopropyltoluene ND 2.0 0.666 ug/l 108-10-1 4-Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.53 ug/l 108-88-3	10061-02-6		ND	1.0	0.43	-	
87-68-3 Hexachlorobutadiene ND 2.0 0.56 ug/l 98-82-8 Isopropylbenzene 0.70 1.0 0.65 ug/l J 99-87-6 p-Isopropylbenzene ND 2.0 0.66 ug/l J 1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 100-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 975-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 637-92-3 tert-Amyl Methyl Ether ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td>				1.0			
98-82-8 Isopropylbenzene 0.70 1.0 0.65 ug/l J 99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 2.0 1.0 ug/l 91-20-3 Maphtalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 975-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 1.0 0.60 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.65 ug/l 127-184 Tetrachloroethane ND 1.0 0.65 ug/l 127-184 Tetrachloroethane ND 1.0 0.50 ug/l 120-8	87-68-3	•		2.0	0.56	-	
99-87-6 p-Isopropyltoluene ND 2.0 0.66 ug/l 1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 104-42-5 Styrene ND 1.0 0.70 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 630-20-6 1,1,2-2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2	98-82-8			1.0	0.65		J
1634-04-4 Methyl Tert Butyl Ether 16.1 1.0 0.51 ug/l 108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 103-62-0 1,1,2-Tertarchloroethane ND 1.0 0.60 ug/l 104-34-5 1,1,2-Tertarchloroethane ND 1.0 0.50 ug/l 107-18-4 Tetrachloroethene ND 1.0 0.50 ug/l 108-88	99-87-6		ND	2.0	0.66		
108-10-1 4-Methyl-2-pentanone(MIBK) ND 5.0 1.9 ug/l 74-95-3 Methylene chloride ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 1.0 0.70 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.56 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 1.0 0.60 ug/l 79-34-5 1,1,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethane ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.53 ug/l 120-82-1 <td>1634-04-4</td> <td></td> <td></td> <td></td> <td>0.51</td> <td>-</td> <td></td>	1634-04-4				0.51	-	
74-95-3 Methylene bromide ND 1.0 0.48 ug/l 75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 637-92-3 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 630-20-6 1, 1, 1, 2-Tetrachloroethane ND 1.0 0.65 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1, 2, 4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 171-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 179-01-6 Trichloroethene ND 1.0 0.53 ug/l 19-00-5	108-10-1		ND	5.0			
75-09-2 Methylene chloride ND 2.0 1.0 ug/l 91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichlorobenzene a ND 1.0 0.50 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 17-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 19-01-6 </td <td>74-95-3</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.48</td> <td>-</td> <td></td>	74-95-3		ND	1.0	0.48	-	
91-20-3 Naphthalene 6.3 5.0 2.5 ug/l 103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1, 1, 2.7 tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 71-55-6 1, 1, 1-Trichlorobenzene ND 1.0 0.50 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 75-69-4 Trichloroptopane ND 2.0 0.70 ug/l 96-18-4	75-09-2		ND	2.0	1.0	-	
103-65-1 n-Propylbenzene ND 2.0 0.60 ug/l 100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.66 ug/l 630-20-6 1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2.2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 17-55-6 1,1,1-Trichlorobenzene ND 1.0 0.53 ug/l 17-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6	91-20-3		6.3	5.0	2.5	-	
100-42-5 Styrene ND 1.0 0.70 ug/l 75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 120-82-1 1,2,4-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichloroethane ND 1.0 0.54 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 <td></td> <td></td> <td>ND</td> <td>2.0</td> <td>0.60</td> <td>-</td> <td></td>			ND	2.0	0.60	-	
75-65-0 Tert Butyl Alcohol 15.0 10 5.8 ug/l 994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichlorofluoromethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l <	100-42-5		ND	1.0			
994-05-8 tert-Amyl Methyl Ether ND 2.0 0.47 ug/l 637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethane ND 1.0 0.53 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.84 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l	75-65-0		15.0		5.8		
637-92-3 tert-Butyl Ethyl Ether ND 2.0 0.56 ug/l 630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/l 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.53 ug/l 108-88-3 Toluene ND 1.0 0.50 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene ^a ND 1.0 0.50 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 108-67-8 1,3,5-Trimethylbenzene 6.1 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l	994-05-8		ND	2.0	0.47	-	
630-20-6 1,1,1,2-Tetrachloroethane ND 1.0 0.60 ug/1 79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.65 ug/1 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/1 108-88-3 Toluene ND 1.0 0.53 ug/1 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/1 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/1 79-00-5 1,1,1-Trichloroethane ND 1.0 0.53 ug/1 79-01-6 Trichloroethane ND 1.0 0.53 ug/1 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/1 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/1 108-67-8 1,3,5-Trimethylbenzene 6.1 2.0 1.0 ug/1 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/1 130-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/1 <t< td=""><td>637-92-3</td><td></td><td>ND</td><td>2.0</td><td>0.56</td><td></td><td></td></t<>	637-92-3		ND	2.0	0.56		
79-34-5 1, 1, 2, 2-Tetrachloroethane ND 1.0 0.65 ug/l 127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1, 2, 3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1, 2, 4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1, 1, 1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1, 1, 2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1, 2, 3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1, 2, 4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1, 3, 5-Trimethylbenzene ND 1.0 0.79 ug/l 1330-20-7 Xylene ND 1.0 0.79 ug/l			ND	1.0	0.60	-	
127-18-4 Tetrachloroethene ND 1.0 0.90 ug/l 108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.53 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	-	
108-88-3 Toluene ND 1.0 0.53 ug/l 87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	127-18-4	Tetrachloroethene	ND	1.0	0.90	-	
87-61-6 1,2,3-Trichlorobenzene ND 1.0 0.50 ug/l 120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	108-88-3	Toluene	ND	1.0	0.53	-	
120-82-1 1,2,4-Trichlorobenzene a ND 1.0 0.50 ug/l 71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50		
71-55-6 1,1,1-Trichloroethane ND 1.0 0.54 ug/l 79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 1.0 0.79 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	-	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.53 ug/l 79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	71-55-6		ND	1.0	0.54	-	
79-01-6 Trichloroethene ND 1.0 0.53 ug/l 75-69-4 Trichlorofluoromethane ND 2.0 0.84 ug/l 96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53		
96-18-4 1,2,3-Trichloropropane ND 2.0 0.70 ug/l 95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	79-01-6	Trichloroethene	ND	1.0	0.53	-	
95-63-6 1,2,4-Trimethylbenzene 6.1 2.0 1.0 ug/l 108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	75-69-4	Trichlorofluoromethane	ND	2.0	0.84		
108-67-8 1,3,5-Trimethylbenzene ND 2.0 1.0 ug/l 75-01-4 Vinyl chloride ND 1.0 0.79 ug/l m,p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	95-63-6	1,2,4-Trimethylbenzene	6.1	2.0	1.0	ug/l	
75-01-4 Vinyl chloride m,p-Xylene ND 1.0 0.79 ug/l 95-47-6 o-Xylene ND 1.0 0.78 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
m, p-Xylene ND 1.0 0.78 ug/l 95-47-6 o-Xylene ND 1.0 0.59 ug/l 1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits	75-01-4	Vinyl chloride	ND	1.0	0.79	-	
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits			ND	1.0	0.78		
1330-20-7 Xylene (total) ND 1.0 0.59 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	95-47-6		ND	1.0	0.59	-	
	1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
1868-53-7 Dibromofluoromethane 98% 80-120%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	1868-53-7	Dibromofluoromethane	98%		80-1	20%	

Page 2 of 3

3.9

ω

50 of 61

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	YP-2		
Lab Sample ID:	JC98692-9	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	97%		81-124%
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	101% 94%		80-120% 80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.9

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98 AQ - SW8	692-9 Ground Wat 46 8015D	er 13 East Joppa Roa	d, Towsc	on, MD	Date	Received:	11/13/19 11/15/19 n/a
Run #1 Run #2	File ID LM101936.D	DF 0 1	Analyzed 11/20/19 14:55	By XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volun 5.0 ml	ne						
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.422	0.20	0.10	mg/l		
CAS No.	Surrogate F	Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluor	otoluene	96%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ა .9

			Report	of An	alysis			Page 1 of 1	
Client Sar Lab Samp Matrix: Method: Project:	ole ID: JC986 AQ - SW84	: YP-2 JC98692-9 AQ - Ground Water SW846 8015D SW846 3510C HESS #20204, 1613 East Joppa Road, Town				Date Sampled: 11/13/19 Date Received: 11/15/19 Percent Solids: n/a wson, MD			
Run #1 Run #2	File ID 2Z78148.D	DF 1	Analyzed 11/20/19 06:34	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957	
Run #1 Run #2	Initial Volum 300 ml	e Final Vo 1.0 ml	lume						
CAS No.	Compound		Result	RL	MDL	Units	Q		
	TPH-DRO (C	C10-C28)	0.248	0.083	0.053	mg/l			
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	2 Limits				
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	62% 58%		22-140% 10-135%				

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ა .9

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	AQ - 0 SW840	Ground Wa 5 8260C		Date Sampled: 11/13/19 Date Received: 11/15/19 Percent Solids: n/a 3 East Joppa Road, Towson, MD					
Run #1 Run #2	File ID 2C171831.D	DF 1	Analyzed 11/22/19 07:40	By BK	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2C7722		
Run #1 Run #2	Purge Volume 5.0 ml								

VOA Full List + Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	8.8	10	6.0	ug/l	J
71-43-2	Benzene	ND	0.50	0.43	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.55	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.58	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.52	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.62	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.69	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.63	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.60	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.68	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID:	YP-5		
Lab Sample ID:	JC98692-10	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		

CAS No.	Compound	Result	RL	MDL	Units	Q
142-28-9	1,3-Dichloropropane	ND	1.0	0.43	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.52	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.56	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.66	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.48	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
91-20-3	Naphthalene	ND	5.0	2.5	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.60	ug/l	
100-42-5	Styrene	ND	1.0	0.70	ug/l	
75-65-0	Tert Butyl Alcohol	ND	10	5.8	ug/l	
994-05-8	tert-Amyl Methyl Ether	ND	2.0	0.47	ug/l	
637-92-3	tert-Butyl Ethyl Ether	ND	2.0	0.56	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.60	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.84	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.70	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	1.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	1.0	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m, p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		80-12	20%	
					_	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	YP-5		
Lab Sample ID:	JC98692-10	Date Sampled:	11/13/19
Matrix:	AQ - Ground Water	Date Received:	11/15/19
Method:	SW846 8260C	Percent Solids:	n/a
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD		
0			

VOA Full List + Oxygenates

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
	1,2-Dichloroethane-D4	98%		81-124%
2037-26-5	Toluene-D8	101%		80-120%
460-00-4	4-Bromofluorobenzene	93%		80-120%

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

			Report	of An	alysis			Page 1 of
Client San Lab Samp Matrix: Method: Project:	le ID: JC98692- AQ - Gro SW846 8	und Wate 015D	r 3 East Joppa Roa	d, Towsc	on, MD	Date	L	./13/19 ./15/19 a
Run #1 Run #2		DF 1	Analyzed 11/20/19 17:05	By XPL	Prep D an/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C	210)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Limits			
98-08-8	aaa-Trifluorotolu	95%		55-1	30%			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

	Report of Analysis								Page 1 of 1		
Client Sam Lab Sampl Matrix: Method: Project:	e ID:	JC98692-10IAQ - Ground WaterI					Date	Date Sampled:11/13/19Date Received:11/15/19Percent Solids:n/a			
Run #1 Run #2	File ID 2Z78149	9.D	DF 1	Analyzed 11/20/19 07:08	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957		
Run #1 Run #2	Initial V 300 ml	olume	Final Vol 1.0 ml	ume							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q			
	TPH-D	RO (C10)-C28)	ND	0.083	0.053	mg/l				
CAS No.	No. Surrogate Recoveries		Run# 1	Run# 2	Limits						
84-15-1 438-22-2	o-Terpl 5a-And	-		64% 45%	-		40% 35%				

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.10

SGS

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

MM LA		isul
	CUTES	2

CHAIN OF CUSTODY 2215 Route 130. Dayton, NJ 08810

Ŧ

	ACCUTES	ST.				7:	32-329	0200	EAX:	732-3	329-34	99/348	50 FE	D-EX	Tracking	#				Bottle	لم د	ntrol #	566	18-209
	Laborator												Ad	Accutest Quote #						Accutest Job # TC98692				
									<u>}</u>				-1		1000				2.22	1		کر	-71	1672
ompany N	Client / Reporting Information		1. ST.			ect Info	rmatio	n			1.15		1936- 1936 -	12		nd giùo	1986	ų.	Requ	ested A	Analysi	8		Matrix Codes
mpany w	ime EMS Environmental, Inc.			Project Nam	•:	Former	Hess 2	0204							O STARS O MTBE D		_			_				DW- Drinking Wate
dress			-	Street											Ē	TICsD	s by		1			1		GW- Ground Water
4550 Bat	Pike			1613 E. Jopp	a Road										2S D	TAR	late		1					WW- Water
ty	State		Zip	City					State					, dy	STAF	° 🖁	Oxygenates	1						SW- Surface Water SO- Soil
Bethlehe		18017		Towson					MD					Ż		₽Ĕ	ð	1						SL-Sludge
oject Con	act: Jeremy Fox	E-mail	fox@emsenv.com	Project #	5713									IBAD	715 D	PPL PAHD +	+ Fuel	-				- [OI-OI
one #	Seremy Fox			Fax #									- 5	- 1	D _1	24	÷	8015B	80158			- 1		LIQ- Other Liquid
mplers's	610-866-7799 Name Robert Lloyd			Client Purch	610-86	6-8195									고 5 5	BN TC	10	by 80	8			1		AIR- Air
	Vame Robert Lloyd				ase Order #							5	713	MTBE	₽₽	625 D AED	ž		â	Í				
ccutest		SUMMA #		Collection				Num	ber of	prese	erved l	Bottles			0 0 624 [0 625 1 AEI	S a	۴Ę.	В					SOL-Other Solid WP-Wipe
ample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	# of bottles	Ţ	NO3	2504	ONE	E	260 NCOR	BTEX	8260 I	8270 D	Full Scan VOC's - 8260B	TPH-GRO	TPH-DRO by					LAB USE ONLY
٤	MW-4		11/13/2019		1	GW	7	1,	-	۲Ť I	4			-		∞ <			-					
i L	MW-7							$\uparrow \uparrow$				+		-+			x	x	X				_	
-			11/13/2019			GW	7	7		\vdash	_	$ \downarrow \downarrow$					X	х	x					1515
3	YMW-1		11/13/2019	11:30		GW	7	7									x	x	x					1/371
4	YMW-2		11/13/2019	12:15		GW	7	7						ſ			х	х	x		-			1
\leq	YMW-3		11/13/2019	11:50		GW	7	7			T						x	x	x		\rightarrow	-+		<u> </u>
6	YMW-4		11/13/2019	13:00		GW	7	7									x	x	x	- +	-+	-+		1
٦.	YMW-8		11/13/2019	12:40		GW	7	7						1			x	x	x	-+	-	-+-		<u> </u>
8	YP-1		11/13/2019	13 45	-	GW	7	7						-			x	x	x		-	+		
q	YP-2		11/13/2019	14.10		GW	7	7					-	-	-+		x	x	x	-+				
(0	YP-5		11/13/2019	13:20		GW	7	7					1		-+		x	x	x		-+-			
																-				-+	-+-	+		
									$\uparrow \uparrow$			+		+	-	- 1			-+				+	
										-			-	+		- 1			-+			-	+	
									+	+	\square	-	+	-				-	-+			+	+	
1	Turnaround Time (Business days)	13132			(1965) 1965	Data Deli	iverable	Informa	tion		2.0	2023	22.12				0003		Comr	nents / R	temarks		-	
	Std. 15 Business Days	Approved By:	/ Date:		X Comm				ULL CL					T										
	10 Day RUSH					ercial "B'	· (IYASP (_								
	5 Day RUSH 3 Day EMERGENCY				NJ Red		ļ	_	IYASP C	-	ry B													
<u> </u>	2 Day EMERGENCY				NJ Ful	ı Full TIEI	R 1		tate For					1										
	1 Day EMERGENCY					. an rite		'		at		_												
x	Other 14 Day Hess Standard				Comme	rcial "A" :	= Result	s Oniv						\vdash								_		
Emerg	ency T/A data available VIA La						~							1										
163	Sample C	ustody must be	documented be		ne samples	change p	oosses	sion, ij	etudin	g cow	fier de	livery.	\sim	4						- -	357 1	- 27-1		
Z	1P.//		Date Time:	18:00	By?		/ -	Γ	R		shed By	7		1	Dar	15/19	17	1.		celved B	10	1	1	and the second
Religuist	Nong		11-15-19 Date Time:		Secolved By:	-	\triangleright	5	- 7	olingula	shed By	\times		/_			17	60	1 2	-Ar	\sim	ha	L	
£.A	Shah		Illistig	18:50	3 0				4		.,								R	Cerved B	y :			
Relinquist	ed by:		Date Time:		Received By:				c	ustody	Seal #			Pres	served w	there app	licable		4			in Ice	Cooler	Temp.
					5											<u> </u>	\sim	-				Ø.		3.4 °c5
																								3.3

JC98692: Chain of Custody Page 1 of 2

Page 1 of 1

4.1

4

SGS Sample Receipt Summary

Job Number: JC98692	Client: EMS EN	VIRONMENTAL, INC.	Project: HESS #20204, 161	3 EAST JOPPA ROAD, TOWS
Date / Time Received: 11/15/2019 6:50:	00 PM Delivery	Method:	Airbill #'s:	
Cooler Temps (Raw Measured) °C: Coo	ler 1: (3.4); Cooler 2:	: (3.3);		
Cooler Temps (Corrected) °C: Coo	ler 1: (3.2); Cooler 2	: (3.1);		
Cooler Security Y or N		Y or N Sample Integri	ty - Documentation	Y or N
1. Custody Seals Present:	3. COC Present:	✓ □ 1. Sample labels	s present on bottles:	
2. Custody Seals Intact:	4. Smpl Dates/Time OK	2. Container lab	•	
Cooler Temperature Y or I	<u>N</u>	3. Sample conta	iner label / COC agree:	
		Sample Integr	ity - Condition	Y or N
2. Cooler temp verification: IR Gu		1. Sample recvo	within HT:	
3. Cooler media: Ice (Ba	ag)	2. All containers	accounted for:	
4. No. Coolers: 2		3. Condition of s	ample:	Intact
Quality Control_Preservation Y or	N N/A	Sample Integ	ity - Instructions	Y or N N/A
1. Trip Blank present / cooler:		1. Analysis requ		
2. Trip Blank listed on COC:			ved for unspecified tests	
3. Samples preserved properly:			ume recvd for analysis:	
			instructions clear:	
		5. Filtering instr		
Test Strip Lot #s: pH 1-12:	229517	pH 12+:208717	Other: (Specify)	
Comments				

SM089-03 Rev. Date 12/7/17

JC98692: Chain of Custody Page 2 of 2

44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

11/12/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC96122

Sampling Date: 10/01/19

Report to:

EMS Environmental, Inc.

rlloyd@emsenv.com

ATTN: Robert Lloyd

Total number of pages in report: 17

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

1 of 17 JC96122

Sections:

Table of Contents

-
N
ω
4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC96122-1: INF	6
3.2: JC96122-2: MID	9
3.3: JC96122-3: EFF	12
Section 4: Misc. Forms	15
4.1: Chain of Custody	16

Sample Summary

EMS Environmental, Inc.

Job No: JC96122

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID							
This report co Organics ND	This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL												
JC96122-1	10/01/19	12:20 BR	10/03/19	AQ	Influent	INF							
JC96122-2	10/01/19	12:10 BR	10/03/19	AQ	Water	MID							
JC96122-3	10/01/19	12:00 BR	10/03/19	AQ	Effluent	EFF							

Summary of Hits

Job Number:	JC96122
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	10/01/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC96122-1 INF					
Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10) TPH-DRO (C10-C28)	4.1 4.3 10.6 71.9 2.6 29.4 1.25 0.625	$\begin{array}{c} 0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0 \\ 0.20 \\ 0.083 \end{array}$	$\begin{array}{c} 0.43 \\ 0.53 \\ 0.60 \\ 0.59 \\ 0.51 \\ 0.98 \\ 0.042 \\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
JC96122-2 MID Benzene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	0.50 0.72 J 3.3 0.92 J 0.205	0.50 1.0 1.0 1.0 0.20	0.43 0.60 0.59 0.51 0.042	ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D
JC96122-3 EFF Methyl Tert Butyl Ether	0.84 J	1.0	0.51	ug/l	SW846 8260C

Ν

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	AQ - I SW84	nfluent 6 8260C	613 East Joppa Road	Date Sampled: Date Received: Percent Solids:			
Run #1 Run #2	File ID 1A194981.D	DF 1	Analyzed 10/09/19 04:28	By CSF	Prep Date n/a	Prep Batcl n/a	h Analytical Batch V1A8394
Run #1 Run #2	Purge Volume 5.0 ml	!					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q			
71-43-2 108-88-3	Benzene	4.1	0.50 1.0	0.43	ug/l				
100-41-4	Toluene Ethylbenzene	4.3 10.6	1.0	0.53 0.60	ug/l ug/l				
1330-20-7 1634-04-4	Xylene (total) Methyl Tert Butyl Ether	71.9 2.6	1.0 1.0	0.59 0.51	ug/l ug/l				
91-20-3	Naphthalene	29.4	5.0	0.98	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	1 Run# 2 Limits		its				
1868-53-7	Dibromofluoromethane	103%	80-120%						
17060-07-0	1,2-Dichloroethane-D4	106%	81-124%						
2037-26-5	Toluene-D8	100%	20%						
460-00-4	4-Bromofluorobenzene	104%		80-120%					

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

SGS^{6 of 17}

JC96122

ယ

ω -

	Report of Analysis Page 1 of												
Client San Lab Samp Matrix: Method: Project:	le ID: JC961 AQ - I SW84	nfluent 5 8015D	13 East Joppa Ro	ad, Towsc	on, MD	Date	Sampled: Received: ent Solids:						
Run #1	File ID DF Run #1 LM101847.D 1			By 9 XPL	Prep D n/a	ate	Prep Bate	ch Analytical Batch GLM4228					
Run #2				-									
Run #1 Run #2	Purge Volume 5.0 ml												
CAS No.	Compound		Result	RL	MDL	Units	Q						
	TPH-GRO (C6-C10)		1.25	0.20	0.042	mg/l							
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its							
98-08-8	aaa-Trifluorot	93%		55-1	30%								

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω -

ω

7 of 17 JC96122

			Report	of Ana	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC961 AQ - I SW84	nfluent 6 8015D SV	W846 3510C 3 East Joppa Road	l, Towsc	on, MD	Date	L	D/01/19 D/03/19 ⁄a
Run #1 Run #2	File ID 2Y99437.D	DF 1	Analyzed 10/08/19 15:40	By SH	Prep D 10/08/1	ate 9 10:00	Prep Batch OP23205	Analytical Batch G2Y3788
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.625	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	2 Limits			
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	89% 87%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

			Report	of Ar	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC A(SV	ID 96122-2 Q - Water V846 8260C ESS #20204,	1613 East Joppa Road	l, Tows	son, MD	Date Sampled: Date Received: Percent Solids:	10/01/19 10/03/19 n/a
Run #1 Run #2	File ID 1A194982.	DF D 1	Analyzed 10/09/19 04:53	By CSF	Prep Date n/a	Prep Batch n/a	n Analytical Batch V1A8394
Run #1 Run #2	Purge Vol 5.0 ml	ume					

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	0.50 ND 0.72 3.3 0.92 ND	0.50 1.0 1.0 1.0 1.0 5.0	0.43 0.53 0.60 0.59 0.51 0.98	ug/l ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	U	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 107% 102% 106%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

9 of 17 SGS

JC96122

3.2 ω

					Repor	t of An	alysis				Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID:		Water 6 8015D	513 E	ast Joppa Ro	oad, Towsc	on, MD	Date	Sampled: Received: ent Solids:	10)/01/19)/03/19 a
Run #1 Run #2	File ID LM1018	46.D	DF 1		nalyzed 0/07/19 10:1	By 10 XPL	Prep D n/a	ate	Prep Bat n/a	tch	Analytical Batch GLM4228
Run #1 Run #2	Purge V 5.0 ml	olume									
CAS No.	Compo	und			Result	RL	MDL	Units	Q		
	TPH-GI	RO (C	6-C10)		0.205	0.20	0.042	mg/l			
CAS No.	Surroga	ate Re	coveries		Run# 1	Run# 2	Lim	its			
98-08-8	aaa-Trif	luorot	oluene		93%		55-1	30%			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC961 AQ - V SW840	Vater 5 8015D SV	W846 3510C 3 East Joppa Road	I I)/01/19)/03/19 a			
Run #1 Run #2	File ID 2Y99438.D	DF 1	Analyzed 10/08/19 16:15	By SH	Prep D 10/08/1	ate 9 10:00	Prep Batch OP23205	Analytical Batch G2Y3788
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	2	86% 85%		22-1 10-1			

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

11 of 17

Client San Lab Samp Matrix: Method: Project:	ple ID: JC9612 AQ - E SW846	Effluent 5 8260C	613 East Joppa Road	Date Sampled: Date Received: Percent Solids:			
Run #1 Run #2	File ID 1A194973.D	DF 1	Analyzed 10/09/19 01:10	By CSF	Prep Date n/a	Prep Batcl n/a	n Analytical Batch V1A8394
Run #1 Run #2	Purge Volume 5.0 ml						

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 01 20 2	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	ND ND ND 0.84	0.50 1.0 1.0 1.0 1.0	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l ug/l	J
91-20-3 CAS No.	Naphthalene Surrogate Recoveries	ND Run# 1	5.0 Run# 2	0.98 Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 107% 101% 108%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

12 of 17

JC96122

Page 1 of 1

ω

ω ω

			Report	t of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC961 AQ - I SW84	Effluent 6 8015D	13 East Joppa Rc	oad, Towso	on, MD	Date	e Sampled: e Received: ent Solids:	
Run #1	File ID LM101845.D	DF 1	Analyzed 10/07/19 09:4	By 12 XPL	Prep D n/a	ate	Prep Bate n/a	ch Analytical Batch GLM4228
Run #2								
Run #1 Run #2	Purge Volume 5.0 ml	2						
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C	6-C10)	ND	0.20	0.042	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorot	oluene	93%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

JC96122

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC9612 AQ - E SW846	ffluent 8015D SV	V846 3510C 3 East Joppa Road	d, Towsc	on, MD	I I	D/01/19 D/03/19 ′a	
Run #1 Run #2	File ID 2Y99439.D	DF 1	Analyzed 10/08/19 16:49	By SH	Prep D 10/08/1	ate 9 10:00	Prep Batch OP23205	Analytical Batch G2Y3788
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		82% 80%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ယ

ω

JC96122

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

M.A	M		wW		C	HA)D	ΡY										Page 1
	ACCUTES	2-					2235 Ro 32-329-0							D F	ED-EX	Tracking	#				Bottle	Order Co	ontrol #		A
	Laborator													^	lccutes	l Quote #					Accute	st Job #		50	96122
	Client / Reporting Information	1670 17		1995 M.	Proj	ect Info	rmation							-+		<u></u>	igi Qire		<u> </u>	Requ	ested .	Analys	is	/	Matrix Codes
Company Na				Project N	ame:	Former	Hess - 2	0204								П ш		B							DW- Drinking Water
Address	EMS Environmental, Inc.			Street										_		MTBE	l 🛛	8260B							GW- Ground Water WW- Water
					oppa Road												STARSD	<u></u>							SW Surface Water
4550 Bat City	h Pike State		Zip	City	орра коас				State							STARS	ς ΓΩ	e e							SVV Surface Water SO- Soil
	m PA	18017		Towson					٨	٨D					∎ A			hale							SL Sludge OI-Oil
Bethlehe Project Con			fox@emsenv.cor	Project #	6740	-									1 0 602 TBAD	PPL [đ	Ē							0i-Oi
	Jeremy Fox				5713			_								In *	PAHD .	Na I	88	85					LIQ- Other Liquid
Phone #	610-866-7799			Fax #	610-86	6.8195										+10 D	BND	MTBE and Naphthalene	TPH-GRO by 8015B	8015B					AIR- Air
Samplers's		-		Client Pu	rchase Orde					5713					624 D MTBE			8	ð	5					
Accutest		SUMMA #		Collecti	00			Nur	nber			ad B			20 20 20	4 P 53	AEI AEI	M	R0	TPH-DRO					SOL-Other Solid WP-Wipe
		SUMMA #		Collecti	T	1	# of	Nul		_	_	<u>ु</u>	_				8270 D ABND	BTEX,	1 H	17					
Sample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	bottles	$\bar{\underline{Q}}$	Ô	HN03	NON	Vatto	MEOH	Ŭ E E	8260 BTEX	8260 TBA [827 ABt	8	₽	₽					LAB USE ONLY
1	INF		10/1/2019	1220	BR	ww	7	7			_							x	x	x					E105
2	MID		10/1/2019	1210	BR	ww	7	7										X	X	X		ļ			V1155
3	EFF		10/1/2019	1200	BR	ww	7	7										x	X	X					
																			ļ						
						_																			
							L AS				41	К.,													
											- 4	77	5												
						LABE	L VER	FIC	ATI	ON_															
																								_	
1999 - A.	Turnaround Time (Business days)	Constant associate	and and the second second	2.00.000	and allocation of		eliverable	Infor				lan de	-totuul:	دنعط	د بين ان ان	SHOOL REAL	den	سعاست		Cor	nments	/ Remar	ks	5.6	Area and a second second
	Std. 15 Business Days 10 Day <i>RUSH</i>	Approved By	:/ Date:		X Com	nercial "I				SP Ca															
	5 Day RUSH					duced	5			SP Ca										• • • •					·····
	3 Day EMERGENCY							_		e Forn		-													
	2 Day EMERGENCY					Full TI	ER 1			Form															
	1 Day EMERGENCY																								
X	Other 14 Day Hess Standard				Comm	ercial "A	" = Resul	ts Or	niy																
Emer	gency T/A data available VIA La					_	_	>		_	-			7 /		\square				_					
Relinquis	ed by Sampler:	ustody must be	e documented Date Time:	below ea	Received By	mples c	hang/e p	osse	stion	i, incl	uding	l COU	rier d	ejive	ry.		Date Tim				Receive	d By	- Start	4.5.3	
1 /5	we plan		10-3		1	-	L	L	~	2/	Γ.			/	_	4	101	3/19			2	A	m	-pl	7L
Relinquist	Ta Im		Date Time 10/3/19	15:4	Received By		~	_	~	150	linquis	hed B		2			Date Tim	e:			Receive	By:			
Refinquist	red by:		Date Time:		Received By		1	_		- 4 Cu	stody	Seal #				Preserve	d where	pplicable	,		4		- On To	/ .	ioler Temp. U 19
5					5												M.								
																									IR7 7

JC96122: Chain of Custody Page 1 of 2

16 of 17 JC96122

4.1 4

SGS Sample Receipt Summary

Job Number: JC96122 Client:	Project:	
Date / Time Received: 10/3/2019 3:45:00 PM Delivery M	Airbill #'s:	
Cooler Temps (Raw Measured) °C: Cooler 1: (4.1); Cooler Temps (Corrected) °C: Cooler 1: (4.0);		
Cooler Security Y or N 1. Custody Seals Present: ✓ □ 3. COC Present: 2. Custody Seals Intact: ✓ □ 4. Smpl Dates/Time OK Cooler Temperature ✓ ✓ □ 1. Temp criteria achieved: ✓ □ □ 2. Cooler temp verification: IR Gun □ □ 3. Cooler media: Ice (Bag) □ □ 4. No. Coolers: I ✓ □ Quality Control Preservation Y or N N/A 1. Trip Blank present / cooler: ✓ □ 2. Trip Blank listed on COC: ✓ □ 3. Samples preserved properly: ✓ □ 4. VOCs headspace free: ✓ □	Y or N Sample Integrity - Documentation I I I I I I I I I I I I Sample labels present on bottles: 2. Container labeling complete: 3. Sample Integrity - Condition 1. Sample Integrity - Condition 1. Sample Integrity - Condition 1. Sample Integrity - Instructions 3. Condition of sample:	Y or N ✓ □
Test Strip Lot #s: pH 1-12:229517	pH 12+:208717 Other: (Specify)	
Comments		

SM089-03 Rev. Date 12/7/17

JC96122: Chain of Custody Page 2 of 2 44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

11/12/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC96541

Sampling Date: 10/09/19

Report to:

EMS Environmental, Inc.

rlloyd@emsenv.com

ATTN: Robert Lloyd

Total number of pages in report: 17

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 17 JC96541

Sections:

Table of Contents

-
N
ω
4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	
3.1: JC96541-1: INF	
3.2: JC96541-2: MID	9
3.3: JC96541-3: EFF	12
Section 4: Misc. Forms	15
4.1: Chain of Custody	16

Sample Summary

EMS Environmental, Inc.

Job No: JC96541

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date Time By	Matrix Received Code Type	Client Sample ID	
This report co Organics ND		as ND = Not detected. The follow cted above the MDL	ving applies:	
JC96541-1	10/09/19 11:20 BR	10/10/19 AQ Influent	INF	
JC96541-2	10/09/19 11:10 BR	10/10/19 AQ Ground Water	MID	
JC96541-3	10/09/19 11:00 BR	10/10/19 AQ Effluent	EFF	

Summary of Hits

Job Number:	JC96541
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	10/09/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC96541-1 INF					
Benzene	3.6	0.50	0.43	ug/1	SW846 8260C
Toluene Ethylbenzene	2.9 19.1	1.0 1.0	0.53 0.60	ug/l ug/l	SW846 8260C SW846 8260C
Xylene (total)	57.0	1.0	0.00	ug/l	SW846 8260C
Methyl Tert Butyl Ether	2.6	1.0	0.59	ug/l	SW846 8260C
Naphthalene	23.2	5.0	0.98	ug/l	SW846 8260C
TPH-GRO (C6-C10)	1.24	0.20	0.042	mg/l	SW846 8015D
TPH-DRO (C10-C28)	0.386	0.083	0.053	mg/l	SW846 8015D
JC96541-2 MID					
Benzene	0.96	0.50	0.43	ug/l	SW846 8260C
Toluene	0.56 J	1.0	0.53	ug/l	SW846 8260C
Ethylbenzene	2.4	1.0	0.60	ug/l	SW846 8260C
Xylene (total)	8.1	1.0	0.59	ug/l	SW846 8260C
Methyl Tert Butyl Ether	0.87 J	1.0	0.51	ug/l	SW846 8260C
Naphthalene	2.0 J	5.0	0.98	ug/l	SW846 8260C
TPH-GRO (C6-C10)	0.282	0.20	0.042	mg/l	SW846 8015D
JC96541-3 EFF					
Benzene	0.48 J	0.50	0.43	ug/l	SW846 8260C
Xylene (total)	1.0	1.0	0.59	ug/l	SW846 8260C
Methyl Tert Butyl Ether	0.85 J	1.0	0.51	ug/l	SW846 8260C

N

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC965 AQ - I SW84	JC96541-1 AQ - Influent					Date Sampled:10/09/19Date Received:10/10/19Percent Solids:n/a		
Run #1 Run #2	File ID 3B156427.D	DF 1	Analyzed 10/18/19 00:19	By JP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3B7031		
Run #1 Run #2	Purge Volume 5.0 ml	:							

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	3.6 2.9 19.1 57.0 2.6 23.2	$\begin{array}{c} 0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0 \end{array}$	0.43 0.53 0.60 0.59 0.51 0.98	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	96% 103% 92% 86%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ

<u>з</u>

	Report of Analysis Page 1 of 1											
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC A(SW	96541-1 Q - Influent V846 8015D	13 East Joppa Ro	pad, Towsc	on, MD	Date	Sampled: Received: ent Solids:	10/09/19 10/10/19 n/a				
Run #1	File ID PF153027.	DF D 1	Analyzed 10/15/19 11:1	By 0 XPL	Prep D n/a	ate	Prep Batc n/a	h Analytical Batch GPF4998				
Run #2												
Run #1 Run #2	Purge Volu 5.0 ml	ume										
CAS No.	Compoun	nd	Result	RL	MDL	Units	Q					
	TPH-GRO	D (C6-C10)	1.24	0.20	0.042	mg/l						
CAS No.	Surrogate	e Recoveries	Run# 1	Run# 2	Lim	its						
98-08-8	aaa-Triflu	orotoluene	101%		55-1	30%						

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω -

ω

7 of 17 JC96541

			Report	of Ana	alysis			Page 1 of 1		
Client Sample ID: INF Lab Sample ID: JC96541-1 Date Sampled: 10/09/19 Matrix: AQ - Influent Date Received: 10/10/19 Method: SW846 8015D SW846 3510C Percent Solids: n/a Project: HESS #20204, 1613 East Joppa Road, Towson, MD Prep Date Prep Batch Analytical										
Run #1 Run #2	File ID 2Y99557.D	DF 1	Analyzed 10/16/19 18:02	•	-	ate 9 10:00	Prep Batch OP23325	Analytical Batch G2Y3791		
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume							
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH-DRO (C	10-C28)	0.386	0.083	0.053	mg/l				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	e	75% 75%	22-140% 10-135%						

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC965 AQ - (SW84	Ground Wa 6 8260C	ater 613 East Joppa Road	l, Tow	Date Sampled: 10/09/19 Date Received: 10/10/19 Percent Solids: n/a son, MD				
Run #1 Run #2	File ID 3B156426.D	DF 1	Analyzed 10/17/19 23:51	By JP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3B7031		
Run #1 Run #2	Purge Volume 5.0 ml	<u>,</u>							

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	0.96	0.50	0.43	ug/l	
108-88-3	Toluene	0.56	1.0	0.53	ug/l	J
100-41-4	Ethylbenzene	2.4	1.0	0.60	ug/l	
1330-20-7	Xylene (total)	8.1	1.0	0.59	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.87	1.0	0.51	ug/l	J
91-20-3	Naphthalene	2.0	5.0	0.98	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	96%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	106%		81-1	24%	
2037-26-5	Toluene-D8	93%		80-1	20%	
460-00-4	4-Bromofluorobenzene	87%		80-1	20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

9 of 17

JC96541

	Report of Analysis Page 1 of 1											
Client San Lab Samp Matrix: Method: Project:	-	SW84	Ground Wa 6 8015D		ast Joppa Roa	d, Towso	on, MD	Date	Sampled Received ent Solids	: 10)/09/19)/10/19 a	
Run #1 Run #2	File ID PF1530		DF 1		nalyzed 0/15/19 10:43	By XPL	Prep D n/a	ate	Prep Ba n/a	tch	Analytical Batch GPF4998	
Run #1 Run #2	Purge 5.0 ml	Volum	e									
CAS No.	Comp	ound			Result	RL	MDL	Units	Q			
	TPH-0	GRO (O	C6-C10)		0.282	0.20	0.042	mg/l				
CAS No.	Surro	gate R	ecoveries		Run# 1	Run# 2	Lim	its				
98-08-8	aaa-Ti	rifluoro	toluene		106%		55-1	30%				

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

			Report	of An	alysis			Page 1 of 1		
Client San Lab Samp Matrix: Method: Project:	le ID: JC965 AQ - (SW84	Ground Wate 6 8015D SV	W846 3510C	Date Sampled: Date Received: 346 3510C Percent Solids: East Joppa Road, Towson, MD				: 10/10/19		
Run #1 Run #2	File ID 2Y99555.D	DF 1	Analyzed 10/16/19 16:42	By SH	Prep D 10/16/1	ate 9 10:00	Prep Batch OP23325	Analytical Batch G2Y3791		
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume							
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	73% 73%	22-140% 10-135%						

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.2

Client Sat Lab Samj Matrix: Method: Project:	ple ID: JC9654 AQ - E SW846	Effluent 5 8260C	613 East Joppa Road	Date Sampled:10/09/19Date Received:10/10/19Percent Solids:n/a			
Run #1 Run #2	File ID 3B156424.D	DF 1	Analyzed 10/17/19 22:55	By JP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3B7031
Run #1 Run #2	Purge Volume 5.0 ml						

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	0.48	0.50	0.43	ug/l	J
108-88-3	Toluene	ND	1.0	0.53	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
1330-20-7	Xylene (total)	1.0	1.0	0.59	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.85	1.0	0.51	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.98	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	110%		81-1	24%	
2037-26-5	Toluene-D8	90%		80-1	20%	
460-00-4	4-Bromofluorobenzene	86%		80-1	20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

SGS

Page 1 of 1

ယ

ယ ယ

			Repor	t of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC A(SV	96541-3 Q - Effluent V846 8015D	513 East Joppa Ro	pad, Towso	on, MD	Date	e Sampled: e Received: cent Solids:	10/09/19 10/10/19 n/a
Run #1 Run #2	File ID PF153036.	DF D 1	Analyzed 10/15/19 15::	By 30 XPL	Prep D n/a	ate	Prep Batc n/a	h Analytical Batch GPF4998
Run #1 Run #2	Purge Volu 5.0 ml	ume						
CAS No.	Compoun	nd	Result	RL	MDL	Units	Q	
	TPH-GRO	D (C6-C10)	ND	0.20	0.042	mg/l		
CAS No.	Surrogate	e Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Triflu	orotoluene	110%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ပ

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC9654 AQ - E SW846	Effluent 5 8015D SV	V846 3510C 3 East Joppa Road	l, Towsc	on, MD	Date	I I)/09/19)/10/19 a
Run #1 Run #2	File ID 2Y99556.D	DF 1	Analyzed 10/16/19 17:18	By SH	Prep D 10/16/1	ate 9 10:00	Prep Batch OP23325	Analytical Batch G2Y3791
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		71% 72%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ပ

ω

14 of 17 SGS

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

EM Project Name: Project Name: Pomer Mase: 2024 Bit State	ANA LA	3	6	ω		С		IN 2235 Bo						0]	DY										Page 1
Laborator Production Producti		CCUTES	ЗТ.											480	FED-EX	Tracking	*				Bottle C	/- 0		-20	9
Checken Page State Project Information Forma Head Project Information Project Information <th></th> <th>Laborator</th> <th>ies</th> <th></th> <th>Accutes</th> <th>t Quote #</th> <th></th> <th></th> <th></th> <th></th> <th>Accutes</th> <th># dob #</th> <th>J</th> <th>c96</th> <th>541</th>		Laborator	ies												Accutes	t Quote #					Accutes	# dob #	J	c96	541
Martin Page: 1 Formar Halas - 2024 Diff. Diff. <thdif.< th=""> <thdif.< th=""> Diff.<td></td><td>ent / Reporting Injointation</td><td>in SASS</td><td>" to any comment</td><td>¥a.a.</td><td>C Pro</td><td>ect info</td><td>rmation</td><td>- 69</td><td>a an</td><td></td><td></td><td>* 757</td><td></td><td></td><td>A colored</td><td><u></u></td><td></td><td>plac 4</td><td></td><td></td><td></td><td></td><td></td><td></td></thdif.<></thdif.<>		ent / Reporting Injointation	in SASS	" to any comment	¥a.a.	C Pro	ect info	rmation	- 69	a an			* 757			A colored	<u></u>		plac 4						
10 5 510/Pla 510 E Jopa Read 01 E J	ompany Name				T					<u></u>	1960.04		كالمسناه	10210	10.30		C. Brok Bro	ø							1
10 5 510/Pla 510 E Jopa Read 01 E J	ddress	S Environmental, Inc.			Street											EW I	5	8260							
Internation Part # File # Fi	4550 Bath Pik				1613 E. Ja	oppa Road									0	52	STAR	Ą							
Internation Part # File # Fi				Zip					SI						_ ₹	1STA		alen							
Internation Part # File # Fi	Dethiehem	PA		ifex@emserv.cor	1					ML	,				1 a c	Ę,	학 전 다 다 다	ŧ							OFOI
•••••••••••••••••••••••••••••	one #	Jeremy Fox			-	5713									200	5		Naj	8	8					LIQ- Other Liquid
International Data Restaught Collection Collection Collection Collection Science State Collection Collection <td>610-1</td> <td></td> <td></td> <td>_</td> <td></td> <td>80</td> <td>12 5</td> <td>길묘</td> <td>and</td> <td>801</td> <td>801</td> <td></td> <td></td> <td></td> <td></td> <td>AIR- Air</td>	610-1			_											80	12 5	길묘	and	801	801					AIR- Air
INF 10.92/2019 III 2 BR WW 7 7 X	mplers's Name	Brad Rohrbaugh			Client Pu	rchase Orde	r#				6713				MTB MTB	Q e	50	1BE	6	0					SOL-Other Solid
INF 10.92/2019 III 2 BR WW 7 7 X	cutest		SUMMA #		Collecti	00	Ī	Τ	Numb	per of	-	T - T	Bott	les .	-	S A	57 00	N, W	HG.	ĥ					WP-Wipe
MID 109/2019 BR WW 7 7 MID 109/2019 BR WW 7 7 EFF 109/2019 M. C BR WW 7 7 Image: Standard Image: Standard Image: Standard VIII (Image: Standard VIIII (Image: Standard VIIII (Image: Standard Standard Standard Image: S	mple # Fie	eld ID / Point of Collection	MEOH Via! #	Date	Time	Sampled by	Matrix		ą į	101	H2SQ	NONE	MEDH	ENCOF	6260 BTE)	8260 TBA	8270 ABN	18	Ē	Ē					LAB USE ONLY
EFF 10/9/2019 // CC BR WW 7 7 7 X X X X CCommercial				10/9/2019	11:20		1	7	7		Τ	TT						X	x	X					E67
INITIAL ASESSMENT INITIAL ASESSMENT INITIAL ASESSMENT	Z MID			10/9/2019	11:10	BR	ww	7	7			T		T				х	x	x					VIZIG
INITIAL ASESSMENT INITIAL ASESSMENT INITIAL ASESSMENT	3 EFF			10/9/2019	11.00	BR	ww	7	1,1		1							x	x	x					1
Initial ASESSMENT Initial ASESSMENT Initial Business Baye Approved By/ Date: Initial Business Baye Commercial "A" Initial Business Baye Approved By/ Date: Initial Business Baye Commercial "A" Initial Business Baye Initial Business Baye Initial Business Baye Initial Business Baye </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>t</td> <td>f t</td> <td>-</td> <td>+</td> <td>+-+</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td>		-					<u> </u>	t	f t	-	+	+-+		1										+	
Initial ASESSMENT Initial ASESSMENT Initial Business Baye Approved By/ Date: Initial Business Baye Commercial "A" Initial Business Baye Approved By/ Date: Initial Business Baye Commercial "A" Initial Business Baye Initial Business Baye Initial Business Baye Initial Business Baye </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t</td> <td></td> <td></td> <td>+</td> <td>1</td> <td>\pm</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>								t			+	1	\pm	+						-					
IIIII/LL_COLODITINT IIIII/LL_COLODITINT IIIIII/LL_COLODITINT IIIII/LL_COLODITINT LABEL VERIFIC/TEON IIIIII/LL_COLODITINT IIIIII/LL_COLODITINT LABEL VERIFIC/TEON IIIIIII/LL_COLODITINT IIIIII/LL_COLODITINT LABEL VERIFIC/TEON IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			++			-					1	6	₩.	te									-+-		+
Image: Standard Time (Extended cups) Contracted to the standard by the standard								HAL P	SED	SME	11	┢┼┥	Ť	1-	1				-					+	
Image: Standard Time (Extended cups) Contracted to the standard by the standard		· · · · · · · · · · · · · · · · · · ·	+						RIFO	cht	D)		-1-	+		<u> </u>					—		\rightarrow		┨─────┤
Std. 16 Business Days Approved By/ Date: Contrarctal "A" FULL CLP 10 Day RUSH Contrarctal "B" WYASP Category A 10 Busy RUSH Contrarctal "B" WYASP Category A 10 Day EMERGENCY NI Reduced WYASP Category B 10 Day EMERGENCY NI Full State Forma 10 Day EMERGENCY Date Full TIER 1 EDD Format 10 Day EMERGENCY Other Full TIER 1 EDD Format 10 ther 14 Day Hese Standard Commercial "A" = Results Only Other 14 Day Hese Standard Commercial "A" = Results Only Contrarctal "A" = Results Only Results Only Date Top: Date Top: Date Top: Date Top: Date Top: Northered By: Date Top: Date Top: Date Top: Results Only Date Top: Northered By: Date Top: Northered By: Date Top: Northered By: Date Top: Northered By: Date Top: Resolution By: Date Top: Northered By: Date Top: Northered By: Date Top: Northered By: Date Top: Date Top: Date Top: Date Top: Date Top: Northered By: Date	- 									+	-	1-1	+	Ŧ	-	<u> </u>							-+-		
Interstyle Approved By:/ Date: Image: Commercial "A" PULL CLP IB Day RUSH Image: Commercial "B" WYASP Category A IB Day RUSH Image: Commercial "B" WYASP Category A ID Day EMERGENCY Image: Commercial "B" WYASP Category B ID Day EMERGENCY Image: Commercial "B" WYASP Category B ID Day EMERGENCY Image: Commercial "B" Image: Commercial "A" ID Day EMERGENCY Image: Commercial "A" Boby RUSH ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID Day EMERGENCY Image: Commercial "A" Real Commercial "A" ID ID Day EMERGENCY Image: Commercial "A" Image: Commercial "A" ID ID Day EMERGENCY I	Turi	naround Time (Business days)				Contraction of the	Data D	eliverable	Informat	tion	1		200					4.7*M		Con	aments /	Remark	<u></u>	0.00	STREAM BROOMER STREET
S Day RUSH Day EMERGENCY Day EMERGE		•	Approved By:/	Date:					-		CLP														
3 Day EMERGENCY In Trade Castory is 2 Day EMERGENCY Disker Formas 2 Day EMERGENCY Other Full TIER 1 1 Day EMERGENCY Other Full TIER 1 2 Day EMERGENCY Commercial "A" = Results Only 2 Day EMERGENCY Data Time: 2 Day EMERGENCY Data Time: 2 Day EMERGENCY Data Time: 2 Data Time: Data Time:								B"																	
1 Day EMERGENCY Outwin 1 of Day Heast Standard 1 Other 1 of Day Heast Standard Commented by Ar = Results Only Program y TLA data available VIA Labilink Commented by Ar = Results Only Program y TLA data available VIA Labilink Results Only Program y TLA data available VIA Labilink Results Only Commented by Report TLA data available VIA Labilink Results Only Data Topic Data Topic													5												
Other 14 Day Hees Standard Opportory TIA data available VIA Labilink Sample Custody must be documented below gash and the second of the seco						Other	Full TI	ER 1		EDD F	¹ orma	et													
Progency T/A data available VIA Lablink		-		· · · · ·		0		- Ber								<u> </u>									
Sample Custody must be documented balow generation might be charge possession, including courier delivery. Sample Custody must be documented balow generation for an and the provide state of the pro			ink			Lomma	ercial ^A	- restui	na Uniy					•	\sim	L									
10/10/19 2/2/19/19 2/2/2019/19/19/19/19/19/19/19/19/19/19/19/19/1	Collinguished by S		tody must be	documented I	oelow es		npies c	harige	058965	iion, i	Inclu	uding o	ourie	r deli	very.	1				.					and on the life
Land Table	BJ	bly			3 7 76) / /	1		\square	_		2.4		Ha Hy:			ナ	1010	19			2	7Ç.	Ň	- 1	6/1-1191
	Rolinguiter by:		1/0	Jate Time:)	Received By		\leq			Rail	inquishe	d By:	-<	\sim		Date Tini	• • •			Receive	d By:		~	4141 / I
	inquished by:	1m 10/0	19	1277	2	3			<u> </u>	-	4	1040 8-						online			4		On kr		ar Temp.
						5					[]					Prosetve		de la la cara gal		•			Ð	-	0
			· · ·																				4	0	747

JC96541: Chain of Custody Page 1 of 2

JC96541

44

4

SGS Sample Receipt Summary

Job Number:	JC96541	Client:	EMS ENVIRONMENTAL, INC	1613 EAST JOPPA ROAD, TOW								
Date / Time Received:	10/10/2019 3:13:0	0 PM	Delivery Method:	Airbill #'s:								
Cooler Temps (Raw Mea Cooler Temps (Cori	,	(),										
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Cuality Control Preserv 1. Trip Blank present / cool 2. Trip Blank listed on COO 3. Samples preserved prop 4. VOCs headspace free:	Y or N IR Gun Ice (Bag 1 ation Y or N er: □ ¥ c: □ ¥) N/A N/A 1 1 1		Sample labels Container lab Sample conta Sample conta Sample Integr Sample recvd All containers Condition of s Sample Integr Analysis requ Bottles receiv Sufficient vol	iner label / COC agree: ity - Condition within HT: accounted for: ample: ity - Instructions lested is clear: ved for unspecified tests ume recvd for analysis: instructions clear:		r N	 N/A 				
Test Strip Lot #s:	pH 1-12:	229517	pH 12+:	208717	Other: (Specify)							
Comments												

SM089-03 Rev. Date 12/7/17

> JC96541: Chain of Custody Page 2 of 2

44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

11/27/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC98693

Sampling Date: 11/14/19

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 17

Set

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 17 JC98693

Sections:

Table of Contents

-
N
ω
4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC98693-1: INF	6
3.2: JC98693-2: MID	9
3.3: JC98693-3: EFF	12
Section 4: Misc. Forms	15
4.1: Chain of Custody	16

Sample Summary

EMS Environmental, Inc.

Job No: JC98693

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Matrix Received Code Type			Client Sample ID
This report co Organics ND		lts reported as = Not detecte			cted. The following app L	lies:
JC98693-1	11/14/19	12:00 BR	11/15/19	AQ	Influent	INF
JC98693-2	11/14/19	11:50 BR	11/15/19	AQ	Ground Water	MID
JC98693-3	11/14/19	11:40 BR	11/15/19	AQ	Effluent	EFF

Summary of Hits

Ē

Job Number:	JC98693
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	11/14/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC98693-1 INF					
Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10) TPH-DRO (C10-C28)	2.7 3.6 37.0 104 3.4 45.1 1.47 0.628	0.50 1.0 1.0 1.0 1.0 5.0 0.20 0.083	0.43 0.53 0.60 0.59 0.51 2.5 0.10 0.053	ug/l ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
JC98693-2 MID				U	
Xylene (total) Methyl Tert Butyl Ether	1.6 0.88 J	1.0 1.0	0.59 0.51	ug/l ug/l	SW846 8260C SW846 8260C
JC98693-3 EFF					
Methyl Tert Butyl Ether	0.59 J	1.0	0.51	ug/l	SW846 8260C

Ν

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC98 AQ - SW8	693-1 Influent 46 8260C S #20204, 1	613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2V63376.D	DF 1	Analyzed 11/23/19 04:25	By DG	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2V2610
Run #1 Run #2	Purge Volun 5.0 ml	ne					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	2.7 3.6 37.0 104 3.4	0.50 1.0 1.0 1.0 1.0	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l	
91-20-3 CAS No.	Naphthalene Surrogate Recoveries	45.1 Run# 1	5.0 Run# 2	2.5 Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 97% 100% 102%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ω -

ω

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	Le ID: JC98693-1 AQ - Influent SW846 8015D	513 East Joppa Roa	ıd, Towsc	on, MD	Date	1	1/14/19 1/15/19 Ja
Run #1 Run #2	File ID DF LM101944.D 1	Analyzed 11/20/19 18:18	By 3 XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	1.47	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluene	96%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

<u>ω</u>

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - 1 SW84	Influent 6 8015D SV	W846 3510C 13 East Joppa Road	d, Towsc	on, MD	Date	I I	1/14/19 1/15/19 ⁄a
Run #1 Run #2	File ID 2Z78150.D	DF 1	Analyzed 11/20/19 07:42	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volume 300 ml	e Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	0.628	0.083	0.053	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	63% 45%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

<u>ω</u>

ω

Client Sam Lab Samp Matrix: Method: Project:	le ID:	JC98693 AQ - Gr SW846	ound Water 8260C	8 East Joppa Road	l, Towsc	on, MD	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2V6337	7.D	DF 1	Analyzed 11/23/19 04:51	By DG	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2V2610
Run #1 Run #2	Purge V 5.0 ml	olume						

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 01 20 2	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	ND ND 1.6 0.88	0.50 1.0 1.0 1.0 1.0	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l ug/l	J
91-20-3 CAS No.	Naphthalene Surrogate Recoveries	ND Run# 1	5.0 Run# 2	2.5 Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 99% 100% 101%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

3.2

				Report	of Ana	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC A SV	W846	round Wate 8015D	r 3 East Joppa Roa	ıd, Towsc	on, MD	Date	Sampled: Received: ent Solids:	11/14/19 11/15/19 n/a
Run #1 Run #2	File ID LM101943	3.D	DF 1	Analyzed 11/20/19 17:50	By 5 XPL	Prep D n/a	ate	Prep Batc n/a	h Analytical Batch GLM4233
Run #1 Run #2	Purge Vol 5.0 ml	lume							
CAS No.	Compou	nd		Result	RL	MDL	Units	Q	
	TPH-GR	O (C6	-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogat	te Rec	overies	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Triflu	uoroto	luene	94%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - SW84	Ground Wate 6 8015D SV	er W846 3510C 3 East Joppa Road	1, Towsc	on, MD	Date		/14/19 /15/19 a
Run #1 Run #2	File ID 2Z78151.D	DF 1	Analyzed 11/20/19 08:16	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volum 300 ml	e Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	C10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	58% 44%		22-1 10-1	40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

Client San Lab Samp Matrix: Method: Project:		JC98693 AQ - Eff SW846 8	luent 3260C	1613 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2V6336	64.D	DF 1	Analyzed 11/22/19 23:18	By DG	Prep Date n/a	Prep Bate n/a	h Analytical Batch V2V2610
Run #1 Run #2	Purge 5.0 ml	Volume						

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	ND ND ND 0.59 ND	0.50 1.0 1.0 1.0 1.0 5.0	0.43 0.53 0.60 0.59 0.51 2.5	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 99% 101% 102%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ω

ယ ယ

12 of 17

JC98693

			Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98693 AQ - Eff SW846 8	luent 015D	13 East Joppa Roa	d, Towso	n, MD	Date		11/14/19 11/15/19 n/a
Run #1 Run #2	File ID LM101942.D	DF 1	Analyzed 11/20/19 17:27	By XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4233
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C6-0	C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Reco	veries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotolu	iene	96%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ သ

ω

			Report	of Ana	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC986 AQ - I SW84	Effluent 6 8015D SV	V846 3510C 3 East Joppa Road	1, Towsc	on, MD	Date	I I	/14/19 /15/19 a
Run #1 Run #2	File ID 2Z78152.D	DF 1	Analyzed 11/20/19 08:50	By SH	Prep D 11/19/1	ate 9 11:30	Prep Batch OP24095	Analytical Batch G2Z2957
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstano	e	69% 55%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ယ သ

ω

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

AN An A	· ۲۰	2			С		2235 Ro							DI	ŊΥ										Page 1
	ACCUTES	27					2255 Ro 32-329-0							30	FED-EX	Tracking	#				Bottle C	Order Co	ntrol #		
	Laborator														Accutes	t Quote #					Accutes	st Job #	50	<u> </u>	≥693
Company N	Client / Reporting Information			Project N			rmation Hess - 20		12		Q	- 2	1.65	2 7	¢0	0		сна на в		Requ	iested /	Analys	is		Matrix Codes DW- Drinking Water
Address	EMS Environmental, Inc.			Street		- ormer								_	-	S D MTBE	LARSD	by 8260B							GW- Ground Water WW- Water SW- Surface Water
4550 Bat City Bethlehe	State	18017	Zip	City Towson	oppa Road				State	, MD					NAP	L D STARS (L D STARSD +TICsD	ithalene							SO- Soil SL-Sludge Ol-Oil
Project Con Phone #	Jeremy Fox	E-mail	jfox@emseny.con	Project # Fax #	5713						. <u> </u>				1 8021 0 602 U	TCL D PPL 10 D +15 D	TCL D PPL BND PAHD	BTEX, MTBE and Naphthalene by	015B	8015B					LIQ- Other Liquid
Samplers's	610-866-7799 Name Brad Rohrbaugh			Client Pu Collecti	610-866 rchase Order					67			Bottle		0 624 0 0 MTBE	824 D	0 625 0 10 0 AEO BN	MTBE a	TPH-GRO by 8015B	<u>a</u>					AIR- Air SOL-Other Solid WP-Wipe
Accutest Sample #	Field ID / Point of Collection	SUMMA # MEOH Vial #	Date	Time	Sampled by	Matrix	# of bottles	₽	5g		70SZH	Neu	MECH OIL	ENCORE	8260 I	8260 D	8270 ABND	BTEX,	D-H-T	TPH-DRO					LAB USE ONLY
(INF		11/14/2019		BR	ww	7	7						_				X	X	X	<u> </u>		\vdash		.687
<u> </u>	EFF		11/14/2019		BR	ww	7	7	_	-+	+	-		_				X	X	X	-		\vdash		E03
-5			11/14/2019	11:40	BR	ww	7	7										X	X	X					V S Z #
												+													
									_	+		╈	-												
	Turnaround Time (Business days)		1		11. 14. 15. 18. 18. 18.	Data D	eliverable	la fa m		_								0.02			mments	/ Rema			
	Std. 16 Business Days 10 Day RUSH 6 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY 1 Day EMERGENCY	Approved By			NJ Re NJ Fu Other	nercial " nercial " duced II Full TI	A" B" ER 1		FUL NYA NYA Stat	L CL ASP (ASP (ASP (te Foi	Catego Catego			11.5											
Emerg	Other 14 Day Hess Standard Jency T/A data available VIA Lat Sample Cu d by Sample:	etody must be	e documented i Date Time: CS	below ea		_	" = Resul	`			ciudi			dejiv	ery.		Date Tim	e:			Receive		isù:	10.00	
1 Du	Hig Kohn		11-15-1 Date Time: 11/15/19	19	Received By) TC					Relingu	_	<	Ł	\neq	<u> </u>	11/15/1 Date Tim	91	320	2	2 Receive	P d By:	81	eh	
Relinguish	ed by:		Date Time:	10.30	3 C Received By: 5					ľ	4 Custod	y Sea				Preserv	ed where a		_		14		On Ice	Co	oler Temp. 3.4(- 3.3(-

44

4

JC98693: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Date / Time Receive: 11/15/2019 6:15:00 PM Delivery Method: Airbill #'s: Cooler Temps (Raw Measured) °C: Cooler 1: (3.4); Cooler 2: (3.3); Cooler Temps (Corrected) °C: Cooler 1: (3.2); Cooler 2: (3.1); Sociel Security Yor N Yor N Sample Integrity - Documentation Yor N 1. Gustody Seals Present: 3. COC Present: Yor N Sample Integrity - Coursent is the image of the imag	Job Number: JC98693	Client:		Project:		
Cooler Temps (Corrected) °C: Cooler 1: (3.2); Cooler 2: (3.1); Cooler Security Y or N Y or N 1. Custody Seals Present: 3. COC Present: 4. Smpl Dates/Time OK Cooler Temperature Y or N Sample Integrity - Documentation Sample Integrity - Condition Sample Integrity - Condition Sample Integrity - Condition Sample Integrity - Instructions Y or N A. No. Coolers: Z Sample Integrity - Instructions Y or N No. Sample Integrity - Instructions Y or N	Date / Time Received: 11/15/20	19 6:15:00 PM	Delivery Method:	Airbill #'s:		
1. Custody Seals Present: Image: Seals Present: Image: Seals Intact:	,					
1. Sample labels present on bottles: Image: Contract in the cont	Cooler Security Y or			Sample Integrity - Documentation	Y or N	
Cooler remperature ror n 1. Temp criteria achieved: Image: construction achieved of general achie	2. Custody Seals Intact:	4. Smpl Date		2. Container labeling complete:		
Auality Control Preservation Y or N 1. Trip Blank present / cooler: Image: Intact 2. Trip Blank listed on COC: Image: Intact 3. Samples preserved properly: Image: Intact 4. VOCs headspace free: Image: Intact 5. Filtering instructions clear: Image: Intact 1. Analysis requested is clear: Image: Intact 2. Trip Blank listed on COC: Image: Intact 3. Samples preserved properly: Image: Intact 4. VOCs headspace free: Image: Intact 5. Filtering instructions clear: Image: Intact 1. Analysis requested is clear: Image: Intact 2. Bottles received for unspecified tests Image: Image: Intact 3. Sufficient volume recvd for analysis: Image: Ima	1. Temp criteria achieved: [2. Cooler temp verification:	IR Gun		Sample Integrity - Condition	⊻ or N ✓ □	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 9 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 1. Analysis requested is clear: 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear: Test Strip Lot #s: pH 1-12: 229517 pH 12+: 208717 Other: (Specify)				· · ·		N/A
4. VOCs headspace free: Image: Compositing instructions clear: Image: Compositing instructions clear: Image: Compositing instructions clear: Test Strip Lot #s: pH 1-12: 229517 pH 12+: 208717 Other: (Specify)	2. Trip Blank listed on COC:			1. Analysis requested is clear:		
Test Strip Lot #s: pH 1-12: 229517 pH 12+: 208717 Other: (Specify)				4. Compositing instructions clear:		
Comments	Test Strip Lot #s: pH 1-12	2:229517	pH 12+:			
	Comments					

SM089-03 Rev. Date 12/7/17

JC98693: Chain of Custody Page 2 of 2

JC98693

44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

12/05/19 e-Hardcopy 2.0 Automated Report

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC98988

Sampling Date: 11/19/19

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 17

Set-

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 17 JC98988

Sections:

Table of Contents

-
N
ω
4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JC98988-1: INF	6
3.2: JC98988-2: MID	9
3.3: JC98988-3: EFF	12
Section 4: Misc. Forms	15
4.1: Chain of Custody	16

Sample Summary

EMS Environmental, Inc.

JC98988 Job No:

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		lts reported as = Not detecte			cted. The following app L	lies:
JC98988-1	11/19/19	13:20 BR	11/21/19	AQ	Influent	INF
JC98988-2	11/19/19	13:10 BR	11/21/19	AQ	Water	MID
JC98988-3	11/19/19	13:00 BR	11/21/19	AQ	Effluent	EFF

Summary of Hits

Job Number:	JC98988
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	11/19/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC98988-1 INF					
Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10) TPH-DRO (C10-C28)	2.9 4.2 43.2 117 3.4 47.5 1.33 0.646	0.50 1.0 1.0 1.0 1.0 5.0 0.20 0.083	0.43 0.53 0.60 0.59 0.51 2.5 0.10 0.053	ug/l ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
JC98988-2 MID	0.040	0.085	0.055	ilig/1	5 W 840 8015D
Xylene (total) Methyl Tert Butyl Ether TPH-DRO (C10-C28)	0.79 J 0.78 J 0.0922	1.0 1.0 0.083	0.59 0.51 0.053	ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8015D
JC98988-3 EFF Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10)	0.79 0.77 J 5.4 18.9 1.3 5.4 0.309	$\begin{array}{c} 0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0 \\ 0.20 \end{array}$	0.43 0.53 0.60 0.59 0.51 2.5 0.10	ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D

Ν

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

Lab Sam Matrix: Method:	AQ -	988-1 Influent 46 8260C		L	ceived: 11/21/19		
Project:			613 East Joppa Road	l, Tow	vson, MD		
Run #1 Run #2	File ID 4D98392.D	DF 1	Analyzed 12/03/19 10:38	By JP	Prep Date n/a	Prep Batch n/a	Analytical Batch V4D4351
Run #1	Purge Volum 5.0 ml	e					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	2.9 4.2 43.2 117 3.4	$0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l ug/l	
91-20-3	Naphthalene	47.5	5.0	2.5	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	98%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	106%		81-1	24%	
2037-26-5	Toluene-D8	101%		80-1	20%	
460-00-4	4-Bromofluorobenzene	104%		80-1	20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ω -

SGS

6 of 17

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	e ID: JC98988-1 AQ - Influent SW846 8015D	1613 East Joppa Roa	ud, Towso	on, MD	Date	L	/19/19 /21/19 a
Run #1 Run #2	File ID DF LM102025.D 1	Analyzed 11/25/19 10:27	By 7 XPL	Prep D a n/a	ate	Prep Batch n/a	Analytical Batch GLM4242
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	1.33	0.20	0.10	mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorotoluene	90%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	ole ID: JC989 AQ - I SW84	nfluent 6 8015D SV	V846 3510C 3 East Joppa Road	Da			1	1/19/19 1/21/19 a
Run #1 Run #2	File ID ZZ94409.D	DF 1	Analyzed 11/23/19 21:30	By RK	Prep D 11/23/1	ate 9 10:00	Prep Batch OP24205	Analytical Batch GZZ3407
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	0.646	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	e	74% 79%		22-1 10-1	40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

Client San Lab Samj Matrix: Method: Project:	AQ - SW84	Water 6 8260C	613 East Joppa Road	Date Sampled: Date Received: Percent Solids:			
Run #1 Run #2	File ID 4D98391.D	DF 1	Analyzed 12/03/19 10:09	By JP	Prep Date n/a	Prep Batch n/a	Analytical Batch V4D4351
Run #1 Run #2	Purge Volum 5.0 ml	е					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	ND ND 0.79 0.78	0.50 1.0 1.0 1.0 1.0	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l	J J
91-20-3 CAS No.	Naphthalene Surrogate Recoveries	ND Run# 1	5.0 Run# 2	2.5 Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	96% 101% 102% 104%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

с. С

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC9898 AQ - W SW846	vater 8015D	13 East Joppa Road	d, Towso	on, MD	Date	Received:	11/19/19 11/21/19 1/a
Run #1 Run #2	File ID LM102024.D	DF 1	Analyzed 11/25/19 09:58	By XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GLM4242
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (Cé	5-C10)	ND	0.20	0.10	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluoroto	luene	87%		55-1	30%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

			Report	of An	alysis			Page 1 of 1		
Client San Lab Samp Matrix: Method: Project:	le ID: JC989 AQ - V SW84	Water 6 8015D SV	W846 3510C 3 East Joppa Road	346 3510C East Joppa Road, Towson,			Date Sampled: 1 Date Received: 1 Percent Solids: n on, MD			
Run #1 Run #2	File ID ZZ94410.D	DF 1	Analyzed 11/23/19 22:04	By RK	Prep D 11/23/1	ate 9 10:00	Prep Batch OP24205	Analytical Batch GZZ3407		
Run #1 Run #2	Initial Volume 300 ml	e Final Vo 1.0 ml	lume							
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH-DRO (C	10-C28)	0.0922	0.083	0.053	mg/l				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
84-15-1 438-22-2	o-Terphenyl 5a-Androstan	e	65% 69%		22-1 10-1	40% 35%				

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

3.2

Client Sar Lab Samp Matrix: Method: Project:	AQ SW	98988-3 9 - Effluent 7846 8260C	613 East Joppa Road	Date Sampled: Date Received: Percent Solids:			
Run #1 Run #2	File ID 2E157725.1	DF D 1	Analyzed 11/23/19 17:20	By MD	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E7006
Run #1 Run #2	Purge Volu 5.0 ml	ime					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	0.79 0.77 5.4 18.9 1.3 5.4	$0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0$	0.43 0.53 0.60 0.59 0.51 2.5	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	110% 109% 99% 98%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ω

ယ ပ

		Report	of Ana	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC98988-3 AQ - Efflue SW846 801		ud, Towsc	on, MD	Date	1	1/19/19 1/21/19 ′a
Run #1 Run #2	File ID D LM102023.D 1	F Analyzed 11/25/19 09:36	By 5 XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4242
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10	0.309	0.20	0.10	mg/l		
CAS No.	Surrogate Recover	ies Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluen	e 89%		55-13	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ သ

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JC9898 AQ - E SW846	Effluent 5 8015D SV	W846 3510C 3 East Joppa Road	l, Towsc	Received:	1/19/19 1/21/19 1/a		
Run #1 Run #2	File ID ZZ94411.D	DF 1	Analyzed 11/23/19 22:38	By RK	Prep D 11/23/1	ate 9 10:00	Prep Batch OP24205	Analytical Batch GZZ3407
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	:	64% 68%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

Alla (2-1-	ser,		C	:	IN 2235 Roi 32-329-0	ate 130	. Day	yton, N	13 08	8810			Tracking				,	Bottle Or	der Control		F	Page 1	1
	Laborator													Accutest Quote #						Accurest Job # JC98988				İ	
	Client / Reporting Information	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	i nan n	1. 4. 15. 1. 1. 1.	Proj	ect info	rmation	E			ζ.							í.	Requ	sted A	nalysis	Lui	- E	Matrix Codes	
Compeny Name EMS Environmental, Inc. Address				Project Name: Former Hess - 20204 Street										TCL D PPL D STAI	TCL D PP BND PAHD	by 8260B							DW- Drinking Water GW- Ground Water WW- Water		
4550 Bath Pike City State Zip Bethlehem PA 18017 Project Contact: E-mail for@emseiv.cog				1613 E. Joppa Road City State Towson MD Printert #									602 C AC NAP C			and Naphthalene	by 8015B	by 8015B					SW: Surface Water SO: Soil SL:Sludge OI:Oil		
Project Contact. Jeremy Fox Phone # 610-864-7789 Samplen's NameBrad Rohrbaugh				5713 Fax # 610-868-8195								4 D 8021 D 6021 18E D TBAD										LIQ- Other Liquid AIR- Air			
Accutest Sample #		SUMMA#		Collecti	on		# of bottles	Numt		5713 f prese	erved	Bottl	L M	8260 0 624 BTEX 0 MTB	8260 () 624 () Tea () NAP()	8270 () 626 () Abno Aeo	втех, мтве	TPH-GRO by 8015B	TPH-DRO					SOL-Other Solid WP-Wipe	$\frac{1}{2}$
1	Field ID / Point of Collection	MEOH Vial #	Date 11/19/2019	Time 1320	Sampled by BR	Matrix WW	7	7	<u> </u>	Ŷ		2 2	1 di	eç co		- 80 ∀	X	×	X						
23	MID EFF	•	11/19/2019 11/19/2019	1	BR BR	ww	7 7	7			-				-		X X	x x	X X			_		((E)r VH18
				-																					
									-				-								_				-
	Std. 15 Business Days Approved By:/ Date: 5 Std. 15 Business Days Approved By:/ Date: 10 Day RUSH				X Comm Comm NJ Re NJ Fu Other	A" B"	NYASP Category A NYASP Category B State Forms							e 300 ml HCL							pRù				
A CONTRACT OF	Other 14 Day Hess Standard gency T/A data available VIA Lab		e documented Date Time:	1:00		nples cl	" = Resu harge p	<u>`</u>		includ Reline	uisho	Ourle d By:	r dell	vory.	5	Date Tim	- N			Receive	201	273 1			
1 Relinquis 3 Relinquis 5	hed by Light		Date Time: 11) 24/1 9 Date Time:	- <i>79</i> 14:85	1 Rycenved By 3 Received By 5	2	Ē			5	quishe			- UJ	Posterv	Date Time	applicabl	_12	<u>.</u>	2 -V Receive 4		Jn Ice	Cooler	3.1C-P	-

LABEL VERIFICATION

JC98988: Chain of Custody Page 1 of 2

41

4

SGS Sample Receipt Summary

	Airbill #'s:
Cooler Temps (Corrected) °C: Cooler 1: (2.9); Cooler Security Y or N Y or N Sample	
2. Custody Seals Intact: Image: A. Smpl Dates/Time OK Image: Dates/Time OK 2. Configure OK Cooler Temperature Y or N 3. Sample 1. Temp criteria achieved: Image: Dates/Time OK Sample 2. Cooler temp verification: IR Gun 1. Sam 3. Cooler media: Ice (Bag) 2. All or 4. No. Coolers: 1 3. Conder	a Integrity - Documentation Y or N ple labels present on bottles: Image: Complete: Image: Complete: Image: Complete: ainer labeling complete: Image: Complete: Image: Complete: Image: Complete: Image: Complete: ple container label / COC agree: Image: Complete: Image: Complete: Image: Complete: Image: Complete: e Integrity - Condition Y or N Image: Complete: Image: Complete: option of sample: Image: Complete: Image: Complete: Image: Complete: Image: Complete:
1. Trip Blank present / cooler: Image: Cooler: Image: Cooler: Image: Cooler: Image: Cooler: 1. Ana 2. Trip Blank listed on COC: Image: Cooler: Image: Cooler: Image: Cooler: 2. Bott 3. Samples preserved property: Image: Cooler: Image: Cooler: Image: Cooler: 3. Suff 4. VOCs headspace free: Image: Cooler: Image: Cooler: Image: Cooler: 4. Cooler:	e Integrity - Instructions Y or N N/A lysis requested is clear: Image: Clear
Test Strip Lot #s: pH 1-12:229517 pH 12+:20871	7 Other: (Specify)

SM089-03 Rev. Date 12/7/17

JC98988: Chain of Custody Page 2 of 2 44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

12/13/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JC99786

Sampling Date: 12/04/19

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 17

Set

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 17 JC99786

Sections:

Table of Contents

-
N
ω
4

-1-

Section 1: Sample Summary						
Section 2: Summary of Hits	4					
Section 3: Sample Results	5					
3.1: JC99786-1: INF	6					
3.2: JC99786-2: MID	9					
3.3: JC99786-3: EFF	12					
Section 4: Misc. Forms	15					
4.1: Chain of Custody	16					

Sample Summary

EMS Environmental, Inc.

Job No: JC99786

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID					
This report co Organics ND	This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL										
JC99786-1	12/04/19	13:10 BR	12/06/19	AQ	Influent	INF					
JC99786-2	12/04/19	13:20 BR	12/06/19	AQ	Water	MID					
JC99786-3	12/04/19	13:30 BR	12/06/19	AQ	Effluent	EFF					

Summary of Hits

Job Number:	JC99786
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	12/04/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC99786-1 INF					
Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10) TPH-DRO (C10-C28) JC99786-2 MID	1.4 2.2 26.4 56.4 2.0 16.9 0.695 0.158	$\begin{array}{c} 0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0 \\ 0.20 \\ 0.083 \end{array}$	$\begin{array}{c} 0.43 \\ 0.53 \\ 0.60 \\ 0.59 \\ 0.51 \\ 2.5 \\ 0.10 \\ 0.053 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l mg/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10) JC99786-3 EFF	2.7 7.5 0.76 J 0.150 J	1.0 1.0 1.0 0.20	0.60 0.59 0.51 0.10	ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8015D
Methyl Tert Butyl Ether	0.67 J	1.0	0.51	ug/l	SW846 8260C

Ν

Dayton, NJ

Section 3 😡

Sample Results

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	ple ID: JC99 AQ - SW8	786-1 Influent 46 8260C 5 #20204, 16	613 East Joppa Road	Date Sampled: Date Received: Percent Solids:			
Run #1 Run #2	File ID 4D98784.D	DF 1	Analyzed 12/13/19 05:08	By KC	Prep Date n/a	Prep Bate n/a	h Analytical Batch V4D4367
Run #1 Run #2	Purge Volum 5.0 ml	e					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	1.4 2.2 26.4 56.4 2.0 16.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ug/l ug/l ug/l ug/l ug/l	
91-20-3 CAS No.	Surrogate Recoveries	Run# 1	3.0 Run# 2	Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	97% 103% 100% 104%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

Report of Analysis										
Client San Lab Samp Matrix: Method: Project:	le ID: JC99786-1 AQ - Influent SW846 8015D	1613 East Joppa Roa	Date Sampled: Date Received: Percent Solids: East Joppa Road, Towson, MD							
Run #1 Run #2	File ID DF LM102259.D 1	Analyzed 12/11/19 09:53	By XPL	Prep Da n/a	te	Prep Batch n/a	Analytical Batch GLM4254			
Run #1 Run #2	Purge Volume 5.0 ml									
CAS No.	Compound	Result	RL	MDL	Units	Q				
	TPH-GRO (C6-C10)	0.695	0.20	0.10	mg/l					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits						
98-08-8	aaa-Trifluorotoluene	100%	55-130%							

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

SGS

	Report of Analysis									
Client Sample ID:INFLab Sample ID:JC99786-1Matrix:AQ - InfluentMethod:SW846 8015DProject:HESS #20204,			Date				Sampled: 12/04/19 Received: 12/06/19 ent Solids: n/a			
Run #1 Run #2	File ID 2Y100293.D	DF 1	Analyzed 12/11/19 12:57	By SH	Prep D 12/10/1	ate 9 12:30	Prep Batch OP24514	Analytical Batch G2Y3825		
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume							
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH-DRO (C	10-C28)	0.158	0.083	0.053 mg/l					
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	2 Limits					
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		75% 62%		22-140% 10-135%					

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

<u>ω</u>

ω

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JC997 AQ - SW84	Water 6 8260C	613 East Joppa Road	l, Tow	Date Sampled: 12/04/19 Date Received: 12/06/19 Percent Solids: n/a				
Run #1 Run #2	File ID 4D98783.D	DF 1	Analyzed 12/13/19 04:39	By KC	Prep Date n/a	Prep Batch n/a	Analytical Batch V4D4367		
Run #1 Run #2	Purge Volume 5.0 ml	e							

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	ND ND 2.7 7.5 0.76	0.50 1.0 1.0 1.0 1.0	0.43 0.53 0.60 0.59 0.51	ug/l ug/l ug/l ug/l ug/l	J
91-20-3 CAS No.	Naphthalene Surrogate Recoveries	ND Run# 1	5.0 Run# 2	2.5 Lim	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 100% 101% 101%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

3.2

ω

9 of 17

SGS

	Report of Analysis									
Client San Lab Samp Matrix: Method: Project:	le ID: JC99786-2 AQ - Water SW846 8015D	1613 East Joppa Roa	ad, Towsc	on, MD	Date	Sampled: Received: ent Solids:	12/04/19 12/06/19 n/a			
Run #1 Run #2	File ID DF LM102257.D 1	Analyzed 12/11/19 09:02	By 3 XPL	Prep Da n/a	ate	Prep Batcl n/a	n Analytical Batch GLM4254			
Run #1 Run #2	Purge Volume 5.0 ml									
CAS No.	Compound	Result	RL	MDL	Units	Q				
	TPH-GRO (C6-C10)	0.150	0.20	0.10	mg/l	J				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its					
98-08-8	aaa-Trifluorotoluene 101% 55-130%									

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

3.2

			Report	of An	alysis			Page 1 of 1
Client Sample ID:MIDLab Sample ID:JC99786-2Date Sampled:Matrix:AQ - WaterDate Received:Method:SW846 8015DSW846 3510CPercent Solids:Project:HESS #20204, 1613 East Joppa Road, Towson, MD							Received: 1	2/04/19 2/06/19 //a
Run #1 Run #2	File ID 2Y100294.D	DF 1	Analyzed 12/11/19 13:32	By SH	Prep D 12/10/1	ate 9 12:30	Prep Batch OP24514	Analytical Batch G2Y3825
Run #1 Run #2	Initial Volume 300 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	2 Limits			
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	e	82% 67%		22-1 10-1	40% 35%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ω

Client San Lab Samp Matrix: Method: Project:	AQ SW	99786-3 - Effluent 7846 8260C	513 East Joppa Road	son, MD	Date Sampled: Date Received: Percent Solids:		
Run #1 Run #2	File ID 4D98770.D	DF 1	Analyzed 12/12/19 22:27	By KC	Prep Date n/a	Prep Batc n/a	h Analytical Batch V4D4367
Run #1 Run #2	Purge Volu 5.0 ml	me					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	ND ND ND 0.67 ND	$\begin{array}{c} 0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 5.0 \end{array}$	0.43 0.53 0.60 0.59 0.51 2.5	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	S.0 Run# 2	Limi	C	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 100% 102% 102%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ ပ

ω

SGS

		Report of	Analysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: JC99786-3 AQ - Effluent SW846 8015D	13 East Joppa Road, T	D P	···· I	2/04/19 2/06/19 ′a
Run #1 Run #2	File ID DF LM102256.D 1	Analyzed By 12/11/19 08:41 XF	-	Prep Batch n/a	Analytical Batch GLM4254
Run #1 Run #2	Purge Volume 5.0 ml				
CAS No.	Compound	Result RL	MDL Uni	its Q	
	TPH-GRO (C6-C10)	ND 0.20	0 0.10 mg	/1	
CAS No.	Surrogate Recoveries	Run# 1 Ru	n# 2 Limits		
98-08-8	aaa-Trifluorotoluene	101%	55-130%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ သ

ω

	Report of Analysis												
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC9978 AQ - E SW846	ffluent 8015D SV	V846 3510C 3 East Joppa Road	d, Towsc	on, MD	Date	~~	2/04/19 2/06/19 ⁄a					
Run #1 Run #2	File ID ZZ94609.D	DF 1	Analyzed 12/11/19 16:55	By SH	Prep D 12/11/1	ate 9 09:00	Prep Batch OP24536	Analytical Batch GZZ3417					
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume										
CAS No.	Compound		Result	RL	MDL	Units	Q						
	TPH-DRO (C1	0-C28)	ND	0.083	0.053	mg/l							
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its							
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		82% 88%		22-1 10-1								

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ သ

ω

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

dit he's			\mathcal{V}				2235 Ro 32-329-0	ute 1.	30, 13	Dayton,	, NJ	08810			X Trackin	g #				Bottle	Order C	ontrol #		
-4	ACCUTES	51.						200	0.0				. 100											
_	Laborator	ies												Accut	st Quote	•				Accute	est Job #	・フ	- (.g	9786
														the s	Securitoria	and in the			24					See A
Сотралу На	Client / Reporting Information		Second Balling							1100-10	.Su			867		T	1		Requ	ested	Analys	118	38	Matrix Codes DW- Droking Water
	me EMS Environmental, Inc.			Project N	ame:	Former	Hess - 2	0204							IBE I		8260B							GW- Ground Water
Address	Lino Environmental, men			Street										1	D MTBE	STARS	2							WW- Water
4550 Batt	Pike				oppa Road									_ 6	- SS	STA	e by		1		1			SW Surface Water
City	State		Zip	City	State							CI STARS	+TICSET	len							SO- Soll SL-Sludge			
Bethlehe		18017	-	Towson								27	Ę							01-01				
Project Cont		E-mail	fox@emsenv.cor	Project #	5713 5713								DHA PAHD	da pl	6		1				LIQ- Other Liquid			
Phone #	Jeremy Fox		_	Fax #						021 0 602		1 2 1	1 P	015	8015B		[Erd. Onley Edulo				
	610-868-7799			610-866-8195						₽₽	BN TCL	u a	l a	18 A					AIR- Air					
Samplers's P	ame Brad Rohrbaugh									5713				624 C		626	MTBE and Naphthalene	TPH-GRO by 8015B	0 g		1			SOL-Other Solid
Accutest		SUMMA #		Collecti	on			Nur	nber	of pre	serve	ed Bot	ties		U U Z	 20 20 20 20 20 20 20 20 20 20 20 20 20	X	15	TPH-DRO					WP-Wipe
Sample #	Field ID / Point of Collection	MECH Vial #	Date	Time	Sampled by	Matrix	# of bottles	ō	ģ	N03	Ne Ne	OSH	5	8260 8260 BTEY	18A	8270 ABND	BTEX,	H	I ₹					LAB USE ONLY
1	INF		12/4/2019	1310	BR	ww	7	7	-		1						x	x	x	1	1			
_				r		1	1	t' I		-	+		+	+	-		-	+	1	1	+	+		
	MID		12/4/2019	1320	BR	ww	7	7			1		-		-		X	X	X	I		+	⊢	
3	EFF	•	12/4/2019	13:30	BR	ww	7	7									X	X	X					
			_										Т											E28
						-	-			-	+		+		-	1			+	+	+	++		/-/ "
				┞───		l				_	+		+		+					 	+	+		<u> </u>
				L																	- D	1 con		
													1			10	TIAL	ASES	SM	NT_	R	XU		
	· · · · · · · · · · · · · · · · · · ·										\uparrow		+		-			1	<u> </u>	<u> </u>				
<u> </u>				<u> </u>	<u> </u>			+ -	-	-	+		╋	+	+	+++	12.4	.	10AT	1022	+		+	
	Turnaround Time (Business days)					Data D	liverable	Inform	Dation	_	I,	L,	1			<u> </u>	l <u></u>	1			/ Rema			with the second
tin a series and	Std. 16 Business Days	Approved By			X Com	nercial "/				L CLP		<u> ن</u>			-	"head-mea	-						- L	<u>n an /u>
	10 Day RUSH				<u></u>	nercial "I		H		SP Cat	legory	A				Ø	Z×	30	2.	- 1	+0	レト	X1	
	5 Day RUSH					duced		\exists	NYA	SP Cat	legory	в										-	_	
	3 Day EMERGENCY				🔲 NJ Fu					e Form														
	2 Day EMERGENCY				Other	Full TI	ER 1		EDD) Form	at		-											
	1 Day EMERGENCY																							
<u>×</u>	Other 14 Day Hess Standard				Comm	ercial "A	" = Resu	tts On	ily															
Emer	gency T/A data available VIA La		e documen de	A lought	ch time/an				ior	inclu	Idina		br da	ii faan								1977A	,	- Constant of the local division of the loca
Relinquis	and by Sampley	ustody mast b	Date Time:		Received By	iipies ci	lange p	1	85101	-100	ingyls	hed By:				Date Tin	10:			Receiv	ed By	7	-t	
123	Jim-In		12.61	15	1/	_	4	L	_	24	L				~					2	1	20	×,	
Relinquis	iga by:		Date Time:	1712	Received By	7				R	Inquis	ved By:				Date Tin	10:			Receiv	artey:		- /	5
3	AT/L_		12619	(I)	3	2				4	lody 5				Proton	red where	aonlicabl			4		On lo		alay Tama
Resortiule	\sim 7				200					100	nouy a						еррисари	,				الحر	- CO	7 11-7 2
0					<u>.</u>																	<u> </u>		11 41

JC99786: Chain of Custody Page 1 of 2

44

4

SGS

SGS Sample Receipt Summary

Job Number: Jo	099786	(Client:		Project:			
Date / Time Received: 12	2/6/2019 5	5:12:00 PI	M Deliver	y Method:	Airbill #'s:			
Cooler Temps (Raw Measu Cooler Temps (Corre								
		3.	COC Present: npl Dates/Time O	<u>Y or N</u> ☑ □ K ☑ □	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y V V Y V	or N	
Quality Control Preservat 1. Trip Blank present / cooler 2. Trip Blank listed on COC: 3. Samples preserved proper 4. VOCs headspace free:		or N			 Condition of sample. Sample Integrity - Instructions Analysis requested is clear: Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear: 	¥ □ □		<u>N/A</u> V
Test Strip Lot #s: Comments	pH 1-12:	22	29517	рН 12+: _	208717 Other: (Specify)			

SM089-03 Rev. Date 12/7/17

JC99786: Chain of Custody Page 2 of 2 44

4

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

12/27/19

Technical Report for

EMS Environmental, Inc.

HESS #20204, 1613 East Joppa Road, Towson, MD

5713

SGS Job Number: JD325

Sampling Date: 12/11/19

Report to:

EMS Environmental, Inc. 4550 Bath Pike Bethlehem, PA 18017 jfox@emsenv.com

ATTN: Jeremy Fox

Total number of pages in report: 17

Set

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Beth Wasserman 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

JD325

1 of 17

Sections:

Table of Contents

<u> </u>
N
ယ
4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: JD325-1: INF	6
3.2: JD325-2: MID	9
3.3: JD325-3: EFF	12
Section 4: Misc. Forms	15
4.1: Chain of Custody	16

Sample Summary

EMS Environmental, Inc.

Job No: JD325

HESS #20204, 1613 East Joppa Road, Towson, MD Project No: 5713

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		lts reported as = Not detecte			cted. The following app L	lies:
JD325-1	12/11/19	13:05 BR	12/13/19	AQ	Influent	INF
JD325-2	12/11/19	12:55 BR	12/13/19	AQ	Water	MID
JD325-3	12/11/19	12:45 BR	12/13/19	AQ	Effluent	EFF

Summary of Hits

Job Number:	JD325
Account:	EMS Environmental, Inc.
Project:	HESS #20204, 1613 East Joppa Road, Towson, MD
Collected:	12/11/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD325-1 INF					
Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene TPH-GRO (C6-C10) TPH-DRO (C10-C28)	1.7 2.6 31.5 62.4 2.0 19.4 0.778 0.334	0.50 1.0 1.0 1.0 1.0 5.0 0.20 0.083	0.43 0.53 0.60 0.59 0.51 2.5 0.10 0.053	ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D SW846 8015D
JD325-2 MID					
Benzene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	0.45 J 3.9 8.7 0.72 J 0.168 J	0.50 1.0 1.0 1.0 0.20	0.43 0.60 0.59 0.51 0.10	ug/l ug/l ug/l ug/l mg/l	SW846 8260C SW846 8260C SW846 8260C SW846 8260C SW846 8015D
JD325-3 EFF					
Methyl Tert Butyl Ether	0.62 J	1.0	0.51	ug/l	SW846 8260C

Ν

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

Client San Lab Samj Matrix: Method: Project:	ole ID: JD A(SV	325-1 Q - Influent V846 8260C	1613 East Joppa Road	l, Tow	son, MD		12/11/19 12/13/19 n/a
Run #1 Run #2	File ID 4D99033.E	DF D 1	Analyzed 12/21/19 03:52	By KC	Prep Date n/a	Prep Bate n/a	h Analytical Batch V4D4378
Run #1 Run #2	Purge Vol 5.0 ml	ume					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	1.7 2.6 31.5 62.4	$0.50 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	0.43 0.53 0.60 0.59	ug/l ug/l ug/l ug/l	
1634-04-4 91-20-3 CAS No.	Methyl Tert Butyl Ether Naphthalene Surrogate Recoveries	2.0 19.4 Run# 1	1.0 5.0 Run# 2	0.51 2.5 Lim	ug/l ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	90% 90% 98% 100%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

			Report		ary 515			rage 1 01 1
Client San Lab Samp Matrix: Method: Project:	le ID: JD325 AQ - I SW840	nfluent 5 8015D	i13 East Joppa Road	1, Towso	n, MD	Date	Sampled: Received: ent Solids:	12/11/19 12/13/19 n/a
Run #1 Run #2	File ID LM102358.D	DF 1	Analyzed 12/17/19 09:15	By XPL	Prep D n/a	ate	Prep Bate n/a	h Analytical Batch GLM4259
Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-GRO (C	6-C10)	0.778	0.20	0.10	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
98-08-8	aaa-Trifluorot	oluene	90%		55-1	30%		

Report of Analysis

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JD325- AQ - In SW846	nfluent 8015D SV	V846 3510C 3 East Joppa Road	d, Towsc	on, MD	2/11/19 2/13/19 a		
Run #1 Run #2	File ID 2Y100384.D	DF 1	Analyzed 12/18/19 14:01	By SH	Prep D 12/17/1	ate 9 17:30	Prep Batch OP24667	Analytical Batch G2Y3830
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	l0-C28)	0.334	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		77% 54%		22-1 10-1			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

Client San Lab Samp Matrix: Method: Project:	ole ID: JD3 AQ SW8	25-2 - Water 346 8260C	513 East Joppa Road	l, Tow	son, MD	Date Sampled: Date Received: Percent Solids:	/ -+/ -/
Run #1 Run #2	File ID 4D99034.D	DF 1	Analyzed 12/21/19 04:21	By KC	Prep Date n/a	Prep Bate n/a	h Analytical Batch V4D4378
Run #1 Run #2	Purge Volu 5.0 ml	ne					

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.45 ND 3.9 8.7	0.50 1.0 1.0 1.0	0.43 0.53 0.60 0.59	ug/l ug/l ug/l ug/l	J
1634-04-4 91-20-3	Methyl Tert Butyl Ether Naphthalene	0.72 ND	1.0 1.0 5.0	0.59 0.51 2.5	ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	90%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	89%		81-1		
2037-26-5	Toluene-D8	98%		80-1		
460-00-4	4-Bromofluorobenzene	99%		80-1	20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.2

ω

9 of 17

		Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	Ie ID: JD325-2 AQ - Water SW846 8015D	i13 East Joppa Roa	d, Tows	on, MD	Date	1	2/11/19 2/13/19 /a
Run #1 Run #2	File ID DF LM102357.D 1	Analyzed 12/17/19 08:54	By A XPL	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch GLM4259
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH-GRO (C6-C10)	0.168	0.20	0.10	mg/l	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
98-08-8	aaa-Trifluorotoluene	90%		55-1	30%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

JD325

3.2

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: JD325- AQ - V SW846	Vater 5 8015D SV	V846 3510C 3 East Joppa Roa	d, Towsc	on, MD	2/11/19 2/13/19 a		
Run #1 Run #2	File ID 2Y100385.D	DF 1	Analyzed 12/18/19 14:35	By SH	Prep D 12/17/1	ate 9 17:30	Prep Batch OP24667	Analytical Batch G2Y3830
Run #1 Run #2	Initial Volume 300 ml	Final Vo l 1.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C	10-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane	76% 59%		22-1 10-1	40% 35%			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2

ω

Client Sar Lab Samp Matrix: Method:	le ID: JD32 AQ -	5-3 Effluent 46 8260C				Date Sampled: Date Received: Percent Solids:	/ / - /
Project:	HES	8 #20204, 1	613 East Joppa Road	l, Tow	son, MD		
Run #1	File ID 4D99023.D	DF 1	Analyzed 12/20/19 23:06	By KC	Prep Date n/a	Prep Batc n/a	h Analytical Batch V4D4378
Run #2							
D //1	Purge Volum	ie					
Run #1 Run #2	5.0 ml						

Report of Analysis

Purgeable Aromatics, MTBE, Naphthalene

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4 91-20-3	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether Naphthalene	ND ND ND 0.62 ND	0.50 1.0 1.0 1.0 1.0 5.0	0.43 0.53 0.60 0.59 0.51 2.5	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	91% 89% 98% 101%		80-1 81-1 80-1 80-1	24% 20%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ယ ပ

12 of 17

		Report of	² Analysis	Page 1	of 1
Client San Lab Samp Matrix: Method: Project:	Ie ID: JD325-3 AQ - Effluent SW846 8015D	3 East Joppa Road, '	Towson, MD	Date Sampled:12/11/19Date Received:12/13/19Percent Solids:n/a	
Run #1 Run #2	File ID DF LM102356.D 1	Analyzed B 12/17/19 08:23 X	By Prep Date KPL n/a	e Prep Batch Analytical Ba n/a GLM4259	tch
Run #1 Run #2	Purge Volume 5.0 ml				
CAS No.	Compound	Result RI	L MDL U	Units Q	
	TPH-GRO (C6-C10)	ND 0.2	20 0.10 r	ng/l	
CAS No.	Surrogate Recoveries	Run# 1 Ru	un# 2 Limits		
98-08-8	aaa-Trifluorotoluene	88%	55-130	%	

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

ယ

ယ သ

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JD325- AQ - E SW846	ffluent 8015D SV	V846 3510C 3 East Joppa Road	d, Towsc	on, MD	Date	L	2/11/19 2/13/19 a
Run #1 Run #2	File ID 2Y100386.D	DF 1	Analyzed 12/18/19 15:09	By SH	Prep D 12/17/1	ate 9 17:30	Prep Batch OP24667	Analytical Batch G2Y3830
Run #1 Run #2	Initial Volume 300 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH-DRO (C1	0-C28)	ND	0.083	0.053	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
84-15-1 438-22-2	o-Terphenyl 5a-Androstane		76% 59%		22-1 10-1	40% 35%		

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ သ

Dayton, NJ

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

~	ACCUTE	ST.					2235 Ro 32-329-0							FED-EX	Tracking					Bottle O	rder Cont	rol#		
	Laborator													Accutes	Quote #					Accutes	t Job #	5	D	325
	Client / Reporting Information		Section		Pro	ect Info	rmation			<i>i</i>					ت نیسول ماند تصادید			T	Requ	sted A	nalysis			Matrix Codes
ompany N				Project N	ame:	Former	Hess - 20	1204									œ	T						DW - Drinking Water
ddress	EMS Environmental, Inc.			Street										-	MTBE	g	8260B							GW- Ground Water WW- Water
4660 Bat				1613 E. Je	oppa Road										S D	C STARS	2	1						SW- Surface Water
ty	State		Zip	City					State					<u> </u>	STAF	័ទ្ធ	ene		. 1					SO Soil
Bethlehe		18017		Towson					M	D				ΩŽ	20	Ę	ithal							SL-Słudge Ol-Oli
oject Con	lact: Jeremy Fox	E-mail	flox@emsenv.co	Project #	5713									8021 0 602	TCL D PPL D STARS	PPL P	laph	_	_					
ione#				Fax#										128 171	20	50	ğ	115	8015B					LIQ- Other Liquid
mplers's	610-866-7799 Name Brad Rohrbaugh			Client Pu	610-86 rchase Orde									- H	ĔĔ	BND	Ëa	by 8	by 81					AIR- Air
ccutest	· · · · · · · · · · · · · · · · · · ·	SUMMA #	-	Collecti		<u> </u>		Num		6713 If pres	enver	d Bott	105	0 624 0 MTB	624 C VAPO	626 🛛 Aeo	MTE	R0						SOL-Other Solid WP-Wipe
ample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	# of bottles	ý	5 5		NONE	MEON	1	8260 BTEX (8260 🛛 624 🖵 TBA 🗆 NAPO	8270 D ABND	BTEX, MTBE and Naphthalene	TPH-GRO by 8015B	TPH-DRO					LAB USE ONLY
1	INF		12/11/2019	1300	BR	ww	7	7									х	x	x					1
δ	MID		12/11/2019	1255	- BR	ww	7	7		T		1		-			x	x	х				+	
	EFF		12/11/2019	124	BR	ww	7	7	+			1					x	x	x				+	
-			12/11/2018	127.			L'	+	+-	+	\vdash		+	-				^	^	_				
									+														<u> </u>	
							<u> </u>	$ \rightarrow$	_			_												
																				[
						_																		
												1				-	-			_				
	Turnaround Time (Business days)			395	ઇ ગયેલ પ્રદેશ	Data De	liverable I	Informa	ation										Com	ments /	Remarks	I	-	all and a second second
	Std. 15 Business Days	Approved By	/ Date:					_	FULL															
	10 Day RUSH 5 Day RUSH				Comn	nercial "(duced) "E			P Cate P Cate														
	3 Day EMERGENCY				NJ Fu		ľ			Forms		5						IN	TIAL	ACC	COME	<u>NT</u>	3A	on
	2 Day EMERGENCY				Other	Full TIE	ER 1 [EDD F	Format	·			Í								ur-		
×	1 Day EMERGENCY Other 14 Day Hess Standard																	LA	BEL 1	/ERI	ICATI	ON_		
	ency T/A data available VIA La	hlink			Comm	prcial "A"	' = Result	a Orily	1															
CON E	Sample C	ustody must be	documented	below eat	th time san	nples cl		sises	sion.	includ	ting c	ourie	r deliv	en l					- 1	15000	201.00			
Relinquish	ed by Sampler:		දින් යි. 💏	د 😋	Received By:			1		Relin	quithe	d By:	7	<u> </u>	1	Date Time	:			to caling a	By:			4
Relinquish	ed by		12-/3- Date Time:		1	A	$\overline{\mathcal{A}}$	<u></u>		2	// quishe	d By:	Ľ	\angle	/ 2/13/19 2 Koleotalraulacers									
Roh	and an inde		12-13-1	9	1	Ϊ	>		-				-								<i>ч</i> у :			
Relinquish	ed by:	-1	Date Time:	<u>.</u>	Beceived By:	/				Custo	ody Sei	al #		~	Preserve	d where a	plicable		!	•		On Ice	Caol	fer Temp.
5					5					1			-						TN	ュ	-	ø	T,	3.40C

JD325: Chain of Custody Page 1 of 2 4:1

4

SGS Sample Receipt Summary

Job Number: JD325 Client:		Project:	
Date / Time Received: 12/13/2019 4:47:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured) °C: Cooler 1: (3.4); Cooler Temps (Corrected) °C: Cooler 1: (3.2);			
Cooler Security Y or N 1. Custody Seals Present: ✓ □ 3. COC Pre 2. Custody Seals Intact: ✓ □ 4. Smpl Datest Cooler Temperature Y or N 1. Temp criteria achieved: ✓ □ 1. Gun 3. Cooler temp verification: IR Gun IR Gun 3. Cooler media: Ice (Bag) 1 4. No. Coolers: 1 Image: State Stat		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N ∅ □ ∅ □ ⋎ or N ⋎ or N ⋈ □ ⋎ or N ⋎ or N ⋈ □ ↓ or N/A ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □ ↓ □
Test Strip Lot #s: pH 1-12: 229517	pH 12+:	208717 Other: (Specify)	
Comments			

SM089-03 Rev. Date 12/7/17

JD325: Chain of Custody Page 2 of 2

44

4

B WSP SITE INVESTIGATION SUMMARY LETTER-MAY 2018

wsp

VIA ELECTRONIC MAIL

May 30, 2018

Ellen Jackson Maryland Department of the Environment Oil Control Program Suite 260 1800 Washington Boulevard Baltimore, MD 21230-1719

Subject:Site Investigation SummaryFormer Hess Station #20204, 1613 East Joppa Road, Towson, Maryland

Dear Ms. Jackson:

WSP USA Inc. (WSP), on behalf of Hess Corporation, is pleased to present this summary of the site investigation at the former Hess Filling Station on Joppa Road in Towson, Maryland. The site investigation was performed in accordance with WSP's April 7, 2017, Site Investigation Work Plan, approved by the Maryland Department of the Environment (MDE) in a letter dated May 9, 2017.

The scope of the investigation included (1) defining the areas of maximum concentrations of site contaminants, (2) collecting additional groundwater data needed to evaluate in situ treatment options, and (3) performing an in situ chemical oxidation (ISCO) bench scale study. The investigation was designed to collect data needed to evaluate potential corrective measures to reduce concentrations in the areas of the site with significant contaminant mass, primarily benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons (TPH). The investigation results provide the information needed to evaluate a potential corrective action for the area of maximum remaining contaminant concentrations.

SITE INVESTIGATION

The site investigation was performed September 18 through 21, 2017, and extended from the southern area of the former Hess Filling Station onto Ridgely Manor Park, located south of the former Hess Filling Station on Yakona Road.

The investigation was performed in accordance with the Site Investigation Work Plan and consisted of the following steps:

- Field preparation
- Membrane interface probe (MIP)/ Hydraulic profiling tool (HPT) investigation
- Groundwater sampling

FIELD PREPARATION

Before initiating the work, Hess arranged property access with the property owners. Soil boring permits were obtained from Baltimore County, and the health and safety plan was updated. Public safety measures, including temporary barriers, were set up around work zones before initiating work, and public and private utility locates were performed to mark the location of utilities in advance of intrusive work.

WSP USA Suite 300 13530 Dulles Technology Drive Herndon, VA 20171

Tel.: +1 703 709-6500 Fax: +1 703 709-8505 wsp.com

wsp

MIP-HPT INVESTIGATION

The MIP/HPT evaluation was performed by Cascade Technical Services of Millersville, Maryland, on September 18 and 19, 2017. The locations of the 9 MIP/HPT soil borings (MIP-01 through MIP-09) are shown on Figure 1. The MIP/HPT evaluation provided data on the vertical and horizontal location of the 'hot spot' of maximum contaminant concentrations and identified conductive zones where preferential contaminant transport is occurring. The MIP/HPT report is provided as Enclosure A. The maximum probe responses (over 1 x107 microvolts) were measured at MIP-02, located in the southern portion of the former Hess Filling Station, and MIP-07 and MIP-08, located in the northern portion of Ridgely Manor Park. The depth below ground surface (bgs) of the maximum probe responses ranged from 25 to 32 feet bgs at MIP-02 to 21 to 26 feet bgs at MIP-07 to 18 to 32 feet bgs at MIP-08.

Although variability was noted between locations, the HPT pressure tended to be highest, and inversely the flow rate the lowest, at the upper (e.g., less than 5 feet bgs) and lower portion (e.g., greater than 30 feet bgs) of the borings, with the minimum pressures and maximum flow rates noted in the middle interval. The maximum MIP responses occurred at depths typically corresponding to decreasing HPT pressure and increased flow, indicating the intervals containing the maximum contaminant concentrations are present in more permeable flow zones.

Two groundwater and four soil samples were collected after the MIP/HPT screening to provide quantitative laboratory analytical data for comparison to the MIP qualitative data. Groundwater samples were collected at MIP-2 (25-30 feet bgs) and MIP-8 (18-22 feet bgs), corresponding to the depths of maximum probe response and lowest HPT pressure in those two borings. The soil samples were collected from the locations and depths corresponding to the maximum probe responses, MIP-02 (25-30 feet bgs), MIP-07 (21-26 feet bgs), and MIP-08 (18-22 and 27-30 feet bgs). The samples were labeled, stored in an ice cooler, and submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. Environmental Protection Agency (EPA) Method 8260 and TPH-diesel range organics (DRO) and TPH-gasoline-range organics (GRO) by EPA Method 8015. The analytical results are provided as Enclosure B.

Groundwater results were compared to Maryland Environmental Assessment Technology (MEAT) Generic Numeric Cleanup Standards Type I/II Aquifers in Table 1, and soil results were compared to the MEAT Generic Numeric Cleanup Standards for Non-Residential Soil in Table 2. The groundwater and soil results are also displayed on Figures 2 and 3. The maximum BTEX and TPH concentrations were measured at MIP-08 (18-22 feet bgs) in groundwater and MIP-2 (25-30 feet bgs) in soil. TPH-DRO and TPH-GRO concentrations greater than MEAT standards were detected in groundwater samples from both MIP-02 (25-30 feet bgs) and MIP-08 (18-22 feet bgs). Benzene was also detected above the MEAT standard in the groundwater sample at MIP-08 (18-22 feet bgs) at a concentration of 23.5 micrograms per liter (µg/l). All soil concentrations were below the MEAT standards except for the TPH-GRO and TPH-DRO concentrations at MIP-2 (1,220 milligrams per kilogram [mg/kg] and 803 mg/kg, respectively).

Approximately 60 pounds of soil from the identified 'hot spot' was collected from MIP-08 (18-22 feet bgs) for the bench scale ISCO treatability study and shipped to Terra Systems in Claymont, Delaware. The soil was collected from multiple borings installed at MIP-08 until the required mass of soil was collected.

GROUNDWATER SAMPLING

Groundwater samples were collected September 19 and 20, 2017, from four wells south of the former underground storage tank (MW-4, YMW-3, YMW-7, and YP-1; Figure 1). Three of the locations (MW-4, YMW-7, and YP-1) were selected using historical groundwater results to represent maximum contaminant concentrations. The remaining sampling location (YMW-3) was non-detect in previous sampling events for TPH and BTEX compounds, and was selected to provide background geochemical data.

The groundwater samples were collected using low flow sampling methods in accordance with WSP Standard Operating Procedures. Temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential (ORP) were measured during purging using a multi-parameter water quality meter with a flow-through cell to minimize atmospheric interference. These readings, along with observations on groundwater quality, were recorded on groundwater purge forms (Enclosure C). Groundwater was removed via bladder pump from the well until parameters stabilized. After the well was adequately purged, groundwater samples were collected using the bladder pump. The samples were labeled with the appropriate identification, stored in a cooler with ice and

vsp

submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. EPA Method 8260, TPH-DRO/GRO by EPA Method 8015, and selected electron acceptors (alkalinity, sulfate, and sulfide). The analytical results are provided as Enclosure B, and summarized in Figure 2 and Table 1.

One equipment blank and one trip blank were collected during the groundwater sampling event as quality assurance samples. The equipment blank was analyzed for the site contaminants (BTEX and TPH-DRO/GRO), and the trip blank was analyzed for BTEX compounds. Eight liters of groundwater was collected from two contaminated well locations (YMW-7 and YP-1) and shipped to Terra Systems for the bench scale study.

The groundwater samples from MW-4, YMW-7, and YP-1 contained benzene, TPH-DRO, and TPH-GRO concentrations above the MEAT standards, with the maximum BTEX and TPH concentrations detected at YMW-7 (Table 1). Although the samples were collected using a different method in this event (low flow versus traditional multiple volume purge), the contaminant concentrations at each location were consistent with the concentrations measured in recent quarterly sampling events. As anticipated, the site contaminants were non-detect in the sample from background well YMW-3. The quality assurance samples were non-detect for all compounds analyzed, confirming proper equipment decontamination and field handling of samples. Alkalinity concentrations ranged from 24 milligrams per liter (mg/l) at YMW-3 to 242 mg/l at MW-4. Sulfate was only detected at background well YMW-3 (65.2 mg/l), and sulfide was non-detect at all four locations. Ferrous iron was measured using a field test kit at two locations, MW-4 and YP-1, with a concentration above 3.3 mg/l measured at both locations. Dissolved oxygen concentrations in the purge water were low, ranging from 0 to 1.16 mg/l at YP-1, and ORP in the purge water was less than 0 millivolts at all locations except for YMW-3, the background well, where it was measured at 132 millivolts. These measurements demonstrate that anaerobic (reducing) conditions are present in the wells with contamination.

ISCO TREATABILITY STUDY

The bench scale ISCO treatability study was performed by Terra Systems of Claymont, Delaware, to evaluate the effectiveness of Klozur® SP, a persulfate formulation distributed by PeroxyChem, on site soil and groundwater samples collected during the September 2017 investigation. The bench scale study tested both natural activation (also referred to as unactivated) and base activation of the persulfate. The activation of persulfate forms oxidative radical species which will oxidize site contaminants and other organic compounds. The base activation test included the addition of a 25% sodium hydroxide solution to raise and maintain a pH of 10.5 SU in soil and groundwater. The unactivated and activated tests evaluated three different persulfate concentrations (10, 20, and 40 grams per liter [g/l]). Replicate controls were also prepared for each set of tests. The treatability study summary report from Terra Systems is provided as Enclosure D.

Components of the study included the initial sample (baseline) characterization, site soil and groundwater oxidant demand testing, testing of contaminant destruction at the three different oxidant doses and one control, and reporting. All testing was completed using near field-encountered soil to groundwater ratios, in vessels with minimal headspace, and without periodic soil mixing. The treatability study was initiated in October 2017, following receipt of the data for the baseline characterization samples. As the base activation causes faster consumption of the persulfate, the base-activated study was performed over a shorter duration than the unactivated study. The base-activated study was performed for 14 days, through October 30, 2017, and the unactivated study was continued for 91 days, through January 15, 2018.

Periodic measurements of pH, persulfate, and other factors (e.g., oxidant demand) were monitored throughout the study. If the pH of the base-activated persulfate batches fell below 10.5 SU, then additional 25% sodium hydroxide was added to maintain the elevated pH.

During the treatability study, ten soil and twelve groundwater samples were collected from the test batches for laboratory analysis at 0 days (baseline characterization), 14 days (base-activated persulfate study conclusion), and 91 days (unactivated persulfate study conclusion). The samples were submitted to Pace Analytical Laboratories for analysis of BTEX by U.S. EPA Method 8260, TPH-DRO/TPH-GRO by EPA Method 8015. The analytical results are provided as Enclosure B.

vsp

The potential for the treatment to cause mobilization of naturally occurring metals was evaluated by analyzing water samples for chromium, molybdenum, selenium, uranium and vanadium. Groundwater samples of the 20 g/l persulfate dose were collected and analyzed for these oxyanions at baseline, 14 days for the base-activated batches, and 91 days for the unactivated batches. These samples were analyzed by Pace Analytical Laboratories using EPA Method 6020 (Enclosure B).

BENCH SCALE TREATABILITY STUDY RESULTS

The effectiveness of the treatability study was evaluated by comparing the contaminant concentrations from the baseline samples to the treated samples collected in the study, and by evaluating the longevity of the persulfate at the end of the study. Due to limited sample volume, the base-activated samples collected at 14 days and the unactivated samples collected at 91 days were diluted by an order of magnitude. Therefore, the groundwater results provided in Table 3 and the soil results provided in Table 4 are corrected by an order of magnitude dilution. The post-treatment concentrations summarized in the discussion below are corrected for the dilution. Table 5 provides the mass balance and mass removal calculations for the base-activated and unactivated samples.

The base-activated persulfate results indicated a 45 to 90% reduction in persulfate concentrations by the end of the 14-day study, with the highest depletion of persulfate noted in the 20 g/l of persulfate batch (Enclosure D). As mentioned previously, the pH was maintained at 10.5 SU or higher throughout the study, with the pH readings ranging from 10.9 to 12.7 SU. The unactivated persulfate testing results indicated a 51 to 65% reduction in persulfate concentrations through Day 91 of the study, with the highest depletion noted in the 40 g/l of persulfate. The results showed a decrease in pH during the study, from initial readings of 7.5 to 8.6 SU at the beginning of the study to 3.6 to 7.2 SU at the conclusion of the 91-day study.

Metals concentrations, which were non-detect in the baseline water samples, significantly increased in the base-activated tests (Table 3). Chromium and vanadium concentrations increased to concentrations well above the MEAT generic numeric cleanup standards in the 14-day base-activated results. The metals concentrations remained non-detect in the unactivated persulfate tests, except for total chromium, which was detected at a concentration of 11 μ g/l (below the MEAT generic numeric cleanup standard). In summary, these results indicate metals mobilization occurred with the base activation to concentrations above criteria.

MASS REMOVAL

The total contaminant mass for each persulfate concentration tested was calculated as the sum of the mass in the water and soil; the contaminant mass in water and soil were based on the concentrations in the laboratory results, including the correction factor of 10 for diluted samples, and the quantities of groundwater (220 milliliters) and soil (980 g) in each treatability study. The mass reduction was then calculated based on changes in mass from baseline. The mass and mass reduction for each persulfate concentration are shown in Table 5.

Over 97% BTEX reduction was noted at all three persulfate concentrations with the base activation, with TPH-GRO reduction ranging from 65% (10 g/l persulfate) to 78% (40 g/l) persulfate and TPH-DRO reduction ranging from 52% (10 g/l persulfate) to 66% (40 g/l persulfate). Concentrations of TPH-GRO and TPH-GRO in groundwater remained above MEAT standards at the end of the study (Table 3).

The contaminant trends indicated an over 99% reduction in BTEX concentrations, with TPH-GRO reduction ranging from 80% (10 g/l persulfate) to 100% (20 g/l persulfate) and TPH-DRO reduction ranging from 33% (40 g/l persulfate) to 56% (20 g/l persulfate). As shown in Table 3, the concentrations of TPH-DRO remained above MEAT standards at the end of the study for all persulfate test samples. The concentrations of TPH-GRO and BTEX had decreased to below MEAT standards in the unactivated persulfate test samples.

CONCLUSIONS

In conclusion, the bench scale study demonstrated that activated and unactivated persulfate were both effective at reducing contaminant concentrations, with complete to near complete destruction of BTEX and TPH-GRO. Destruction of BTEX, which is still present in the collected groundwater at concentrations above the NPDES permit discharge limit, is necessary to remove the need for granular activated carbon treatment on site. The treatability study indicates that ISCO with persulfate will not reduce TPH-DRO concentrations to less than the MEAT standard. However, it would create favorable conditions for continued biodegradation of TPH.

The unactivated persulfate treatment demonstrated the following advantages:

- Improved persulfate longevity with unactivated persulfate compared to activated persulfate.
- Unactivated persulfate resulted in similar contaminant reduction results as activated persulfate, without causing metals mobilization.

Of the three persulfate concentrations tested, the 20 g/l concentration of persulfate was the most effective at mass reduction (Table 5).

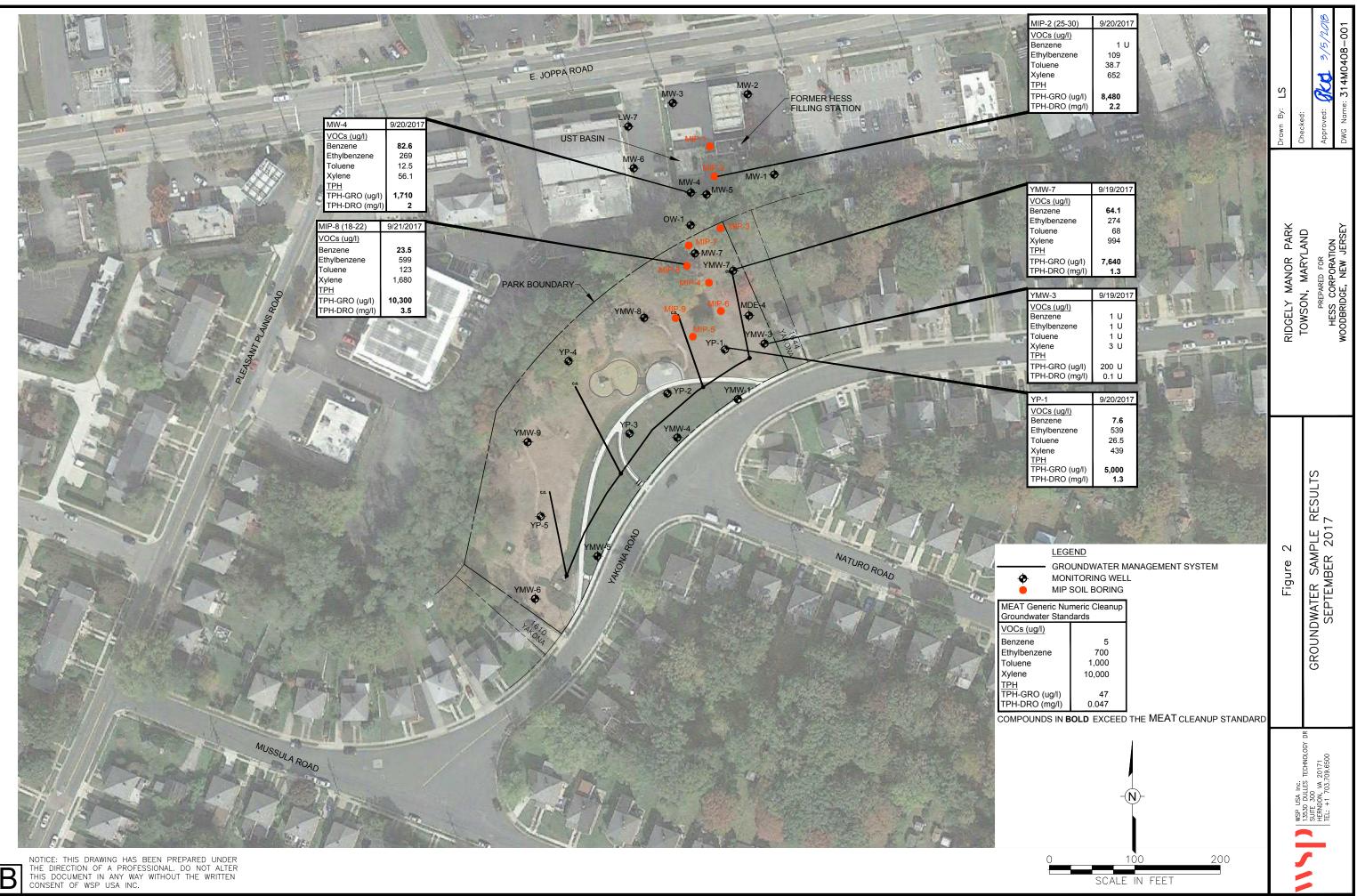
The investigation met the objectives of defining the limits of maximum contaminant concentrations, and collecting data needed to evaluate and design a corrective action. As the next step, Hess Corporation and WSP request a meeting with MDE to review the site investigation results and current site conditions and to discuss remedial goals and the path towards site closure. Any further corrective actions would be presented in a corrective action plan and submitted to MDE for approval.

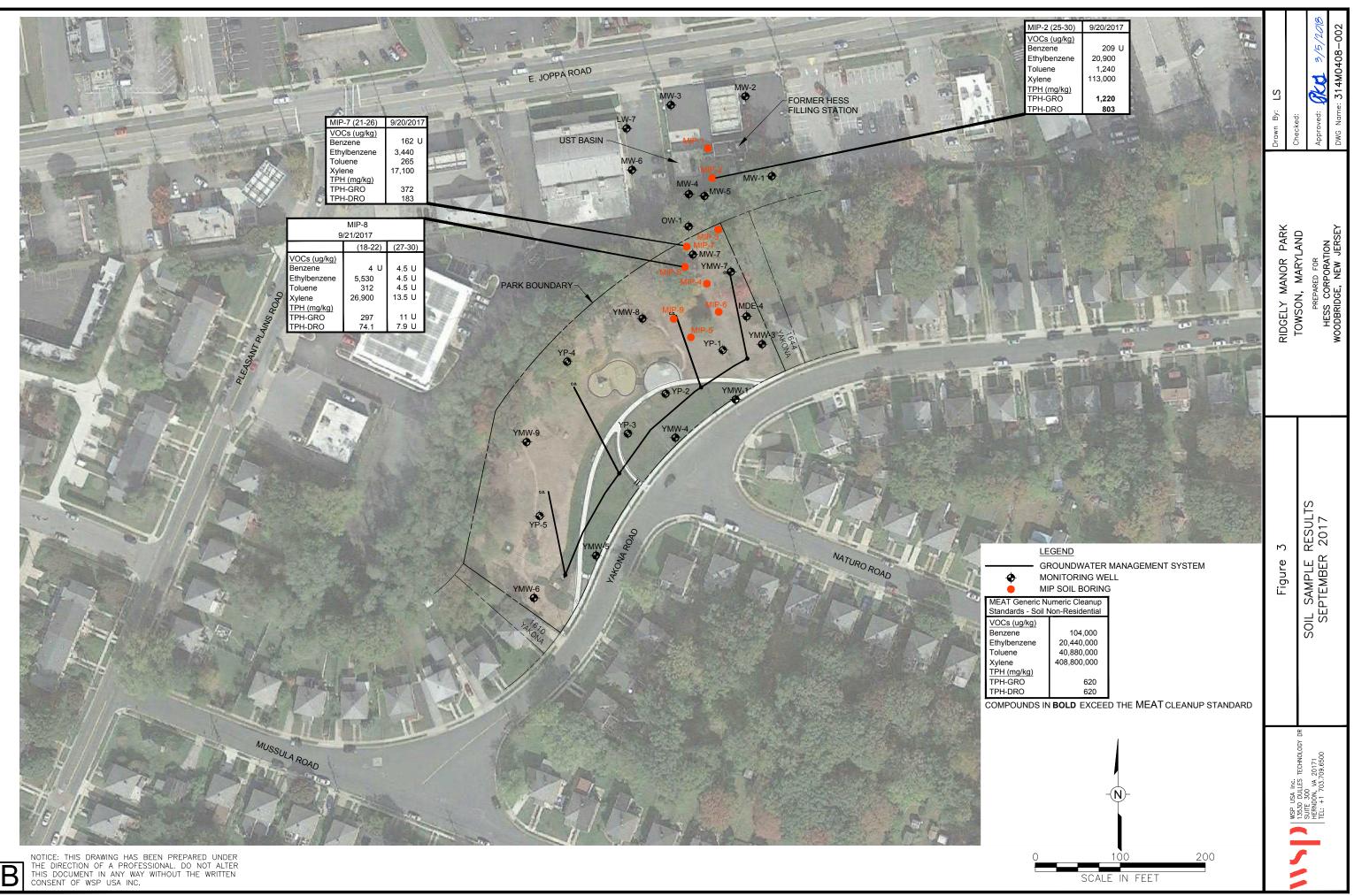
WSP looks forward to scheduling the meeting with you. Should you have any questions in the meanwhile, please contact us at (703) 709-6500.

Kind regards,

Janiel Sam

David Sarr, PE Practice Leader


cc/encl: John Schenkewitz, Hess Thomas Jackson, Baker Botts


- Groff Robertson

Pam Groff Robertson

FIGURES

TABLES

Groundwater Sampling Results - September 2017 Monitoring Wells and MIP Locations Former Hess Filling Station Towson, MD

	Units	MEAT Generic Numeric Cleanup Groundwater Standards Type I/II Aquifers	Sample ID: Sample Date: Sample Depth (ft bgs):	MIP-2 (25-30) 9/20/2017 25-30	MIP-8 (18-22) 9/21/2017 18-22	9	MW-4 9/20/2017 10-15	YMW-3 9/19/2017 4.9-19.5	YMW-7 9/19/2017 18-28	YP-1 9/20/2017 8-13	EB-091917 9/19/2017 -	TB-091917 9/19/2017 -
VOCs (8260)												
Benzene	ug/l	5		1 U	23.5		82.6	1 U	64.1	7.6	1 U	1 U
Ethylbenzene	ug/l	700		109	599		269	1 U	274	539	1 U	1 U
Toluene	ug/l	1,000		38.7	123		12.5	1 U	68	26.5	1 U	1 U
Xylene	ug/l	10,000		652	1,680		56.1	3 U	994	439	3 U	3 U
Total Petroleum Hydrocarbons												
TPH-GRO (5030/8015)	ug/l	47		8,480	10,300		1,710	200 U	7,640	5,000	200 U	NA
TPH-DRO (8015)	mg/l	0.047		2.2	3.5		2	0.1 U	1.3	1.3	0.1 U	NA
Natural Attenuation Parameters												
Alkalinity, Total	mg/l	NS		NA	NA		242	24	128	188	NA	NA
Sulfate	mg/l	NS		NA	NA		0.5 U	65.2	0.5 U	0.5 U		NA
Sulfide	mg/l	NS		NA	NA		1 U	1 U	1 U	1 U	NA	NA
Field Parameters												
Total Iron	mg/l	-		-	-		>3.3	NM	NM	>3.3	-	-
Ferrous Iron	mg/l	-		-	-		>3.3	NM	NM	>3.3	-	-
pH	SU	-		-	-		6.89	5.71	6.76	6.89	-	-
Conductivity	mS/cm	-		-	-		0.771	0.248	0.829	1.39	-	-
Turbidity	NTU	-		-	-		25.1	15.2	38.6	195	-	-
DO	mg/l	-		-	-		0	0	0	1.16	-	-
Temperature	°C	-		-	-		22.51	19.65	21.7	19.06	-	-
ORP	mV	-		-	-		-79	132	-59	-57	-	-

Note:

a/ ug/l = micrograms per liter; mg/l = milligrams per liter; SU = standard units; mS/cm = millisiemens per centimeter; NTU = Nephelometric Turbidity Units; $^{\circ}C$ = degrees Celsius; mV = millivolts; U = not detected above laboratory detection limit; NA = not analyzed; NS = no standard; ft bgs = feet bgs; TPH = total petroleum hydrocarbons; TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH - diesel range organics. Compounds in **bold** exceed the cleanup standard.

Soil Sampling Results - September 2017 MIP Locations Former Hess Filling Station Towson, MD

	Units	MEAT Generic Numeric Cleanup Standards - Soil Non-Residential	Sample ID: Sample Depth (ft bgs): Sample Date:	MIP-2 (25-30) 25-30 9/20/2017	MIP-7 (21-26) 21-26 9/20/2017	MIP-8 (18-22) 18-22 9/21/2017	MIP-8 (27-30) 27-30 9/21/2017
VOCs (8260)							
Benzene	ug/kg	104,000		209 U	162 U	4 U	4.5 U
Ethylbenzene	ug/kg	20,440,000		20,900	3,440	5,530	4.5 U
Toluene	ug/kg	40,880,000		1,240	265	312	4.5 U
Xylene	ug/kg	408,800,000		113,000	17,100	26,900	13.5 U
Total Petroleum Hydrocarbons							
TPH-GRO (5030/8015)	mg/kg	620		1,220	372	297	11 U
TPH-DRO (C10-C28) (8015)	mg/kg	620		803	183	74.1	7.9 U
Percent Moisture	% -			16.5	17	16.5	17.4

Notes:

a/ug/kg = micrograms per kilogram; mg/kg = milligrams per kilogram; U = not detected above laboratory detection limit; ft bgs = feet bgs; TPH = total petroleum hydrocarbons; TPH-DRO = TPH-diesel range organics; TPH-GRO = TPH-gasoline range organics. Compounds in **bold** exceed the cleanup standard.

Bench Scale Treatability Study Groundwater Results Summary Former Hess Filling Station Towson, Maryland

MEAT Generic		Benzene ug/l	Ethylbenzene ug/l	Toluene ug/l	Xylene ug/l	TPH-GRO ug/l	TPH-DRO mg/l	Chromium ug/l	Molybdenum ug/l	Selenium ug/l	Uranium-238 ug/l	Vanadium ug/l
Numeric Cleanup Standards		5	700	1,000	10,000	47	0.047	100 (c)	NS	50 (c)	NS	3.7 (c)
Category												
Baseline	Date											
Baseline	9/25/2017	18.8	359	31.3	581	4,360	1.3	0.5 U	0.5 U	0.5 U	0.5 U	1 U
14 Day - Corrected	l for 10X Diluti	ion Base Activ	vated (d)									
Control	10/30/2017	10 U	122	12	689	4,470	14	NA	NA	NA	NA	NA
10 g/L PS + NaOH	10/30/2017	10 U	44	10 U	170	2,540	29	NA	NA	NA	NA	NA
20 g/L PS + NaOH	10/30/2017	10 U	11	10 U	30 U	901 J	7.9	19,000	4,850	258	3,010	18,800
40 g/L PS + NaOH	10/30/2017	10 U	29	10 U	25 J	1,570 J	32	NA	NA	NA	NA	NA
91 Day - Corrected	l for 10X Diluti	ion Unactivate	ed (d)									
Control	1/15/2018	10 U		10 U		2,810	8.5	NA	NA	NA	NA	NA
10 g/L PS	1/15/2018	10 U		10 U		2,000 U		NA	NA	NA	NA	NA
20 g/L PS	1/15/2018	10 U		10 U		2,000 U		11	5 U		5 U	
40 g/L PS	1/15/2018	10 U	10 U	J 10 U	30 U	2,000 U	9.1	NA	NA	NA	NA	NA

Notes:

a/ ug/l = micrograms per liter; mg/l = milligrams per liter; J = estimated value; U = not detected above laboratory detection limit; NA = not analyzed; NS = no standard; TPH = total petroleum hydrocarbons;

TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH - diesel range organics. Compounds in **bold** exceed the cleanup standard.

b/ Baseline water sample is a composite of groundwater collected from YMW-7 and YP-1.

c/No MEAT standard promulgated for the compound; standard provided is from MDE Generic Numeric Cleanup Standards for Groundwater.

d/ Results are corrected for a dilution factor of 10 applied in the study.

Bench Scale Treatability Study Soil Results Summary Former Hess Filling Station Towson, Maryland

MEAT Generic		Benzene ug/kg	Ethylbenzene ug/kg	Toluene ug/kg	Xylene ug/kg	TPH-GRO mg/kg	TPH-DRO mg/kg
MLA I Generic Numeric Cleanup Standards		104,000	20,440,000	40,880,000	408,800,000	620	620
Category							
D 11	D (
Baseline	Date						
Hess Soil A	9/25/2017		1,610	244 U	<i>,</i>	89.3	223
Hess Soil B	9/25/2017	245 U	909	245 U	5,310	53.3	99.1
14 Day Base Activate	d						
Control	10/30/2017	4.1 U	104	4.5	572	11.0	82.4
10 g/L PS + NaOH	10/30/2017	5 U	32.6	5 U	148	25	70.7
20 g/L PS + NaOH	10/30/2017	4.5 U	10.3	4.5 U	23.9	13.2	57.3
40 g/L PS + NaOH	10/30/2017	4.2 U	12.7	4.2 U	20.7	15.7	46.8
91 Day Unactivated							
Control	1/15/2018	4.7 U	64.4	4.7 U	323	17.6	33.1
10 g/L PS	1/15/2018	5.4 U	5.4 U	5.4 U	16.2 U	J 14.3	95.5
20 g/L PS	1/15/2018	3 4.4 U	4.4 U	4.4 U	13.3 U	J 11.9 U	67.8
40 g/L PS	1/15/2018	4.6 U	4.6 U	4.6 U	13.9 U	J 10.3	106
-							

Notes:

a/ ug/kg = micrograms per kilogram; mg/kg = milligrams per kilogram; U = not detected above laboratory detection limit;

g/L = grams per liter; PS = persulfate; NaOH = sodium hydroxide; TPH = total petroleum hydrocarbons;

TPH-GRO = TPH - gasoline range organics; TPH-DRO = TPH-diesel range organics.

b/ Hess Soil A and Hess Soil B samples were generated from a composite of soil collected from MIP-2 (25-30') and MIP-8 (18-22').

Bench Scale Treatability Study Total Mass and Mass Reduction Summaries Former Hess Filling Station Towson, Maryland

Mass Calcluations								
		Benzene ug	Ethylbenzene ug	Toluene ug	Xylene ug	BTEX ug	TPH-GRO ug	TPH-DRO ug
Category		-	-	-	-	-	-	-
Baseline								
Control (b)	10/30/2017	4.1	1,313.3	6.9	7,262	8,587	70,833	158,115
14 Day Base Activated	d (c)							
Control	10/30/2017	0.0	128.8	7.1	712.1	848.0	11,763	83,832
10 g/L PS + NaOH	10/30/2017	0.0	41.6	0.0	182.4	224.1	25,059	75,666
20 g/L PS + NaOH	10/30/2017	0.0	12.5	0.0	23.4	35.9	13,134	57,892
40 g/L PS + NaOH	10/30/2017	0.0	18.8	0.0	25.8	44.6	15,731	52,904
91 Day Unactivated (c)							
Control	1/15/2018	0.0	85.1	0.0	438.2	523.3	17,866	34,308
10 g/L PS	1/15/2018	0.0	10.3	0.0	48.6	59.0	14,014	96,010
20 g/L PS	1/15/2018	0.0	5.7	0.0	16.5	22.2	0	69,964
40 g/L PS	1/15/2018	0.0	0.0	0.0	0.0	0.0	10,094	105,882

Bench Scale Treatability Study Total Mass and Mass Reduction Summaries Former Hess Filling Station Towson, Maryland

Mass Reduction								
		Benzene %	Ethylbenzene %	Toluene %	Xylene %	BTEX %	TPH-GRO %	TPH-DRO %
Category								
14 Day Base Activate	d (c)							
Control	10/30/2017	100%	90.2%	-2.4%	90.2%	90.1%	83.4%	47.0%
10 g/L PS + NaOH	10/30/2017	100%	96.8%	100.0%	97.5%	97.4%	64.6%	52.1%
20 g/L PS + NaOH	10/30/2017	100%	99.0%	100.0%	99.7%	99.6%	81.5%	63.4%
40 g/L PS + NaOH	10/30/2017	100%	98.6%	100.0%	99.6%	99.5%	77.8%	66.5%
91 Day Unactivated (c)							
Control	1/15/2018	100%	93.5%	100.0%	94.0%	93.9%	74.8%	78.3%
10 g/L PS	1/15/2018	100%	99.2%	100.0%	99.3%	99.3%	80.2%	39.3%
20 g/L PS	1/15/2018	100%	99.6%	100.0%	99.8%	99.7%	100.0%	55.8%
40 g/L PS	1/15/2018	100%	100.0%	100.0%	100.0%	100.0%	85.7%	33.0%

Notes:

a/ug = micrograms; % = percent; g/L PS = grams per liter persulfate; NaOH = sodium hydroxide; BTEX = benzene, toluene, ethylbenzene, and xylenes;

TPH = total petroleum hydrocarbons; TPH-GRO = TPH - gasoline range hydrocarbons; TPH-DRO = TPH-diesel range hydrocarbons.

Mass calculation is the sum of mass in water and soil, calculated using the concentrations provided in Tables 3 and 4 and the quantities of

water and soil in the study (220 milliters of water and 980 grams of soil).

In samples where the groundwater or soil concentration was below a detection limit, a mass value of 0 was assumed in the calcluation.

b/ The baseline control sample's total mass includes the average of the two baseline soil samples.

c/Mass is based on corrected bench scale water results for 14 day and 91 day samples with dilution factor of 10 applied.

ENCLOSURE A

Final Data Package for Membrane Interface Probe – Hydraulic Profiling Tool Services

Site Location: 1613 E. Joppa Road, Towson, Maryland.

Project Number: 202.17.1105

Report Date: November 5th, 2017

Prepared for:

WSP Pam Groff 13530 Dulles Technologies Drive, Suite 300 Herndon, Virginia 20171 Tel. / (703) 318-3958 E-Mail / pam.groff@wsp.com

Prepared by:

Cascade Technical Services Charles Terry 403 Serendipity Drive Millersville, Maryland 21108 Tel. / (361) 774-5338 E-Mail / cterry@cascade-env.com

Table of Contents

Project Narrative	
Project Site Map and MIHPT Locations	4
MiHPT Probe Data Summary Table	5
MiHPT Data Plots – Low Range Scales	6
MiHPT Data Plots – High Range Scales	25
Reference Material	44
Cascade Personnel	44
Equipment	44
MIP System Overview	
Detector Overview	45
MIP Data Collection	
Response Testing	46
HPT System Overview	
HPT Data Collection	47
HPT Reference Testing and Dissipation Tests	47

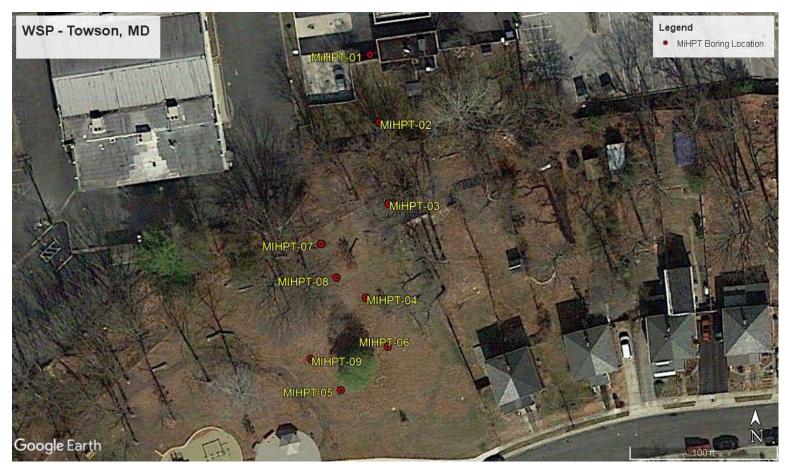
Project Narrative

Cascade Technical Services (Cascade) is pleased to present this data report to WSP for the membrane interface-hydraulic profiling tool (MIHPT) services that were provided between the dates of September 18th and 19th 2017 at the site located at 1613 East Joppa Road, Towson, Maryland.

The results associated with the data and plots presented in this report were generated in accordance to Cascade's and Geoprobe's Standard Operating Procedures (SOPs) for MIHPT services.

All field work and data management were completed by trained, scientific professionals and all quality assurance/quality control (QA/QC) measurements associated with these data were found to be within the tolerances set forth in the SOPs for these services. Response tests conducted previous to, and subsequent to the MIHPT borings were found to be within the tolerances set forth for this MIHPT survey and therefore the data are deemed acceptable for use. Exception/deviations regarding these response tests and the related data are noted on the MiHPT summary table that is part of this report.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.


Signature:

CHARLES TERRY -- EASTERN FIELD SUPERVISOR OF SITE CHARACTERIZATION

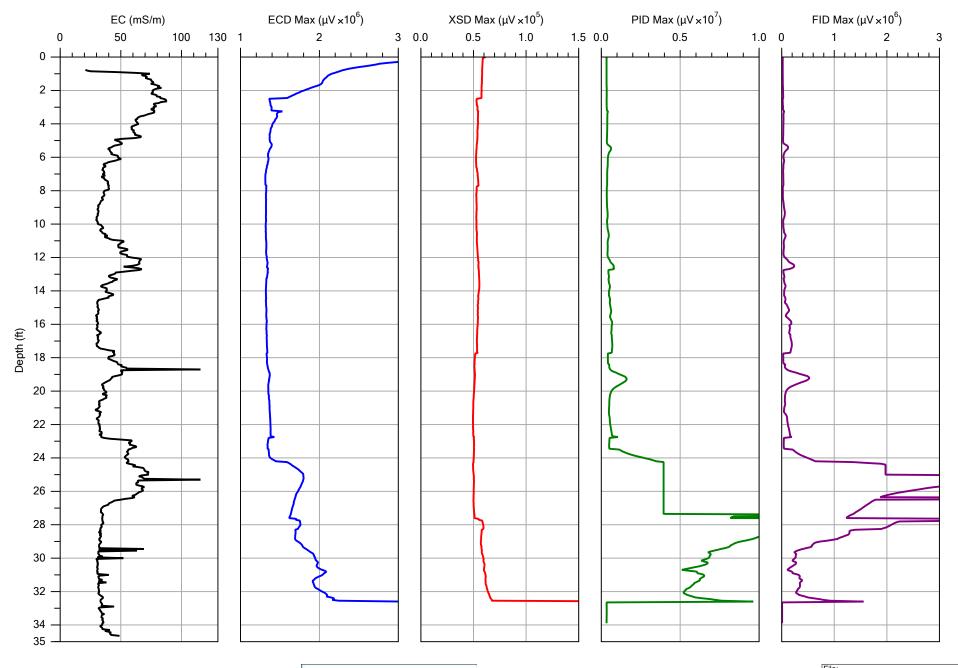
Project Site Map and MIHPT Locations

Approximate boring locations are provided below. Field staff estimated boring locations using reference points observed on site in relation to the same reference points visible in Google Earth map software.

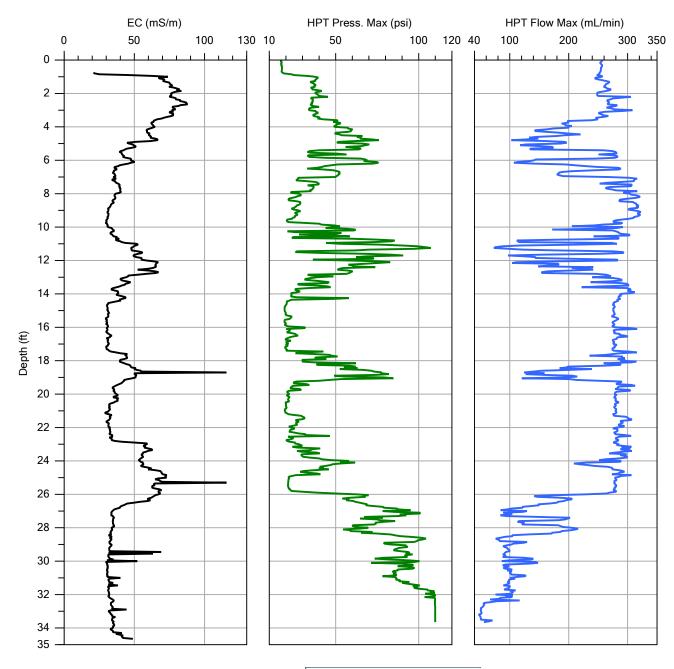
MiHPT Probe Data Summary Table

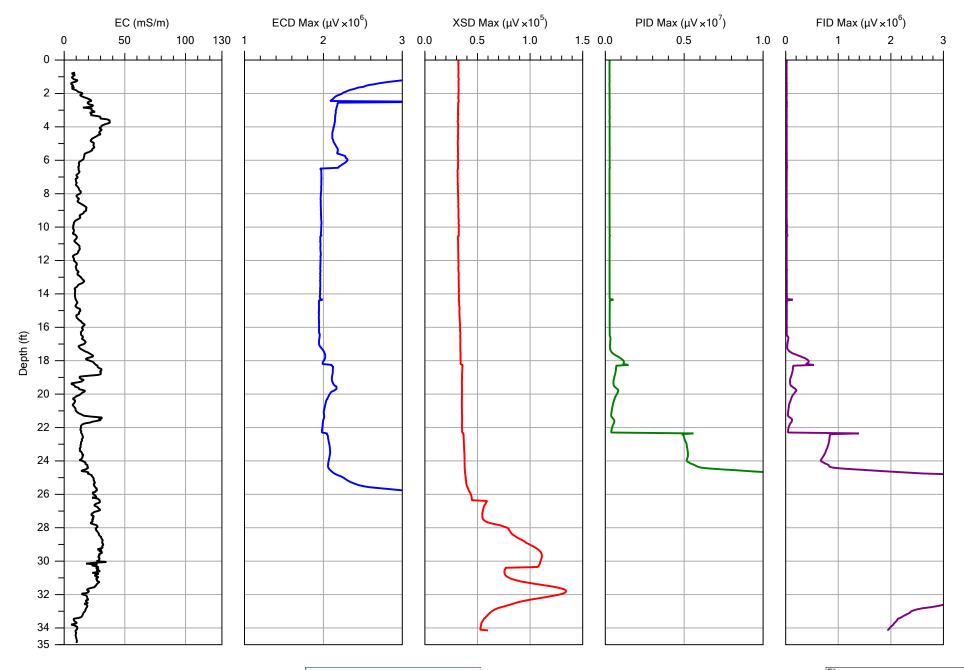
Provided below is a summary of MIP information, including response test acceptability and any deviations from the standard operating procedure that occurred during the field activities.

MIDLesstian	MIP Location Total Depth Response Test Results, ECD - (mV (ft) Pre Post Acceptable		esults, ECD - (mV)	Respo	nse Test Res	sults, PID - (mV)	Respo	nse Test Res	ults, XSD - (mV)	Commente/Deviations	
MIP Location			Post	Acceptable	Pre	Post	Acceptable	Pre	Post	Acceptable	Comments/Deviations
MIHPT-01	33.90	2304.9	2212.3	YES	52.6	65.6	YES	8.4	8.2	YES	None.
MIHPT-03	30.45	2212.3	2186.3	YES	65.6	81.1	YES	8.2	10.1	YES	None.
MIHPT-04	31.65	2186.3	1950.5	YES	81.1	101.7	YES	10.1	3.9	YES	None.
MIHPT-05	26.35	1950.5	1828.5	YES	101.7	164.4	YES	3.9	4.5	YES	None.
MIHPT-07	34.55	1828.5	1903.4	YES	164.4	65.8	YES	4.5	6.8	YES	None.
MIHPT-06	32.20	1903.4	1606.1	YES	65.8	48.9	YES	6.8	3.8	YES	None.
MIHPT-08	32.00	1606.1	2285.8	YES	48.9	81.8	YES	3.8	7.0	YES	None.
MIHPT-02	34.15	2285.8	1933.7	YES	81.8	25.6	YES	7.0	3.5	YES	None.
MIHPT-09	27.90	1518.2	1535.6	YES	144.7	50.9	YES	2.9	2.3	NO	Unable to allow XSD to properly heat due to time constraints related to site access hours.

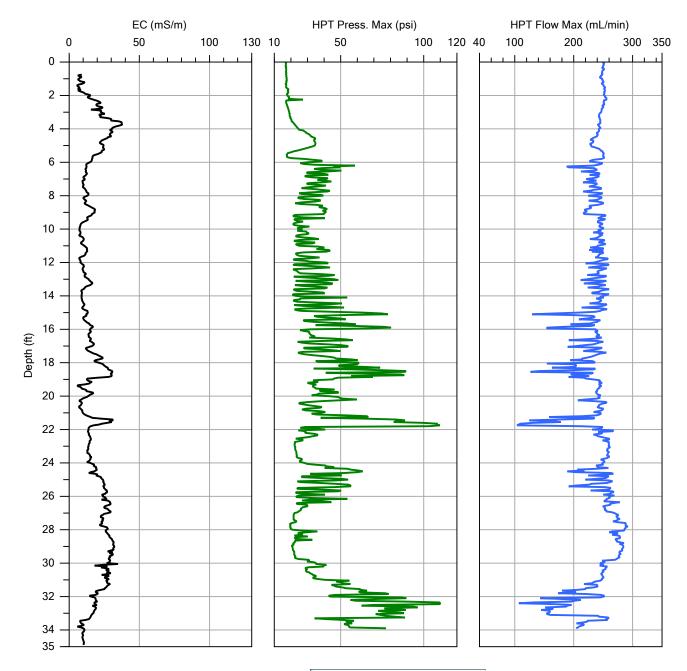

*Acceptable values for ECD, PID, and XSD detectors are 200mV, 25mV, and 3.5mV, respectively

.

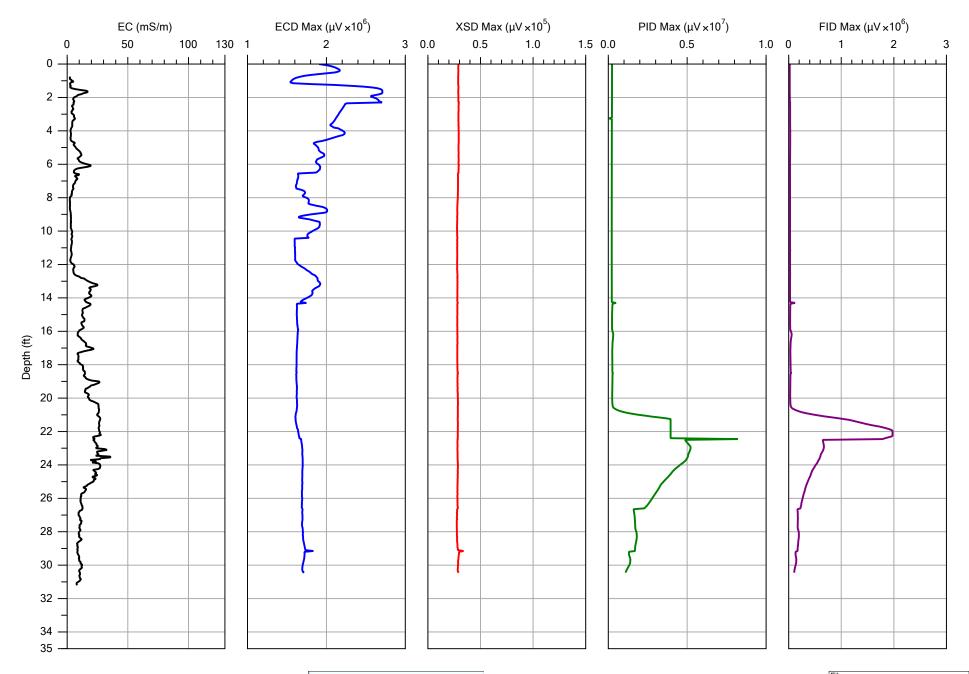

MiHPT Data Plots – Low Range Scales



		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

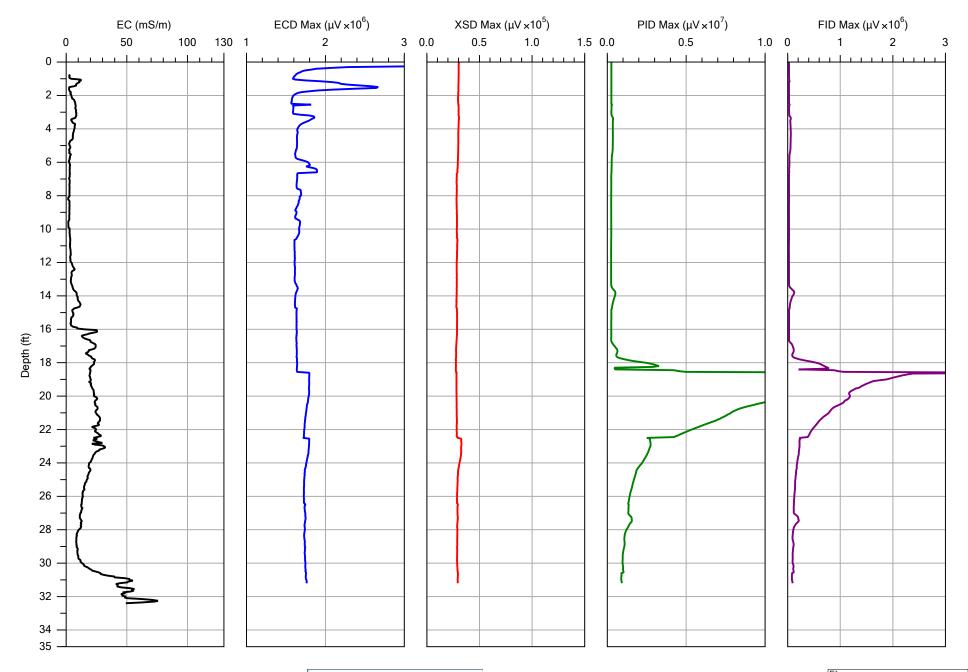


		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

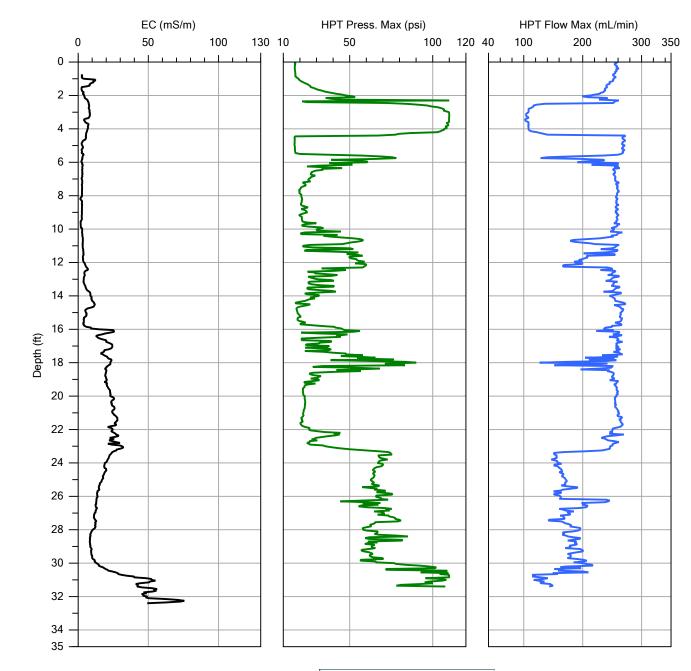


		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

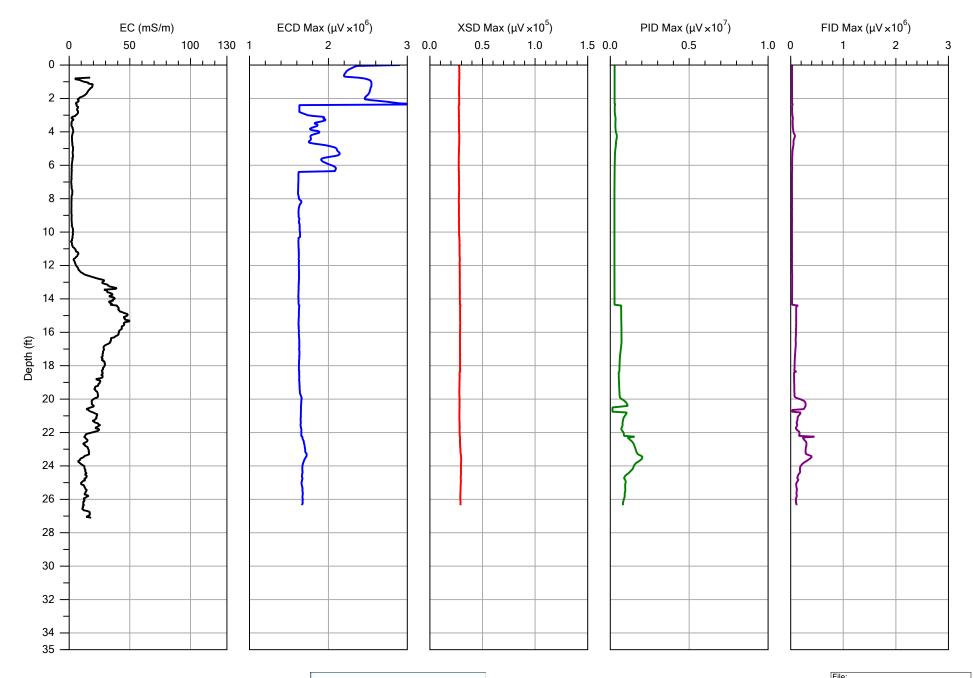
		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



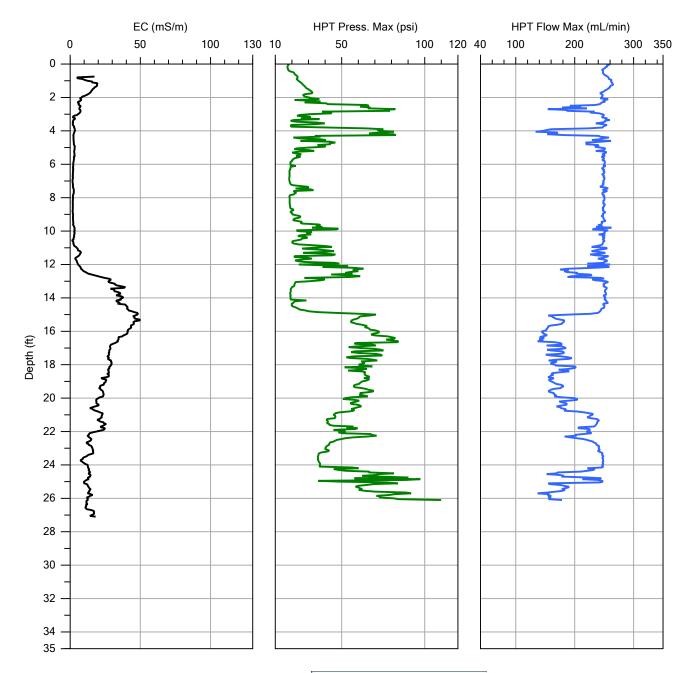
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



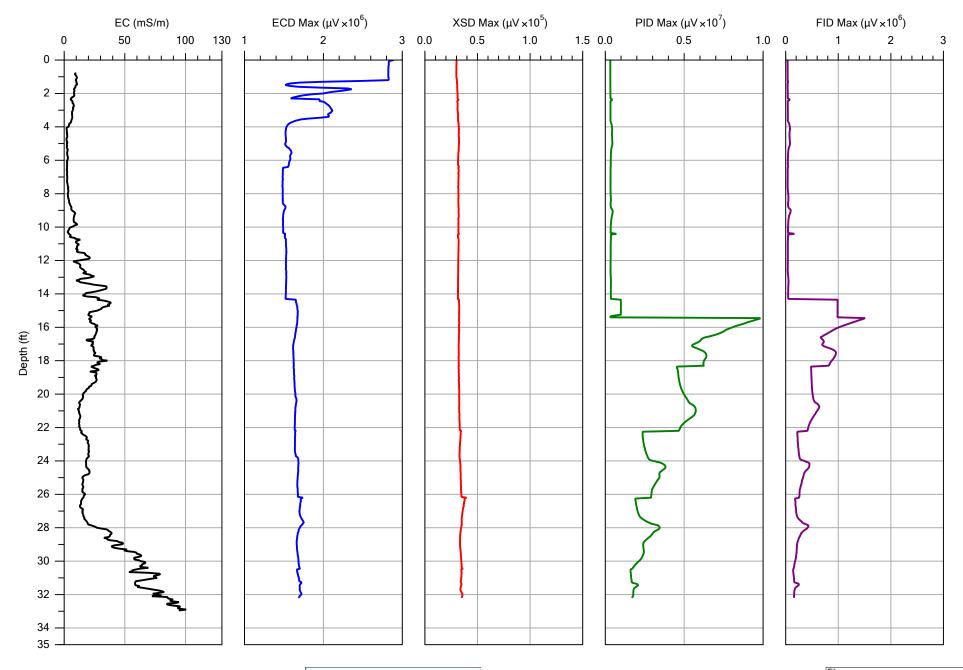
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



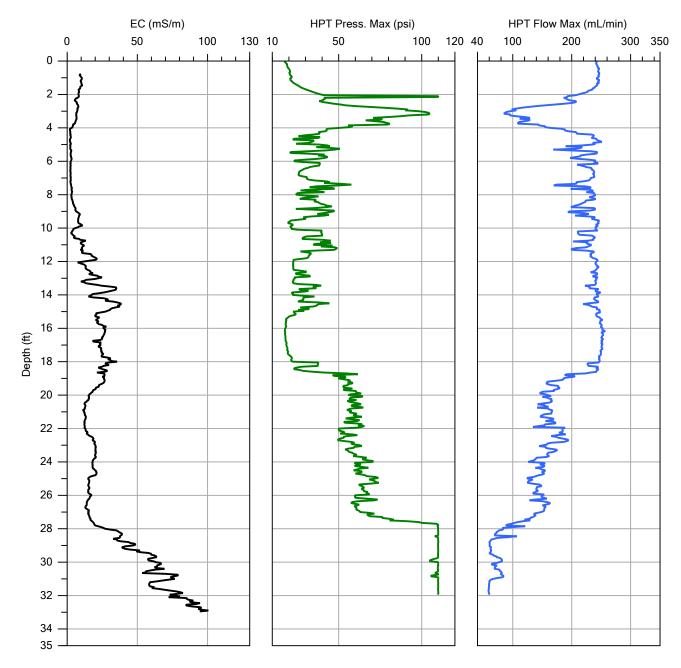
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



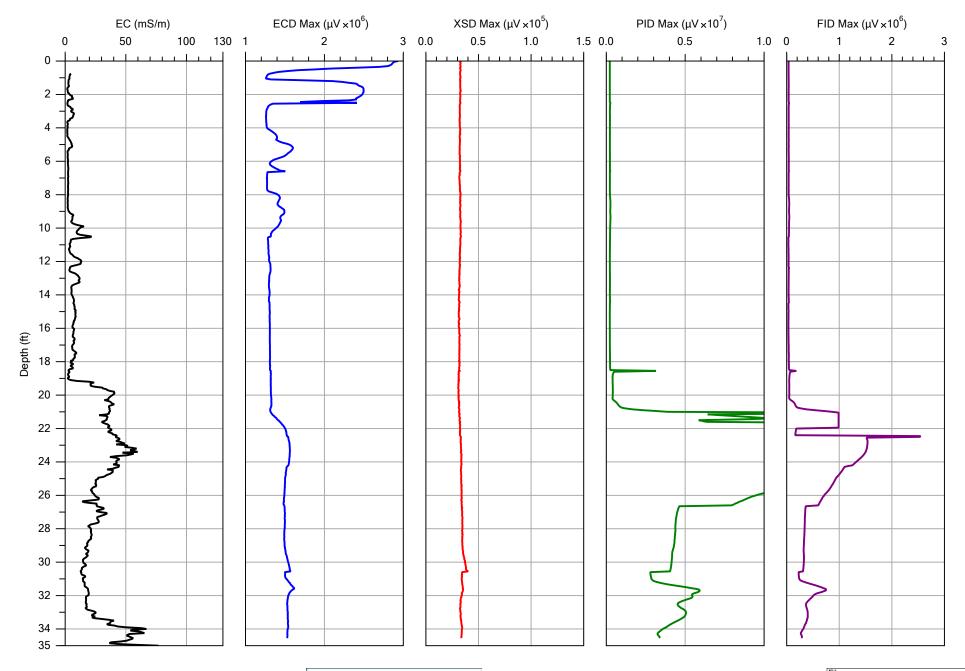
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



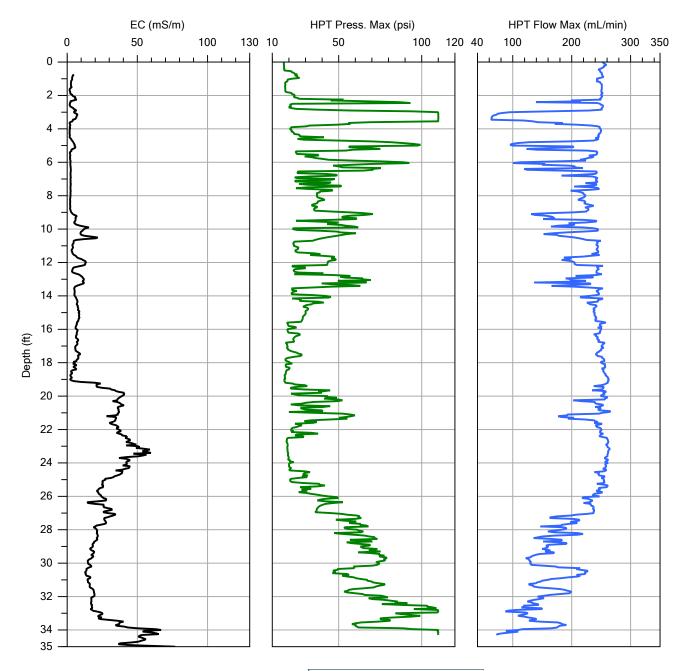
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



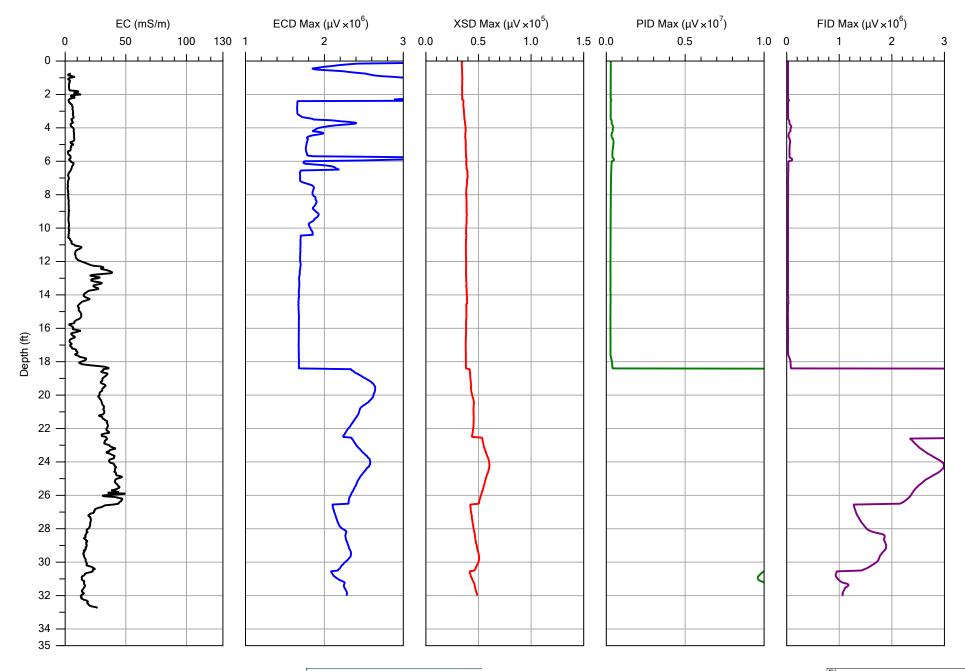
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



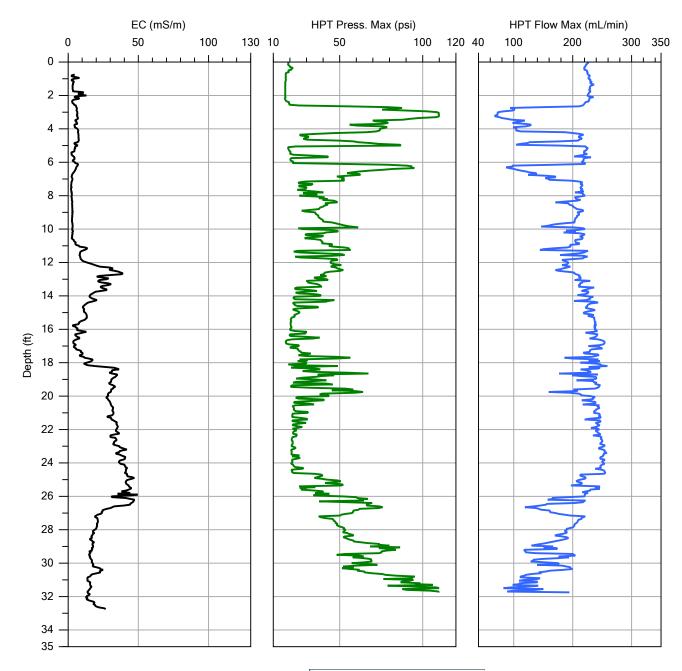
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



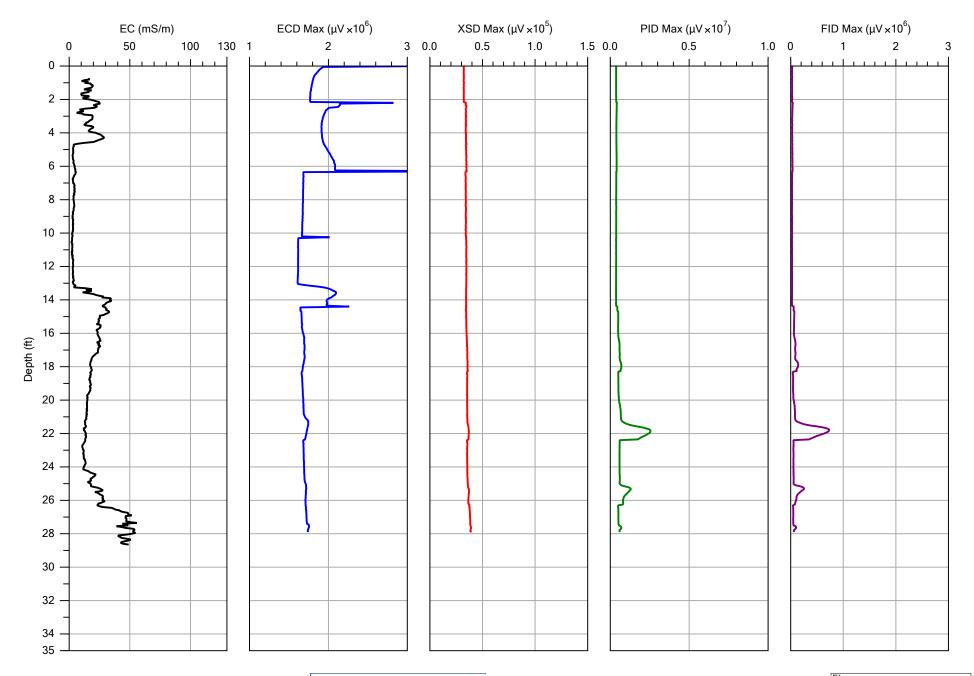
	File:
	MIHPT-06.MHP
Operator:	Date:
EO	9/19/2017
Client:	Location:
WSP USA	
-	EO Client:



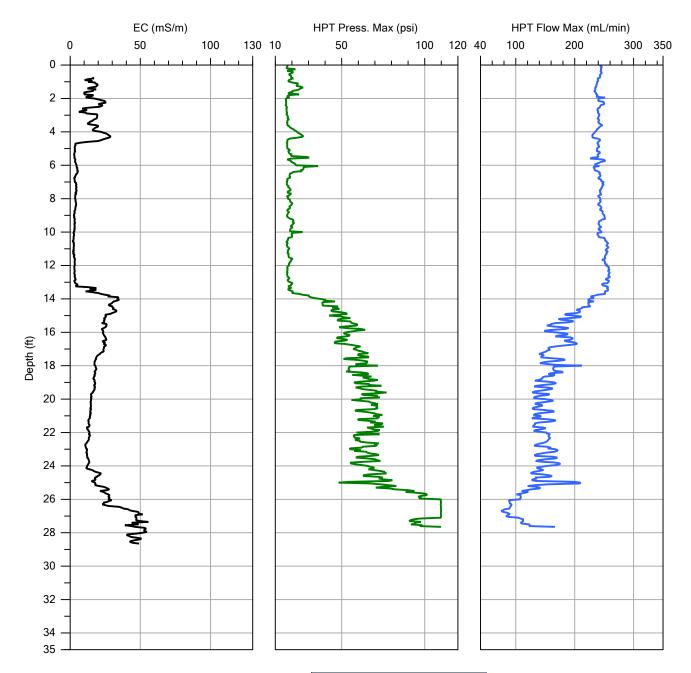
		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

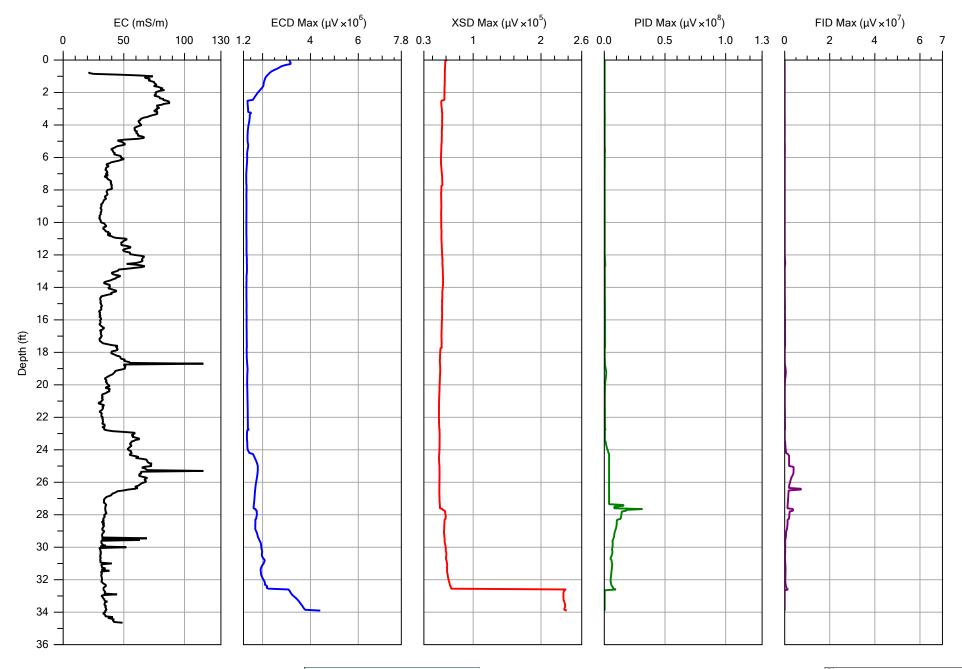


		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

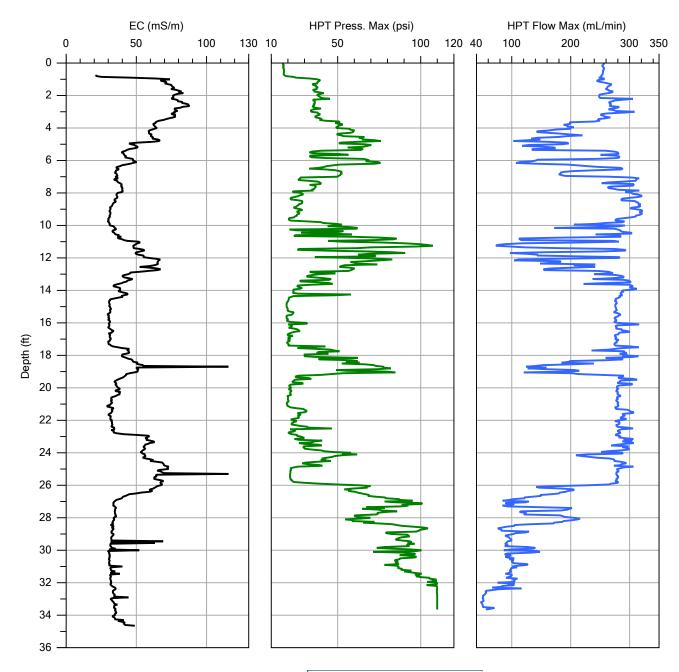


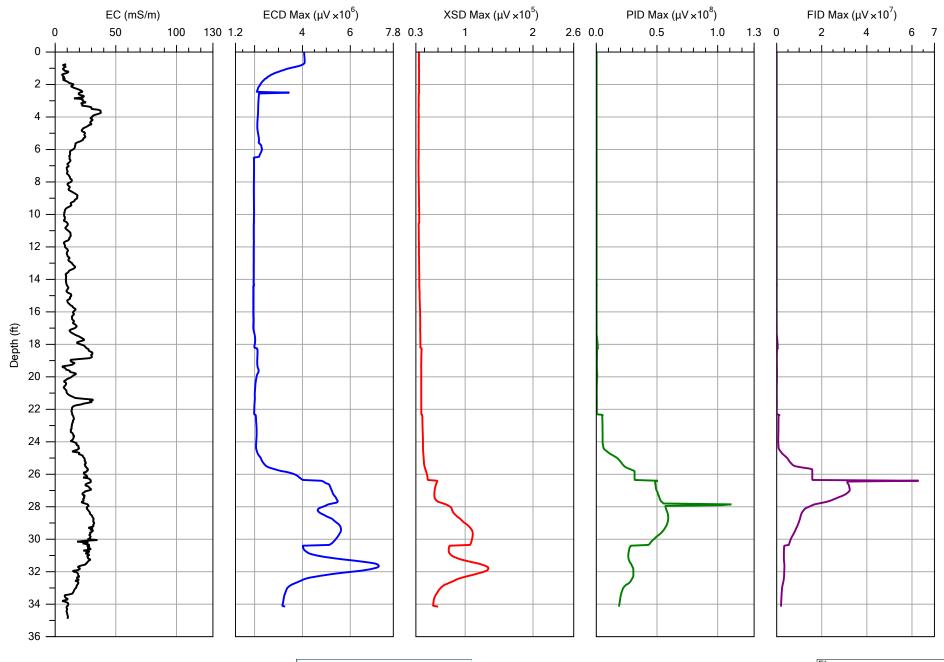
		File:	í.
		MIHPT-08.MHP	
Company:	Operator:	Date:	
Cascade Technical Services	EO	9/19/2017	
Project ID:	Client:	Location:	Ĺ
202.17.1105	WSP USA		

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

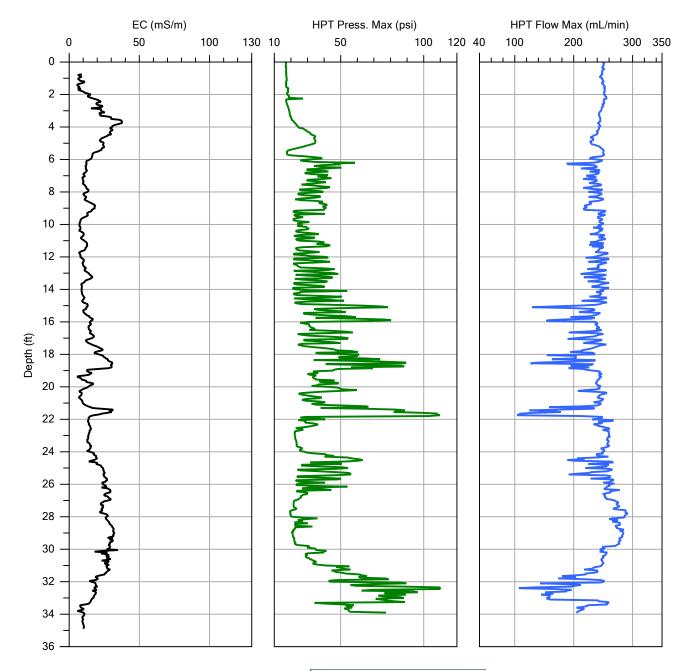


		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

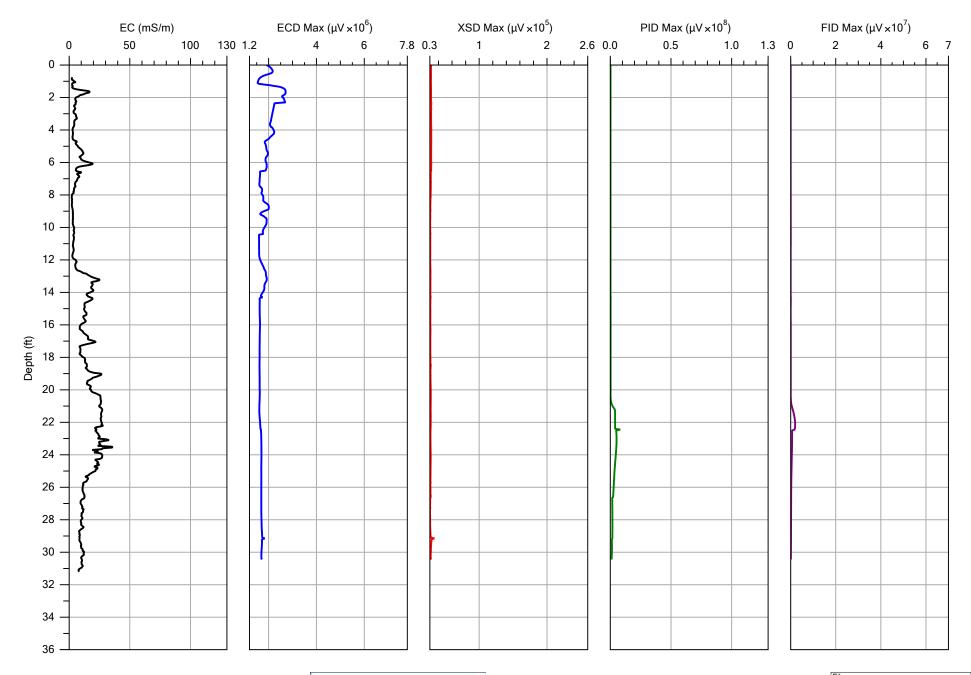

MiHPT Data Plots – High Range Scales



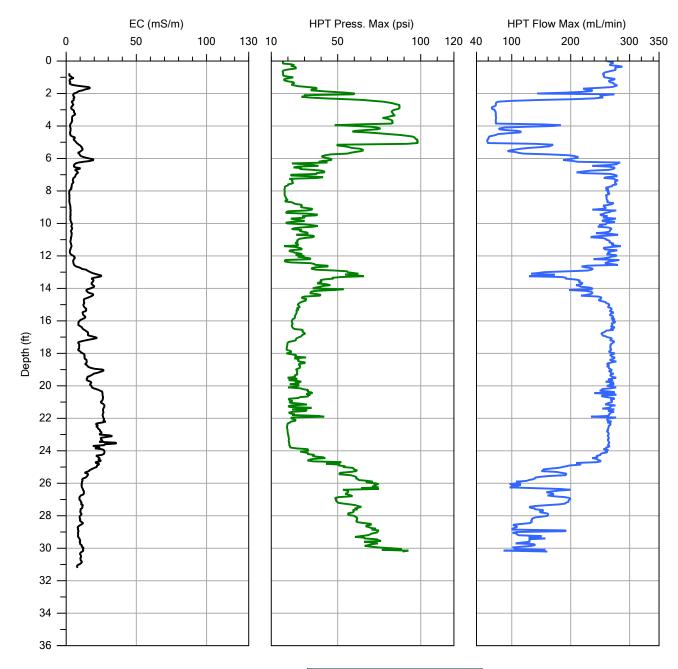
		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



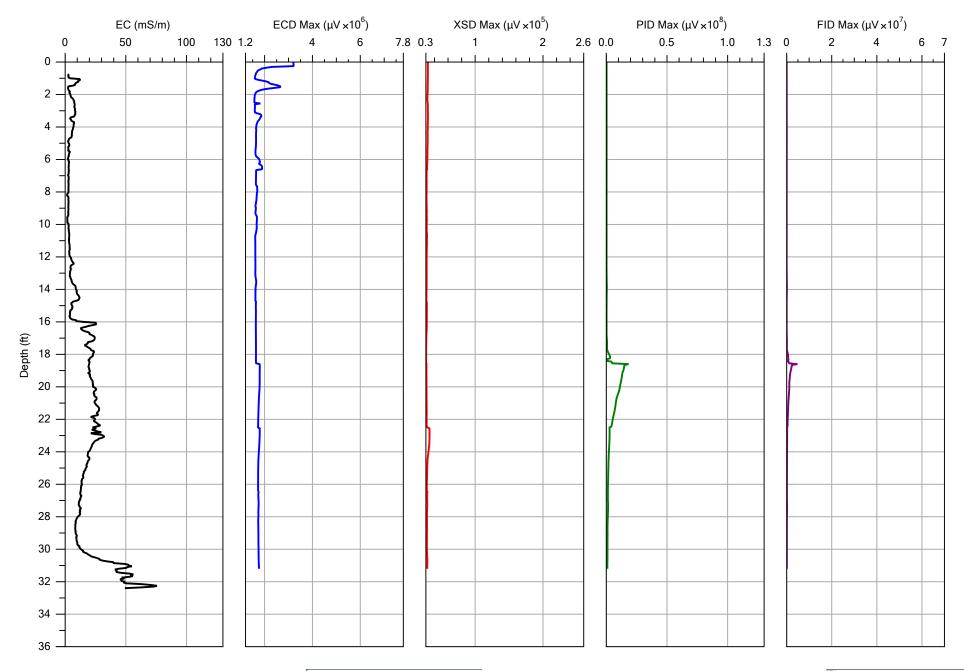
		File:
		MIHPT-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	


CASCADE DRILLING | TECHNICAL SERVICES EXCELLENCE ON EVERY LEVEL*

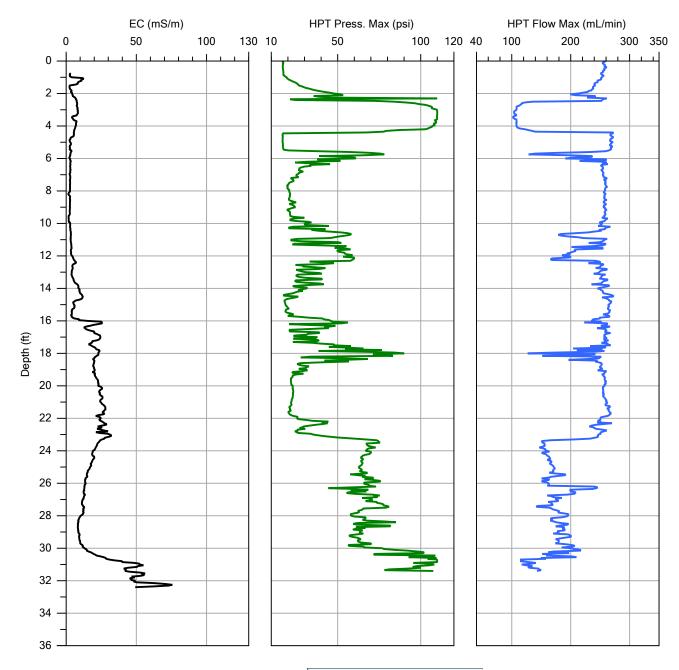
		File:
		MIHPT-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



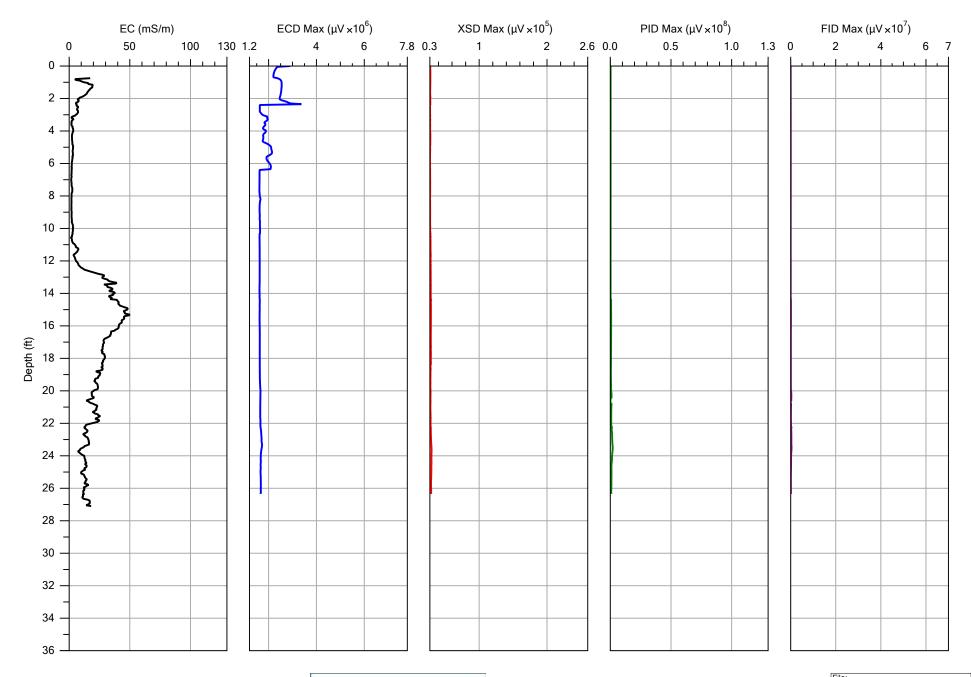
		File:	
		MIHPT-02.MHP	
Company:	Operator:	Date:	
Cascade Technical Services	EO	9/19/2017	
Project ID:	Client:	Location:	
202.17.1105	WSP USA		



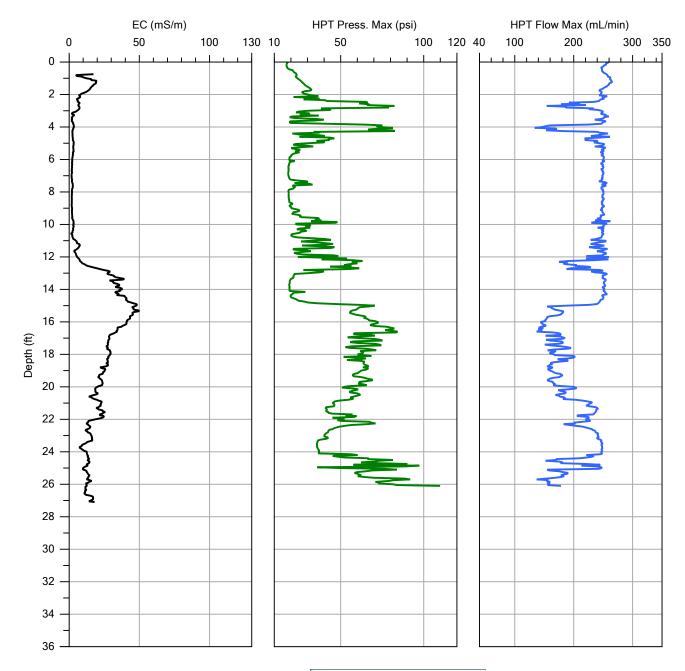
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



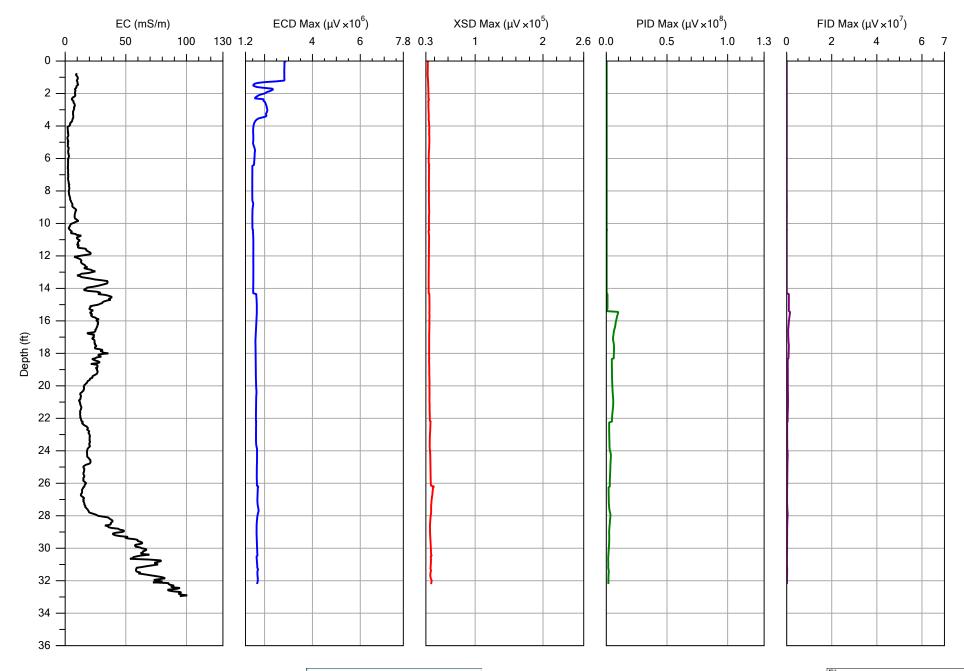
		File:
		MIHPT-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



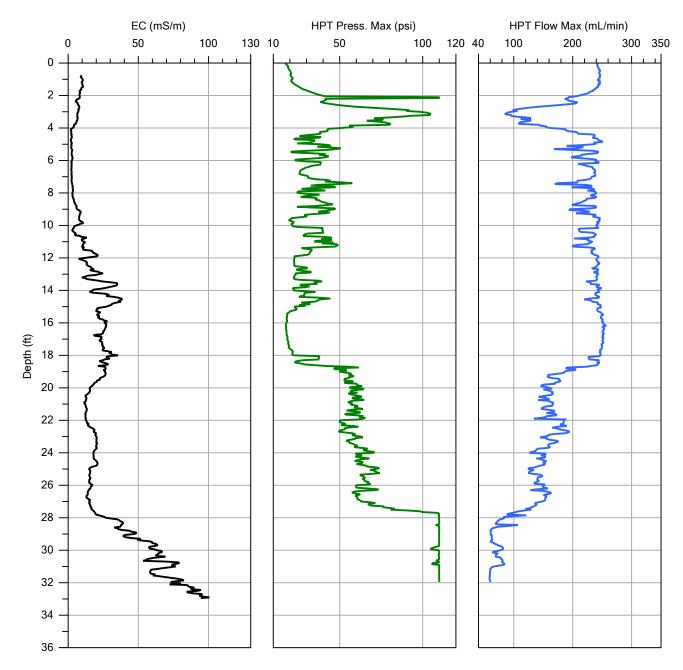
		File:
		MIHPT-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



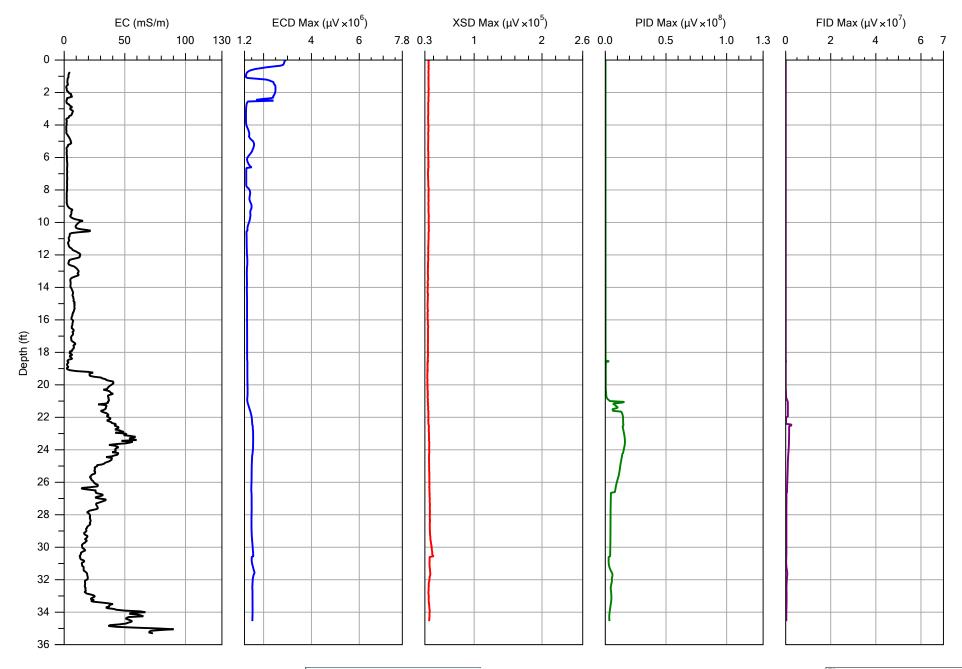
		File:	
		MIHPT-04.MHP	
Company:	Operator:	Date:	
Cascade Technical Services	EO	9/18/2017	
Project ID:	Client:	Location:	
202.17.1105	WSP USA		



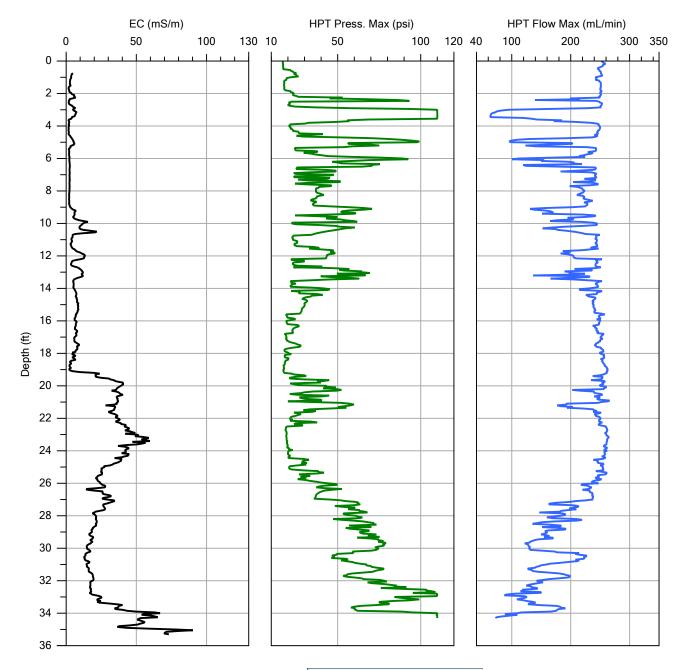
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



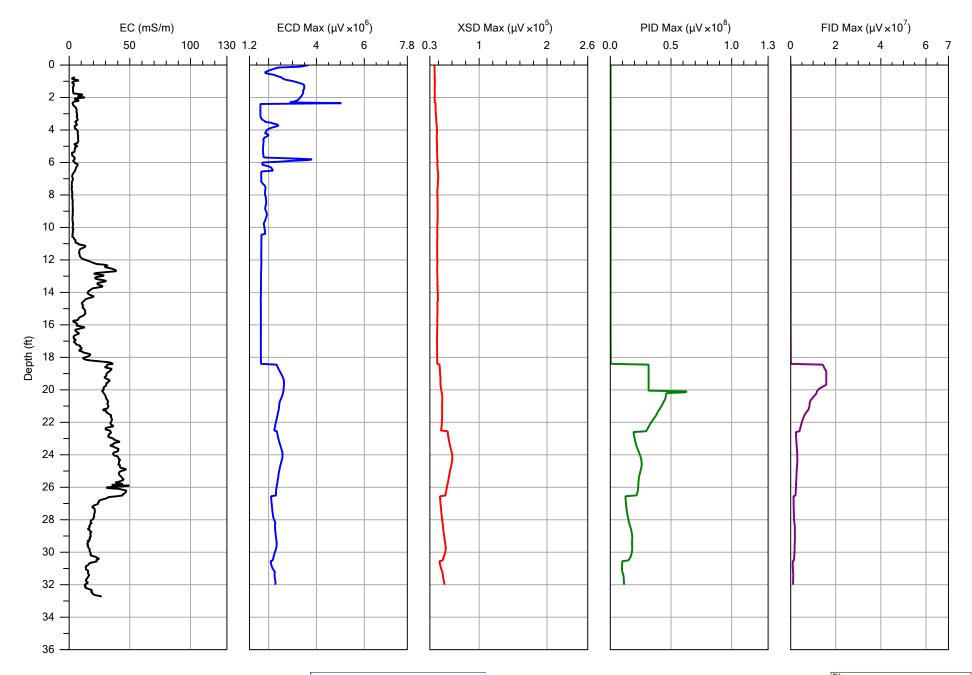
		File:
		MIHPT-05.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/18/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



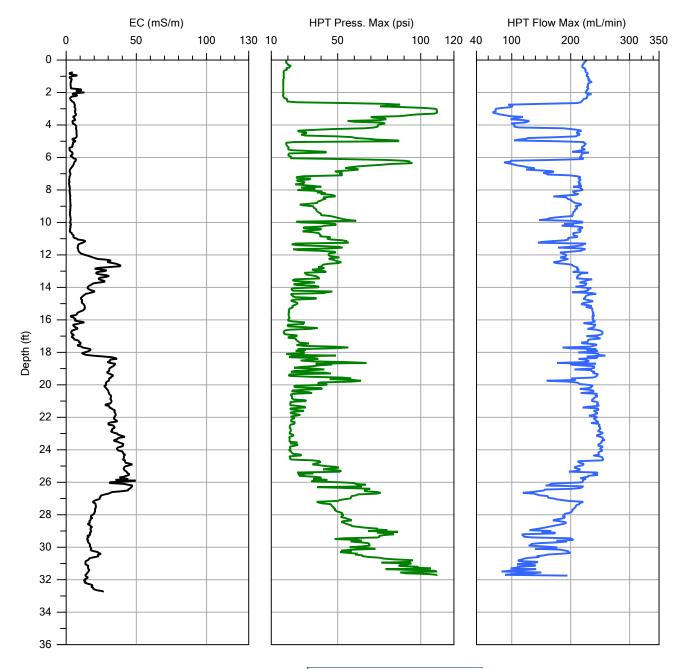
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



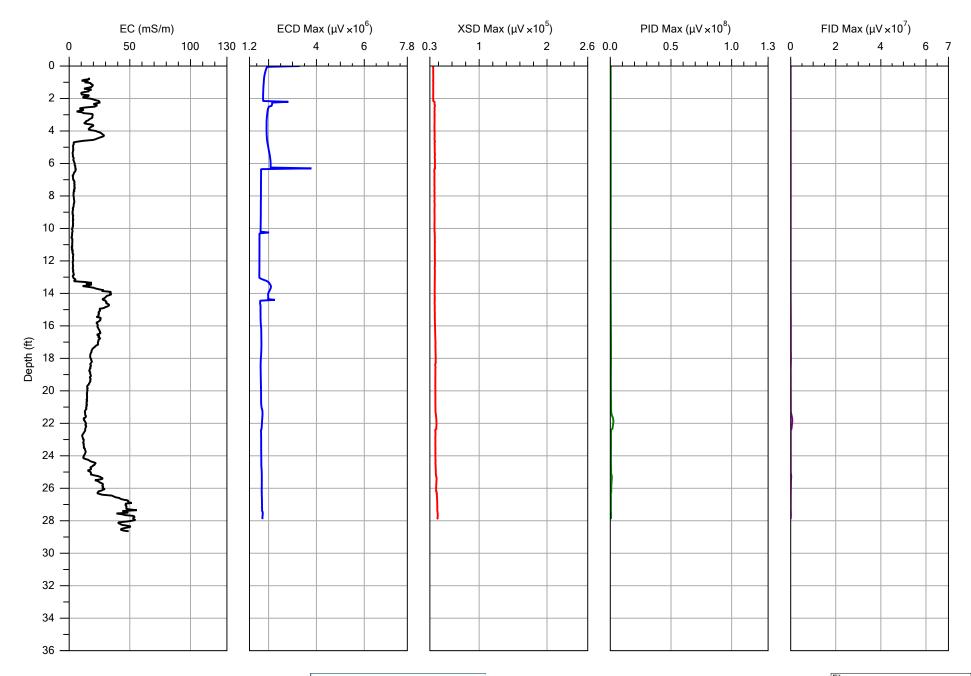
		File:
		MIHPT-06.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



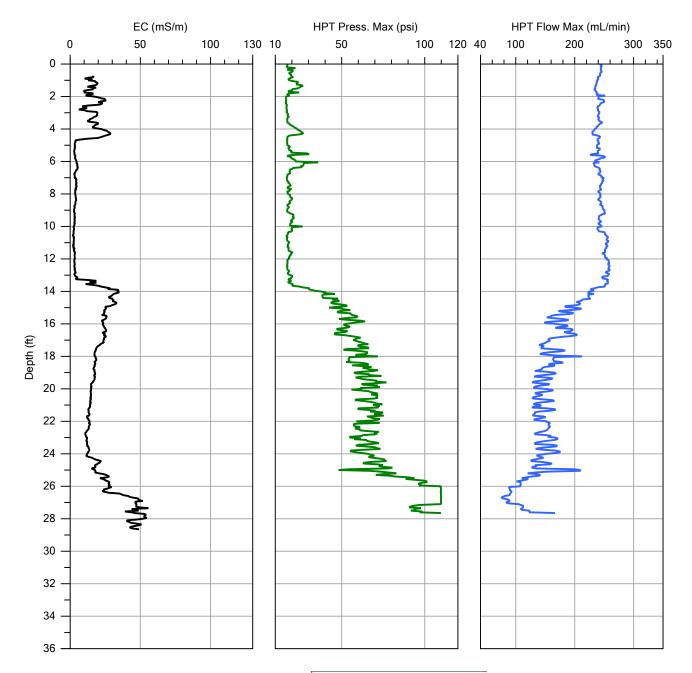
		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-07.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	



		File:
		MIHPT-08.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

CASCADE
DRILLING TECHNICAL SERVICES
EXCELLENCE ON EVERY LEVEL™

		File:
		MIHPT-09.MHP
Company:	Operator:	Date:
Cascade Technical Services	EO	9/19/2017
Project ID:	Client:	Location:
202.17.1105	WSP USA	

Reference Material

The sections below provide information regarding the Cascade Personnel present at the site during the field activities, the specific equipment used during field activities, and background information on the MIP and HPT systems.

Cascade Personnel

The following personnel were present during field activities at the Site:

- Mr. Ethan Olson, Cascade Technical Services (HRSC Technician)
- Mr. John Dixon, Cascade Technical Services (DPT Operator)

Equipment

The following equipment was utilized during field activities at this site:

- Geoprobe 78 Series Direct Push Drill Rig
- MIP Controller (Nitrogen Flow and Heater)
- Geoprobe FI 6000 Computer
- HP Model 5890 Gas Chromatograph
- K6300 HPT Controller
- Electrical Conductivity
- ECD (Electron Capture Detector)
- XSD (Halogen Specific Detector)
- PID (Photo Ionization Detector) 10.2 eV Lamp
- FID (Flame Ionization Detector)
- 150' MIP/HPT Trunkline
- 1.75" O.D. MIHPT Probe
- 1.75" O.D. Drive Rods
- Ultra-High Purity Nitrogen
- Ultra-High Purity Hydrogen

MIP System Overview

The MIP is commonly used for quickly determining the locations of volatile organic compound (VOC) source zones and plumes. The MIP is most valuable in terms of its ability to provide "spatial correspondence", meaning that where the MIP detector response show peaks, there is likely to be elevated soil and groundwater concentrations. The MIP can also be used to provide extremely valuable data to streamline subsequent investigative tasks and improve the overall efficiency and accuracy of the site investigation. Vertical profiles, cross sectional views and 3D images of contaminant distribution can all be produced from the electronic data generated by the MIP logs. The unique capability of providing reliable, real-time information allows for informed and timely decision making in the field. The MIP works by heating the soils and groundwater adjacent to the probe to 120 degrees C. This volatilizes the VOCs and allows the VOCs to transfer through a Teflon membrane via a combination of concentration and pressure gradients. These VOCs are then swept into a nitrogen gas loop that carries these vapors to a series of detectors housed at the surface. Continuous chemical profiles are generated from each hole. Electrical conductivity of the soil is also measured and these logs can be compared to the chemical logs to better understand the relationship between the lithology and the contaminant distribution. The MIP technology is only appropriate for VOCs. The following section discusses the various detection systems that are commonly used with the MIP system.

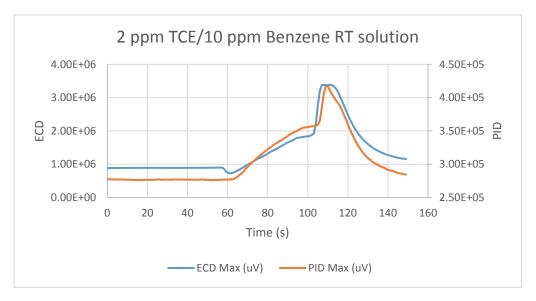
Detector Overview

- ECD Electron Capture Detector uses a radioactive Beta emitter (electrons) to ionize some of the carrier gas and produce a current between a biased pair of electrodes. When organic molecules contain electronegative functional groups, such as halogens, phosphorous, and nitro groups pass by the detector, they capture some of the electrons and reduce the current measured between the electrodes.
- XSD The Halogen Specific Detector converts compounds containing halogens to their oxidation products and free halogen atoms by oxidative pyrolysis. These halogen atoms are adsorbed onto the activated platinum surface of the detector probe assembly resulting in an increase thermionic emission. This emission current provides a corresponding voltage that is measured via an electrometer circuit in the detector controller.
- PID Photo Ionization Detector sample stream flows through the detector's reaction chamber where it is continuously irradiated with high energy ultraviolet light. When compounds are present that have a lower ionization potential than that of the irradiation energy (10.2 electron volts with standard lamp) they are ionized. The ions formed are collected in an electrical field, producing an ion current that is proportional to compound concentration. The ion current is amplified and output by the gas chromatograph's electrometer.
- FID Flame Ionization Detector consists of a hydrogen / air flame and a collector plate. The effluent from the GC (trunkline) passes through the flame, which breaks down organic molecules and produces ions. The ions are collected on a biased electrode and produce an electric signal.

MIP Data Collection

- <u>Depth</u> Data is collected every 0.05 feet, or twenty points per foot.
- <u>Electrical Conductivity</u> Electrical Conductivity data is measured/collected in milli-siemens per Meter (ms/M). The conductivity of soils is different for each type of media. Finer grained sediments, such as silts or clays, will typically have a higher EC signal. While coarser grained sediments, sands and gravel, will typically have a lower EC signal.
- <u>Rate of Penetration</u> Rate of penetration (ROP) is measured/collected in feet per minute (ft/min). Speed is an indication of the advancement rate of the MIP probe. In order to allow

for adequate heating of the MIP tooling, the MIP's ROP should not exceed one foot per minute.


- <u>Temperature</u> Temperature data is measured/collected in Degrees Celsius. Temperature is an indication of the physical temperature of the MIP block. Minimum and Maximum temperature is collected at each vertical interval. Cascade's temperature protocol indicates that the MIP probe temperature shall maintain a minimum temperature of 90 Degrees Celsius.
- <u>Pressure</u> Pressure data is measured/collected in PSI. The pressure readings represent the pressure being delivered to the MIP's nitrogen gas line. Deviations greater than of 1.5 PSI outside of the starting pressure indicate a system leak or obstruction is present.
- <u>Detector (ECD, XSD, PID, FID)</u> Detector responses are measured/collected in micro Volts (uV). Detector responses are an indication of relative contaminant responses. Minimum and Maximum detector responses are collected at each vertical interval.

Response Testing

Response testing (RT) is an integral part of ensuring the quality of data from the MIP system. Response testing is conducted before and after each log. This ensures the validity of the data and the integrity of the system. The RT provides a traceable indication that the MIP system detectors are adequately responding and allows the carrier gas trip time to be calculated on the physical components of the system.

Cascade uses acceptance criteria to evaluate the RTs. The acceptable criteria for an RT is defined for specified concentrations of RT solution and a specified N2 trunkline flow rate. Documenting the RTs will provide a level of quality assurance for each MIP project and will also allow operators and data reviewers to identify systems in need of maintenance.

The trip time is measured by recording the time between the moment when the VOA is placed over the membrane and the response of the detectors, as viewed on the MIP data acquisition unit. The baseline and peak response value are also recorded for comparison with other MIP response tests. The trip time is entered manually into the data acquisition system account for the time it takes for compounds in the subsurface to travel the length of the trunkline during the MIP boring.

HPT System Overview

The HPT system is designed to evaluate the hydraulic behavior of unconsolidated materials. As the probe is pushed or hammered at 2cm/s, clean water is injected through a screen on the side of the HPT probe at a flow rate usually less than 300 mL/min. The injection pressure, which is monitored and plotted with depth, is an indication of the hydraulic properties of the soil. A relatively low pressure response indicates a relatively large grain size, and the ability to easily transmit water. However, a relatively high pressure response indicates a relatively small grain size, which correlates with the inability to transmit water.

HPT Data Collection

The HPT system collects depth, electrical conductivity, advancement rate, hydraulic pressure, and flow information. Additional detail regarding each of these parameters is provided below.

- <u>Depth</u> Data is collected every 0.05 feet, or twenty points per foot.
- <u>Electrical Conductivity</u> Electrical Conductivity (EC) data is collected in milli-siemens per meter (ms/M). The conductivity of soils is different for each type of media. Finer grained sediments, such as silts or clays, will typically have a higher EC signal. While coarser grained sediments, sands and gravel, will typically have a lower EC signal. Rate of penetration (ROP) – ROP is collected in units of feet per minute (ft/min). ROP of the HPT probe can vary due to operator advancement and soil types encountered.
- <u>Pressure</u> Pressure data is collected in pounds per square inch (PSI). Pressure is an indication of hydraulic pressure applied to the subsurface by the HPT system. The system collects both the minimum and maximum pressures over each vertical interval.
- <u>Flow</u> Flow data is collected in milliliters per minute (mL/min). Flow is an indication of the rate water that is pumped out of the membrane at the HPT probe. The system collects both the minimum and maximum flow over each vertical interval.
- <u>Estimated Hydraulic Conductivity (est. K)</u> Hydraulic conductivity, symbolically represented as K, is an in-situ property that describes the ease with which water can move through pore spaces or fractures. It is dependent on the intrinsic permeability of the material and on the degree of saturation. With respect to the HPT system, the estimated K values are only applicable to the saturated portion of the formation. The estimated K value is calculated using the HPT pressure and flow data. It is also necessary to collect HPT response test data before and after each boring. Additionally, it is necessary to conduct at least one pressure dissipation test during the logging operation, below the static water table level.

HPT Reference Testing and Dissipation Tests

Reference testing is done to ensure that the HPT pressure transducer is working correctly and to evaluate the condition of the HPT injection screen. The HPT reference test also calculates atmospheric pressure which is required to obtain static water level readings and to determine the estimated K values for the log. HPT reference test utilizes a test tube to specifications such that a valve is located 6 inches above the HPT injection screen and the top of the tube is 6 inches above the valve. When the tube is filled completely with water, the 12 inches of water will supply an additional 0.433 psi of pressure on the injection screen (in addition to atmospheric pressure). When the valve (located 6 inches from the top of the tube and 6 inches from the injection screen) is opened, only 0.217 psi of additional pressure is

applied to the HPT injection screen. Therefore, the accuracy of the pressure transducer can be assessed by comparing the pressure reading when the tube is filled and when the tube is filled to the valve. There should be a 0.217 psi difference, this value is checked with and without flow. A tolerance of $\pm 10\%$ is applied for a passing test.

Dissipation tests are conducted to determine the additional static pressure added to the HPT pressure values from water in the formation. To conduct a dissipation test, advancement of the tooling is stopped, the HPT pump is stopped, and flow drops to zero. The pressure applied to the HPT pressure transducer by the injection of water into the formation begins to dissipate. This pressure should dissipate to a value equal to atmospheric pressure plus the static water pressure applied by water in the formation. In post-processing of the HPT log, the dissipation value and the atmospheric pressure determined during HPT reference testing can be used to remove the influence of atmospheric pressure and formational static water pressure from the HPT pressure values. Thereby correcting the HPT pressure to values that only indicates the hydraulic properties of the subsurface material.

ENCLOSURE B

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

October 06, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30230598

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30230598

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

Project: Hess Towson

Pace Project No.: 30230598

Sample: MW-4	Lab ID: 302	30598001	Collected: 09/20/1	7 11:2	5 Received: 09)/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	EPA 3510C			
TPH (C10-C28)	2.0	mg/L	0.52	5	09/24/17 12:09	10/04/17 14:08		1c
Surrogates o-Terphenyl (S)	43	%	35-101	5	09/24/17 12:09	10/04/17 14:08	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50)30/8015B					
TPH (C06-C10) Surrogates	1710	ug/L	200	1		10/03/17 17:48		
4-Bromofluorobenzene (S)	112	%	72-124	1		10/03/17 17:48	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	82.6	ug/L	1.0	1		09/26/17 09:06	71-43-2	
Ethylbenzene	269	ug/L	1.0	1		09/26/17 09:06	100-41-4	
Toluene	12.5	ug/L	1.0	1		09/26/17 09:06	108-88-3	
Xylene (Total) Surrogates	56.1	ug/L	3.0	1		09/26/17 09:06	1330-20-7	
Toluene-d8 (S)	97	%	80-120	1		09/26/17 09:06	2037-26-5	
4-Bromofluorobenzene (S)	103	%	79-129	1		09/26/17 09:06	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	80-120	1		09/26/17 09:06	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		09/26/17 09:06	1868-53-7	
2320B Alkalinity	Analytical Meth	nod: SM232	20B-97					
Alkalinity,Total (CaCO3 pH4.5)	242	mg/L	10.0	1		10/02/17 17:35		
4500S2F Sulfide, Iodometric	Analytical Meth	nod: SM450	00S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:23	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 10:36	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: YP-1	Lab ID: 3023	30598002	Collected: 09/20/1	7 08:4	5 Received: 09	/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 801	5B Preparation Me	ethod: E	EPA 3510C			
TPH (C10-C28) <i>Surrogates</i>	1.3	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:59		1c
o-Terphenyl (S)	40	%	35-101	1	09/24/17 12:09	10/04/17 00:59	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 503	80/8015B					
TPH (C06-C10) <i>Surrogates</i>	5000	ug/L	200	1		09/26/17 06:47		
a,a,a-Trifluorotoluene (S)	92	%	60-158	1		09/26/17 06:47	98-08-8	
4-Bromofluorobenzene (S)	104	%	72-124	1		09/26/17 06:47	460-00-4	
8260B MSV	Analytical Meth	od: EPA 826	60B					
Benzene	7.6	ug/L	1.0	1		09/26/17 09:33	71-43-2	
Ethylbenzene	539	ug/L	10.0	10		09/27/17 00:47	100-41-4	
Toluene	26.5	ug/L	1.0	1		09/26/17 09:33		
Xylene (Total)	439	ug/L	3.0	1		09/26/17 09:33	1330-20-7	
<i>Surrogates</i> Toluene-d8 (S)	99	%	80-120	1		09/26/17 09:33	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/26/17 09:33	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	80-120	1		09/26/17 09:33	17060-07-0	
Dibromofluoromethane (S)	91	%	80-120	1		09/26/17 09:33	1868-53-7	
2320B Alkalinity	Analytical Meth	od: SM2320	B-97					
Alkalinity, Total (CaCO3 pH4.5)	188	mg/L	10.0	1		10/02/17 17:42		
4500S2F Sulfide, Iodometric	Analytical Meth	od: SM4500	S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:24	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 10:52	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: YMW-7	Lab ID: 302	30598003	Collected: 09/19/1	7 13:2	0 Received: 09)/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	thod: E	EPA 3510C			
TPH (C10-C28)	1.3	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:13		1c
<i>Surrogates</i> o-Terphenyl (S)	51	%	35-101	1	09/24/17 12:09	10/04/17 00:13	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50	030/8015B					
TPH (C06-C10) <i>Surrogates</i>	7640	ug/L	2000	10		10/03/17 16:49		
4-Bromofluorobenzene (S)	112	%	72-124	10		10/03/17 16:49	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	64.1	ug/L	1.0	1		09/26/17 10:11	71-43-2	
Ethylbenzene	274	ug/L	1.0	1		09/26/17 10:11	100-41-4	
Toluene	68.0	ug/L	1.0	1		09/26/17 10:11	108-88-3	
Xylene (Total) <i>Surrogates</i>	994	ug/L	3.0	1		09/26/17 10:11	1330-20-7	
Toluene-d8 (S)	96	%	80-120	1		09/26/17 10:11	2037-26-5	
4-Bromofluorobenzene (S)	106	%	79-129	1		09/26/17 10:11	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		09/26/17 10:11	17060-07-0	
Dibromofluoromethane (S)	91	%	80-120	1		09/26/17 10:11	1868-53-7	
2320B Alkalinity	Analytical Meth	od: SM232	0B-97					
Alkalinity,Total (CaCO3 pH4.5)	128	mg/L	10.0	1		10/02/17 17:45		
4500S2F Sulfide, Iodometric	Analytical Meth	od: SM450	0S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:21	18496-25-8	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	ND	mg/L	0.50	1		10/02/17 11:09	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: YMW-3	Lab ID: 302	30598004	Collected: 09/19/1	7 11:10	Received: 09)/20/17 20:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Mether	hod: EPA 80	15B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	ND	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:20		1c
<i>Surrogates</i> o-Terphenyl (S)	54	%	35-101	1	09/24/17 12:09	10/04/17 00:20	84-15-1	
Gasoline Range Organics	Analytical Meth	hod: EPA 50	30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		09/26/17 05:28		
a,a,a-Trifluorotoluene (S)	74	%	60-158	1		09/26/17 05:28	98-08-8	
4-Bromofluorobenzene (S)	114	%	72-124	1		09/26/17 05:28	460-00-4	
8260B MSV	Analytical Mether	hod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 08:12	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 08:12	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 08:12	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 08:12	1330-20-7	
Surrogates	0.4	0/	00.400			00/00/47 00 40	0007 00 5	
Toluene-d8 (S)	94	%	80-120	1		09/26/17 08:12		
4-Bromofluorobenzene (S)	102 103	% %	79-129 80-120	1 1		09/26/17 08:12 09/26/17 08:12		
1,2-Dichloroethane-d4 (S) Dibromofluoromethane (S)	96	%	80-120 80-120	1		09/26/17 08:12		
				I		09/20/17 00.12	1000-00-7	
2320B Alkalinity	Analytical Mether	hod: SM232	0B-97					
Alkalinity, Total (CaCO3 pH4.5)	24.0	mg/L	10.0	1		10/02/17 17:47		
4500S2F Sulfide, Iodometric	Analytical Meth	hod: SM450	0S2F-00					
Sulfide	ND	mg/L	1.0	1		09/25/17 18:22	18496-25-8	
300.0 IC Anions 28 Days	Analytical Mether	hod: EPA 30	0.0					
Sulfate	65.2	mg/L	50.0	100		09/29/17 23:10	14808-79-8	

Project: Hess Towson

Pace Project No.: 30230598

Sample: EB-091917	Lab ID: 302	30598005	Collected: 09/19/1	7 11:40	Received: 09	/20/17 20:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	thod: El	PA 3510C			
TPH (C10-C28)	ND	mg/L	0.10	1	09/24/17 12:09	10/04/17 00:35	5	1c
<i>Surrogates</i> o-Terphenyl (S)	40	%	35-101	1	09/24/17 12:09	10/04/17 00:35	5 84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) Surrogates	ND	ug/L	200	1		10/03/17 17:09)	
4-Bromofluorobenzene (S)	113	%	72-124	1		10/03/17 17:09	9 460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 03:41	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 03:41	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 03:41	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 03:41	1330-20-7	
Surrogates		Ũ						
Toluene-d8 (S)	95	%	80-120	1		09/26/17 03:41	2037-26-5	
4-Bromofluorobenzene (S)	103	%	79-129	1		09/26/17 03:41	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	80-120	1		09/26/17 03:41	17060-07-0	
Dibromofluoromethane (S)	99	%	80-120	1		09/26/17 03:41	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: Trip Blank	Lab ID: 30230598006		Collected: 09/19/17 00:01		Received: 09/20/17 20:10		Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 03:14	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/26/17 03:14	100-41-4	
Toluene	ND	ug/L	1.0	1		09/26/17 03:14	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/26/17 03:14	1330-20-7	
Surrogates								
Toluene-d8 (S)	96	%	80-120	1		09/26/17 03:14	2037-26-5	
4-Bromofluorobenzene (S)	102	%	79-129	1		09/26/17 03:14	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120	1		09/26/17 03:14	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120	1		09/26/17 03:14	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-2 (25-30)	Lab ID: 302	30598007	Collected: 09/2	0/17 10:1	5 Received: 09)/20/17 20:10 N	Aatrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	iusted for p	ercent moisture,	sample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	hod: EPA 80	15B Preparation	Method: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	803	mg/kg	15	9 20	10/03/17 08:56	10/04/17 19:33		
o-Terphenyl (S)	236	%	24-12	3 20	10/03/17 08:56	10/04/17 19:33	84-15-1	S4
Gasoline Range Organics	Analytical Meth	hod: EPA 80	15B Preparation	Method: E	EPA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	1220	mg/kg	12	0 10	09/25/17 12:32	09/27/17 15:35		B,L1
a,a,a-Trifluorotoluene (S)	88	%	10-17	4 10	09/25/17 12:32	09/27/17 15:35	98-08-8	
4-Bromofluorobenzene (S)	89	%	85-10	9 10	09/25/17 12:32	09/27/17 15:35	460-00-4	
8260B MSV	Analytical Meth	hod: EPA 82	60B Preparation	Method: E	EPA 5035A			
Benzene	ND	ug/kg	20	9 50	10/03/17 10:30	10/03/17 19:15	71-43-2	1c
Ethylbenzene	20900	ug/kg	209	0 500	10/03/17 10:30	10/04/17 13:43	100-41-4	1c
Toluene	1240	ug/kg	20	9 50	10/03/17 10:30	10/03/17 19:15	108-88-3	1c
Xylene (Total)	113000	ug/kg	627	0 500	10/03/17 10:30	10/04/17 13:43	1330-20-7	
Surrogates								
Toluene-d8 (S)	113	%	76-12			10/03/17 19:15		
4-Bromofluorobenzene (S)	104	%	70-13		10/03/17 10:30			
1,2-Dichloroethane-d4 (S)	103	%	74-13	1 50	10/03/17 10:30	10/03/17 19:15	17060-07-0	
Dibromofluoromethane (S)	79	%	71-13	0 50	10/03/17 10:30	10/03/17 19:15	1868-53-7	
Percent Moisture	Analytical Mether	hod: ASTM I	D2974-87					
Percent Moisture	16.5	%	0.1	01		10/01/17 12:39		

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-2 (GW-25-30)	Lab ID: 302	30598008	Collected: 09/20/1	7 12:25	Received: 09	/20/17 20:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28)	2.2	mg/L	0.55	5	09/24/17 12:09	10/04/17 14:16		1c,A5
<i>Surrogates</i> o-Terphenyl (S)	37	%	35-101	5	09/24/17 12:09	10/04/17 14:16	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50)30/8015B					
TPH (C06-C10) Surrogates	8480	ug/L	2000	10		10/03/17 18:08		
4-Bromofluorobenzene (S)	111	%	72-124	10		10/03/17 18:08	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/26/17 08:39	71-43-2	
Ethylbenzene	109	ug/L	1.0	1		09/26/17 08:39	100-41-4	
Toluene	38.7	ug/L	1.0	1		09/26/17 08:39	108-88-3	
Xylene (Total)	652	ug/L	3.0	1		09/26/17 08:39	1330-20-7	
Surrogates								
Toluene-d8 (S)	97	%	80-120	1		09/26/17 08:39	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/26/17 08:39	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	80-120	1		09/26/17 08:39	17060-07-0	
Dibromofluoromethane (S)	96	%	80-120	1		09/26/17 08:39	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230598

Sample: MIP-7 (21-26)	Lab ID: 302	30598009	Collected: 09/	20/17 15:0	0 Received: 09)/20/17 20:10 N	/latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for p	ercent moisture	, sample	size and any dilu	tions.		
Parameters	Results	Units	Report Lin	it DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	nod: EPA 80	15B Preparatior	Method:	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	183	mg/kg	39	.4 5	10/03/17 08:56	10/04/17 19:52		
o-Terphenyl (S)	59	%	24-1	23 5	10/03/17 08:56	10/04/17 19:52	84-15-1	
Gasoline Range Organics	Analytical Mether	nod: EPA 80	15B Preparation	Method:	EPA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	372	mg/kg	1	20 10	09/25/17 12:32	09/27/17 15:55		B,L1
a,a,a-Trifluorotoluene (S)	138	%	10-1	74 10	09/25/17 12:32	09/27/17 15:55	98-08-8	
4-Bromofluorobenzene (S)	102	%	85-1	09 10	09/25/17 12:32	09/27/17 15:55	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	60B Preparatior	Method:	EPA 5035A			
Benzene	ND	ug/kg	1	62 50	09/29/17 09:36	09/29/17 20:55	71-43-2	1c
Ethylbenzene	3440	ug/kg	1	62 50	09/29/17 09:36	09/29/17 20:55	100-41-4	1c
Toluene	265	ug/kg	1	62 50	09/29/17 09:36	09/29/17 20:55	108-88-3	1c
Xylene (Total)	17100	ug/kg	4	87 50	09/29/17 09:36	09/29/17 20:55	1330-20-7	
Surrogates								
Toluene-d8 (S)	103	%	76-1			09/29/17 20:55		
4-Bromofluorobenzene (S)	101	%	70-1			09/29/17 20:55		
1,2-Dichloroethane-d4 (S)	87	%	74-1			09/29/17 20:55		
Dibromofluoromethane (S)	83	%	71-1	30 50	09/29/17 09:36	09/29/17 20:55	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM [02974-87					
Percent Moisture	17.0	%	0.	10 1		10/01/17 12:39		

QC Batch:	272875		Analysis	Method:	EF	PA 8015B			
QC Batch Method:	EPA 5035A/503	0B	Analysis	Descriptio	n: Ga	asoline Range	e Organics		
Associated Lab Samp	es: 3023059	3007, 30230598009							
METHOD BLANK: 1	342818		Ma	atrix: Solid					
Associated Lab Samp	es: 3023059	3007, 30230598009							
			Blank	Rep	orting				
Parame	er	Units	Result	L	imit	Analyzed	d Qual	ifiers	
Gasoline Range Orga	nics	mg/kg		ND	10.0	09/25/17 15	5:37 CH		
4-Bromofluorobenzen	e (S)	%		111	85-109	09/25/17 15	:37 ST		
a,a,a-Trifluorotoluene	(S)	%		99	10-174	09/25/17 15	5:37		
LABORATORY CONT	ROL SAMPLE:	1342819							
			Spike	LCS		LCS	% Rec		
Parame	er	Units	Conc.	Result	c	% Rec	Limits	Qualifiers	
Gasoline Range Orga	nics	mg/kg	50	6	51.1	122	71-141	CH,L1	
4-Bromofluorobenzen	e (S)	%				101	85-109		
a,a,a-Trifluorotoluene	(S)	%				100	10-174		

	302	230586003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	10.9 U	54.3	54.3	60.4	61.3	109	110	72-141	1	СН
4-Bromofluorobenzene (S)	%						101	101	85-109		
a,a,a-Trifluorotoluene (S)	%						99	103	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 272925		Analysis	Method:	El	PA 5030/8015	iВ	
QC Batch Method: EPA 5030/80	15B	Analysis	Description:	G	asoline Rang	e Organics	
Associated Lab Samples: 302305	598002, 30230598004	-			-	-	
METHOD BLANK: 1342966		Mat	rix: Water				
Associated Lab Samples: 302305	598002, 30230598004						
		Blank	Report	ng			
Parameter	Units	Result	Limi		Analyze	d Qu	alifiers
TPH (C06-C10)	ug/L	Ν		200	09/26/17 00):13 CH	
4-Bromofluorobenzene (S)	%	1	12 7	2-124	09/26/17 00):13	
a,a,a-Trifluorotoluene (S)	%		79 6	0-158	09/26/17 00):13	
LABORATORY CONTROL SAMPLE	: 1342967						
		Spike	LCS		LCS	% Rec	
Parameter	Units	Conc.	Result		% Rec	Limits	Qualifier
TPH (C06-C10)	ug/L	1000	979		98	71-14	1 CH
4-Bromofluorobenzene (S)	%				108	72-12	4
a,a,a-Trifluorotoluene (S)	%				111	60-15	8

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 13429	68 MS	MSD	1342969						
	302	230695001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)	ug/L	ND	1000	1000	958	1180	93	115	11-165	21	
4-Bromofluorobenzene (S)	%						105	104	72-124		
a,a,a-Trifluorotoluene (S)	%						112	112	60-158		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	less Towson										
Pace Project No.:	30230598										
QC Batch:	273768		Analys	s Method:	E	PA 5030/801	15B				
QC Batch Method:	EPA 5030/8015	3	Analys	s Descripti	on: G	Basoline Ran	ge Organic	S			
Associated Lab Samp	oles: 30230598	3001, 302305980	03, 302305980	005, 30230	598008						
METHOD BLANK:	1346956		Ν	latrix: Wat	er						
Associated Lab Samp	oles: 30230598	3001, 302305980	03, 30230598	005, 30230	598008						
			Blank		eporting						
Parame	eter	Units	Result	:	Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)		ug/L		ND	200	10/03/17	16:10				
4-Bromofluorobenzen	e (S)	%		112	72-124	10/03/17	16:10				
LABORATORY CON											
	I ROL SAMPLE:	1346957									
	ROL SAMPLE:	1346957	Spike	LCS		LCS	% Rec	:			
Parame		1346957 Units	Spike Conc.	LCS Resul	t	LCS % Rec	% Rec Limits		ualifiers		
Parame TPH (C06-C10)			•		t 970		Limits		ualifiers		
	eter	Units	Conc.			% Rec	Limits	Q	ualifiers		
TPH (C06-C10)	eter e (S)	Units ug/L %	Conc.		970	% Rec 97	Limits	-141 Qu	ualifiers		
TPH (C06-C10) 4-Bromofluorobenzen	eter e (S)	Units ug/L %	Conc1000			% Rec 97	Limits	-141 Qu	ualifiers		
TPH (C06-C10) 4-Bromofluorobenzen	eter e (S)	Units ug/L %	Conc. 1000	Resul	970	% Rec 97	Limits	-141 Qu	valifiers % Rec		
TPH (C06-C10) 4-Bromofluorobenzen	eter Ie (S) TRIX SPIKE DUF	Units ug/L % PLICATE: 1346	Conc. 1000	Resul	970	% Rec 97 103	Limits 71 72	Qu -141 -124	% Rec	RPD	Qual
TPH (C06-C10) 4-Bromofluorobenzen MATRIX SPIKE & MA	eter Ie (S) TRIX SPIKE DUF	Units ug/L % PLICATE: 1346 30231469003	Conc. 1000 5958 MS 3 Spike Conc.	Resul MSD Spike	970 1346959 MS	% Rec 97 103 MSD Result	Limits 71 72 MS	-141 -124 MSD	% Rec	RPD1	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230598

QC Batch: 273621 QC Batch Method: EPA 5035A Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260B

8260B MSV UST-SOIL

Associated Lab Samples: 30230598009

METHOD BLANK: 1345838

Associated Lab Samples: 30230598009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	250	09/29/17 12:47	
Ethylbenzene	ug/kg	ND	250	09/29/17 12:47	
Toluene	ug/kg	ND	250	09/29/17 12:47	
Xylene (Total)	ug/kg	ND	750	09/29/17 12:47	
1,2-Dichloroethane-d4 (S)	%	97	74-131	09/29/17 12:47	
4-Bromofluorobenzene (S)	%	99	70-133	09/29/17 12:47	
Dibromofluoromethane (S)	%	95	71-130	09/29/17 12:47	
Toluene-d8 (S)	%	97	76-124	09/29/17 12:47	

LABORATORY CONTROL SAMPLE: 1345839

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Quamoro
Benzene	ug/kg	20	18.1	91	70-130	
Ethylbenzene	ug/kg	20	18.3	91	70-130	
Toluene	ug/kg	20	18.5	93	70-130	
Xylene (Total)	ug/kg	60	58.0	97	70-130	
1,2-Dichloroethane-d4 (S)	%			86	74-131	
4-Bromofluorobenzene (S)	%			99	70-133	
Dibromofluoromethane (S)	%			98	71-130	
Toluene-d8 (S)	%			101	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230598

QC Batch: 273981

Analysis Method:

Matrix: Solid

QC Batch Method: EPA 5035A Associated Lab Samples: 30230598007 Analysis Description: 8260B MSV UST-SOIL

EPA 8260B

METHOD BLANK: 1347690

Associated Lab Samples: 30230598007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	250	10/03/17 10:26	
Ethylbenzene	ug/kg	ND	250	10/03/17 10:26	
Toluene	ug/kg	ND	250	10/03/17 10:26	
Xylene (Total)	ug/kg	ND	750	10/03/17 10:26	
1,2-Dichloroethane-d4 (S)	%	101	74-131	10/03/17 10:26	
4-Bromofluorobenzene (S)	%	96	70-133	10/03/17 10:26	
Dibromofluoromethane (S)	%	100	71-130	10/03/17 10:26	
Toluene-d8 (S)	%	93	76-124	10/03/17 10:26	

LABORATORY CONTROL SAMPLE: 1347691

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	20	21.1	106	70-130	
Ethylbenzene	ug/kg	20	21.3	106	70-130	
Toluene	ug/kg	20	20.3	102	70-130	
Xylene (Total)	ug/kg	60	63.3	106	70-130	
1,2-Dichloroethane-d4 (S)	%			98	74-131	
4-Bromofluorobenzene (S)	%			98	70-133	
Dibromofluoromethane (S)	%			104	71-130	
Toluene-d8 (S)	%			98	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson								
Pace Project No.:	30230598								
QC Batch:	273056		Analysis Mether	nod: EF	PA 8260B				
QC Batch Method:	EPA 8260B		Analysis Des	cription: 82	8260B MSV UST-WATER				
Associated Lab Sam	ples: 302305980)01, 30230598002	2, 30230598003, 30	0230598004, 30	0230598005, 30230	0598006, 30230598008			
METHOD BLANK:	1343359		Matrix:	Water					
Associated Lab Sam	ples: 302305980	001, 30230598002	2, 30230598003, 3	0230598004, 30	0230598005, 30230	598006, 30230598008			
			Blank	Reporting					
Param	eter	Units	Result	Limit	Analyzed	Qualifiers			
Benzene		ug/L	ND	1.0	09/26/17 02:47				
Ethylbenzene		ug/L	ND	1.0	09/26/17 02:47				
Toluene		ug/L	ND	1.0	09/26/17 02:47				
Xylene (Total)		ug/L	ND	3.0	09/26/17 02:47				
1,2-Dichloroethane-d	4 (S)	%	104	80-120	09/26/17 02:47				
4-Bromofluorobenzer	ne (S)	%	104	79-129	09/26/17 02:47				
Dibromofluoromethan	ne (S)	%	98	80-120	09/26/17 02:47				
Toluene-d8 (S)		%	95	80-120	09/26/17 02:47				

LABORATORY CONTROL SAMPLE: 1343360

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	19.6	98	70-130	
Ethylbenzene	ug/L	20	19.9	99	70-130	
Toluene	ug/L	20	20.6	103	70-130	
Xylene (Total)	ug/L	60	60.0	100	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			106	79-129	
Dibromofluoromethane (S)	%			99	80-120	
Toluene-d8 (S)	%			98	80-120	

			MS	MSD							
	302	230867001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	30.5	20	20	64.4	49.5	170	95	67-121	26 MH	1
Ethylbenzene	ug/L	ND	20	20	22.5	23.3	112	117	70-127	4	
Toluene	ug/L	ND	20	20	23.8	24.7	116	121	77-125	4	
Xylene (Total)	ug/L	ND	60	60	68.0	72.1	113	120	69-128	6	
1,2-Dichloroethane-d4 (S)	%						96	90	80-120		
4-Bromofluorobenzene (S)	%						105	103	79-129		
Dibromofluoromethane (S)	%						97	96	80-120		
Toluene-d8 (S)	%						99	100	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hes	s Towson											
Pace Project No.: 3023	30598											
QC Batch: 27	3938			Analysi	s Method:	E	PA 8015B					
QC Batch Method: EF	A 3546			Analysi	s Descript	ion: E	PA 8015 TP	н				
Associated Lab Samples	30230598	3007, 30	0230598009									
METHOD BLANK: 134	7510			N	latrix: Sol	id						
Associated Lab Samples	30230598	3007, 30	0230598009									
_				Blank		eporting						
Parameter			Units	Result		Limit	Analyz	:ed	Qualifiers			
TPH (C10-C28)			mg/kg		ND	6.7		-				
o-Terphenyl (S)			%		54	24-123	10/04/17	02:27				
LABORATORY CONTRO	L SAMPLE:	13475	511									
				Spike	LCS	;	LCS	% Re	C			
Parameter			Units	Conc.	Resu	lt	% Rec	Limits	s Q	ualifiers		
TPH (C10-C28)			mg/kg	66.7		47.0	71	2	13-98		-	
o-Terphenyl (S)			%				86	24	1-123			
MATRIX SPIKE & MATR	X SPIKE DU	PLICAT	E: 13475 ⁻	12		1347513						
				MS	MSD							
			231631001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
			– 1.	O A A A	0	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Parameter	I	Units	Result	Conc.	Conc.	Result		70 1100	70 IXEC			Quai
Parameter TPH (C10-C28)		Units ng/kg	Result		72.1		 	68	52	10-175	14	Quai

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson								
Pace Project No.:	30230598								
QC Batch:	272858		Analysis	Method:	EF	PA 8015B			
QC Batch Method:	EPA 3510C		Analysis	Description:	EF	PA 8015 TPH			
Associated Lab San	nples: 30230598	3001, 30230598002	, 3023059800	3, 30230598	3004, 30	230598005,	30230598008		
METHOD BLANK:	1342778		Mat	rix: Water					
Associated Lab San	nples: 30230598	3001, 30230598002	, 3023059800	3, 30230598	3004, 30	230598005,	30230598008		
			Blank	Repor	rting				
Paran	neter	Units	Result	Lim	nit	Analyze	d Quali	fiers	
TPH (C10-C28)		mg/L	1	1D	0.10	10/03/17 23	3:49		
o-Terphenyl (S)		%		36	35-101	10/03/17 23	3:49		
LABORATORY CO	NTROL SAMPLE:	1342779							
			Spike	LCS		LCS	% Rec		
Paran	neter	Units	Conc.	Result	ç	% Rec	Limits	Qualifiers	
TPH (C10-C28)		mg/L	1	0.4	8	48	41-103		-
o-Terphenyl (S)		%				69	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson						
Pace Project No .:	30230598						
QC Batch:	273758		Analysis Meth	od:	ASTM E	02974-87	
QC Batch Method:	ASTM D2974-87	,	Analysis Desc	ription:	Dry Wei	ight/Percen	t Moisture
Associated Lab Sar	nples: 30230598	007, 30230598009					
SAMPLE DUPLICA	TE: 1346940						
			30230590001	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	37.0	38	.9	5	
SAMPLE DUPLICA	TE: 1346941						
			30230598007	Dup			
Paran	neter	Units	Result	Result		RPD	Qualifiers
Percent Moisture		%	16.5	18	.6	12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson											
Pace Project No.:	30230598											
QC Batch:	273912			Analys	is Method:	S	M2320B-97					
QC Batch Method:	SM2320B-97	,		Analys	is Descript	ion: 23	320B Alkalin	ity				
Associated Lab Sar	nples: 30230	598001, 30	0230598002	, 30230598	003, 30230	0598004						
METHOD BLANK:	1347410			N	latrix: Wat	ter						
Associated Lab Sar	nples: 30230	598001, 30	0230598002	, 30230598	003, 30230	0598004						
				Blank	R	eporting						
Deve	neter		Units	Result	t	Limit	Analyz	ed	Qualifiers			
Parar	10101											
Parar Alkalinity,Total (CaC			mg/L		ND	10.0	10/02/17	17:32				
	CO3 pH4.5)	E: 13474	mg/L									
Alkalinity, Total (CaC	CO3 pH4.5) NTROL SAMPL	E: 13474	mg/L	Spike Conc.	ND LCS Resu		10/02/17 LCS % Rec	17:32 % Rec		ualifiers		
Alkalinity, Total (CaC	CO3 pH4.5) NTROL SAMPL neter	E: 13474	mg/L 411	•	LCS Resu		LCS	% Rec Limits		ualifiers		
Alkalinity,Total (CaC LABORATORY COI Parar	CO3 pH4.5) NTROL SAMPL neter CO3 pH4.5)		mg/L 411 Units mg/L	20 12	LCS Resu	; t	LCS % Rec	% Rec Limits	Q	ualifiers		
Alkalinity, Total (CaC LABORATORY COI Parar Alkalinity, Total (CaC	CO3 pH4.5) NTROL SAMPL neter CO3 pH4.5)	DUPLICAT	mg/L 411 Units mg/L E: 13474	20 12 MS	LCS Resu MSD	1347413	LCS % Rec 100	% Rec Limits 85	Q 5-115			
Alkalinity, Total (CaC LABORATORY COI Parar Alkalinity, Total (CaC	CO3 pH4.5) NTROL SAMPL neter CO3 pH4.5) MATRIX SPIKE I	DUPLICAT	mg/L 411 Units mg/L	20 12	LCS Resu	it 20.0	LCS % Rec	% Rec Limits	Q	ualifiers % Rec Limits	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson							
Pace Project No.:	30230598							
QC Batch:	272989		Analysis M	ethod:	SM4500S2F-00			
QC Batch Method:	SM4500S2F-00)	Analysis De	escription:	4500S2F Sulfide	e, lodometric		
Associated Lab Sar	nples: 3023059	8001, 302305980	02, 30230598003,	30230598004	Ļ			
METHOD BLANK:	1343174		Matrix	k: Water				
Associated Lab Sar	mples: 3023059	8001, 302305980	02, 30230598003,	30230598004	Ļ			
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyzed	Qualifi	ers	
Sulfide		mg/L	NE)	1.0 09/25/17 18	:13		
LABORATORY CO	NTROL SAMPLE:	1343175						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Sulfide		mg/L	5.7	6.0	105	85-115		
MATRIX SPIKE SA	MPLE:	1343177						
			3023054500	1 Spike	MS	MS	% Rec	
Parar	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfide		mg/L		4.0 5.7	7 9.2	9.	85-115	
SAMPLE DUPLICA	TE: 1343176							
			30230347001	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifiers		
Sulfide		mg/L	ND	\				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson							
Pace Project No.:	30230598							
QC Batch:	273520		Analysis Me	thod:	EPA 300.0			
QC Batch Method:	EPA 300.0		Analysis De	scription:	300.0 IC Anions	28day		
Associated Lab Sar	nples: 3023059	8001, 3023059800	02, 30230598003, 3	30230598004				
METHOD BLANK:	1345393		Matrix	: Water				
Associated Lab Sar	nples: 30230598	8001, 3023059800	02, 30230598003, 3	30230598004				
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyzed	Qualifie	ers	
Sulfate		mg/L	ND	0.5	09/29/17 20	:42		
LABORATORY CO	NTROL SAMPLE:	1345394						
Parar	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Sulfate		mg/L	2	2.0	98	90-110		
MATRIX SPIKE SA	MPLE:	1345396						
			3023088901 [,]	1 Spike	MS	MS	% Rec	
Parar	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate		mg/L	1	15 100	209	95	90-110	
SAMPLE DUPLICA	TE: 1345395							
			30230889011	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifiers		
					4			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30230598

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 272858

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 273621

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 273981

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- B Analyte was detected in the associated method blank.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- MH Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Hess TowsonPace Project No.:30230598

MIP-2 (25-30) MIP-7 (21-26) MW-4 (P-1 (MW-7 (MW-3 EB-091917	EPA 3546 EPA 3546 EPA 3510C EPA 3510C EPA 3510C	273938 273938 272858	EPA 8015B EPA 8015B	274087
ЛІР-7 (21-26) ЛW-4 (Р-1 (MW-7 (MW-3	EPA 3510C EPA 3510C		EPA 8015B	074007
(P-1 (MW-7 (MW-3	EPA 3510C	272858		274087
(MW-7 (MW-3			EPA 8015B	274070
(MW-7 (MW-3		272858	EPA 8015B	274070
(MW-3		272858	EPA 8015B	274070
	EPA 3510C	272858	EPA 8015B	274070
	EPA 3510C	272858	EPA 8015B	274070
MIP-2 (GW-25-30)	EPA 3510C	272858	EPA 8015B	274070
MIP-2 (25-30)	EPA 5035A/5030B	272875	EPA 8015B	273006
MIP-7 (21-26)	EPA 5035A/5030B	272875	EPA 8015B	273006
MW-4	EPA 5030/8015B	273768		
/P-1	EPA 5030/8015B	272925		
(MW-7	EPA 5030/8015B	273768		
(MW-3	EPA 5030/8015B	272925		
EB-091917	EPA 5030/8015B	273768		
MIP-2 (GW-25-30)	EPA 5030/8015B	273768		
MIP-2 (25-30)	EPA 5035A	273981	EPA 8260B	274020
MIP-7 (21-26)	EPA 5035A	273621	EPA 8260B	273645
/W-4	EPA 8260B	273056		
(P-1	EPA 8260B	273056		
(MW-7	EPA 8260B	273056		
(MW-3	EPA 8260B	273056		
EB-091917	EPA 8260B	273056		
Trip Blank	EPA 8260B	273056		
MIP-2 (GW-25-30)	EPA 8260B	273056		
MIP-2 (25-30)	ASTM D2974-87	273758		
MIP-7 (21-26)	ASTM D2974-87	273758		
MW-4	SM2320B-97	273912		
(P-1	SM2320B-97	273912		
(MW-7	SM2320B-97	273912		
(MW-3	SM2320B-97	273912		
MW-4	SM4500S2F-00	272989		
(P-1				
(MW-7				
/MW-3	SM4500S2F-00	272989		
MW-4				
(P-1				
/N /N /N	IW-7 IW-3 V-4 -1 IW-7	IW-7 SM4500S2F-00 IW-3 SM4500S2F-00 V-4 EPA 300.0 I-1 EPA 300.0	IW-7 SM4500S2F-00 272989 IW-3 SM4500S2F-00 272989 V-4 EPA 300.0 273520 -1 EPA 300.0 273520 IW-7 EPA 300.0 273520	IW-7 SM4500S2F-00 272989 IW-3 SM4500S2F-00 272989 V-4 EPA 300.0 273520 -1 EPA 300.0 273520 IW-7 EPA 300.0 273520

C C C C C C C C C C C C C C C C C C C
-660 8015 -660 8015
N-660 80
ber of Containers
e metro
Part Phone WSP USA Contact Phone 70273 (c. 2 Sampler (s) Sampler (s)
Sar MS
HES JUSS Project Location Project Number & Task 31400408 Multy-Low CMD Credici

<i>Client Name:</i>	. <u></u>	V	SI	>	Projec ()# 2 3 0 5 9 8
Courier: Fed Ex UPS USPS Clier	nt 🗆	Comr	nercial	Pace Other	Label 714
Tracking #: NIA					LIMS Login
Custody Seal on Cooler/Box Present: 2 yes		no no	Seal	s intact: ∕Z yes □) no 📋 🧠
Thermometer Used				Blue None	
				/	°C Final Temp <u>7.ా. ఓ</u> °C
Temp should be above freezing to 6°C		-		<u></u>	**************************************
					Date and initials of person examining contents: 74 3 2 1 1 3
Comments:	Yes	No	N/A		
Chain of Custody Present:				1.	
Chain of Custody Filled Out:	-		Ì	2.	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished:		 	ļ	3	
Sampler Name & Signature on COC:	//		ļ	4	
Sample Labels match COC:	/		ŀ	5.	
-Includes date/time/ID Matrix:	·	1-31	<u></u>		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		-		7.	
Rush Turn Around Time Requested:		/		8.	
Sufficient Volume:	/		Ĺ	9.	
Correct Containers Used:	/			10.	
-Pace Containers Used:	/				
Containers Intact:	/			11.	
Orthophosphate field filtered			-	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered	1		1	13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests	X		~	15. ARU9/211	<u>1</u>
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.			/		
	Lł			Initial when	Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed CH	preservation
				preservative	
Headspace in VOA Vials (>6mm):		/		17	
Trip Blank Present:	/			18.	
Trip Blank Custody Seals Present	/				
Rad Aqueous Samples Screened > 0.5 mrem/hr			/	Initial when completed:	Date:
Client Notification/ Resolution:					a .
Person Contacted:				Time:	Contacted By:
Comments/ Resolution:	······································				
			····		
					······································
				. <u> </u>	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

I.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

.

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

October 13, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30230752

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 21, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the October 06, 2017 report. This project was revised on October13, 2017 in order to correct the reported DRO and GRO carbon ranges as per the COC.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures

cc: Pam Robertson, WSP USA

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30230752

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (18-22)	Lab ID: 302	30752001	Collected: 0	09/21/1	7 08:30	Received: 09	/21/17 23:30 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for pe	ercent moistu	ure, sa	mple si	ze and any dilut	ions.		
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80 ⁴	15B Preparat	ion Me	thod: EF	PA 3546			
TPH (C10-C28) <i>Surrogates</i>	74.1	mg/kg		7.9	1	10/03/17 08:56	10/04/17 05:35		
o-Terphenyl (S)	60	%	24	4-123	1	10/03/17 08:56	10/04/17 05:35	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80 [°]	15B Preparat	ion Me	thod: EF	PA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	297	mg/kg		103	10	09/25/17 12:32	09/27/17 16:15		B,L1
a,a,a-Trifluorotoluene (S)	131	%	10)-174	10	09/25/17 12:32	09/27/17 16:15	98-08-8	
4-Bromofluorobenzene (S)	104	%	85	5-109	10	09/25/17 12:32	09/27/17 16:15	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 826	60B Preparat	ion Me	thod: EF	PA 5035A			
Benzene	ND	ug/kg		4.0	1	10/04/17 11:12	10/04/17 15:56	71-43-2	1c
Ethylbenzene	5530	ug/kg		203	50	10/05/17 12:00	10/05/17 17:23	100-41-4	1c
Toluene	312	ug/kg		4.0	1	10/04/17 11:12	10/04/17 15:56	108-88-3	1c
Xylene (Total)	26900	ug/kg		610	50	10/05/17 12:00	10/05/17 17:23	1330-20-7	
Surrogates									
Toluene-d8 (S)	159	%		6-124	1		10/04/17 15:56		ST
4-Bromofluorobenzene (S)	146	%)-133	1		10/04/17 15:56		ST
1,2-Dichloroethane-d4 (S)	167	%	74	1-131	1	10/04/17 11:12	10/04/17 15:56	17060-07-0	ST
Dibromofluoromethane (S)	49	%	71	1-130	1	10/04/17 11:12	10/04/17 15:56	1868-53-7	SR
Percent Moisture	Analytical Meth	nod: ASTM E	02974-87						
Percent Moisture	16.5	%		0.10	1		10/04/17 13:59		

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (27-30)	Lab ID: 302	30752002	Collected: 09/21/1	7 09:0	5 Received: 09	/21/17 23:30 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	ND	mg/kg	7.9	1	10/03/17 08:56	10/04/17 05:45		
o-Terphenyl (S)	50	%	24-123	1	10/03/17 08:56	10/04/17 05:45	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: E	PA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	ND	mg/kg	11.0	1	09/25/17 12:32	09/25/17 23:34		B,CH,L1
a,a,a-Trifluorotoluene (S)	82	%	10-174	1	09/25/17 12:32	09/25/17 23:34	98-08-8	
4-Bromofluorobenzene (S)	112	%	85-109	1	09/25/17 12:32	09/25/17 23:34	460-00-4	S3
8260B MSV	Analytical Meth	nod: EPA 82	60B Preparation Me	thod: E	EPA 5035A			
Benzene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	71-43-2	1c
Ethylbenzene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	100-41-4	1c
Toluene	ND	ug/kg	4.5	1	10/04/17 11:12	10/04/17 16:15	108-88-3	1c
Xylene (Total)	ND	ug/kg	13.5	1	10/04/17 11:12	10/04/17 16:15	1330-20-7	
Surrogates								
Toluene-d8 (S)	95	%	76-124	1		10/04/17 16:15		
4-Bromofluorobenzene (S)	99	%	70-133	1		10/04/17 16:15		
1,2-Dichloroethane-d4 (S)	103	%	74-131	1	10/04/17 11:12	10/04/17 16:15	17060-07-0	
Dibromofluoromethane (S)	103	%	71-130	1	10/04/17 11:12	10/04/17 16:15	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	17.4	%	0.10	1		10/04/17 13:59		

Project: Hess Towson

Pace Project No.: 30230752

Sample: MIP-8 (GW-18-22)	Lab ID: 302	30752003	Collected: 09/21/1	7 11:45	Received: 09	0/21/17 23:30 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28)	3.5	mg/L	1.1	10	09/24/17 12:09	10/04/17 14:26		1c,A5
<i>Surrogates</i> o-Terphenyl (S)	43	%	35-101	10	09/24/17 12:09	10/04/17 14:26	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	10300	ug/L	2000	10		10/04/17 10:04		
4-Bromofluorobenzene (S)	110	%	72-124	10		10/04/17 10:04	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	23.5	ug/L	1.0	1		09/28/17 10:52	71-43-2	
Ethylbenzene	599	ug/L	50.0	50		09/28/17 11:19	100-41-4	
Toluene	123	ug/L	1.0	1		09/28/17 10:52	108-88-3	
Xylene (Total)	1680	ug/L	150	50		09/28/17 11:19	1330-20-7	
Surrogates		•						
Toluene-d8 (S)	99	%	80-120	1		09/28/17 10:52	2037-26-5	
4-Bromofluorobenzene (S)	108	%	79-129	1		09/28/17 10:52	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		09/28/17 10:52	17060-07-0	
Dibromofluoromethane (S)	93	%	80-120	1		09/28/17 10:52	1868-53-7	

Project: Hess Towson

Pace Project No.: 30230752

Sample: Trip Blank	Lab ID: 3023	30752004	Collected: 09/21/1	7 00:01	Received: 0	9/21/17 23:30 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/28/17 02:08	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/28/17 02:08	100-41-4	
Toluene	ND	ug/L	1.0	1		09/28/17 02:08	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/28/17 02:08	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	99	%	80-120	1		09/28/17 02:08	2037-26-5	
4-Bromofluorobenzene (S)	104	%	79-129	1		09/28/17 02:08	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	80-120	1		09/28/17 02:08	17060-07-0	
Dibromofluoromethane (S)	93	%	80-120	1		09/28/17 02:08	1868-53-7	

QC Batch: 272875		Analysis M	lethod:	EPA 8015B		
QC Batch Method: EPA 5035A/5	6030B	Analysis D	Description:	Gasoline Range	e Organics	
Associated Lab Samples: 30230	752001, 30230752002					
METHOD BLANK: 1342818		Matr	ix: Solid			
Associated Lab Samples: 30230	752001, 30230752002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Qua	lifiers
Gasoline Range Organics	mg/kg	N	D 10	0.0 09/25/17 15	5:37 CH	
4-Bromofluorobenzene (S)	%	11	1 85-1	09 09/25/17 15	5:37 ST	
a,a,a-Trifluorotoluene (S)	%	g	9 10-1	74 09/25/17 15	5:37	
LABORATORY CONTROL SAMPL	E: 1342819					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	50	61.1	122	71-141	CH,L1
4-Bromofluorobenzene (S)	%			101	85-109)
a,a,a-Trifluorotoluene (S)	%			100	10-174	

	302	230586003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	10.9 U	54.3	54.3	60.4	61.3	109	110	72-141	1 0	ж
4-Bromofluorobenzene (S)	%						101	101	85-109		
a,a,a-Trifluorotoluene (S)	%						99	103	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	ess Towson											
	230752											
QC Batch: 2	73768			Analysi	s Method:	E	PA 5030/80	15B				
QC Batch Method:	PA 5030/8015	В		Analysi	s Descript	ion: G	Basoline Ran	ge Organic	s			
Associated Lab Sample	es: 30230752	2003										
METHOD BLANK: 13	46956			N	latrix: Wat	er						
Associated Lab Sample	es: 3023075	2003										
				Blank	Re	eporting						
Paramete	er		Units	Result		Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)			ug/L		ND	200) 10/03/17	16:10		_		
4-Bromofluorobenzene	(S)		%		112	72-124	10/03/17	16:10				
LABORATORY CONTR		13469	57									
				Spike	LCS		LCS	% Rec	;			
Paramete	er		Units	Conc.	Resu	lt	% Rec	Limits	Qu	ualifiers		
TPH (C06-C10)			ug/L	1000		970	97	71	-141			
4-Bromofluorobenzene	(S)		%				103	72	-124			
MATRIX SPIKE & MAT	RIX SPIKE DU	PLICATE	E: 13469	58		1346959						
		-		MS	MSD							
		302	31469003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)		ug/L	ND	1000	1000	824	815	82	81	11-165	1	
4-Bromofluorobenzene	(S)	%						103	105	72-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Matrix: Solid

Project: Hess Towson

Pace Project No.: 30230752

QC Batch:274174Analysis Method:EPA 8260BQC Batch Method:EPA 5035AAnalysis Description:8260B MSV UST-SOILAssociated Lab Samples:30230752001, 30230752002

METHOD BLANK: 1348491

Associated Lab Samples: 30230752001, 30230752002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	10/04/17 14:08	
Ethylbenzene	ug/kg	ND	5.0	10/04/17 14:08	
Toluene	ug/kg	ND	5.0	10/04/17 14:08	
Xylene (Total)	ug/kg	ND	15.0	10/04/17 14:08	
1,2-Dichloroethane-d4 (S)	%	102	74-131	10/04/17 14:08	
4-Bromofluorobenzene (S)	%	95	70-133	10/04/17 14:08	
Dibromofluoromethane (S)	%	103	71-130	10/04/17 14:08	
Toluene-d8 (S)	%	95	76-124	10/04/17 14:08	

LABORATORY CONTROL SAMPLE: 1348492

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	20	18.5	93	70-130	
Ethylbenzene	ug/kg	20	18.9	94	70-130	
Toluene	ug/kg	20	17.6	88	70-130	
Xylene (Total)	ug/kg	60	55.0	92	70-130	
1,2-Dichloroethane-d4 (S)	%			97	74-131	
4-Bromofluorobenzene (S)	%			93	70-133	
Dibromofluoromethane (S)	%			101	71-130	
Toluene-d8 (S)	%			95	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson Pace Project No.: 30230752

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch:	274372		Analysis Meth	nod: E	PA 8260B	
QC Batch Method:	EPA 5035A		Analysis Des	cription: 8	260B MSV UST-SO	IL
Associated Lab Sampl	es: 30230752001					
METHOD BLANK: 1	349299		Matrix:	Solid		
Associated Lab Sampl	es: 30230752001					
			Blank	Reporting		
Paramet	er	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene		ug/kg	ND	250	10/05/17 12:32	
Xylene (Total)		ug/kg	ND	750	10/05/17 12:32	
1,2-Dichloroethane-d4	(S)	%	98	74-131	10/05/17 12:32	
4-Bromofluorobenzene	e (S)	%	98	70-133	10/05/17 12:32	

71-130 10/05/17 12:32

76-124 10/05/17 12:32

100

95

LABORATORY CONTROL SAMPLE: 1349300

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethylbenzene	ug/kg	20	18.2	91	70-130	
Xylene (Total)	ug/kg	60	52.8	88	70-130	
1,2-Dichloroethane-d4 (S)	%			99	74-131	
4-Bromofluorobenzene (S)	%			95	70-133	
Dibromofluoromethane (S)	%			103	71-130	
Toluene-d8 (S)	%			97	76-124	

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Hess Towson

Pace Project No.: 30230752

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch: 273376 Analysis Method: EPA 8260B QC Batch Method: EPA 8260B Analysis Description: 8260B MSV UST-WATER 30230752003, 30230752004 Associated Lab Samples: METHOD BLANK: 1344663 Matrix: Water Associated Lab Samples: 30230752003, 30230752004 Blank Reporting Limit Qualifiers Parameter Result Analyzed Units Benzene ND 1.0 09/28/17 01:41 ug/L Ethylbenzene ug/L ND 1.0 09/28/17 01:41 ug/L ND Toluene 1.0 09/28/17 01:41 Xylene (Total) ug/L ND 3.0 09/28/17 01:41 1,2-Dichloroethane-d4 (S) % 96 80-120 09/28/17 01:41

101

93

98

79-129

80-120

80-120

09/28/17 01:41

09/28/17 01:41

09/28/17 01:41

LABORATORY CONTROL SAMPLE: 1344664

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L		20.8	104	70-130	
Ethylbenzene	ug/L	20	21.1	105	70-130	
Toluene	ug/L	20	21.7	109	70-130	
Xylene (Total)	ug/L	60	64.9	108	70-130	
1,2-Dichloroethane-d4 (S)	%			98	80-120	
4-Bromofluorobenzene (S)	%			106	79-129	
Dibromofluoromethane (S)	%			100	80-120	
Toluene-d8 (S)	%			100	80-120	

%

%

%

MATRIX SPIKE & MATRIX SPIK	KE DUPLICAT	E: 13446	65		1344666						
			MS	MSD							
	302	230912001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	ND	20	20	20.6	21.7	103	109	67-121	5	
Ethylbenzene	ug/L	ND	20	20	21.3	20.7	106	104	70-127	3	
Toluene	ug/L	ND	20	20	21.5	21.4	108	107	77-125	1	
Xylene (Total)	ug/L	ND	60	60	64.9	64.3	108	107	69-128	1	
1,2-Dichloroethane-d4 (S)	%						89	95	80-120		
4-Bromofluorobenzene (S)	%						101	101	79-129		
Dibromofluoromethane (S)	%						94	99	80-120		
Toluene-d8 (S)	%						97	99	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Hess 7	Towson											
Pace Project No.:	30230	752											
QC Batch: 273938					Analysi	Analysis Method:							
QC Batch Method:	EPA	3546			Analysi	s Descript	tion: E	PA 8015 TP	н				
Associated Lab San	nples:	30230752	001, 30	0230752002									
METHOD BLANK:	13475	10			N	latrix: Soli	id						
Associated Lab San	nples:	30230752	001, 30	0230752002									
_					Blank		eporting	. .		0 11			
Paran	neter			Units	Result		Limit	Analyz	.ed	Qualifiers			
TPH (C10-C28) o-Terphenyl (S)				mg/kg %		ND 54	6.7 24-123		-				
LABORATORY CON	NTROL	SAMPLE:	13475	511									
Dama				11-26-	Spike	LCS		LCS	% Rec		- I'C		
Paran	neter			Units	Conc.	Resu	ilt	% Rec	Limits	. Qi	ualifiers	-	
TPH (C10-C28) o-Terphenyl (S)				mg/kg %	66.7		47.0	71 86		3-98 -123			
MATRIX SPIKE & M	IATRIX	SPIKE DUP	LICAT	E: 134751			1347513						
			200	004604004	MS	MSD Spille	MS	MSD	MS	MSD	% Rec		
Paramet	ter	U	302 nits	231631001 Result	Spike Conc.	Spike Conc.	Result	Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
TPH (C10-C28) o-Terphenyl (S)			g/kg %	35.5	72.2	72.1	84.6	73.2	68 77	52 78	10-175 24-123	14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:Hess TowsonPace Project No.:30230752								
QC Batch: 272858		Analysis	Method:	EP	A 8015B			
QC Batch Method: EPA 3510C	Analysis	Description:	EP	A 8015 TPH				
Associated Lab Samples: 30230752	2003							
METHOD BLANK: 1342778		Mat	trix: Water					
Associated Lab Samples: 30230752	2003							
		Blank	Report	ing				
Parameter	Units	Result	Limi	t	Analyze	d Quali	fiers	
TPH (C10-C28)	mg/L		ND	0.10	10/03/17 23	3:49		
o-Terphenyl (S)	%		36 3	5-101	10/03/17 23	3:49		
LABORATORY CONTROL SAMPLE:	1342779							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	%	% Rec	Limits	Qualifiers	
TPH (C10-C28)	mg/L		0.48	3	48	41-103		
o-Terphenyl (S)	%				69	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson						
Pace Project No.:	30230752						
QC Batch:	274228	Analysis Meth	od:	ASTM D29	974-87		
QC Batch Method: ASTM D2974-87			Analysis Desc	ription:	Dry Weigh	t/Perce	nt Moisture
Associated Lab Sar	nples: 30230752	001, 30230752002					
SAMPLE DUPLICA	TE: 1348699						
			30230736001	Dup			
Parar	neter	Units	Result	Result	RF	D	Qualifiers
Percent Moisture		%	32.3	17	7.9 58 D6		D6
SAMPLE DUPLICA	TE: 1348700						
			30230736002	Dup			
Parameter		Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	21.0	18	.3	3 14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30230752

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 272858

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 274174

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 274372

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- B Analyte was detected in the associated method blank.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.
- SR Surrogate recovery was below laboratory control limits. Results may be biased low.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Hess Towson
Pace Project No .:	30230752

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	EPA 3546 EPA 3546	273938 273938	EPA 8015B EPA 8015B	274087 274087
30230752003	MIP-8 (GW-18-22)	EPA 3510C	272858	EPA 8015B	274070
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	EPA 5035A/5030B EPA 5035A/5030B	272875 272875	EPA 8015B EPA 8015B	273006 273006
30230752003	MIP-8 (GW-18-22)	EPA 5030/8015B	273768		
30230752001	MIP-8 (18-22)	EPA 5035A	274174	EPA 8260B	274189
30230752001	MIP-8 (18-22)	EPA 5035A	274372	EPA 8260B	274387
30230752002	MIP-8 (27-30)	EPA 5035A	274174	EPA 8260B	274189
30230752003 30230752004	MIP-8 (GW-18-22) Trip Blank	EPA 8260B EPA 8260B	273376 273376		
30230752001 30230752002	MIP-8 (18-22) MIP-8 (27-30)	ASTM D2974-87 ASTM D2974-87	274228 274228		

le la			10.000/1001/1001/1001/1001/1001/1001/10		11/1/1-147-14/1/1-11C-1/1-11		<u>``</u>	N.	2) J					d b		
- Page 🖌 of		Location	And Wheel he cul	P C I USY IN 2 ound-Time	24 HR 72 HR	Ŧ	7		D I				1 <u>-</u> 1		Current 7/2		Number of Packages Custody Seal Number(s)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		No. UUGUOG	Kall And Laboratory Project Manager	C PULL Requested Turn-Arc	Standard 49 HR	Sample Comments							WO#:30230752			Tracking Number(s)	Custody Seal Number(s) OS^3S_{N}
20 20 20 20	Ves												WO# : #OM	30230752		-	saɓi
	Requested Analyses & Preservatives				·····											Shipment Method	Number of Packages
ECORD	Requested Anal		\$ 10.8	68	PH OH	d f	A									12 13m	1/2 Tige
CHAIN-OF-CUSTODY RECORD			5/DS 0.	978 978 51	st of Containe	119 719 əquiniy	×	X	<u>ネ</u> ス	4						Date Parle	Date
CHAIN-OF-		A 20171	@wsp.com		,)	tetion Stop*										() - Moru	
	،	Hernder, UN	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WSP USA Contact Phone 703-709-6500	ß	art* Collectic Time Date		SOL .	1145							Time Received By (Signature)	Received By (Signafu
		if the Sont act Name	WONN ONNY	ISA Contact Phone	Sampler(s) Signature(s)	Collection Start* Date Tim	51 9/21/ 0830	Ser 1 9/2/1/2 0905	allo wys							Time T	Time F
	(3 V D. 50	MSbri) dSM	Sampl	Matrix	Sul	Ser/) 40	Ú						Date 961	Received by (Received by (Received by (
	` \ 	<u>T</u> CChrab.	500	/3	Cresc,		-J.J)	7-30)	1 182	1 K	-					B	Q.
	SA Utilice Address	15320 NUNES TCC Maches N. Suite3 cr. H Project Name WSP USA Contact Name	HISS JOUND Project Location 70 in 501, M.D	Project Number & Task 314005405	Sampler(s) Name(s) Chr/f (Sample Identification	14IP.8(18-22)	NIP.8(22-30	MIP-8(Cw-18-2)	TripBLank						Relinquished BygSignature)	Relinquished By (Signature)

Contraction (1)			on F		1999 🛋 🛲 1000 a. 1000 🕍
Pace Analytical			1. 10 6	?	3023075
Client Name:		L	<u>51</u>		Project #
Courier: Fed Ex D UPS USPS C CI				5 I A . –	Label Cac
Tracking #: Custody Seal on Cooler/Box Present:	s F	=0	N /	133/17 Is intact: - 17 yes 1	
Thermometer Used	Type			Blue None	
Cooler Temperature Observed Temp	1.27	• C	Con	rection Eactor	• ^{• • •} Final Temp: <u>1.4</u> • • •
Temp should be above freezing to 6°C	<u>r </u>	_	001		
					Date and Initials of person examining contents: 2/23/17 CC
Comments:	Yes	s No	N/A	<u> </u>	contents:
Chain of Custody Present:	-			1.	
Chain of Custody Filled Out:	1 Martine	-		2.	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished:				3.	
Sampler Name & Signature on COC:	and the second			4.	
Sample Labels match COC:				5.	
-Includes date/time/ID Matrix:	31	பி	`		
Samples Arrived within Hold Time:	4 Citize constant	Ŧ		6.	
Short Hold Time Analysis (<72hr remaining):				7.	
Rush Turn Around Time Requested:		Transaction		8.	
Sufficient Volume:	* normalized			9.	
Correct Containers Used:	-			10.	
-Pace Containers Used:	Laboration				
Containers Intact:	and the second sec	<u>-</u> :		11.	
Orthophosphate field filtered			870000000	12.	
lex Cr Aqueous Compliance/NPDES sample field filter	ed		· ADMINISTRATION	13.	
Organic Samples checked for dechlorination:		-		14.	
iltered volume received for Dissolved tests			STORE STORE	75.	
Il containers have been checked for preservation.	The second second			16.	
Il containers needing preservation are found to be in on on pliance with EPA recommendation.					
xceptions: VOA, coliform, TOC, O&G, Phenolics	<u>الــــــــــ</u>			Initial when	Date/time of preservation
	2			Lot # of added	preservation
				preservative	
eadspace in VOA Vials (>6mm):				17.	
rip Blank Present:	sourcept			18.	
rip Blank Custody Seals Present ad Aqueous Samples Screened > 0.5 mrem/hr		-		Initial when	
ad Adreous Samples Screened > 0.5 mem/nr				completed:	Date:
lient Notification/ Resolution:		_			
Person Contacted:			Date/T	ime:	Contacted By:
Comments/ Resolution:				· · · · · · · · · · · · · · · · · · ·	

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

October 10, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: WSP Hess Towson Pace Project No.: 30231096

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on September 26, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Timothy Reed for Penny Westrick penny.westrick@pacelabs.com 724 850-5610 Project Manager

Enclosures

CERTIFICATIONS

Project: WSP Hess Towson Pace Project No.: 30231096

Minnesota Certification IDs

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: UST-078 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: MN00064 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970 Wyoming via EPA Region 8 Certification #: 8TMS-L

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project: WSP Hess Towson Pace Project No.: 30231096

Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

SAMPLE ANALYTE COUNT

Project: WSP Hess Towson Pace Project No.: 30231096

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30231096001	Hess Towson GW	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	MAK	2	PASI-PA
		EPA 6020	ТТ3	5	PASI-M
		EPA 8260B	LEL	8	PASI-PA
30231096002	Hess Towson Soil A	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30231096003	Hess Towson Soil B	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	MAK	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30231096004	Trip Blank	EPA 8260B	LEL	8	PASI-PA

Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson GW	Lab ID: 302	31096001	Collected: 09/25/1	7 15:15	Received: 09)/26/17 10:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28) Surrogates	1.3	mg/L	0.10	1	09/28/17 13:16	10/07/17 03:15		1c
o-Terphenyl (S)	44	%	35-101	1	09/28/17 13:16	10/07/17 03:15	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50	030/8015B					
TPH (C06-C10) <i>Surrogates</i>	4360	ug/L	200	1		10/03/17 21:25		
4-Bromofluorobenzene (S)	106	%	72-124	1		10/03/17 21:25	460-00-4	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	020 Preparation Meth	nod: EP	A 3020			
Chromium	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7440-47-3	
Molybdenum	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7439-98-7	
Selenium	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7782-49-2	
Uranium-238	ND	ug/L	0.50	1	10/03/17 03:56	10/06/17 01:56	7440-61-1	
Vanadium	ND	ug/L	1.0	1	10/03/17 03:56	10/06/17 01:56	7440-62-2	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	18.8	ug/L	1.0	1		09/29/17 17:48	71-43-2	
Ethylbenzene	359	ug/L	1.0	1		09/29/17 17:48	100-41-4	
Toluene	31.3	ug/L	1.0	1		09/29/17 17:48	108-88-3	
Xylene (Total) Surrogates	581	ug/L	3.0	1		09/29/17 17:48	1330-20-7	
Toluene-d8 (S)	100	%	80-120	1		09/29/17 17:48	2037-26-5	
4-Bromofluorobenzene (S)	101	%	79-129	1		09/29/17 17:48	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120	1		09/29/17 17:48	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120	1		09/29/17 17:48	1868-53-7	

Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson Soil A	Lab ID: 302	31096002	Collected: 09/25/1	7 15:3	0 Received: 09)/26/17 10:00 N	latrix: Solid	
Results reported on a "dry weight	" basis and are adj	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Mether	nod: EPA 80 [°]	15B Preparation Me	ethod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	223	mg/kg	76.2	10	10/03/17 08:56	10/04/17 18:54		
o-Terphenyl (S)	86	%	24-123	10	10/03/17 08:56	10/04/17 18:54	84-15-1	
Gasoline Range Organics	Analytical Mether	nod: EPA 80 [°]	15B Preparation Me	ethod: E	EPA 5035A/5030B			
Gasoline Range Organics <i>Surrogates</i>	89.3	mg/kg	9.6	1	09/28/17 08:28	09/29/17 21:46		
a,a,a-Trifluorotoluene (S)	48	%	10-174	1	09/28/17 08:28	09/29/17 21:46	98-08-8	
4-Bromofluorobenzene (S)	89	%	85-109	1	09/28/17 08:28	09/29/17 21:46	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 826	60B Preparation Me	ethod: E	EPA 5035A			
Benzene	ND	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	71-43-2	1c
Ethylbenzene	1610	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	100-41-4	1c
Toluene	ND	ug/kg	244	50	10/04/17 12:55	10/09/17 14:35	108-88-3	1c
Xylene (Total)	9250	ug/kg	731	50	10/04/17 12:55	10/09/17 14:35	1330-20-7	
Surrogates								
Toluene-d8 (S)	97	%	76-124	50		10/09/17 14:35		
4-Bromofluorobenzene (S)	102	%	70-133	50	10/04/17 12:55	10/09/17 14:35	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	74-131	50	10/04/17 12:55	10/09/17 14:35	17060-07-0	
Dibromofluoromethane (S)	102	%	71-130	50	10/04/17 12:55	10/09/17 14:35	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM E	02974-87					
Percent Moisture	13.5	%	0.10	1		10/07/17 11:48		

Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Hess Towson Soil B	Lab ID: 302	31096003 Co	ollected: 09/25/1	17 15:4	5 Received: 09	/26/17 10:00 N	latrix: Solid	
Results reported on a "dry weight " Comments: • Sample 003 was not			,					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 8015B	Preparation Me	ethod: E	EPA 3546			
TPH (C10-C28) <i>Surrogates</i>	99.1	mg/kg	7.7	1	10/03/17 08:56	10/04/17 03:34		
o-Terphenyl (S)	60	%	24-123	1	10/03/17 08:56	10/04/17 03:34	84-15-1	
Gasoline Range Organics	Analytical Mether	nod: EPA 8015B	Preparation Me	ethod: E	PA 5035A/5030B			
Gasoline Range Organics Surrogates	53.3	mg/kg	9.6	1	09/28/17 08:28	09/29/17 22:05		
a,a,a-Trifluorotoluene (S)	43	%	10-174	1	09/28/17 08:28	09/29/17 22:05	98-08-8	
4-Bromofluorobenzene (S)	85	%	85-109	1	09/28/17 08:28	09/29/17 22:05	460-00-4	
8260B MSV	Analytical Mether	nod: EPA 8260B	Preparation Me	ethod: E	PA 5035A			
Benzene	ND	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	71-43-2	1c
Ethylbenzene	909	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	100-41-4	1c
Toluene	ND	ug/kg	245	50	10/04/17 12:55	10/09/17 15:01	108-88-3	1c
Xylene (Total)	5310	ug/kg	734	50	10/04/17 12:55	10/09/17 15:01	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	76-124	50	10/04/17 12:55	10/09/17 15:01	2037-26-5	
4-Bromofluorobenzene (S)	105	%	70-133	50	10/04/17 12:55	10/09/17 15:01	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	74-131	50	10/04/17 12:55	10/09/17 15:01	17060-07-0	
Dibromofluoromethane (S)	100	%	71-130	50	10/04/17 12:55	10/09/17 15:01	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM D297	74-87					
Percent Moisture	16.0	%	0.10	1		10/07/17 11:48		

Project: WSP Hess Towson

Pace Project No.: 30231096

Sample: Trip Blank	Lab ID: 302	31096004	Collected: 09/25/	7 00:01	Received: 09	9/26/17 10:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		09/29/17 13:10	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/29/17 13:10	100-41-4	
Toluene	ND	ug/L	1.0	1		09/29/17 13:10	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/29/17 13:10	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	98	%	80-120	1		09/29/17 13:10	2037-26-5	
4-Bromofluorobenzene (S)	102	%	79-129	1		09/29/17 13:10	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	80-120	1		09/29/17 13:10	17060-07-0	
Dibromofluoromethane (S)	101	%	80-120	1		09/29/17 13:10	1868-53-7	

QC Batch: 273409		Analysis	Method:	EPA 8015B		
QC Batch Method: EPA 5035A/5	030B	Analysis	Description:	Gasoline Rang	e Organics	
Associated Lab Samples: 30231	096002, 30231096003	-		-	-	
METHOD BLANK: 1344895		Mat	rix: Solid			
Associated Lab Samples: 30231	096002, 30231096003					
		Blank	Reporting	9		
Parameter	Units	Result	Limit	Analyze	d Quali	fiers
Gasoline Range Organics	mg/kg	١	ND 1	0.0 09/29/17 1	6:30	
4-Bromofluorobenzene (S)	%	1	13 85- ⁻	109 09/29/17 1	6:30	
a,a,a-Trifluorotoluene (S)	%		67 10-1	174 09/29/17 1	6:30	
LABORATORY CONTROL SAMPLI	E: 1344896					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	50	51.5	103	71-141	
4-Bromofluorobenzene (S)	%			106	85-109	
a,a,a-Trifluorotoluene (S)	%			73	10-174	

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 13448	97		1344898						
			MS	MSD							
	302	231110001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Gasoline Range Organics	mg/kg	ND	57.4	57.4	49.6	50.2	85	86	72-141	1	
4-Bromofluorobenzene (S)	%						104	105	85-109		
a,a,a-Trifluorotoluene (S)	%						51	57	10-174		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	/SP Hess Towso	on										
Pace Project No.: 3	0231096											
QC Batch:	273768			Analys	is Method:	E	PA 5030/80 ²	15B				
QC Batch Method:	EPA 5030/8015	В		Analys	is Descript	ion: G	asoline Ran	ge Organic	s			
Associated Lab Samp	es: 3023109	6001										
METHOD BLANK: 1	346956			N	latrix: Wat	er						
Associated Lab Samp	es: 3023109	6001										
				Blank	R	eporting						
Parame	er		Units	Resul	t	Limit	Analyz	ed	Qualifiers			
TPH (C06-C10)			ug/L		ND	200	10/03/17	16:10				
4-Bromofluorobenzen	e (S)		%		112	72-124	10/03/17	16:10				
LABORATORY CONT	ROL SAMPLE:	13469	57									
				Spike	LCS		LCS	% Rec	:			
Parame	er		Units	Conc.	Resu	lt	% Rec	Limits	Q	ualifiers		
TPH (C06-C10)			ug/L	1000		970	97	71	-141		•	
4-Bromofluorobenzen	e (S)		%				103	72	-124			
MATRIX SPIKE & MA	TRIX SPIKE DU	PLICATI	E: 13469	58		1346959						
				MS	MSD							
		302	31469003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C06-C10)		ug/L	ND	1000	1000	824	815	82	81	11-165	1	
4-Bromofluorobenzen	e (S)	%						103	105	72-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WSP Hess Towson

Pace Project No.: 30231096

QC Batch: 499864		Analysis	Method:	EF	PA 6020					
QC Batch Method: EPA 3020		Analysis	B Descriptio	n: 60	20 MET					
Associated Lab Samples: 3023	31096001									
METHOD BLANK: 2718005		Ма	atrix: Water	r						
Associated Lab Samples: 3023	31096001									
		Blank	Rep	porting						
Parameter	Units	Result	Ĺ	.imit	Analyz	ed	Qualifiers			
Chromium	ug/L		ND	0.50	10/06/17 (01:50				
Molybdenum	ug/L		ND	0.50	10/06/17 (01:50				
Selenium	ug/L		ND	0.50	10/06/17 (
Uranium-238	ug/L		ND	0.50	10/06/17 (
Vanadium	ug/L		ND	1.0	10/06/17 (01:50				
Deservator	Units	Spike	LCS		LCS	% Rec				
Parameter		Conc.	Result		% Rec	Limits		ualifiers	-	
Chromium	ug/L	100		107	107		-120			
Molybdenum	ug/L	100		103	103		-120			
Selenium	ug/L	100		113	113		-120			
Uranium-238 Vanadium	ug/L	100 100		106 104	106 104		-120 -120			
Vanadium	ug/L	100		104	104	80	-120			
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 27180	007	2	2718008						
			MSD							
	30231096001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Chromium	ug/L ND	100	100	108	108	108	108	75-125	0	

100

100

100

100

104

110

104

106

104

110

104

106

106

112

106

107

75-125

75-125

75-125

75-125

2

1

2

1

106

112

106

107

ND

ND

ND

ND

100

100

100

100

ug/L

ug/L

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Molybdenum

Uranium-238

Selenium

Vanadium

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: WSP Hess Towson

Pace Project No.: 30231096

QC Batch: 2742	208	Analysis Meth	hod: E	PA 8260B		
QC Batch Method: EPA	5035A	Analysis Des	cription: 82	8260B MSV UST-SOIL		
Associated Lab Samples:	30231096002, 30231096003					
METHOD BLANK: 13486	623	Matrix:	Solid			
Associated Lab Samples:	30231096002, 30231096003					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Benzene	ug/kg	ND	250	10/09/17 12:23		
Ethylbenzene	ug/kg	ND	250	10/09/17 12:23		
Toluene	ug/kg	ND	250	10/09/17 12:23		
Xylene (Total)	ug/kg	ND	750	10/09/17 12:23		
1,2-Dichloroethane-d4 (S)	%	99	74-131	10/09/17 12:23		
4-Bromofluorobenzene (S)	%	94	70-133	10/09/17 12:23		
Dibromofluoromethane (S)	%	102	71-130	10/09/17 12:23		
Toluene-d8 (S)	%	94	76-124	10/09/17 12:23		

LABORATORY CONTROL SAMPLE: 1348624

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	20	17.6	88	70-130	
Ethylbenzene	ug/kg	20	17.0	85	70-130	
Toluene	ug/kg	20	16.5	82	70-130	
Xylene (Total)	ug/kg	60	51.5	86	70-130	
1,2-Dichloroethane-d4 (S)	%			102	74-131	
4-Bromofluorobenzene (S)	%			99	70-133	
Dibromofluoromethane (S)	%			106	71-130	
Toluene-d8 (S)	%			92	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WSP Hess Towson

Pace Project No.: 30231096

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

QC Batch:	273663	Analysis Meth	hod: E	PA 8260B		
QC Batch Method:	EPA 8260B	Analysis Des	cription: 8	8260B MSV UST-WATER		
Associated Lab Sam	ples: 30231096001, 30231096004					
METHOD BLANK:	1346053	Matrix:	Water			
Associated Lab Sam	ples: 30231096001, 30231096004					
		Blank	Reporting			
Param	leter Units	Result	Limit	Analyzed	Qualifiers	
Benzene	ug/L	ND	1.0	09/29/17 12:44		
Ethylbenzene	ug/L	ND	1.0	09/29/17 12:44		
Toluene	ug/L	ND	1.0	09/29/17 12:44		
Xylene (Total)	ug/L	ND	3.0	09/29/17 12:44		

80-120 09/29/17 12:44

79-129 09/29/17 12:44

80-120 09/29/17 12:44

80-120 09/29/17 12:44

101

102

102

97

%

%

%

%

LABORATORY CONTROL SAMPLE:	1346054

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	17.6	88	70-130	
Ethylbenzene	ug/L	20	17.2	86	70-130	
Toluene	ug/L	20	17.9	89	70-130	
Kylene (Total)	ug/L	60	52.9	88	70-130	
I,2-Dichloroethane-d4 (S)	%			96	80-120	
I-Bromofluorobenzene (S)	%			98	79-129	
Dibromofluoromethane (S)	%			101	80-120	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 13460	55		1346056						
			MS	MSD							
	302	231099005	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	ND	20	20	17.8	17.9	89	89	67-121	0	
Ethylbenzene	ug/L	ND	20	20	17.5	18.0	88	90	70-127	3	
Toluene	ug/L	ND	20	20	18.5	18.2	93	91	77-125	2	
Xylene (Total)	ug/L	ND	60	60	54.2	53.9	90	90	69-128	0	
1,2-Dichloroethane-d4 (S)	%						98	93	80-120		
4-Bromofluorobenzene (S)	%						99	100	79-129		
Dibromofluoromethane (S)	%						101	98	80-120		
Toluene-d8 (S)	%						101	102	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	WSP H	ess Towson											
Pace Project No.:	302310	96											
QC Batch:	27393	8			Analys	is Method	: E	PA 8015B					
QC Batch Method:	EPA 3	546			Analys	is Descrip	tion: E	PA 8015 TP	н				
Associated Lab San	nples:	302310960	02, 30	231096003									
METHOD BLANK:	134751	0			Ν	latrix: Sol	id						
Associated Lab San	nples:	302310960	02, 30	231096003									
Paran	neter			Units	Blank Result		leporting Limit	Analyz	ed	Qualifiers			
TPH (C10-C28) o-Terphenyl (S)			I	mg/kg %		ND 54	6.7 24-123		-		_		
	NTROL S	SAMPLE:	13475	511									
					Spike	LCS	6	LCS	% Rec	:			
Paran	neter			Units	Conc.	Resu	ult	% Rec	Limits	Qı	alifiers		
TPH (C10-C28) o-Terphenyl (S)			I	mg/kg %	66.7		47.0	71 86	-	3-98 -123		-	
MATRIX SPIKE & N	IATRIX S	PIKE DUPI	LICAT	E: 13475	12 MS	MSD	1347513						
			302	31631001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Paramet	ter	Ui	nits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
TPH (C10-C28) o-Terphenyl (S)			g/kg %	35.5	72.2	72.1	84.6	73.2	68 77	52 78	10-175 24-123	14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WSP Hess Towso	on							
Pace Project No.: 30231096								
QC Batch: 273432		Analysis	Method:	EP	A 8015B			
QC Batch Method: EPA 3510C		Analysis	Description:	EP	A 8015 TPH			
Associated Lab Samples: 3023109	6001							
METHOD BLANK: 1344962		Ма	trix: Water					
Associated Lab Samples: 3023109	6001							
		Blank	Repo	rting				
Parameter	Units	Result	Lin	nit	Analyze	d Qual	ifiers	
TPH (C10-C28)	mg/L		ND	0.10	10/07/17 01	:49		
o-Terphenyl (S)	%		52	35-101	10/07/17 01	:49		
LABORATORY CONTROL SAMPLE:	1344963							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	9	6 Rec	Limits	Qualifiers	
TPH (C10-C28)	mg/L	1	0.6	55	65	41-103		
o-Terphenyl (S)	%				79	35-101		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	WSP Hess Towson	n					
Pace Project No.:	30231096						
QC Batch:	274569		Analysis Meth	od:	ASTM D	2974-87	
QC Batch Method:	ASTM D2974-87	,	Analysis Desc	ription:	Dry Weig	ght/Perce	ent Moisture
Associated Lab Sar	mples: 30231096	002, 30231096003					
SAMPLE DUPLICA	TE: 1350754						
			30230930001	Dup			
Parar	neter	Units	Result	Result	F	RPD	Qualifiers
Percent Moisture		%	5.2	5	5.2	C)
SAMPLE DUPLICA	TE: 1350755						
			30230931001	Dup			
Parar	neter	Units	Result	Result	F	RPD	Qualifiers
Percent Moisture		%	6.6	2	2.3	97	7 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: WSP Hess Towson

Pace Project No.: 30231096

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

BATCH QUALIFIERS

Batch: 273432

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. Batch: 274208

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- B Analyte was detected in the associated method blank.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	WSP Hess Towson
Pace Project No.:	30231096

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30231096002	Hess Towson Soil A	EPA 3546	273938	EPA 8015B	274087
30231096003	Hess Towson Soil B	EPA 3546	273938	EPA 8015B	274087
30231096001	Hess Towson GW	EPA 3510C	273432	EPA 8015B	274407
30231096002	Hess Towson Soil A	EPA 5035A/5030B	273409	EPA 8015B	273436
30231096003	Hess Towson Soil B	EPA 5035A/5030B	273409	EPA 8015B	273436
30231096001	Hess Towson GW	EPA 5030/8015B	273768		
30231096001	Hess Towson GW	EPA 3020	499864	EPA 6020	500447
30231096002	Hess Towson Soil A	EPA 5035A	274208	EPA 8260B	274227
30231096003	Hess Towson Soil B	EPA 5035A	274208	EPA 8260B	274227
30231096001	Hess Towson GW	EPA 8260B	273663		
30231096004	Trip Blank	EPA 8260B	273663		
30231096002	Hess Towson Soil A	ASTM D2974-87	274569		
30231096003	Hess Towson Soil B	ASTM D2974-87	274569		

Face Analytical[®]

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	www.pacelabs.com										
Sectio	Section A	Section B	0	Section C				Page:		of	
Requit	nation;			Invoice Information:	tion:	Ĩ			¢,	No ² (hereo	
Compa	Company: W S P	Report To: Micheel Dic D		Attention:					S T S	2 / 2 (
Address:		1		Company Name:	ä	R	REGULATORY AGENCY	ENCY			1944)
			V	Address:			NPDES	GROUND WATER	TER 📔	DRINKING WATER	/ATER
Email To:	<u>io</u>	Purchase Order No.:		Pace Quote Reference:			UST	RCRA	L	OTHER	**
Phone:	: Fax:	Project Name: W/CP 14. Cr 7 4 121 501		ace Project Janager:		ŝ	Site Location				
Reque	Requested Due Date/TAT:			ace Profile #;			STATE:			 	anis
						Requested Analysis Filtered (Y/N)	Ilysis Filtered ((N/A			-93
<u>v</u> r	Section D Matrix Codes Required Client Information MATRIX / CODE	(field		<u></u>	Preservatives	E(M) [74] [97] [N/A					(History)
		Valid codes to START START						(N/)	And the second second	Metals= U, Se, V	Se, V
		892) PPC	103 TA	NEKS				O enine		5	
#	(A-Z. 0-9 /) Air Sample IDs MUST BË UNIQUE Tissue Other		LE TEMP		H 2O3 Ions	501		olfið leut			
MƏTI			M M MA2	nqnU	Offer Meth N ^{g2} S N ^{gOI} HCI HCI	90 671 1 98		ois97	Anneanna	Pace Project No./ Lab I.D	Lab I.D.
	Hess Towson GW	17:22		ž	XX	× × × × ×					8
2	1	C12512		<u>9</u>		X					000
'n									anns ann 2		83
4										н Ю	000
ŝ											
9 1									101/001/7011/1777		
- ∞				~							
Ø		· · · · · · · · · · · · · · · · · · ·									
9											
12											
	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	DATE	TIME	ACCEPTE	ACCEPTED BY / AFFILIATION	DATE	ŤIME	SAMP	SAMPLE CONDITIONS	s
		Muchard Certeritar	61/22/6	53,71	La VS	<					
					Wahleit	thankaa	9-28-1) 1	(ev 6.C	>>		
	- WO#:30231096	<u> </u>									
Pa		2									
ge 1		SAMPLER NAME AND SIGNATURE	ND SIGNATURE					э.		oojet Jà	taetn
9 0		PRINT Nar	PRINT Name of SAMPLER:					uj du	bəviə AYY) e	boleu OO be (N\Y)	il sək (N/Y)
f 23	30231096	SIGNATU	SIGNATURE of SAMPLER:			DATE Signed (MM/DD/YY):		Let)) Sealc)) Jms2
	"Important Note: By signing this form you are acce	"mportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.	is of 1.5% per month	tor any invoices	not paid within 30 days.	00000000000000000000000000000000000000		F-A1	-L-Q-020rev	F-ALL-Q-020rev.07, 15-May-2007	07

ſ

Pittsburgh Lab Sample Cond	litior	ı Up	on F	Receipt			
10 million and the second second						3023109	6
Client Name:		\mathbb{W}	S-)	Project #_		6
Courier: [] Fed Ex [] UPS [] USPS [] Clie Tracking #: 70(1) 25(1) 75(6)				-	[Label <u>M</u> IMS Login ANV	
Custody Seal on Cooler/Box Present:		no	Sea	ils intact: 🖾 yes [no		
Thermometer Used	Туре	ofice	∍: (V	et) Blue None			
Cooler Temperature Observed Temp	50	_ • C	Coi	rection Factor: \mathcal{TO} ,	°C Final To	emp: <u>6.6</u> °C	
Temp should be above freezing to 6°C					Data and inf		
Comments:	Yes	No	N//	A	contents:	tials of person examining	I
Chain of Custody Present:	X			1.			
Chain of Custody Filled Out:	X		1	2.			
Chain of Custody Relinquished:	X	T		3.			
Sampler Name & Signature on COC:		X		4.			
Sample Labels match COC:				5.	· · · · · · · · · · · · · · · · · · ·		
-Includes date/time/ID Matrix:V		S					
Samples Arrived within Hold Time:	X	<u> </u>	1	6.			
Short Hold Time Analysis (<72hr remaining):		X		7.		······································	
Rush Turn Around Time Requested:				8.			
Sufficient Volume:	1			9.			
Correct Containers Used:	X			10.			
-Pace Containers Used:	X						
Containers Intact:		X		11. Bereived	and LOA	broken From (301
Orthophosphate field filtered			X	12.			\mathcal{N}
Hex Cr Aqueous Compliance/NPDES sample field filtered			Ŕ	13.			
Organic Samples checked for dechlorination:			X	14. AM 9-	26-17		
Filtered volume received for Dissolved tests	-		$\overline{\mathbf{X}}$	15.		· · · · · · · · · · · · · · · · · · ·	
All containers have been checked for preservation.	\mathbf{X}		<u> </u>	16.			
All containers needing preservation are found to be in compliance with EPA recommendation.	X	-					
\sim	- I			Initial when	Date/time of		
exceptions: (VOA) coliform, TOC, O&G, Phenolics				completed	preservation		
				preservative			
Headspace in VOA Vials (>6mm):		X		17. ONE LIDA J	From sa	mole col	
Trip Blank Present:	X			18.	, .		
Trip Blank Custody Seals Present	X						
Rad Aqueous Samples Screened > 0.5 mrem/hr	[Y.	κ	Initial when completed:	Date:		
Client Notification/ Resolution: Person Contacted: Pan Grofr	·	مىيىتى ا ي	I Date/Л	ime: <u>26 56917 / 3</u>	355 Contacted	By: TPL	
Comments/Resolution: <u>DOil B needs</u> were collected in MD.	+0	<u>5C</u>	[~~	, sume testing	LS Soilt.	Jemples	
Soil B > Date/Time	san	nple	2_(271			
9-25-17/154	5						
A check in this box indicates that addit	iona) i	nforr	natio	n has been stored ir	n ereports.		

\square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

		Pac	e Co	ontainer Ord	er #2	2772	30	PLEASE RETURN THIS COPY
/	tresses —		Ship T	- 317 2 3 9	05	8	Return	To: WITH COC
Order I	By:			Terra Systems, Inc.			Company	Pace Analytical Pittsburgh
Company	WSP			michael Lee		• • •••	Contact	Reed, Timothy
Contact	Pam Groff				. <u> </u>		Email	timothy.reed@pacelabs.com
Email	pam.groff@ws	sp.com		mlee@terrasystems.ne				1638 Roseytown Road
Address	750 Holiday D			130 Hickman Road				Suites 2,3,4
Address 2	Suite 410	Ad	dress 2	Suite 1				Greensburg
City	Pittsburgh		City	Claymont			State	
State	PA Zi	p 15220	State	DE Zip 19703				724-850-5614
	(571) 329-125	5	Phone	(571) 329-1255			Phone	124-830-3014
Inf	fo	1999-1999 - 1999 - 1998 - 1999 - 199						Queta
Project	Name Hess 1	Towson [Due Date	09/15/2017	Profile	7798 L2	2,3 Standard	Quote
-			Refun	1	Carrier			Location
Project Ma	mager Reed,	Timothy						
				- Bottle Labels -				ottles
(Inp B	lanks			Blank				Boxed Cases
X Ir	nclude Trip Bla	nks		X Blank	Sample	IDs	X	Individually Wrapped
				Pre-Printed W				Grouped By Sample
			J					
\Box				- Misc				
	rn Shipping		$\overline{}$	(X Extra Bubble Wrap
	No Shipper Nu			Sampling Instr				Short Hold/Rush Stickers
	With Shipper N	umber		X Custody Seal				DI Water Liter(s)
	; Options –		\leq	X Temp. Blanks				USDA Regulated Soils
			—)	X Coolers				
E (**)	Number of Blai	nks 1						-
	Pre-Printed		$ = \mathcal{I}$					
# of Samp	les Matrix	Test	Contai	ner	Total	# of QC	T	Notes
2	SL	VOC 8260 5035 Low Level Terracore kit w/ sodium bisulfate	1-Terrac	ore kit	4	2	321447 071017-3TE	MS/MSD
2	SL	DRO by 8015	4oz jar		2	0	7192030	
1	WT	VOC by 8260	(3) 40m	clear vial HCL glass vial HCL-hydrochloric	3	0	7192030	
1	wr	GRO 8015	acid				073117-1CK0	G MS/MSD
1	WT	DRO by 8015	1L amb	er glass, unpres	3	2	081417-2AFV	
	WT	Metals by 6020	1-250 m	i plastic w/ HNO3	1	0		
1	WT	COD	250mL	plastic H2SO4	1	0	073117-4CF	(
1	WT	Trip BLANK	2-40mL	HCL w/custody seal	2	0	7192030	
		A REAL PROPERTY AND ADDRESS OF A DESCRIPTION OF A DESCRIP						

*Sample receiving hours are Monday through Friday 8:00 am to 6:00 pm and Saturday from 9:00 am to 12:00 pm unless special arrangements are made with your project manager.

*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.

*Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage and disposal.

*Payment term are net 30 days.

*Please include the proposal number on the chain of custody to insure proper billing.

	Ship Date :	09/14/2017
Sample Notes Solid GRO will be run from voc soil kit	Prepared By:	David F Gunsallus
	Verified By:	Ashleigh Lowe

٦

Pace Analytical www.pecelabs.com sted By: 10/10/2017		AINC				i an
Analytica www.pecelebs.com 10/10/2017				r Ja	**: 	
Results Requested By:				l Intact (Y ocument.		
ults Requ	· · · · · · · · · · · · · · · · · · ·		Comments	N Received on Ice Y or N Samples Intact (sampler's name and signature may not be provided on this COC document. available in the owner laboratory.		
<u> </u>				vided on t		,
9/26/2017 Request				IC N		
ed Date:	3e, V, Cr, Mo	5 'N 0209' ×		ce Y or ure may no atory.		
Owner Received Date:			Date/Time	Received on Ice me and signature ne owner laborato		
Ошие	Preserved Containers			Rece 's name a	:.	
		SONH T		, sampler available		
innesota -	55414 700	Matritx Mater		Y or ppling site rmation is	A second se	
s Towson To nalytical M	Phone (612)607-1700	Lab ID 30231096001	Received By	Custody Seal ame of the sam	***	
Workorder Name:WSP Hess Towson Pace Analytical M	Phone 24	15:15	り Date/Time 校子-スアー/アレ	Cust Cust on/name as is since		
er Name:)		aling and a state		19.0cc Intiality, locati ed complete		
Vorkorde		Sample Vpb		eipt V ^C onfidentia nsidered (
(po			By M	e on Rec în client cu ody is cor		
Chain of Custody Workorder: 30231096 V Report To Penny Westrick	Pace Analytical Pritsourgn 1638 Roseytown Road Suites 2,3,4 Greensburg, PA 15601 Phone 724 850-5610 Phone 724 850-5610	son GW	Released By	3 3 Cooler Temperature on Receipt VG·OC Custody Seal Y or N Received on Ice Cooler Temperature on Receipt VG·OC Custody Seal Y or N Received on Ice ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature m This chain of custody is considered complete as is since this information is available in the owner laboratory.		Page 2
Chain of Workorder: 3 Report To Penny Westrick	ace Analyr 338 Rosey ultes 2,3,4 reensburg none 724 {	tem Sample ID Hess Towson GW	5 Transfers	ooler Ter In order t This cha		

i

and the second sec

and the second		ument Name:	Document Revised: 30Aug2017
Pace Analytical [®]		tion Upon Recei	
		cument No.:	Issuing Authority:
		N-L-213-rev.21	Pace Minnesota Quality Office
Sample Condition Upon Receipt	hunda	Project	* NO#:10405165
Courier:			a fin an
Commercial Pace Speed	_	Client	
Tracking Number:			10405165
Custody Seal on Cooler/Box Present?	~	als Intact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble	Bags Wone	Other:	Temp Blank?
Thermometer 151401163	· · · /\ Туре с		
Used: G87A9155100842			t Blue None Samples on ice, cooling process has begun
	np Corrected (°C):		Biological Tissue Frozen? Yes No XN/A
Temp should be above freezing to 6°C Correctio USDA Regulated Soil ([] N/A, water sample)	n Factor: $-\mathcal{O}$	5 Date	e and Initials of Person Examining Contents: $\frac{9/28}{128}$
Did samples originate in a quarantine zone within the U	nited States: AL. AR	. CA. FL. GA. ID. I	A. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		Yes 🗌	No including Hawaii and Puerto Rico)? [Yes No Q-338) and include with SCUR/COC paperwork.
			COMMENTS:
Chain of Custody Present?	1 ∕∕ Yes	No	1.
Chain of Custody Filled Out?	Yes 🕺		2.
Chain of Custody Relinquished?	Yes	No	3.
Sampler Name and/or Signature on COC?	Yes		4.
Samples Arrived within Hold Time?	Yes		5.
Short Hold Time Analysis (<72 hr)?		₩ No	6.
Rush Turn Around Time Requested?			7.
Sufficient Volume?	Yes		8.
Correct Containers Used?	1 .		
-Pace Containers Used?	Yes	_	9.
Containers Intact?	<u> </u>	<u>No</u>	
	Yes		10
Filtered Volume Received for Dissolved Tests?	N.		11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?		□No	12.
-Includes Date/Time/ID/Analysis Matrix:	<u> </u>		
All containers needing acid/base preservation have bee checked?	n Narres	□No □N/A	13. HNO ₃ H ₂ SO ₄ NaOH Positive for Res.
All containers needing preservation are found to be in	X		Sample #
compliance with EPA recommendation? { (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanic	1-) AF-38		1 - 1
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	de) Yes	□No □N/A	Initial when Lot # of added
DRO/8015 (water) and Dioxin.	Yes		completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes		14.
Trip Blank Present?	[]Yes		15.
Trip Blank Custody Seals Present?	Yes		
Pace Trip Blank Lot # (if purchased):	·	- \ 	
CLIENT NOTIFICATION/RESOLUTION			Field Data Required?
Person Contacted:			Date/Time:
Comments/Resolution:			
Project Manager Review:			9/28/17

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

November 15, 2017

Chris Cresci WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30234624

Dear Chris Cresci:

Enclosed are the analytical results for sample(s) received by the laboratory on October 31, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the November 14, 2017 report. This report was reissued on November 15, 2017 to include estimated values on Samples 30234624005 and 30234624007 per client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rachel D Unistner

Rachel Christner rachel.christner@pacelabs.com 724-850-5611 Project Manager

Enclosures

cc: Environment Accounts Payable, WSP, Environmental Accounts Payable Pam Robertson, WSP USA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Nebraska Certification #: NE-OS-18-06

Mississippi Certification #: MN00064

Montana Certification #: CERT0092

Nevada Certification #: MN00064

New Hampshire Certification #: 2081

Project: Hess Towson Pace Project No.: 30234624

Minnesota Certification IDs

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30234624

Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project:Hess TowsonPace Project No.:30234624

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30234624001	Control S 14 Aq	Water	10/30/17 11:00	10/31/17 10:20
30234624002	Control S 14 Soil	Solid	10/30/17 11:05	10/31/17 10:20
30234624003	10g/LPS + NaOH S 14 Aq	Water	10/30/17 11:15	10/31/17 10:20
30234624004	10g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:20	10/31/17 10:20
30234624005	20g/LPS + NaOH S 14 Aq	Water	10/30/17 11:30	10/31/17 10:20
30234624006	20g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:35	10/31/17 10:20
30234624007	40g/LPS + NaOH S 14 Aq	Water	10/30/17 11:45	10/31/17 10:20
30234624008	40g/LPS + NaOH S 14 Soil	Solid	10/30/17 11:50	10/31/17 10:20
30234624009	Trip Blank Aq	Water	10/30/17 00:01	10/31/17 10:20
30234624010	Trip Blank Soil	Solid	10/30/17 00:01	10/31/17 10:20

SAMPLE ANALYTE COUNT

Project:Hess TowsonPace Project No.:30234624

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
30234624001	Control S 14 Aq	EPA 8015B	SEL	2	PASI-PA	
		EPA 5030/8015B	MAK	2	PASI-PA	
		EPA 8260B	JAS	8	PASI-PA	
30234624002	Control S 14 Soil	EPA 8015B	SEL	2	PASI-PA	
		EPA 8015B	MAK	3	PASI-PA	
		EPA 8260B	JEW	8	PASI-PA	
		ASTM D2974-87	GLG	1	PASI-PA	
30234624003	10g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA	
		EPA 5030/8015B	MAK	2	PASI-PA	
		EPA 8260B	JAS	8	PASI-PA	
30234624004	10g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA	
		EPA 8015B	MAK	3	PASI-PA	
		EPA 8260B	JEW	8	PASI-PA	
		ASTM D2974-87	GLG	1	PASI-PA	
30234624005	20g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA	
		EPA 5030/8015B	MAK	2	PASI-PA	
		EPA 6020	TT3	5	PASI-M	
		EPA 8260B	JAS	8	PASI-PA	
30234624006	20g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA	
		EPA 8015B	LEL	3	PASI-PA	
		EPA 8260B	JEW	8	PASI-PA	
		ASTM D2974-87	GLG	1	PASI-PA	
30234624007	40g/LPS + NaOH S 14 Aq	EPA 8015B	SEL	2	PASI-PA	
		EPA 5030/8015B	MAK	2	PASI-PA	
		EPA 8260B	JAS	8	PASI-PA	
30234624008	40g/LPS + NaOH S 14 Soil	EPA 8015B	SEL	2	PASI-PA	
		EPA 8015B	LEL	3	PASI-PA	
		EPA 8260B	JEW	8	PASI-PA	
		ASTM D2974-87	GLG	1	PASI-PA	
30234624009	Trip Blank Aq	EPA 8260B	JAS	8	PASI-PA	

Project: Hess Towson

Pace Project No.: 30234624

Sample: Control S 14 Aq	Lab ID:	30234624001	Collected	: 10/30/1	7 11:00	Received: 10/	/31/17 10:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
						· ·			
8015 TPH	Analytical	Method: EPA 8	вотъв Ргера	aration ivier	noa: EF	A 3510C			
TPH (C10-C28) Surrogates	1.4	mg/L	0.098	0.0098	1	11/05/17 08:13	11/09/17 22:13		1c
o-Terphenyl (S)	56	%	17-107		1	11/05/17 08:13	11/09/17 22:13	84-15-1	2c
Gasoline Range Organics	Analytical	Method: EPA 5	5030/8015B						
TPH (C06-C10) <i>Surrogates</i>	447	ug/L	200	45.0	1		11/10/17 16:04		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 16:04	460-00-4	
8260B MSV	Analytical	Method: EPA 8	3260B						
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 05:09	71-43-2	
Ethylbenzene	12.2	ug/L	1.0	0.31	1		11/07/17 05:09	100-41-4	
Toluene	1.2	ug/L	1.0	0.30	1		11/07/17 05:09	108-88-3	
Xylene (Total)	68.9	ug/L	3.0	0.78	1		11/07/17 05:09	1330-20-7	
Surrogates									
Toluene-d8 (S)	95	%	80-120		1		11/07/17 05:09	2037-26-5	
4-Bromofluorobenzene (S)	99	%	79-129		1		11/07/17 05:09	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 05:09	17060-07-0	
Dibromofluoromethane (S)	104	%	80-120		1		11/07/17 05:09	1868-53-7	

Project: Hess Towson

Pace Project No.: 30234624

Sample: Control S 14 Soil	Lab ID:	30234624002	Collected	d: 10/30/17	7 11:05	Received: 10/	31/17 10:20 M	atrix: Solid	
Results reported on a "dry weig	ht" basis and are	adjusted for	percent mo	isture, sar	nple s	ize and any diluti	ions.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA	8015B Prepa	aration Met	hod: E	PA 3546			
TPH (C10-C28) <i>Surrogates</i>	82.4	mg/kg	7.6	1.2	1	11/03/17 08:49	11/04/17 05:54		
o-Terphenyl (S)	64	%	30-90		1	11/03/17 08:49	11/04/17 05:54	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA	8015B Prepa	aration Met	hod: E	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogat</i> es	11.0	mg/kg	8.2	1.4	1	11/08/17 11:37	11/10/17 23:57		В
a,a,a-Trifluorotoluene (S)	66	%	38-123		1	11/08/17 11:37	11/10/17 23:57	98-08-8	
4-Bromofluorobenzene (S)	101	%	84-128		1	11/08/17 11:37	11/10/17 23:57	460-00-4	
8260B MSV	Analytical	Method: EPA	8260B Prepa	aration Met	hod: E	PA 5035A			
Benzene	ND	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	71-43-2	1c
Ethylbenzene	104	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	100-41-4	1c
Toluene	4.5	ug/kg	4.1	1.2	1	11/03/17 10:33	11/03/17 17:59	108-88-3	1c
Xylene (Total) Surrogates	572	ug/kg	12.2	3.6	1	11/03/17 10:33	11/03/17 17:59	1330-20-7	
Toluene-d8 (S)	102	%	76-124		1	11/03/17 10:33	11/03/17 17:59	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-133		1	11/03/17 10:33	11/03/17 17:59	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	74-131		1	11/03/17 10:33	11/03/17 17:59	17060-07-0	
Dibromofluoromethane (S)	89	%	71-130		1	11/03/17 10:33	11/03/17 17:59	1868-53-7	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	14.0	%	0.10	0.10	1		11/11/17 10:25		

Project: Hess Towson

Pace Project No.: 30234624

Sample: 10g/LPS + NaOH S 14 Aq	Lab ID:	30234624003	Collected	d: 10/30/17	' 11:15	Received: 10/	31/17 10:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prep	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) Surrogates	2.9	mg/L	0.65	0.065	5	11/05/17 08:13	11/10/17 17:19		1c
o-Terphenyl (S)	46	%	17-107		5	11/05/17 08:13	11/10/17 17:19	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) Surrogates	254	ug/L	200	45.0	1		11/10/17 16:24		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 16:24	460-00-4	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 05:34	71-43-2	
Ethylbenzene	4.4	ug/L	1.0	0.31	1		11/07/17 05:34	100-41-4	
Toluene	ND	ug/L	1.0	0.30	1		11/07/17 05:34	108-88-3	
Xylene (Total) Surrogates	17.0	ug/L	3.0	0.78	1		11/07/17 05:34	1330-20-7	
Toluene-d8 (S)	96	%	80-120		1		11/07/17 05:34	2037-26-5	
4-Bromofluorobenzene (S)	100	%	79-129		1		11/07/17 05:34	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 05:34	17060-07-0	
Dibromofluoromethane (S)	102	%	80-120		1		11/07/17 05:34	1868-53-7	

Project: Hess Towson

Pace Project No.: 30234624

Sample: 10g/LPS + NaOH S 14 So	oil Lab ID:	30234624004	Collected	d: 10/30/17	11:20	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight	t" basis and are	adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA 8	3015B Prep	aration Met	hod: El	PA 3546			
TPH (C10-C28) Surrogates	70.7	mg/kg	8.9	1.4	1	11/03/17 08:49	11/04/17 06:42		
o-Terphenyl (S)	61	%	30-90		1	11/03/17 08:49	11/04/17 06:42	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 8	3015B Prep	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10)	25.0	mg/kg	10.0	1.7	1	11/08/17 11:37	11/11/17 00:17		В
<i>Surrogates</i> a,a,a-Trifluorotoluene (S)	53	%	38-123		1	11/08/17 11:37	11/11/17 00:17	98-08-8	
4-Bromofluorobenzene (S)	88	%	84-128		1	11/08/17 11:37	11/11/17 00:17	460-00-4	
8260B MSV	Analytical	Method: EPA 8	3260B Prep	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	71-43-2	1c
Ethylbenzene	32.6	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	100-41-4	1c
Toluene	ND	ug/kg	5.0	1.5	1	11/03/17 10:33	11/03/17 18:25	108-88-3	1c
Xylene (Total) Surrogates	148	ug/kg	15.1	4.4	1	11/03/17 10:33	11/03/17 18:25	1330-20-7	
Toluene-d8 (S)	98	%	76-124		1	11/03/17 10:33	11/03/17 18:25	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-133		1	11/03/17 10:33	11/03/17 18:25	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	74-131		1	11/03/17 10:33	11/03/17 18:25	17060-07-0	
Dibromofluoromethane (S)	91	%	71-130		1	11/03/17 10:33	11/03/17 18:25	1868-53-7	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	25.5	%	0.10	0.10	1		11/11/17 10:25		

Project: Hess Towson

Pace Project No.: 30234624

Sample: 20g/LPS + NaOH S 14 Aq	Lab ID:	30234624005	Collected	: 10/30/17	7 11:30	Received: 10/	/31/17 10:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prepa	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) Surrogates	0.79	mg/L	0.12	0.012	1	11/05/17 08:13	11/09/17 22:33		1c
o-Terphenyl (S)	43	%	17-107		1	11/05/17 08:13	11/09/17 22:33	84-15-1	2c
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) <i>Surrogates</i>	90.1J	ug/L	200	45.0	1		11/10/17 16:43		
4-Bromofluorobenzene (S)	99	%	80-120		1		11/10/17 16:43	460-00-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3020			
Chromium	1900	ug/L	10.0	2.6	20	11/08/17 12:57	11/09/17 22:15	7440-47-3	
Molybdenum	485	ug/L	10.0	1.6	20	11/08/17 12:57	11/09/17 22:15	7439-98-7	
Selenium	25.8	ug/L	10.0	3.3	20	11/08/17 12:57	11/09/17 22:15	7782-49-2	
Uranium-238	301	ug/L	10.0	0.66	20	11/08/17 12:57	11/09/17 22:15	7440-61-1	
Vanadium	1880	ug/L	20.0	5.3	20	11/08/17 12:57	11/09/17 22:15	7440-62-2	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	1.0 U	ug/L	1.0	0.24	1		11/07/17 06:12	71-43-2	
Ethylbenzene	1.1	ug/L	1.0	0.31	1		11/07/17 06:12	100-41-4	
Toluene	1.0 U	ug/L	1.0	0.30	1		11/07/17 06:12	108-88-3	
Xylene (Total) <i>Surrogates</i>	3.0 U	ug/L	3.0	0.78	1		11/07/17 06:12	1330-20-7	
Toluene-d8 (S)	93	%	80-120		1		11/07/17 06:12	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 06:12	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80-120		1		11/07/17 06:12	17060-07-0	
Dibromofluoromethane (S)	105	%	80-120		1		11/07/17 06:12	1868-53-7	

Project: Hess Towson

Pace Project No.: 30234624

Sample: 20g/LPS + NaOH S 14 So	il Lab ID:	3023462400	6 Collected	I: 10/30/17	' 11:35	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	adjusted fo	r percent mo	isture, san	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 3546			
TPH (C10-C28) Surrogates	57.3	mg/kg	8.0	1.2	1	11/03/17 08:49	11/04/17 06:52		
o-Terphenyl (S)	59	%	30-90		1	11/03/17 08:49	11/04/17 06:52	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10) Surrogates	13.2	mg/kg	10	1.7	1	11/08/17 11:37	11/08/17 16:49		В
a,a,a-Trifluorotoluene (S)	68	%	38-123		1	11/08/17 11:37	11/08/17 16:49	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128		1	11/08/17 11:37	11/08/17 16:49	460-00-4	
8260B MSV	Analytical	Method: EPA	8260B Prepa	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	4.5	1.3	1	11/03/17 10:33	11/03/17 18:50	71-43-2	1c
Ethylbenzene	10.3	ug/kg	4.5	1.4	1	11/03/17 10:33	11/03/17 18:50	100-41-4	1c
Toluene	ND	ug/kg	4.5	1.3	1	11/03/17 10:33	11/03/17 18:50	108-88-3	1c
Xylene (Total) Surrogates	23.9	ug/kg	13.4	3.9	1	11/03/17 10:33	11/03/17 18:50	1330-20-7	
Toluene-d8 (S)	100	%	76-124		1	11/03/17 10:33	11/03/17 18:50	2037-26-5	
4-Bromofluorobenzene (S)	95	%	70-133		1	11/03/17 10:33	11/03/17 18:50	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	74-131		1	11/03/17 10:33	11/03/17 18:50	17060-07-0	
Dibromofluoromethane (S)	93	%	71-130		1	11/03/17 10:33	11/03/17 18:50	1868-53-7	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	17.3	%	0.10	0.10	1		11/11/17 10:25		

Project: Hess Towson

Pace Project No.: 30234624

Sample: 40g/LPS + NaOH S 14 Aq	Lab ID:	30234624007	Collected	d: 10/30/17	' 11:45	Received: 10/	31/17 10:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical	Method: EPA 8	015B Prep	aration Met	hod: EF	PA 3510C			
TPH (C10-C28) <i>Surrogates</i>	3.2	mg/L	1.0	0.10	10	11/05/17 08:13	11/10/17 17:29		1c
o-Terphenyl (S)	37	%	17-107		10	11/05/17 08:13	11/10/17 17:29	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA 5	030/8015B						
TPH (C06-C10) <i>Surrogates</i>	157J	ug/L	200	45.0	1		11/10/17 17:03		
4-Bromofluorobenzene (S)	96	%	80-120		1		11/10/17 17:03	460-00-4	
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	1.0 U	ug/L	1.0	0.24	1		11/07/17 06:37	71-43-2	
Ethylbenzene	2.9	ug/L	1.0	0.31	1		11/07/17 06:37	100-41-4	
Toluene	1.0 U	ug/L	1.0	0.30	1		11/07/17 06:37	108-88-3	
Xylene (Total) <i>Surrogates</i>	2.5J	ug/L	3.0	0.78	1		11/07/17 06:37	1330-20-7	
Toluene-d8 (S)	95	%	80-120		1		11/07/17 06:37	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 06:37	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	80-120		1		11/07/17 06:37	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120		1		11/07/17 06:37	1868-53-7	

Project: Hess Towson

Pace Project No.: 30234624

Sample: 40g/LPS + NaOH S 14 So	il Lab ID:	30234624008	B Collected	: 10/30/17	' 11:50	Received: 10/	31/17 10:20 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	r percent mo	isture, san	nple si	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 3546			
TPH (C10-C28) Surrogates	46.8	mg/kg	8.3	1.3	1	11/03/17 08:49	11/04/17 07:02		
o-Terphenyl (S)	59	%	30-90		1	11/03/17 08:49	11/04/17 07:02	84-15-1	
Gasoline Range Organics	Analytical	Method: EPA	8015B Prepa	aration Met	hod: El	PA 5035A/5030B			
TPH (C06-C10) Surrogates	15.7	mg/kg	9.3	1.6	1	11/08/17 11:37	11/08/17 17:09		В
a,a,a-Trifluorotoluene (S)	63	%	38-123		1	11/08/17 11:37	11/08/17 17:09	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128		1	11/08/17 11:37	11/08/17 17:09	460-00-4	
8260B MSV	Analytical	Method: EPA	8260B Prepa	aration Met	hod: El	PA 5035A			
Benzene	ND	ug/kg	4.2	1.2	1	11/03/17 10:33	11/03/17 19:16	71-43-2	1c
Ethylbenzene	12.7	ug/kg	4.2	1.3	1	11/03/17 10:33	11/03/17 19:16	100-41-4	1c
Toluene	ND	ug/kg	4.2	1.2	1	11/03/17 10:33	11/03/17 19:16	108-88-3	1c
Xylene (Total) Surrogates	20.7	ug/kg	12.7	3.7	1	11/03/17 10:33	11/03/17 19:16	1330-20-7	
Toluene-d8 (S)	102	%	76-124		1	11/03/17 10:33	11/03/17 19:16	2037-26-5	
4-Bromofluorobenzene (S)	98	%	70-133		1	11/03/17 10:33	11/03/17 19:16	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	74-131		1	11/03/17 10:33	11/03/17 19:16	17060-07-0	
Dibromofluoromethane (S)	94	%	71-130		1	11/03/17 10:33	11/03/17 19:16	1868-53-7	
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	20.5	%	0.10	0.10	1		11/11/17 10:25		

Project: Hess Towson

Pace Project No.: 30234624

Sample: Trip Blank Aq	Lab ID:	30234624009	Collecte	d: 10/30/17	00:01	Received: 10	/31/17 10:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical	Method: EPA 8	260B						
Benzene	ND	ug/L	1.0	0.24	1		11/07/17 01:47	71-43-2	
Ethylbenzene	ND	ug/L	1.0	0.31	1		11/07/17 01:47	100-41-4	
Toluene	ND	ug/L	1.0	0.30	1		11/07/17 01:47	108-88-3	
Xylene (Total)	ND	ug/L	3.0	0.78	1		11/07/17 01:47	1330-20-7	
Surrogates		-							
Toluene-d8 (S)	94	%	80-120		1		11/07/17 01:47	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129		1		11/07/17 01:47	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	80-120		1		11/07/17 01:47	17060-07-0	
Dibromofluoromethane (S)	98	%	80-120		1		11/07/17 01:47	1868-53-7	

Associated Lab Samples: 3 METHOD BLANK: 1367281	35A/5030B 0234624002, 30234624004 0234624002, 30234624004 Units mg/kg % %	Analys 4, 30234624 	Matrix: S 006, 302 t ND 98	ption: 34624008 olid	-	nge Or	Analyze		ualifiers		
Associated Lab Samples: 3 METHOD BLANK: 1367281 Associated Lab Samples: 3 Parameter TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	0234624002, 30234624004 0234624002, 30234624004 Units mg/kg %	4, 30234624 4, 30234624 Blank	006, 302 Aatrix: S 006, 302 t t ND 98	34624008 olid 34624008 Reporting Limit			Analyze		ualifiers		
METHOD BLANK: 1367281 Associated Lab Samples: 3 Parameter TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	0234624002, 30234624004 Units mg/kg %	4, 30234624 Blank	Matrix: S 006, 302 t ND 98	olid 34624008 Reporting Limit 10	0	1.7	11/08/17 1		ualifiers		
Associated Lab Samples: 3 Parameter TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	Units mg/kg %	4, 30234624 Blank	006, 302 t ND 98	34624008 Reporting Limit 10	0	1.7	11/08/17 1		ualifiers	_	
Parameter TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	Units mg/kg %	Blank	t ND 98	Reporting Limit 10	0	1.7	11/08/17 1		ualifiers	_	
TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	mg/kg %		t ND 98	Limit 10	0	1.7	11/08/17 1		ualifiers	_	
TPH (C06-C10) 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	mg/kg %	Resul	ND 98	10	0	1.7	11/08/17 1		ualifiers	_	
4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) LABORATORY CONTROL SA Parameter	%		98	-	-	1.7		2:52		_	
a,a,a-Trifluorotoluene (S)				84-12	8						
LABORATORY CONTROL SA Parameter	%						11/08/17 1	2:52			
Parameter			83	38-12	3		11/08/17 1	2:52			
	MPLE: 1367282										
		Spike	LC	S	LCS	%	Rec				
TPH (C06-C10)	Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
	mg/kg	50		48.4	97		78-140		_		
4-Bromofluorobenzene (S)	%				93		84-128				
a,a,a-Trifluorotoluene (S)	%				83		38-123				
MATRIX SPIKE & MATRIX SP	IKE DUPLICATE: 13672	283		1367284	Ļ						
		MS	MSD								
Parameter	30234629002	Spike Conc	Spike Conc	MS Result	MSD Result	MS % R	-			Max	Oua

		20.020002	opino	epinte					/01100				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
TPH (C06-C10)	mg/kg	11.5 U	57.4	57.4	55.8	54.4	95	93	50-144	3	25		
4-Bromofluorobenzene (S)	%						92	91	84-128				
a,a,a-Trifluorotoluene (S)	%						81	86	38-123				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson											
Pace Project No.:	30234624											
QC Batch:	278698		Analys	is Method:	E	EPA 5030/80 ⁻	15B					
QC Batch Method:	EPA 5030/8015	3	Analys	is Descript	ion: (Gasoline Ran	ige Organi	CS				
Associated Lab Sam	ples: 30234624	4001, 30234624003	3, 302346240	005, 30234	4624007							
METHOD BLANK:	1368713		Ν	latrix: Wat	ter							
Associated Lab Sam	ples: 30234624	4001, 30234624003	3, 30234624	005, 30234	4624007							
			Blank		eporting							
Param	eter	Units	Result	t	Limit	MDL		Analyzed	Qu	alifiers		
TPH (C06-C10)		ug/L		ND	20			/10/17 15:24				
4-Bromofluorobenze	ne (S)	%		100	80-120	0	11/	/10/17 15:24	4			
LABORATORY CON	TROL SAMPLE:	1368714	Spike	LCS		LCS	% Re	^				
Param	eter	Units	Conc.	Resu		% Rec	Limit		ualifiers			
TPH (C06-C10)		ug/L	1000		1000	100	7	6-138		-		
4-Bromofluorobenze	ne (S)	%				94	8	0-120				
MATRIX SPIKE & M		PLICATE: 13687	74 5		1368716							
WATRIA SPIRE & W	AIRIA SPIKE DUI	PLICATE: 13007	MS	MSD	1300/10							
		30234859003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Un Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH (C06-C10)	ug	/L ND	1000	1000	813	808	80	79	56-132	1	25	
4-Bromofluorobenze												

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Hess Towson

Project:

QUALITY CONTROL DATA

QC Batch: 506	646		Analys	is Method:	: E	PA 6020						
QC Batch Method: EPA	A 3020		Analys	is Descript	tion: 60	020 MET						
Associated Lab Samples:	30234624005											
METHOD BLANK: 2754	206		Ν	Aatrix: Wa	ter							
Associated Lab Samples:	30234624005											
			Blank	K R	eporting							
Parameter		Units	Resul	t	Limit	MDL		Analyzed	Qua	alifiers		
Chromium		ug/L		ND	0.50		0.13 11/	10/17 14:39)			
Molybdenum		ug/L		ND	0.50	C	.080 11/	10/17 14:39	1			
Selenium		ug/L		ND	0.50		0.17 11/	10/17 14:39	1			
Uranium-238		ug/L		ND	0.50	C).033 11/	10/17 14:39)			
Vanadium		ug/L		ND	1.0		0.27 11/	10/17 14:39				
LABORATORY CONTROL	L SAMPLE: 275	54207										
	-		Spike	LCS	5	LCS	% Re	с				
Parameter		Units	Conc.	Resu	ılt	% Rec	Limits	s Qu	alifiers			
Chromium		ug/L	100	·	109	109	80	0-120		-		
Molybdenum		ug/L	100		105	105	80	0-120				
Selenium		ug/L	100		106	106	80	0-120				
Uranium-238		ug/L	100		103	103	80	0-120				
Vanadium		ug/L	100		108	108	80)-120				
MATRIX SPIKE & MATRIX		ATE: 27542	18		2754209							
			MS	MSD	2.0.200							
	1	0409273001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chromium	ug/L	0.00076 mg/L	100	100	112	112	112	111	75-125	0	20	
Molybdenum	ug/L	1.5	100	100	111	112	109	111	75-125	1	20	
Selenium	ug/L	0.00034J	100	100	111	111	111	111	75-125	0	20	
Ironium 229		mg/L	100	400	440	440	400	400	75 405	~	20	
Uranium-238 Vanadium	ug/L	12.6 0.0012	100 100	100 100	119 111	119 111	106 110	106 110	75-125 75-125	0 0		
vanaulum	ug/L	0.0012	100	100	TTT	111	110	110	10-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

mg/L

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Hess Towson 30234624

Pace Project No.:

QC Batch:	277857	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 5035A	Analysis Description:	8260B MSV UST-SOIL
Associated Lab Sam	ples: 30234624002, 30234624004, 3	0234624006, 3023462400	8

METHOD BLANK: 1365209 Matrix: Solid Associated Lab Samples: 30234624002, 30234624004, 30234624006, 30234624008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	1.4	11/03/17 11:34	
Ethylbenzene	ug/kg	ND	5.0	1.5	11/03/17 11:34	
Toluene	ug/kg	ND	5.0	1.4	11/03/17 11:34	
Xylene (Total)	ug/kg	ND	15.0	4.4	11/03/17 11:34	
1,2-Dichloroethane-d4 (S)	%	98	74-131		11/03/17 11:34	
4-Bromofluorobenzene (S)	%	97	70-133		11/03/17 11:34	
Dibromofluoromethane (S)	%	96	71-130		11/03/17 11:34	
Toluene-d8 (S)	%	100	76-124		11/03/17 11:34	

LABORATORY CONTROL SAMPLE: 1365210

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	20	17.6	88	70-130	
Ethylbenzene	ug/kg	20	19.0	95	70-130	
Toluene	ug/kg	20	18.9	94	70-130	
Xylene (Total)	ug/kg	60	56.6	94	70-130	
1,2-Dichloroethane-d4 (S)	%			93	74-131	
4-Bromofluorobenzene (S)	%			98	70-133	
Dibromofluoromethane (S)	%			99	71-130	
Toluene-d8 (S)	%			100	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Hess Towson
Pace Project No :	20224624

Pace Project No.: 30234624

QC Batch:	2781	39	Analysis Method:	EPA 8260B
QC Batch Method:	EPA	8260B	Analysis Description:	8260B MSV UST-WATER
Associated Lab Sam	oles:	30234624001, 30234624003,	30234624005, 30234624007	, 30234624009

METHOD BLANK: 1366421 Matrix: Water

Associated Lab Samples: 30234624001, 30234624003, 30234624005, 30234624007, 30234624009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	0.24	11/07/17 00:31	
Ethylbenzene	ug/L	ND	1.0	0.31	11/07/17 00:31	
Toluene	ug/L	ND	1.0	0.30	11/07/17 00:31	
Xylene (Total)	ug/L	ND	3.0	0.78	11/07/17 00:31	
1,2-Dichloroethane-d4 (S)	%	97	80-120		11/07/17 00:31	
4-Bromofluorobenzene (S)	%	96	79-129		11/07/17 00:31	
Dibromofluoromethane (S)	%	101	80-120		11/07/17 00:31	
Toluene-d8 (S)	%	96	80-120		11/07/17 00:31	

LABORATORY CONTROL SAMPLE: 1366422

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	18.4	92	70-130	
Ethylbenzene	ug/L	20	18.6	93	70-130	
Toluene	ug/L	20	18.5	92	70-130	
Xylene (Total)	ug/L	60	56.0	93	70-130	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			96	79-129	
Dibromofluoromethane (S)	%			101	80-120	
Toluene-d8 (S)	%			95	80-120	

MATRIX SPIKE & MATRIX SPI	IKE DUPLICA	TE: 13664	23 MS	MSD	1366424							
	3	0234862003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	20.6	20.4	103	102	67-121	1	30	
Ethylbenzene	ug/L	2.5	20	20	23.2	23.0	103	102	70-127	1	30	
Toluene	ug/L	ND	20	20	21.5	20.3	108	101	77-125	6	30	
Xylene (Total)	ug/L	11.2	60	60	73.0	72.1	103	102	69-128	1	30	
1,2-Dichloroethane-d4 (S)	%						94	94	80-120			
4-Bromofluorobenzene (S)	%						99	97	79-129			
Dibromofluoromethane (S)	%						99	100	80-120			
Toluene-d8 (S)	%						97	95	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Hess Towson											
Pace Project No.:	30234624											
QC Batch:	277835		Analysi	s Method:	E	PA 8015B						
QC Batch Method:	EPA 3546		Analysi	s Descript	ion: E	EPA 8015 TPH	-					
Associated Lab San	nples: 30234624	002, 30234624004	, 302346240	006, 30234	1624008							
METHOD BLANK:	1365148		M	latrix: Soli	d							
Associated Lab San	nples: 30234624	002, 30234624004	, 302346240	006, 30234	1624008							
			Blank	R	eporting							
Paran	neter	Units	Result		Limit	MDL		Analyzed	Qua	alifiers		
TPH (C10-C28)		mg/kg		ND	6.7	7	1.0 11/	04/17 04:46	;			
o-Terphenyl (S)		%		73	30-90)	11/	04/17 04:46	i			
LABORATORY COM	NTROL SAMPLE:	1365149										
			Spike	LCS		LCS	% Re	C				
Paran	actor		0	Resu		0/ D = =	Limits		alifiers			
	leter	Units	Conc.	Resu	IT	% Rec	LITTILS	ં હત	anners			
TPH (C10-C28)			66.7	Kesu	52.5	% Rec 79		, 17-86				
TPH (C10-C28) o-Terphenyl (S)	leter	mg/kg %					2					
(/		mg/kg %	66.7			79	2	17-86				
o-Terphenyl (S)		mg/kg %	66.7	MSD	52.5	79	2	17-86				
o-Terphenyl (S)		mg/kg %	66.7		52.5	79	2	17-86	% Rec	-	Max	
o-Terphenyl (S)	IATRIX SPIKE DUF	mg/kg % PLICATE: 136516 30234624002	66.7 60 MS	MSD	52.5	79 91	3	17-86 30-90 ST		RPD	Max RPD	Qual
o-Terphenyl (S)	IATRIX SPIKE DUF	mg/kg % PLICATE: 136516 30234624002 its Result	66.7 60 MS Spike	MSD Spike	52.5 1365161 MS	79 91 MSD Result	MS	47-86 30-90 ST MSD	% Rec	RPD 8		Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson								
Pace Project No.:	30234624								
QC Batch:	277987		Analysis M	Method:	EPA 80)15B			
QC Batch Method:	EPA 3510C		Analysis [Description:	EPA 80	015 TPH			
Associated Lab Sam	nples: 30234624	001, 3023462400	3, 30234624005	5, 302346240	07				
METHOD BLANK:	1365966		Mati	rix: Water					
Associated Lab Sam	nples: 30234624	001, 3023462400	3, 30234624005	5, 302346240	07				
			Blank	Reporti	ng				
Param	neter	Units	Result	Limit		MDL	Analyz	zed	Qualifiers
TPH (C10-C28)		mg/L	N	ID	0.10	0.010	11/09/17	21:42	
o-Terphenyl (S)		%	6	68 17	7-107		11/09/17	21:42	
LABORATORY CON	ITROI SAMPI F	1365967							
			Spike	LCS	LCS	5	% Rec		
Param	neter	Units	Conc.	Result	% Re	ec	Limits	Qualifie	ers
TPH (C10-C28)		mg/L		0.89		89	44-100		
o-Terphenyl (S)		%				92	17-107	2c	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Hess Towson							
Pace Project No.:	30234624							
QC Batch:	278790		Analysis Meth	od:	ASTM D2974-87			
QC Batch Method: ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Perce	ent Moisture			
Associated Lab Sar	mples: 302346240	002, 3023462400	94, 30234624006, 30	234624008				
SAMPLE DUPLICA	TE: 1369336							
_			30234624002	Dup		Max		
Parar	meter	Units	Result	Result	RPD	RPD		Qualifiers
Percent Moisture		%	14.0	14	.0 ()	20	
SAMPLE DUPLICA	TE: 1369337							
			30234624004	Dup		Max		
Parar	meter	Units	Result	Result	RPD	RPD		Qualifiers
Percent Moisture		%	25.5	22	.2 14	ļ	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30234624

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

SAMPLE QUALIFIERS

Sample: 30234624005

[1] Residual Chlorine detected post analysis by 8260.

Sample: 30234624007

[1] Residual Chlorine detected post analysis by 8260.

BATCH QUALIFIERS

Batch: 277857

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 277987

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- 2c Retention times shifted during the analytical sequence such that the retention times for target analytes and surrogates in samples, QC samples, and standards fell outside of their respective retention time windows. Standards and QC samples were used to aid analyte identification in samples. The peak(s) for this analyte was(were) manually identified.

QUALIFIERS

Project:Hess TowsonPace Project No.:30234624

ANALYTE QUALIFIERS

В	Analyte was detected in the associated method blank.
---	--

ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Hess Towson
Pace Project No .:	30234624

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30234624002	Control S 14 Soil	EPA 3546	277835	 EPA 8015B	277927
30234624004	10g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624006	20g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624008	40g/LPS + NaOH S 14 Soil	EPA 3546	277835	EPA 8015B	277927
30234624001	Control S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624003	10g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624005	20g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624007	40g/LPS + NaOH S 14 Aq	EPA 3510C	277987	EPA 8015B	278619
30234624002	Control S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624004	10g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624006	20g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624008	40g/LPS + NaOH S 14 Soil	EPA 5035A/5030B	278355	EPA 8015B	278379
30234624001	Control S 14 Aq	EPA 5030/8015B	278698		
30234624003	10g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624007	40g/LPS + NaOH S 14 Aq	EPA 5030/8015B	278698		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 3020	506646	EPA 6020	507641
30234624002	Control S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624004	10g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624006	20g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624008	40g/LPS + NaOH S 14 Soil	EPA 5035A	277857	EPA 8260B	277866
30234624001	Control S 14 Aq	EPA 8260B	278139		
30234624003	10g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624005	20g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624007	40g/LPS + NaOH S 14 Aq	EPA 8260B	278139		
30234624009	Trip Blank Aq	EPA 8260B	278139		
30234624002	Control S 14 Soil	ASTM D2974-87	278790		
30234624004	10g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		
30234624006	20g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		
30234624008	40g/LPS + NaOH S 14 Soil	ASTM D2974-87	278790		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Barritod Clinet Information:	Section B Remired Project Information:	Section C Invoice information:	Page: 0f	
Company: WSP Environment & Energy	Report To: Groff, Pam	Attention: Environment Accounts Payable		
	COPY TO: MI (have) LER	Nai Nai		
00 Herr	m/ee a levies yetens, not	Address: 13530 Dulles Technology Dr. Hemdon VA 20171	Regulatory Agency	
Email: parn.groff@wsp.com Phone: 710,0050	Purchase Order #	Pace Project Manager. Penny Westrick	State / Location	
ted Due Date: 10 busin		3		
			Requested Analysis Filtered (V/N)	
	(1)e) o)	Preservatives		
# Construction of the market of the market water	정 다 관 중 은 유 과 중 국 은 성 SAMPLE TYPE (G=GRAB C=C	DBO PÀ 8012 GBO 8012 AOC PÀ 8012 AOC PÀ 802 AOC 8560 2032 Гом Гелеl I Methanol Methanol HAO3 HCI HAO3 HCI HAO3 PCOMINIEK2 ASCO4 AS	Total Metals by 200.8 Trip BLANK Trip BLANK Trip BLANK Residual Chlorine (۲/۱۷)	
1 (c. tral 5 14 the	1, 00	8X X X X X X		5
Tentary 14	G liolsin		*ms/ms/Var 20	Ľ
100 KX+NSOH		ÓX X I I I X X X	C C A D D A D A D A D A D A D A D A D A	8
LHI 2 HOLN +29 YEAR	1			Z
			×	S
>S HIS HOEN TO A LOUC	clsal)		20 200 ARC 00	R
	W K rolsoly Ii w	XXX	T MIS WIND ON ON	5
	5 6 10 21 D	ŠX XX XX		Ŗ
				5
10 TripBlack Sol				SC
12 ADDITIONAL COMMENTS	RELUNDUISHED BY (AFRILATION DATE	TIME ACCEPTED EX LAFELLATION	DATE TIME SAMPLE CONDITIONS	
	michaeloutee 10/20	+ CZ.51	0 11 11 1020 3135 V V V V	
W0#:30234624	-4			
ge 26	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	ATURE ER: M. / , N / , N	۸ţ uo pə	
	SIGNATURE of SAMPLER.	0	LEWP Cooler Cool	
	· · · · · · · · · · · · · · · · · · ·			

Pittsburgh La	ab Sample Condi	tion	Upo	n R	eceipt			
Pace Analytical	Client Name:		<u>(</u> م)	sP	Envit Fheren	Project #_	3023462	<u> </u>
	UPS 🗌 USPS 🗍 Clien	t 🗆 i					Label <u>64</u> LIMS Login XNV	
	0602537510		-					
Custody Seal on Cooler	r/Box Present: Ves			1500	s intact: 🛛 yes 🛛	no		
Thermometer Used					Blue None	_		
Cooler Temperature	Observed Temp 3.1	3,5	́°С	Corr	ection Factor: <u>ం,</u> ర	°C Final 1	Femp: 3,1,3,5	
Temp should be above free:								7
					-	contents:	hitials of person examining	
Comments:		Yes	No	N/A	·			
Chain of Custody Presen	t:				1.			
Chain of Custody Filled C	Dut:				2.	<i></i>	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Relingu	lished:				3.	·		-
Sampler Name & Signatu	ire on COC:				4			
Sample Labels match CC	DC:				5.			
-Includes date/time/ID	Matrix: 🔨	7-4	- <u>51</u>		ļ			-
Samples Arrived within H	old Time:				6.	<u></u>		-
Short Hold Time Analys	is (<72hr remaining):		~		7			_
Rush Turn Around Time	Requested:		/		8.			-
Sufficient Volume:		4	- 🗸		9. 31110/31/17	Recieved	LV FF-DROS	imples
Correct Containers Used:		/			10.		003,0	
-Pace Containers Use	d;	/						-
Containers Intact:		/			11.			4
Orthophosphate field filter	red				12.			-
Hex Cr Aqueous Compliance	e/NPDES sample field filtered				13.		- <u> </u>	4
Organic Samples checl	ked for dechlorination:				14.			-
Filtered volume received	for Dissolved tests			/	15.			
All containers have been che	cked for preservation.	<i>_</i>			16.			
All containers needing prese compliance with EPA recomr	rvation are found to be in nendation.	/						-
exceptions(VOA) colifor	m TOC O&G Phenolics				Initial when Cr-h	Date/time of preservation		
exceptions. Very conton					Lot # of added preservative			
Headspace in VOA Vials ((>6mm):				17		<u> </u>	4
Trip Blank Present:		~			18.			
Trip Blank Custody Seals	Present	_					<u></u>	4
Rad Aqueous Samples S	Screened > 0.5 mrem/hr	.		North Control	Initial when completed:	Date:		
Client Notification/ Reso	lution:		dr ay,		φ,- <u>πό</u> γ ι−ταγγ ατιστούματας φήγ−14-6 ποτοδοσιατούματας φη-δ ² ουσουστατος	<u>, , , , , , , , , , , , , , , , , , , </u>		
				Date/	Time:	Contact	ed B <u>y:</u>	_
-	· · · · · · · · · · · · · · · · · · ·							_
-					· · · · · · · · · · · · · · · · · · ·		<u></u>	-
· · · · · · · · · · · · · · · · · · ·					<u>.</u>			-
						,		-
<u></u>	<u></u>		<u></u>		····		<u></u>	_
					the second s	ron orto		

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Order Name:Hess Towson Owner Received Date: 10/31/2017 Results Requested By: Toold and the subcontract to Subcontract to Requested By: Toold and and toold and toold and toold and toold and and and toold and tool	Orthonolder: 30234534 Warter Constructed Date: 103112017 Results Requested Date: 1030	- ustoay		A new memory of the second	Pace Analytical
Parter Analytical Minnesota 1700 Elm Stretted Minnesota Sulta 200 Minnesotalis, MN 55414 Requested Analysis Parter Minnesota Minnesotalis, MN 55414 Procession Stretted Minnesotalis, MN 56414 Procession Stretted Minnesotalis, MN 56414 Sample Procession Sulta 200 Finservoid Containers Minnesotalis, MN 56414 Procession Stretted Minnesotalis, MN 56414 Sample Procession Sulta 200 Minnesotalis, MN 56414 Procession Minnesotalis, MN 56414 Sample Procession Sulta 200 Minnesotalis, MN 56414 Procession Minnesotalis, MN 56414 Sample Procession Procession Minnesotalis, MN 56414 Procession Minnesotalis, MN 56414 Procession Minnesotalis, MN 56414 Sample Procession Minnesotalis, MN 56414 Material Materia		er: 30234624	korder Name:Hess Towson	¥	7 Results Requested By: 11/14/2017
Preserved Containers Sample Collect Sample Collect BS 100202017 11:30 30234624005 Vater 1 h HNO PS 100202017 11:30 30234624005 Vater 1 h Containers DaterTime Receiver By Photo Phot		Penny Westrick Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3,4 Breensburg, PA 15601 Phone 724 850-5610	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700		
PS 10/30/2017 11:30 30234624005 Water 1 X X X X X X X X X		Sample (D	s Collect Date/Time	Preserved Containers	
Date/Time Receiver By Date/Time Receiver By U12/17 1U15 Receiver By		20g/LPS + NaOH S 14 Aq	10/30/2017 11:30 30234624005		
Date/Time Receiver By Date/Time Date/Time					
Eletu Do Contrutu Contraction					
				<i>ι ∈ι]</i> ⊱/n	
	or A			\int	

1

FMT-ALL-C-002rev.00 24March2009

Page 28 PM Bage 2017 2:20:36 PM

1

Page 1 of 1

	and the second se		cument			Document Revised: 30Aug2017
	Pace Analytical*	Sample Conc	lition Up		pt Form	Page 1 of 2
			IN-L-213			Issuing Authority: Pace Minnesota Quality Office
Sample Co Upon Re		PÅ		Project	#: WO	#:10409672
Courier:	Fed Ex UPS		C	lient		A
Commerc	—	Dee Other:_			10409	
Tracking N	lumber: <u>7060 253</u>	37 648:	2		_	
Custody Se	al on Cooler/Box Present?	No	Seals Inta	act?	Yes No	Optional: Proj. Due Date: Proj. Name:
Packing Ma	aterial: Bubble Wrap Bubbl	e Bags 🛛 🗐 None	• 🗆 (Other:		Temp Blank? 🗍 Yes 🚽 🕂 🗖
Thermome Used:	ter 151401163 687A9155100842	Туре	e of Ice:	Wet	Blue	None Samples on ice, cooling process has begur
		mp Corrected (°C)	: _ 			logical Tissue Frozen? 🗌 Yes 🔲 No 💭 🎢
		on Factor:	. 0 i l	🖊 Date	e and Initials of	Person Examining Contents: <u>ME 11/3/17</u>
	ated Soil 🔎 N/A, water sample) originate in a quarantine zone within the	United States: AL, A	R, CA, FL	, GA, ID, L	A. MS, Did	samples originate from a foreign source (internationally,
	OK, OR, SC, TN, TX or VA (check maps)?		ΠY	es 🗌	No incli	uding Hawaii and Puerto Rico)?
	If Yes to either question, fill of	ut a Regulated Soli	Checkli	st (F-MN-	Q-338) and inc	lude with SCUR/COC paperwork. COMMENTS:
Chain of Cus	tody Present?	Yes	□No		1.	
	tody Filled Out?				2.	
	tody Relinguished?				3.	·····
· · · · · · · · · · · · · · · · · · ·	ne and/or Signature on COC?	Yes			4.	
	ved within Hold Time?	Tes			5.	
	ime Analysis (<72 hr)?	Yes			6.	
	round Time Requested?	Yes			7.	
Sufficient Vo	lume?				8.	
Correct Cont	ainers Used?				9.	
-Pace Con	tainers Used?	- Tes	 ⊡No			
Containers in	itact?		No		10.	· · · · ·
Filtered Volu	me Received for Dissolved Tests?	Yes	No		11. Note if s	ediment is visible in the dissolved container
Sample Labe	Is Match COC?	Tes	□No		12.	
-Includes I	Date/Time/ID/Analysis Matrix:	nt				
All container: checked?	s needing acid/base preservation have be				13.	HNO ₃ H ₂ SO ₄ NaOH Positive for Res.
	s needing preservation are found to be in	Yes	∐No	∐N/A	Sample #	Chlorine? Y N
	vith EPA recommendation?			—	- F	~
	1, <2pH, NaOH >9 Sulfide, NaOH>12 Cyar OA, Coliform, TOC/DOC Oil and Grease,	nide) 🖌 Yes	No	⊡n/a	Initial when	Lot # of added
	vater) and Dioxin.	Yes	No	N/A	completed:	preservative:
Headspace in	VOA Vials (>6mm)?	Yes	ΠNο		14.	· · · · · · · · · · · · · · · · · · ·
Trip Blank Pro		Yes	ΠNο	∠ N/A	15.	
-	stody Seals Present?	Yes	□No			
·	nk Lot # (if purchased):					
Person Conta	CLIENT NOTIFICATION/RESOLUTION				D-+- /7'	Field Data Required? Yes No
Comments/F					Date/Time:	
connents/P				•		
					· · · · · · · · · · · · · · · · · · ·	11/02/17

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

February 05, 2018

Pam Robertson WSP USA 13630 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Hess Towson Pace Project No.: 30240919

Dear Pam Robertson:

Enclosed are the analytical results for sample(s) received by the laboratory on January 16, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Gachel D Christmer

Rachel Christner rachel.christner@pacelabs.com 724-850-5611 Project Manager

Enclosures

cc: Chris Cresci, WSP USA Michael Lee, Terra Systems, Inc.

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Nebraska Certification #: NE-OS-18-06

North Carolina DW Certification #: 27700

Mississippi Certification #: MN00064

Montana Certification #: CERT0092

Nevada Certification #: MN00064

New Hampshire Certification #: 2081

New Jersey Certification #: MN002

New York Certification #: 11647

Project: Hess Towson Pace Project No.: 30240919

Minnesota Certification IDs

1700 Elm Street SE. Suite 200. Minneapolis. MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 L-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Connecticut Certification #: PH-0694 **Delaware Certification** Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133 Louisiana DHH/TNI Certification #: LA140008

Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Hess Towson Pace Project No.: 30240919

Pennsylvania Certification IDs

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Certification Wyoming Certification #: 8TMS-L

SAMPLE ANALYTE COUNT

Project:Hess TowsonPace Project No.:30240919

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30240919001	Control	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919002	Control Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919003	10 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919004	10 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919005	20 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 6020	RJS	5	PASI-M
		EPA 8260B	RES	8	PASI-PA
0240919006	20 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919007	40 glh PSU	EPA 8015B	SEL	2	PASI-PA
		EPA 5030/8015B	LEL	3	PASI-PA
		EPA 8260B	RES	8	PASI-PA
30240919008	40 glh PSU Soil	EPA 8015B	SEL	2	PASI-PA
		EPA 8015B	LEL	3	PASI-PA
		EPA 8260B	JEW	8	PASI-PA
		ASTM D2974-87	GLG	1	PASI-PA
30240919009	Trip Blank	EPA 8260B	RES	8	PASI-PA

Project: Hess Towson

Pace Project No.: 30240919

Sample: Control	Lab ID: 3024	40919001	Collected: 01/15/1	8 15:00	Received: 01	/16/18 11:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	15B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28)	0.85	mg/L	0.099	1	01/22/18 12:55	01/24/18 15:16		1c
<i>Surrogates</i> o-Terphenyl (S)	46	%	17-107	1	01/22/18 12:55	01/24/18 15:16	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50	30/8015B					
TPH (C06-C10) Surrogates	281	ug/L	200	1		01/26/18 17:15		
a,a,a-Trifluorotoluene (S)	101	%	62-126	1		01/26/18 17:15	98-08-8	
4-Bromofluorobenzene (S)	103	%	80-120	1		01/26/18 17:15	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	:60B					
Benzene	ND	ug/L	1.0	1		01/19/18 19:28	71-43-2	
Ethylbenzene	10	ug/L	1.0	1		01/19/18 19:28	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 19:28	108-88-3	
Xylene (Total)	55.3	ug/L	3.0	1		01/19/18 19:28	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	103	%	80-120	1		01/19/18 19:28	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129	1		01/19/18 19:28	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	80-120	1		01/19/18 19:28	17060-07-0	
Dibromofluoromethane (S)	96	%	80-120	1		01/19/18 19:28	1868-53-7	

Project: Hess Towson

Pace Project No.: 30240919

Sample: Control Soil	Lab ID: 302	40919002	Collected: 01/15/1	8 15:05	Received: 01	/16/18 11:10 I	Matrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for p	ercent moisture, sa	mple si	ze and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: El	PA 3546			
TPH (C10-C28) Surrogates	33.1	mg/kg	8.4	1	01/17/18 18:53	01/20/18 00:27		
o-Terphenyl (S)	54	%	30-90	1	01/17/18 18:53	01/20/18 00:27	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	17.6	mg/kg	10.1	1	01/18/18 10:41	01/18/18 18:58		
a,a,a-Trifluorotoluene (S)	68	%	38-123	1	01/18/18 10:41	01/18/18 18:58	98-08-8	
4-Bromofluorobenzene (S)	85	%	84-128	1	01/18/18 10:41	01/18/18 18:58	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	71-43-2	1c,H1, H2
Ethylbenzene	64.4	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	5 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.7	1	02/01/18 10:50	02/01/18 20:36	108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	323	ug/kg	14.1	1	02/01/18 10:50	02/01/18 20:36	1330-20-7	
Toluene-d8 (S)	112	%	76-124	1	02/01/18 10:50	02/01/18 20:36	2037-26-5	
4-Bromofluorobenzene (S)	144	%	70-133	1	02/01/18 10:50	02/01/18 20:36	6 460-00-4	ST
1,2-Dichloroethane-d4 (S)	93	%	74-131	1	02/01/18 10:50	02/01/18 20:36	5 17060-07-0	
Dibromofluoromethane (S)	94	%	71-130	1	02/01/18 10:50	02/01/18 20:36	1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	22.7	%	0.10	1		01/18/18 08:40)	

Project: Hess Towson

Pace Project No.: 30240919

Sample: 10 glh PSU	Lab ID: 302	40919003	Collected: 01/15/1	8 15:10	Received: 01	/16/18 11:10	Matrix: Water	
Comments: • 8260 VOA: Post-and	alysis testing indicate	es the prese	ence of residual chlor	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	od: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28) <i>Surrogates</i>	1.1	mg/L	0.14	1	01/22/18 12:55	01/24/18 15:25	i	1c,A5
o-Terphenyl (S)	50	%	17-107	1	01/22/18 12:55	01/24/18 15:25	84-15-1	
Gasoline Range Organics	Analytical Meth	od: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 17:34	ļ	
a,a,a-Trifluorotoluene (S)	105	%	62-126	1		01/26/18 17:34	98-08-8	
4-Bromofluorobenzene (S)	109	%	80-120	1		01/26/18 17:34	460-00-4	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 19:56	71-43-2	
Ethylbenzene	4.7	ug/L	1.0	1		01/19/18 19:56	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 19:56	108-88-3	
Xylene (Total)	22.1	ug/L	3.0	1		01/19/18 19:56	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	80-120	1		01/19/18 19:56		
4-Bromofluorobenzene (S)	99	%	79-129	1		01/19/18 19:56		
1,2-Dichloroethane-d4 (S)	92	%	80-120	1		01/19/18 19:56		
Dibromofluoromethane (S)	95	%	80-120	1		01/19/18 19:56	1868-53-7	

Project: Hess Towson

Pace Project No.: 30240919

Sample: 10 glh PSU Soil	Lab ID: 302	40919004	Collected: 01/15/1	8 15:15	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 3546			
TPH (C10-C28) Surrogates	95.5	mg/kg	8.6	1	01/17/18 18:53	01/20/18 00:36	3	
o-Terphenyl (S)	51	%	30-90	1	01/17/18 18:53	01/20/18 00:36	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: E	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	14.3	mg/kg	10.7	1	01/18/18 10:41	01/18/18 19:16	3	
a,a,a-Trifluorotoluene (S)	30	%	38-123	1	01/18/18 10:41	01/18/18 19:16	8 98-08-8	S5,SR
4-Bromofluorobenzene (S)	107	%	84-128	1	01/18/18 10:41	01/18/18 19:16	6 460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: E	PA 5035A			
Benzene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	5.4	1	02/01/18 10:50	02/01/18 21:02	2 108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	16.2	1	02/01/18 10:50	02/01/18 21:02	2 1330-20-7	
Toluene-d8 (S)	104	%	76-124	1	02/01/18 10:50	02/01/18 21:02	2037-26-5	
4-Bromofluorobenzene (S)	113	%	70-133	1	02/01/18 10:50	02/01/18 21:02	2 460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	74-131	1	02/01/18 10:50	02/01/18 21:02	2 17060-07-0	
Dibromofluoromethane (S)	96	%	71-130	1	02/01/18 10:50	02/01/18 21:02	2 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	24.0	%	0.10	1		01/18/18 08:41		

Project: Hess Towson

Pace Project No.: 30240919

Sample: 20 glh PSU	Lab ID: 3024	40919005	Collected: 01/15/1	8 15:20	Received: 01	/16/18 11:10	Matrix: Water	
Comments: • 8260 VOA: I	Post-analysis testing indicate	es the prese	ence of residual chlori	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: E	PA 3510C			
TPH (C10-C28) <i>Surrogates</i>	1.6	mg/L	0.16	1	01/22/18 12:55	01/24/18 15:33		1c
o-Terphenyl (S)	50	%	17-107	1	01/22/18 12:55	01/24/18 15:33	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50	30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 17:52		
a,a,a-Trifluorotoluene (S)	102	%	62-126	1		01/26/18 17:52	98-08-8	
4-Bromofluorobenzene (S)	104	%	80-120	1		01/26/18 17:52		
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Meth	nod: EP	A 3020			
Chromium	1.1	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7440-47-3	
Molybdenum	ND	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7439-98-7	
Selenium	0.50	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7782-49-2	
Uranium-238	ND	ug/L	0.50	1	01/19/18 10:20	01/19/18 13:42	7440-61-1	
Vanadium	ND	ug/L	1.0	1	01/19/18 10:20	01/19/18 13:42	7440-62-2	
8260B MSV	Analytical Meth	nod: EPA 82	60B					
Benzene	ND	ug/L	1.0	1		01/19/18 20:23	71-43-2	
Ethylbenzene	2.6	ug/L	1.0	1		01/19/18 20:23	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 20:23	108-88-3	
Xylene (Total)	7.5	ug/L	3.0	1		01/19/18 20:23	1330-20-7	
Surrogates								
Toluene-d8 (S)	102	%	80-120	1		01/19/18 20:23		
4-Bromofluorobenzene (S)	96	%	79-129	1		01/19/18 20:23	460-00-4	
1,2-Dichloroethane-d4 (S)	91	%	80-120	1		01/19/18 20:23	17060-07-0	
Dibromofluoromethane (S)	95	%	80-120	1		01/19/18 20:23	1868-53-7	

Project: Hess Towson

Pace Project No.: 30240919

Sample: 20 glh PSU Soil	Lab ID: 302	40919006	Collected: 01/15/1	8 15:25	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: El	PA 3546			
TPH (C10-C28) Surrogates	67.8	mg/kg	8.4	1	01/17/18 18:53	01/20/18 00:54	Ļ	
o-Terphenyl (S)	52	%	30-90	1	01/17/18 18:53	01/20/18 00:54	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	ND	mg/kg	11.9	1	01/18/18 10:41	01/18/18 19:35	5	
a,a,a-Trifluorotoluene (S)	90	%	38-123	1	01/18/18 10:41	01/18/18 19:35	5 98-08-8	
4-Bromofluorobenzene (S)	91	%	84-128	1	01/18/18 10:41	01/18/18 19:35	6 460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	3 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	8 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.4	1	02/01/18 10:50	02/01/18 21:28	8 108-88-3	1c,H1, H2
Xylene (Total) Surrogates	ND	ug/kg	13.3	1	02/01/18 10:50	02/01/18 21:28	3 1330-20-7	
Toluene-d8 (S)	102	%	76-124	1	02/01/18 10:50	02/01/18 21:28	3 2037-26-5	
4-Bromofluorobenzene (S)	108	%	70-133	1	02/01/18 10:50	02/01/18 21:28	460-00-4	
1,2-Dichloroethane-d4 (S)	89	%	74-131	1	02/01/18 10:50	02/01/18 21:28	3 17060-07-0	
Dibromofluoromethane (S)	94	%	71-130	1	02/01/18 10:50	02/01/18 21:28	8 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	22.0	%	0.10	1		01/18/18 08:41		

Project: Hess Towson

Pace Project No.: 30240919

Sample: 40 glh PSU	Lab ID: 302	40919007	Collected: 01/15/1	8 15:30	Received: 01	/16/18 11:10	Aatrix: Water	
Comments: • 8260 VOA: Post-an	alysis testing indicate	es the prese	ence of residual chlor	ine.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH	Analytical Meth	nod: EPA 80	015B Preparation Me	ethod: E	PA 3510C			
TPH (C10-C28) <i>Surrogates</i>	0.91	mg/L	0.32	1	01/22/18 12:55	01/24/18 15:49		1c,A5
o-Terphenyl (S)	54	%	17-107	1	01/22/18 12:55	01/24/18 15:49	84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 50)30/8015B					
TPH (C06-C10) <i>Surrogates</i>	ND	ug/L	200	1		01/26/18 18:29		CL
a,a,a-Trifluorotoluene (S)	103	%	62-126	1		01/26/18 18:29	98-08-8	
4-Bromofluorobenzene (S)	107	%	80-120	1		01/26/18 18:29	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 20:51	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		01/19/18 20:51	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 20:51	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		01/19/18 20:51	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		01/19/18 20:51	2037-26-5	
4-Bromofluorobenzene (S)	98	%	79-129	1		01/19/18 20:51	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	80-120	1		01/19/18 20:51	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		01/19/18 20:51	1868-53-7	

Project: Hess Towson

Pace Project No.: 30240919

Sample: 40 glh PSU Soil	Lab ID: 302	40919008	Collected: 01/15/1	8 15:35	Received: 01	/16/18 11:10	Matrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for p	ercent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Microwave	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: El	PA 3546			
TPH (C10-C28) Surrogates	106	mg/kg	7.9	1	01/17/18 18:53	01/20/18 01:12	2	
o-Terphenyl (S)	55	%	30-90	1	01/17/18 18:53	01/20/18 01:12	2 84-15-1	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	thod: El	PA 5035A/5030B			
TPH (C06-C10) <i>Surrogates</i>	10.3	mg/kg	8.9	1	01/18/18 10:41	01/18/18 19:54	Ļ	
a,a,a-Trifluorotoluene (S)	57	%	38-123	1	01/18/18 10:41	01/18/18 19:54	98-08-8	
4-Bromofluorobenzene (S)	84	%	84-128	1	01/18/18 10:41	01/18/18 19:54	460-00-4	
8260B MSV	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: El	PA 5035A			
Benzene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 71-43-2	1c,H1, H2
Ethylbenzene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 100-41-4	1c,H1, H2
Toluene	ND	ug/kg	4.6	1	02/01/18 10:50	02/01/18 21:55	5 108-88-3	1c,H1, H2
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	13.9	1	02/01/18 10:50	02/01/18 21:55	5 1330-20-7	
Toluene-d8 (S)	103	%	76-124	1	02/01/18 10:50	02/01/18 21:55	5 2037-26-5	
4-Bromofluorobenzene (S)	108	%	70-133	1	02/01/18 10:50	02/01/18 21:55	5 460-00-4	
1,2-Dichloroethane-d4 (S)	87	%	74-131	1	02/01/18 10:50	02/01/18 21:55	5 17060-07-0	
Dibromofluoromethane (S)	95	%	71-130	1	02/01/18 10:50	02/01/18 21:55	5 1868-53-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	17.3	%	0.10	1		01/18/18 08:41		

Project: Hess Towson

Pace Project No.: 30240919

Sample: Trip Blank	Lab ID: 3024	40919009	Collected: 01/15/1	8 00:01	Received: 0	1/16/18 11:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		01/19/18 15:19	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		01/19/18 15:19	100-41-4	
Toluene	ND	ug/L	1.0	1		01/19/18 15:19	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		01/19/18 15:19	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	102	%	80-120	1		01/19/18 15:19	2037-26-5	
4-Bromofluorobenzene (S)	97	%	79-129	1		01/19/18 15:19	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	80-120	1		01/19/18 15:19	17060-07-0	
Dibromofluoromethane (S)	97	%	80-120	1		01/19/18 15:19	1868-53-7	

Project:	Hess Tows	on												
Pace Project No.:	30240919													
QC Batch:	285284			Analys	is Method	E E	PA 8015B							
QC Batch Method:	EPA 503	5A/5030B		Analys	is Descrip	tion: G	asoline Ran	ige Orgar	nics					
Associated Lab Sam	oles: 30	240919002,	30240919004	, 30240919	006, 3024	0919008								
METHOD BLANK:	1399218			Ν	Aatrix: Sol	id								
Associated Lab Sam	oles: 30	240919002,	30240919004	, 30240919	006, 3024	0919008								
				Blank	K R	eporting								
Parame	eter		Units	Resul	t	Limit	Analyz	ed	Qualifie	rs				
TPH (C06-C10)			mg/kg		ND	10.0	01/18/18	14:13						
4-Bromofluorobenzer	· · /		%		92	84-128	01/18/18	14:13						
a,a,a-Trifluorotoluene	e (S)		%		99	38-123	01/18/18	14:13						
LABORATORY CON	IROL SAN	/IPLE: 139	9219	Spike	LCS	2	LCS	% R	00					
Parame	eter		Units	Conc.	Resu		% Rec	Limi		Qualif	iers			
				50		52.6	105			Q Q Q		-		
TPH (C06-C10) 4-Bromofluorobenzer	(5) 40		mg/kg %	50		52.0	86		34-128					
a,a,a-Trifluorotoluene	. ,		%				94		38-123					
	(0)		,,,				01							
MATRIX SPIKE & MA			ATE: 13992	20		1399221								
				MS	MSD									
		3	0240931001	Spike	Spike	MS	MSD	MS	MSD	%	Rec			
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	: Li	mits	RPD		Qual
TPH (C06-C10)		mg/kg	32.0	41.9	41.9	50.1	51.3	43	3 4	46 5	0-144	2	ML	
									_					

87

51

96 84-128

54 38-123

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

4-Bromofluorobenzene (S)

a,a,a-Trifluorotoluene (S)

%

%

Project:	Hess Towso	on										
Pace Project No.:	30240919											
QC Batch:	285887			Analysi	s Method:	El	PA 5030/801	15B				
QC Batch Method:	EPA 5030/	/8015B		Analysi	s Descripti	ion: G	asoline Ran	ge Organi	cs			
Associated Lab Sar	mples: 302	40919001, 30	0240919003	, 302409190	05, 30240	919007						
METHOD BLANK:	1402276			М	atrix: Wat	er						
Associated Lab Sar	nples: 302	40919001, 30	0240919003	, 302409190	05, 30240	919007						
				Blank	Re	eporting						
Parar	neter		Units	Result		Limit	Analyz	ed	Qualifier	S		
TPH (C06-C10)			ug/L		ND	200	01/26/18	15:07				
4-Bromofluorobenze	()		%		101	80-120	01/26/18					
a,a,a-Trifluorotoluer	ne (S)		%		111	62-126	01/26/18	15:07				
LABORATORY COI	NTROL SAMI	PLE: 14022	277									
		PLE: 14022		Spike	LCS		LCS	% Re				
LABORATORY COI Parar		PLE: 14022	277 Units	Spike Conc.	LCS Resul	lt	LCS % Rec	% Ree Limits		Qualifiers		
Paran TPH (C06-C10)	neter	PLE: 14022	Units ug/L	•		lt		Limits		Qualifiers	_	
Parar TPH (C06-C10) 4-Bromofluorobenze	neter ene (S)	PLE: 14022	Units ug/L %	Conc.			% Rec 93 99	Limits 76 80	6-138 0-120	Qualifiers		
LABORATORY COI Parar TPH (C06-C10) 4-Bromofluorobenze a,a,a-Trifluorotoluer	neter ene (S)	PLE: 14022	Units ug/L	Conc.			% Rec 93	Limits 76 80	6-138 (Qualifiers	-	
Parar TPH (C06-C10) 4-Bromofluorobenze a,a,a-Trifluorotoluer	neter ene (S) ne (S)		Units ug/L %	Conc. 1000		927	% Rec 93 99	Limits 76 80	6-138 0-120	Qualifiers	-	
Parar TPH (C06-C10) 4-Bromofluorobenze	neter ene (S) ne (S)		Units ug/L %	Conc. 1000			% Rec 93 99	Limits 76 80	6-138 0-120	Qualifiers	-	
Parar TPH (C06-C10) 4-Bromofluorobenze a,a,a-Trifluorotoluer	neter ene (S) ne (S)	E DUPLICAT	Units ug/L %	Conc. 1000	Resul	927	% Rec 93 99	Limits 76 80	6-138 0-120	Qualifiers % Rec	-	
Parar TPH (C06-C10) 4-Bromofluorobenze a,a,a-Trifluorotoluer	neter ene (S) ne (S) /ATRIX SPIK	E DUPLICAT	Units ug/L % % E: 14022	Conc. 1000 78 MS	Resul	927	% Rec 93 99 99 99	Limits 76 80 62	3-138 0-120 2-126		RPD	Qual

98

91

100

93

80-120

62-126

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

4-Bromofluorobenzene (S)

a,a,a-Trifluorotoluene (S)

%

%

Project: Hess Tow Pace Project No.: 3024091											
QC Batch: 518787			Analys	s Method:	EI	PA 6020					
QC Batch Method: EPA 30	20		Analys	s Descript	tion: 60	20 MET					
Associated Lab Samples:	80240919005										
METHOD BLANK: 2817901			N	latrix: Wa	ter						
Associated Lab Samples:	30240919005										
			Blank	R	eporting						
Parameter		Units	Result	:	Limit	Analyz	ed	Qualifiers			
Chromium		ug/L		ND	0.50	01/19/18	12:22				
Molybdenum		ug/L		ND	0.50	01/19/18	12:22				
Selenium		ug/L		ND	0.50	01/19/18	12:22				
Uranium-238		ug/L		ND	0.50	01/19/18	12:22				
Vanadium		ug/L		ND	1.0	01/19/18	12:22				
LABORATORY CONTROL S/ Parameter	MPLE: 2817	902 Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		ualifiers		
	MPLE: 2817		•				Limits		ualifiers		
Parameter	MPLE: 2817	Units	Conc.		ilt	% Rec	Limits	Qu	ualifiers		
Parameter	MPLE: 2817	Units ug/L	Conc. 100 100 100		ult 93.0 90.4 96.1	% Rec 93	Limits 80 80 80	Qu -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238	MPLE: 2817	Units ug/L ug/L ug/L ug/L	Conc. 100 100 100 100		ult 93.0 90.4 96.1 95.0	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium	MPLE: 2817	Units ug/L ug/L ug/L	Conc. 100 100 100		ult 93.0 90.4 96.1	% Rec 93 90 96	Limits 80 80 80 80	Qu -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100		ult 93.0 90.4 96.1 95.0	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100		93.0 90.4 96.1 95.0 90.4	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	ualifiers		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100 100 100	Resu	93.0 90.4 96.1 95.0 90.4	% Rec 93 90 96 95	Limits 80 80 80 80	Qu -120 -120 -120 -120	valifiers % Rec		
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium		Units ug/L ug/L ug/L ug/L ug/L	Conc. 100 100 100 100 100 100 100 03 MS	MSD	alt 93.0 90.4 96.1 95.0 90.4 2817904	% Rec 93 90 96 95 90	Limits 80 80 80 80 80	Qu -120 -120 -120 -120 -120	% Rec	RPD	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SP Parameter	PIKE DUPLICAT 10 Units	Units ug/L ug/L ug/L ug/L E: 281790	Conc. 100 100 100 100 100 100 03 MS Spike	MSD Spike	ult 93.0 90.4 96.1 95.0 90.4 2817904 MS	% Rec 93 90 96 95 90 MSD	Limits 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120	% Rec	RPD 1	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SP Parameter Chromium	PIKE DUPLICAT 10. Units ug/L	Units ug/L ug/L ug/L ug/L E: 28179 417265002 Result	Conc. 100 100 100 100 100 100 03 MS Spike Conc.	MSD Spike Conc.	93.0 90.4 96.1 95.0 90.4 2817904 MS Result	% Rec 93 90 96 95 90 MSD Result	Limits 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD % Rec	% Rec Limits		Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT 10 Units	Units ug/L ug/L ug/L ug/L E: 28179 417265002 <u>Result</u> 1.2	Conc. 100 100 100 100 100 100 03 MS Spike Conc. 100	MSD Spike Conc. 100	alt 93.0 90.4 96.1 95.0 90.4 2817904 MS Result 101	% Rec 93 90 96 95 90 MSD Result 99.2	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD <u>% Rec</u> 98	% Rec Limits 75-125	1	Qual
Parameter Chromium Molybdenum Selenium Uranium-238 Vanadium MATRIX SPIKE & MATRIX SP Parameter Chromium Molybdenum	PIKE DUPLICAT	Units ug/L ug/L ug/L ug/L rE: 28179 417265002 Result 1.2 2.3	Conc. 100 100 100 100 100 03 MS Spike Conc. 100 100 100	MSD Spike Conc. 100 100	Alt 93.0 90.4 96.1 95.0 90.4 2817904 MS Result 101 98.8	% Rec 93 90 96 95 90 MSD Result 99.2 98.3	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	Qu -120 -120 -120 -120 -120 -120 MSD % Rec 	% Rec Limits 75-125 75-125	 	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Hess Towson Pace Project No.: 30240919

QC Batch:	286870	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 5035A	Analysis Description:	8260B MSV UST-SOIL
Associated Lab Sam	ples: 30240919002, 30240919004, 3	0240919006, 3024091900	8

METHOD BLANK: 1406634 Matrix: Solid Associated Lab Samples: 30240919002, 30240919004, 30240919006, 30240919008

		Blank	Reporting		0 117
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	02/01/18 12:40	
Ethylbenzene	ug/kg	ND	5.0	02/01/18 12:40	
Toluene	ug/kg	ND	5.0	02/01/18 12:40	
Xylene (Total)	ug/kg	ND	15.0	02/01/18 12:40	
1,2-Dichloroethane-d4 (S)	%	83	74-131	02/01/18 12:40	
4-Bromofluorobenzene (S)	%	104	70-133	02/01/18 12:40	
Dibromofluoromethane (S)	%	88	71-130	02/01/18 12:40	
Toluene-d8 (S)	%	99	76-124	02/01/18 12:40	

LABORATORY CONTROL SAMPLE: 1406635

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg		17.5	88	70-130	
Ethylbenzene	ug/kg	20	16.0	80	70-130	
Toluene	ug/kg	20	16.6	83	70-130	
Xylene (Total)	ug/kg	60	47.8	80	70-130	
1,2-Dichloroethane-d4 (S)	%			86	74-131	
4-Bromofluorobenzene (S)	%			103	70-133	
Dibromofluoromethane (S)	%			91	71-130	
Toluene-d8 (S)	%			98	76-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Matrix: Water

Project: Hess Towson Pace Project No.: 30240919

QC Batch:	2854	69	Analysis Method:	
QC Batch Method:	EPA	8260B	Analysis Description:	ł
Associated Lab Sam	ples:	30240919001, 30240919003	3, 30240919005, 30240919007,	

8260B MSV UST-WATER 30240919001, 30240919003, 30240919005, 30240919007, 30240919009

EPA 8260B

METHOD BLANK:	1400059	

Associated Lab Samples: 30240919001, 30240919003, 30240919005, 30240919007, 30240919009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	01/19/18 13:29	
Ethylbenzene	ug/L	ND	1.0	01/19/18 13:29	
Toluene	ug/L	ND	1.0	01/19/18 13:29	
Xylene (Total)	ug/L	ND	3.0	01/19/18 13:29	
1,2-Dichloroethane-d4 (S)	%	89	80-120	01/19/18 13:29	
4-Bromofluorobenzene (S)	%	99	79-129	01/19/18 13:29	
Dibromofluoromethane (S)	%	95	80-120	01/19/18 13:29	
Toluene-d8 (S)	%	101	80-120	01/19/18 13:29	

LABORATORY CONTROL SAMPLE: 1400060

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.5	102	70-130	
Ethylbenzene	ug/L	20	22.1	110	70-130	
Toluene	ug/L	20	21.4	107	70-130	
Xylene (Total)	ug/L	60	66.4	111	70-130	
1,2-Dichloroethane-d4 (S)	%			91	80-120	
4-Bromofluorobenzene (S)	%			100	79-129	
Dibromofluoromethane (S)	%			96	80-120	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SPIK	KE DUPLICAT	E: 14001			1400179						
			MS	MSD							
	302	240922001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/L	ND	20	20	19.5	19.9	98	100	67-121	2	
Ethylbenzene	ug/L	ND	20	20	22.5	23.5	112	117	70-127	4	
Toluene	ug/L	ND	20	20	20.9	21.1	104	106	77-125	1	
Xylene (Total)	ug/L	ND	60	60	65.4	66.4	109	111	69-128	2	
1,2-Dichloroethane-d4 (S)	%						86	92	80-120		
4-Bromofluorobenzene (S)	%						100	98	79-129		
Dibromofluoromethane (S)	%						95	94	80-120		
Toluene-d8 (S)	%						105	103	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Hess Towson Pace Project No.: 30240919

SAMPLE DUPLICATE: 1400180

		30240922001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzene	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	91	91	0	
4-Bromofluorobenzene (S)	%	101	100	0	
Dibromofluoromethane (S)	%	94	93	1	
Toluene-d8 (S)	%	101	99	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Hess Towson											
Pace Project No.:	30240919											
QC Batch:	285182			Analysi	s Method:	E	PA 8015B					
QC Batch Method:	EPA 3546			Analysi	s Descript	ion: E	PA 8015 TP	н				
Associated Lab Sam	nples: 3024091	9002, 30240	919004,	302409190	06, 30240	919008						
METHOD BLANK:	1398918			М	atrix: Soli	d						
Associated Lab Sam	nples: 3024091	9002, 30240	919004,	302409190	06, 30240	919008						
				Blank	R	eporting						
Param	neter	Unit	ts	Result		Limit	Analyz	ed	Qualifiers			
TPH (C10-C28)		mg/k	kg		ND	6.7	01/19/18	23:26				
o-Terphenyl (S)		%			60	30-90	01/19/18	23:26				
LABORATORY CON												
	NTROL SAMPLE:	1398919										
	NTROL SAMPLE:	1398919		Spike	LCS		LCS	% Re	с			
Param		1398919 Unit	ts	Spike Conc.	LCS Resu		LCS % Rec	% Re Limit		alifiers		
Param		Unit		•				Limit		aulifiers	-	
			kg	Conc.		lt	% Rec	Limit	s C	Qualifiers	-	
Paran TPH (C10-C28) o-Terphenyl (S)	neter	Unit mg/k %	kg	Conc. 66.7		lt	% Rec 72	Limit	s C 47-86	Qualifiers	-	
Paran TPH (C10-C28) o-Terphenyl (S)	neter	Unit mg/k %	٨g	Conc. 66.7		lt 48.1	% Rec 72	Limit	s C 47-86	Qualifiers	-	
Paran TPH (C10-C28) o-Terphenyl (S)	neter	Unit mg/k %	<g 139892</g 	<u>Conc.</u> 66.7	Resu	lt 48.1	% Rec 72	Limit	s C 47-86	Qualifiers	-	
Paran TPH (C10-C28) o-Terphenyl (S)	neter IATRIX SPIKE DU	Unit mg/k % PLICATE: 302409	<g 139892</g 	20 MS	Resu	1398921	% Rec 72 67	Limit	s C 47-86 30-90		RPD	Qual
Paran TPH (C10-C28) o-Terphenyl (S) MATRIX SPIKE & M	1ATRIX SPIKE DU	Unit mg/k % PLICATE: 302409	×g 139892 931001	Conc. 66.7 20 MS Spike	Resu MSD Spike	lt 48.1 1398921 MS	% Rec 72 67 MSD Result	Limit	sC 47-86 30-90 MSD % Rec	% Rec Limits		Qual M6,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	Hess Towson								
Pace Project No.:	30240919								
QC Batch:	285556		Analysis	Method:	EF	PA 8015B			
QC Batch Method:	EPA 3510C		Analysis	Description:	EF	PA 8015 TPH			
Associated Lab Sam	nples: 30240919	0001, 3024091900	3, 3024091900	5, 30240919	007				
METHOD BLANK:	1400566		Mat	trix: Water					
Associated Lab Sam	nples: 30240919	001, 3024091900	3, 3024091900	5, 30240919	007				
			Blank	Report	ing				
Param	neter	Units	Result	Limi	t	Analyzed	d Quali	fiers	
TPH (C10-C28)		mg/L	N		0.10	01/24/18 14	1:54		
o-Terphenyl (S)		%		44 1	7-107	01/24/18 14	1:54		
LABORATORY CON		1400567							
	TROE SAMELE.	1400307	Spike	LCS		LCS	% Rec		
Param	neter	Units	Conc.	Result	G	% Rec	Limits	Qualifiers	
TPH (C10-C28)		mg/L	1	0.6	1	61	44-100		-
o-Terphenyl (S)		%				66	17-107		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	Hess Towson		
Pace Project No.:	30240919		
QC Batch:	285258	Analysis Method:	ASTM D2974-87
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture
Associated Lab Sai	mples: 30240919002, 30240919004,	30240919006, 3024091900	8
SAMPLE DUPLICA	TE: 1399165		

		30240999001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Percent Moisture	%	48.5	49.3	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Hess Towson Pace Project No.: 30240919

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-PA Pace Analytical Services - Greensburg

BATCH QUALIFIERS

Batch: 285556

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 286870

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- R1 RPD value was outside control limits.

QUALIFIERS

Project:	Hess Towson
Pace Project No .:	30240919

ANALYTE QUALIFIERS

S5 S	urrogate recovery outsid	e control limits due to matrix	interferences (not confirmed by re-	analysis).
------	--------------------------	--------------------------------	-------------------------------------	------------

- SR Surrogate recovery was below laboratory control limits. Results may be biased low.
- ST Surrogate recovery was above laboratory control limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Hess Towson
Pace Project No .:	30240919

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
30240919002	Control Soil	EPA 3546	285182	 EPA 8015B	285492		
30240919004	10 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492		
30240919006	20 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492		
30240919008	40 glh PSU Soil	EPA 3546	285182	EPA 8015B	285492		
30240919001	Control	EPA 3510C	285556	EPA 8015B	285874		
30240919003	10 glh PSU	EPA 3510C	285556	EPA 8015B	285874		
30240919005	20 glh PSU	EPA 3510C	285556	EPA 8015B	285874		
30240919007	40 glh PSU	EPA 3510C	285556	EPA 8015B	285874		
30240919002	Control Soil	EPA 5035A/5030B	285284	EPA 8015B	285292		
30240919004	10 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292		
80240919006	20 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292		
80240919008	40 glh PSU Soil	EPA 5035A/5030B	285284	EPA 8015B	285292		
0240919001	Control	EPA 5030/8015B	285887				
0240919003	10 glh PSU	EPA 5030/8015B	285887				
80240919005	20 glh PSU	EPA 5030/8015B	285887				
30240919007	40 glh PSU	EPA 5030/8015B	285887				
30240919005	20 glh PSU	EPA 3020	518787	EPA 6020	518889		
30240919002	Control Soil	EPA 5035A	286870	EPA 8260B	286871		
0240919004	10 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871		
0240919006	20 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871		
0240919008	40 glh PSU Soil	EPA 5035A	286870	EPA 8260B	286871		
0240919001	Control	EPA 8260B	285469				
0240919003	10 glh PSU	EPA 8260B	285469				
0240919005	20 glh PSU	EPA 8260B	285469				
0240919007	40 glh PSU	EPA 8260B	285469				
0240919009	Trip Blank	EPA 8260B	285469				
30240919002	Control Soil	ASTM D2974-87	285258				
30240919004	10 glh PSU Soil	ASTM D2974-87	285258				
30240919006	20 glh PSU Soil	ASTM D2974-87	285258				
30240919008	40 glh PSU Soil	ASTM D2974-87	285258				

	Page: j of /	2212398	Y	GROUND WATER T DRINKING WATER	A OTHER				- : - :	(N/A)	Chlorine	Residual Pace Project No L			202 CO	F 20	005	S S S		200 TB			SAMPLE CONDITIONS	1.5			p in °C ived on stody (Y/N) (V/) (V/)	eseaR bol Cuu SealeeS (Y) (Y)	F-ALL-Q-020rev.07, 15-May-2007
cument d accurately.	<u>ă</u>		REGULATORY AGENCY	NPDES GRO	UST TRCRA	Site Location	STATE:	Requested Analysis Filtered (Y/N)		(1/n	taston svor	1. (1) ~ (20) (7)(L L L	×	X					DATE TIME	1/1/18 110				15/18 17:05	
WO#:30240919	30240919	Attention: Pan Gvoff		13530 Dull & Ted Dr. 54300	Pace Quote Reference:						итликей 1297 2012 1297 2012	T T T T T T T T T T T T T T T T T T T											DATE TIME ACCEPTED BY / AFFILIATION	1/15/18 20, TI 8/12/11		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER: Michael D LeV	ATURE OF SAMPLER: MULKAR JCC DATE SIGNED	
Pace Analytical * The Chai www.pacelats.com		Report To: Convitor	2 / cc/ Dr Sup 300	11/2/11	Earch Druchase Order No.:	Project Nimber	<u>>+a</u>		Matrix Codes MATRIX / CODE	Mater DW Water DW With the Structure of the Structure Structure of the Str	Mpe WP C			······	V. 51 C (1/51/2)	C IIISTIK IS		<u>vi >2×1 5<6 (11518)</u>	n Sil				ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION	Muchael Stee 757			CHAGINAL	SIGNATUR	"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.
FaceAl	ie Gi	Company: WSO Address:	152 50	Fmail Tor	Phone: -	マンシンの Kequested Due Date/TAT:			Section D Required Client Information			# МЭТІ	- C22-4%	दे	109 1	20				6	11	12	ADD			Pa	ge 26		

Pittsburgh Lab Sample Conc	litior	ı Up	on F	Receipt
Pace Analytical Client Name:		1/	<u>, 5'</u>	<u>PUSA</u> Project # <u>3024091</u>
Courier: 🖉 Fed Ex 🗌 UPS 🗌 USPS 🗌 Clie	nt 🛛	Comr	nercia	I Pace Other LabelL
Tracking #: 706025387413				LIMS Login SVM
Custody Seal on Cooler/Box Present: 2 yes		no	Sea	als intact: ∠ yes □ no
			-	et Blue None
Cooler Temperature Observed Temp/				rection Factor: 0.0 °C Final Temp: 1.9 °C
Temp should be above freezing to 6°C	-	_		
				Date and initials of person examining contents: <u>7-1 1/1-/18</u>
Comments:	Yes	i No	N/A	
Chain of Custody Present:	\perp			1.
Chain of Custody Filled Out:	/			2.
Chain of Custody Relinquished:	/			3.
Sampler Name & Signature on COC:	//			4.
Sample Labels match COC:				5.
-Includes date/time/ID Matrix:	$\overline{\nabla}$	てやく	51-	
Samples Arrived within Hold Time:				6.
Short Hold Time Analysis (<72hr remaining):				7.
Rush Turn Around Time Requested:		/		8.
Sufficient Volume:				9.
Correct Containers Used:	1			10.
-Pace Containers Used:	17		1	
Containers Intact:			Ì	11.
Orthophosphate field filtered		ĺ		12.
Hex Cr Aqueous Compliance/NPDES sample field filtered	J		/	13.
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests			/	15.
All containers have been checked for preservation.	/			16.
All containers needing preservation are found to be in compliance with EPA recommendation.			/	
exceptions, VOA, coliform, TOC, O&G, Phenolics				Initial when Date/time of preservation
				Lot # of added preservative
leadspace in VOA Vials (>6mm):				17.
rip Blank Present:	/			18.
rip Blank Custody Seals Present	\square			
Rad Aqueous Samples Screened > 0.5 mrem/hr			1	Initial when Date:
Lient Notification/ Resolution:	I			
Person Contacted:		I	Date/T	Fime: Contacted By:
Comments/ Resolution:				
······				

□ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

the second se

bade 58 50 Wednesday, January 17, 2018 8:41:45 AM

Hourse a	Document Name: Sample Condition Upon Rece	Document Revised: 14Dec2017 Page 1 of 2
Pace Analytical*	Document No.;	Issuing Authority:
	F-MN-L-213-rev.22	Pace Minnesota Quality Office
Sample Condition Upon Receipt	Project	WUH · 1041/335
Courier:	USPS Client	
Commercial Pace Speed		10417535
Tracking Number: $7040 - 753$	38-8247	
Custody Seal on Cooler/Box Present?	YNo Seals Intact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: 🛄 Bubble Wrap 🔤 Bubbl	e Bags 📈 None 🗌 Other:	Temp Blank?
Thermometer 51401163 Used: G87A9155100842	Type of Ice:	et 🗍 Blue 🗍 None 🌐 Dry 🗍 Melted
	mp Corrected (°C): 0.2	Biological Tissue Frozen?
Temp should be above freezing to 6°C Correcti USDA Regulated Soil (X/A, water sample)	on Factor: $\frac{10.2}{}$ Dates	te and Initials of Person Examining Contents: 1/1万/1ダンン
Did samples originate in a quarantine zone within the	United States: AL, AR, CA, FL, GA, ID,	LA. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	- Yes [No including Hawaii and Puerto Rico)? 🗌 Yes 🗌 No
if fes to either question, fill of	ut a Regulated Soli Checklist (F-Win	N-Q-338) and include with SCUR/COC paperwork. COMMENTS:
Chain of Custody Present?	₩es □No	1.
Chain of Custody Filled Out?	Yes No	2.
Chain of Custody Relinquished?	<u> </u>	3.
Sampler Name and/or Signature on COC?	× _	
Samples Arrived within Hold Time?		5.
Short Hold Time Analysis (<72 hr)?	<u>Yes</u> Vo	6.
Rush Turn Around Time Requested? Sufficient Volume?	<u> </u>	7.
Correct Containers Used?	× ~	8.
-Pace Containers Used?	Yes No	9.
	Yes 🔲 No	10
Containers Intact?		
Filtered Volume Received for Dissolved Tests?	Yes No KN/A	
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:		12.
-Includes Date/Time/ID/Analysis Matrix: UD All containers needing acid/base preservation have be checked? All containers needing preservation are found to be in	een Vyes 🗌 No 🗍 N/A	13. HNO ₃ H ₂ SO ₄ NaOH Positive for Res. Sample # 11.
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyar	4)/1
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin.		Initial when Lot # of added
Headspace in VOA Vials (>6mm)?	YesNo _ X N/A YesNo \\ N/A	
Trip Blank Present?		
Trip Blank Custody Seals Present?		
Pace Trip Blank Lot # (if purchased):		
CLIENT NOTIFICATION/RESOLUTION		Field Data Required? Yes No
Person Contacted		Date/Time:
Comments/Resolution:		

hold, incorrect preservative, out of temp, incorrect containers).

Ship To: Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700

INTER_LABORATORY WORK ORDER # 30240919

(To be completed by sending lab)

Sending Project No.	30240919
Receiving Project No.	
Check Box for Consolidated Invoice:	
Date Prepared	01/17/18
REQUESTED COMPLETION DATE:	1/30/2018

Sending Region	IR30-Pittsburgh	Sending Project Mgr.	Rachel Christner
Receiving Region	IR10-Minnesota	External Client	WSP USA
State of Sample Origin		QC Deliverable	STD REPORT

All questions should be addressed to sending project manager.

Requested Reportable Units

Report Wet or Dry Weight?

Weight? Dry Weight

Cert. Needed

		EQUESTED			niel wardt i 1997 op in indicate generatiet en New State
Method Description	Container Type		Quantity of Samples	Unit Price	Amount
6020 - Cr, Mo, Se, U, V	BP3N	HNO3	1	\$50.00	\$50.00
				ΤΟΤΑΪ	\$50.00

Special Requirements:

	Acctg. Code Tota	s from above	Revenue	Allocation
Receiving Region Department			Receiving Region (80%)	Client Services Dept Sending Region (20%)
Metals	20	\$50.00	\$40.00	
* Custom Revenue Allocation	TOTAL	\$50.00	\$40.00	\$10.00
Matrix: Soil Water	Air Other (ide	· · · · · · · · · · · · · · · · · · ·		
Matrix: Soil Water	Air Other (ide		es to Sending Region:	
CON	FIRMATION OF WOR	K COMPLETED		
Date Completed:	Receiving Project	ct Manager:		
	DISPOSITION of	FORM		

Original sent to the receiving lab - Copy kept at the sending lab.

When work completed: Original sent to the ABM at the receiving laboratory. Copies are made to corporate as needed.

	j of /	2212398		GROUND WATER C DRINKING WATER	C OTHER				. : : :	(N/A	r) ərinold	() kubizeš	L Face Project No./ Lab I.D.		N CON	8 8	005	200 200 200	200	609 TB			SAMPLE CONDITIONS	h h h - 5.		ojet , , ou ,	mp in (Υ/Ν)	R - 08
	Page:		AGENCY	GROUN	RCRA			(V/V)															TIME	1/0 1.				202
cument d accurately.		i	REGULATORY AGENCY	NPDES	UST F	Site Location	STATE:	lysis Filtered		(λ'r	1250	W. (~ <u>))</u> IVE 6X0 (TY()		×		×	×	- 					DATE	1/11/18				18 17
CHAI WO#:30240919 cut	30240919	Attention: Pan Guo A		L.,	Pace Quote Reference:		Z Pace Profile #:	Requested Analysis Filtered (YIN)	COLLECTED ≥		ре (125 0728 1391 г 1391 г 1391 г	0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0 0 € 0										DATE				SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER: Mich Sel D Lel	"unportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.
	Section B Required Project Information:	Report To:		Durchass Octavities		Hess In wise	314004081		(Jave 1) (Jave 1) (J	Commercing water UW 86 - C Waste Water WW 86 - C Waste Water WW 80 - C Product P 86 - C Soll/Solid SL 88 - FRART Soll/Solid SL 88 - FR	역 중 운 등 8)			5	<u> </u>								Machall And To	2		ORIGINAL SAMPLE		u are accepting Pace's NET 30 day payment terms and agreeing
Pace Analytical" www.pacetatas.com	Client Informatic	COMPANY: WSP USA	<u>33 50 Dules</u>	+ 2011		Requested Due base/TAT: _ /	ALL STA		Section U Required Client Information		SAMPLE ID 00 (A-2, 0-9 / -) AI Sample IDS MUST BE UNIQUE TISS	# ЖЭТТІ Тұр	Central	Cantrol S	109/6/10	109/2 N 501	2000	3	1:5 N Sd 7/6 M 2:1	9 10	11	ADDITIONAL COMMENTS					ge 31	

Pittsburgh Lab Sample Cond	ditio	n Up	on F	Receipt	
Barris and the state of		•			
Client Name:		V	<u>v S</u>	PUSA_	Project # 3024001
Courier: 🖉 Fed Ex 🔲 UPS 🗌 USPS 📋 Clie	ent 🖸	l Com	mercia	l 🗆 Pace Other	Label Bi M
Tracking #: 706025387413					LIMS Login 87/1
Custody Seal on Cooler/Box Present: 2 yes			Sea	uls intact: 🛛 ves 🗂	and the second
			-	et) Blue None	
			~		っ ^{・C} Final Temp: /. ゔ・c
Temp should be above freezing to 6°C	<u></u>		001		
					Date and initials of person examining contents: 77/1/16/18
Comments:	Yes	s No	N/A	٩]	contents: /// ////////////////////////////////
Chain of Custody Present:		-		1.	
Chain of Custody Filled Out:	/	-		2.	
Chain of Custody Relinguished:		1		3.	
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:	\Box			5.	
-Includes date/time/ID Matrix:		T+	<u>s</u> L		
Samples Arrived within Hold Time:				6.	······································
Short Hold Time Analysis (<72hr remaining):		1		7.	
Rush Turn Around Time Requested:	1			8.	
Sufficient Volume:	1			9.	
Correct Containers Used:				10.	
-Pace Containers Used:	$\overline{}$			7	
Containers Intact:]	11.	
Orthophosphate field fillered		Γ		12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered	1 1		1	13.	
Organic Samples checked for dechlorination:	/			14.	
Filtered volume received for Dissolved tests			1	15.	
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.			/		
	!	I	L	Initial when	Date/time of
exceptions VOA, coliform, TOC, O&G, Phenolics				completed 7.4.	preservation
				Lot # of added preservative	
Headspace in VOA Vials (>6mm);		1		17.	
Trip Blank Present:	/			18.	
Trip Blank Custody Seals Present					
Rad Aqueous Samples Screened > 0.5 mrem/hr			/	Initial when completed:	Date:
Client Notification/ Resolution:				· · · · · · · · · · · · · · · · · · ·	······
Person Contacted:			Date/T	ime:	Contacted By:
Comments/ Resolution:		***			<u>2</u>
					· · · · · · · · · · · · · · · · · · ·

 \Box_{-} A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edil Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Piltsburgh (C056-6 18Aug2017) Page 32 of 32

ENCLOSURE C

11	5	

WSP USA 13530 Dulles Technology Drive, Suite 300 mdon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

Well ID		YMb-		Site ID: Sampling Ev	HOSS TO		<i>c</i> .	Sample Date		9/19/17
Well Diame	and the second se		in #	Decon Proce		Bench		Treate		Study
Depth to W Total Well		15.25	ft ft	Samplers:	edules.		Notes:		11136	J
Screen Ler			ft ft	Weather Col	nditions:	.3	~ 80			
Pump Intal		10	ft	Equipment:			er hor	h		
Stabilized	· Drawdown	~ <u>0.3</u>	0 1 SLI: Spec	ific Conductan	ice ± 3%; Temp	erature + 3%	D0 + 0.2 m	a/l or 10% Tu	bidity + 10%	for values or
Stabilized	. Drawdown	<0.5 166t, pri 1	0.100,0000		n 10 NTU; ORP		, 00 1 0.2 mg	gri 61 1070, 10	biolog 1 107	, ioi valaoo gi
					nent Calibration		n			
	pH Mete	r Calibration		T		Hoi	riba U-52 Ca	libration		
pH 7.	00 Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on cali	bration:			76 AL 12-7 A	5 × 1.4	
	A	NA	NA	Calibrated to	manufacturer's	specification	s using calibr	ation standard	solutions	
	emp =	100	٥F		a del se contra e dago					
Well Purgi	ng Informati	on		Start purge:	1210	End purge:	309	Pump Type:	Bladder	
Time	DTW	т (°С)	pН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Purge Volume (L)	Comme
1218	16.18	26.52	6 42	-13	6.762	86.3	0.90	155	~	cler
+23	16.34	23 81	6.70	-48	0.801	\$3.0	0.22	100	~	len
1228	16.45	23.09	6.72	-55	0.815	87.0	0.0.0	102	1	clow
1.238	16.60	22.51	6,24	-59	0.823	51.7	0.00	(00	-	Quer
1243	16.62	22.70	4.75	-60	0.826	57.9	0.00	100	_	10000
1248	16.63	22.70	6.75	-59	6.527	49.6	0 00	122	аран (1997) С	an
3 #2	16,73	22.68	6.76	- 59	0.829	43.5	0.30	1739	-	court
258	16 81	19.30	6.76	-59	0.832	39.5	0.01	150	~	cour
1203	16 86	22.02	676	- 59	0,829	39.9	0.00	152	-	cla
13-58	16.94 1	21.700	4.761	1-59 V	0.829 1	38.61	10.05 V	155 -	(can
		e	np	y						
				0				8	-	
				JIE III.						
									1000000000	
						1				
-										
			-		1					
		· · · · · · · · · · · · · · · · · · ·								
							· · · · · · · · · · · · · · · · · · ·			
1										
	L			Labor	atory Analysis	Information			1	I
		T		Collection		mormauon			Sample	I
# of l	Bottles	Ana	lytes	Method	Preservative	Bottle Type	Anal. Lab.	Filtered	Time	Comme
2			EX				antorno antaria		1320	
2		T2H						22	1320	
N		ten	COG						1320	
2		alks	ilate					R	1320	
1		alk s Sulfie	L.					N	1320	
10									cober	

4L feasebility Stoly

N 1450

1150

WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

Well ID	YMW - 3	Site ID: Hess	Towson	Sample Date: 9/(1)3
Well Diameter	2 in	Sampling Event:	Bench Scale	Treatubility Study
Depth to Water	9.15 ft	Decon Procedures:	Non-phosphate soap w	vash with DI water the C
Total Well Depth	ao ft	Samplers:	MML Notes:	
Screen Length	15 ft	Weather Conditions:	· 0: ~80	
Pump Intake	~12, ft	Equipment:		oriba
Stabilized: Drawdow	n <0.3 feet; pH ± 0.1 SU;	Specific Conductance ± 3%; Te than 10 NTU; O		mg/l or 10%; Turbidity ± 10% for values greater
		Instrument Calibra		

nH 7 (Calibration	SI (m)//nH)	Notes on cali	bration:		riba U-52 Ca			
the second se	00 Std. IA	pH 4.01 Std. NA	NA		manufacturer's	specification	s using calib	ration standard	solutions	
	emp =	100		Calibrated to	manalaotaroro	opoomoation	e denig eans.			
	ng Informatio	THE REPORT OF THE PARTY OF THE		Start purge:	09 40	End purge:	(10)	Pump Type:	Bladder	
		т (°С)	рН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Purge Volume (L)	Comments
Time	DTW	112 123	6.12	- 50	0.1.02	139	00.C	1-2	(L)	cler
1955	9.55	19.81	5.07	151	0.303		and the second se	150	1	T=19.06 de
000	9.81	+90-6	5.44	14	0.270	73.1	0.00	122		
1205	9.97	19.02	5.46	143	0.252	21.9	0.00	150	-	clur clear
010	10.23	19.19	5.50	148	0.251	13,2	0.00	150		der
1015	10.38	19.20	Fich	148	0.751	9.8	0,00	ico		clear
1020	10167	19.23	5.58	148	0.251	8.5	0,00	155		clas-
1025	10.90		5.59	146	0.251	11.0	0.00	RD	-	clear
1030	11.31		5.63	141		11.6	0.05	190	-	clen C
1035	11.44	19.56	5.66	139	0.250	12.2	0,00	iss		cler Cler
	1	19.65	5 69	135	0. 248	12,3	0.0)	150		clan
1050	11.65	19.68	5.70	133	0, 245	15.3	0.00	155	~	Cen-
1055	11.94	19.69	5.70	133	0.248	JE C	8.00	1.00		da
1100	12.02	19.65	5.71	132	0. 245	15.2	0.00	100	-	clen
1100	10,00	1.65	3.41	1		0.9	1	1	-	le-
~	~	~		ne	1 m	N-		- K	(Alexandre	
				e c	1	1		and a data management of the second		
						·				
						1				
				Labor	atory Analysis	Information				
	E.			Collection			4 12 12 12	UNDA COA	Sample	122 12
# of	Bottles	Ana	alytes	Method	Preservative	Bottle Type	Anal. Lab.	Filtered	Time	Comments
3		BTE						N	1/10	
3		TPH-C						N	ino	
2		TPH- D	RD Inty, Sulface d	jač				2	11,0	
OL I		ALLA	A	1.				N	1110	
1		rece	ing Sitted	se				N	11(0	
T.		- 10"	1							

1150

WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

Vell ID	MW-4	Site ID: Hess	Ho Touson Sample Date: 9 2017
Nell Diameter	2 in	Sampling Event:	Bench Salo Fressability Study
Depth to Water	20.8 ft	Decon Procedures:	Non-phosphate soap wash with DI water rinse
Total Well Depth	25 ft	Samplers:	Mu Notes:
Screen Length	lo ft	Weather Conditions:	-'es ~75-r
Pump Intake	17.5 ft	Equipment:	mperature ± 3%; DO ± 0.2 mg/l or 10%; Turbidity ± 10% for values greate

	pH Mete	r Calibration				Hor	iba U-52 Ca	libration		
pH 7.0	00 Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calib	pration:		10 122		25. 7. 22.03 2 2.03.032	
N	IA	NA	NA	Calibrated to	manufacturer's	specifications	s using calibi	ration standard	solutions	20 E
	emp =	100	۴					Tes et	Disdalar	
ell Purgir	ng Informati	on		Start purge:	1033	End purge:		Pump Type:	Bladder	
Time	DTW	т (°С)	pН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Purge Volume (L)	Comments
240	20.90	23.71	6.72	-52	0.750	51.3	0.36	150		
045		22.98	6.86	-70	0.752	42.6	0.00	IFS	-	
050	21.00	17.50	6.87	-73	0.764	34.0	2.00	150	-	
5	21.09	22.52	6.88	-76	0.768		0.3	155	~	
00	21.04	22.55	6.88	- 76	0.769	25.	0.0	150	-	Fat 2 conter
105	21.04	22.56	6.88	-78	0.770	21.6	0,00	ড ড	-	10=24.0
10	21.04	22.50	6.89	- 78 - 79	0.771	24,0	0,00	155	-	
115	2104	22.51	6.89	1	0.771	25,1	0.0	122		
				en	ang					
					- ()					
								-		
	tra	Testre	Fit							
	"a	TESTA	h, mi							
		(₽				1			
	-	Ferrois	100 X	Recyent			myl			
		TEROIS	1110	1 cope in			0		1.1	
	1									
	1.2	Errane	Inon	Recget			man		1	
				5			0		()	
				1						
								-		
								1		
									-	
										-
8										
_										
						-				
	1			Labor	atory Analysis	Information			-	1
				Collection					Sample	
# of	Bottles	Anz	alytes	Method	Preservative	Bottle Type	Anal. Lab.	Filtered	Time	Comments
***	501103	BTE						N	1125	
3		TO	H-GRO					Ň	1125	
5								N	1125	
-		TH-	SW					N	1125	
		ALK	Salti					N	ins	
E-M	1	SUL	10					W. 741 (1971)	110	

1055

8

1 1	5	
11		

WSP USA 13530 Dulles Technology Drive, Suite 300 Herndon, VA 20171 (703) 709-6500 • Fax (703) 709-8505

Low-Flow Groundwater Sampling Monitoring Form

Vell ID	19-1	Site ID: Hars	Towson		Sample Date: 9 30 1-
Vell Diameter	2 in	Sampling Event:	Bench	Scale	Fersability Stran
epth to Water	9.37 ft	Decon Procedures:	Non-phos	phate soap wa	ash with DI water ridse
otal Well Depth	13 ft	Samplers:	Im	Notes:	0
creen Length	ft	Weather Conditions:	0 m	75-6	
ump Intake	ft	Equipment: ; Specific Conductance ± 3%; Te	blee		orba

	nH Moto	r Calibration				Information Hor	iba U-52 Cal	ibration				
nH 7 (0 Std.	pH 4.01 Std.	SI (m\//pH)	Notes on calil	oration:	1100						
	A	NA	NA	Calibrated to	manufacturer's	specification	s using calibr	ation standard	solutions			
Air te		100	CP	Calibrated to		opeomeanen						
	ng Informati		- F	Start purge:		End purge:		Pump Type: Bladder				
en rurgn	ig monnau	un I		Otart purge.	Lass in an ar	End purge.			Purge			
Time	DTW	т (°С)	рН	ORP/Eh (mV)	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/l) *	Flow Rate (mL/min)	Volume (L)	Comments		
D and T	THOU	4 8 1										
824	9.40	20 20	6.50	-12	1.49	2.26	1.26		Inn			
\$30	9.40	1965			1.40	205	1.10		JUNE			
424	9.40	19.06	6 35	-30 -57	1.39	195	116		3600			
<u></u>		pine										
	y and the second	Y										
	1											
100	n Ti	thre	onho	ich V.	·+							
	1-			the second								
							- (g	-				
	CICO	us Iron	Reney	1. A	3.30 000	11	(limit)				
	12110	psing	· · · · ·	(17-1)	2. Jerne	1	- Cinere	1				
	Ca	er Ira	Q2		3.30 mg	11	(fimi)					
	1.6(10)	10 110	Recent		0 -21	10	crucky_					
	-				Ŭ							
				1.1								
						-		-				
									<u> </u>			
									++			
						-			++			
									+ +			
_									++			
									++			
Second				<u> </u>		Information		1	1			
					atory Analysis	Information			Sample			
120023	.		htop	Collection Method	Preservative	Bottle Type	Anal Lab	Filtered	Time	Comments		
the second se	Bottles		lytes					I I	0845	Commonto		
10	Ľ	MKIN	4 SULFN	te BTEX	TPH-DR	41PH-	SIN	N	and the second designed in the second designe			
4		TE FOU	sed the	potilid a	Study				0920			

Well volume calculation 1 W = 0.15 gal(13 - 9.37) 0.041 = 0.15 gal <math>2 W = 0.30 gal3 W = 0.45 gal

ENCLOSURE D

February 6, 2018

Matt Burns and Pam Robertson Practice Leader Environmental

300 Trade Center, Suite 4690, Woburn, MA 01801

RE: Draft Report for In Situ Chemical Oxidation Treatability Study for Hess Towson, MD Version 1

Dear Matt and Pam:

Terra Systems, Inc. (TSI) has conducted treatability studies at over 100 sites in support of in situ chemical oxidation (ISCO) using potassium and sodium permanganate, activated persulfate, catalyzed hydrogen peroxide, or ozone, or in situ chemical reduction of volatile organics, semivolatiles organics, and metals. TSI does not perform ISCO or in situ reduction field projects, but works with environmental engineering consultants including ERM, AMEC, TRC, Moraine Environmental, URS, GZA, WSP, and others to evaluate chemical oxidant demand and effectiveness in the laboratory before the consultants go to pilot or full-scale implementation. The treatability work was directed by Michael D. Lee, Ph.D. He has over 30 years of experience in conducting treatability studies and in situ bioremediation of chlorinated solvents and hydrocarbons. He has published over 100 papers.

I have prepared this report for an ISCO treatability study for the Hess Towson, MD site contaminated with hydrocarbons including benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) including diesel range organics or DRO C10-C28 and gasoline range organic or GRO C6-C10. The soil was analyzed in duplicate for the following parameters by Pace Laboratory of Greensburg, PA: BTEX, TPH-GRO, TPH-DRO, and moisture. Pace Laboratory was paid directly by WSP. The groundwater was analyzed for the following parameters: BTEX, TPH-DRO, TPH-GRO, and oxyanions (selenium, chromium, vanadium, molybdenum, and uranium). TSI measured the soil density, soil moisture, soil field holding capacity, and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 30 mL groundwater for the following treatments: control, Peroxychem product Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate.

A contaminant destruction evaluation was conducted with three dosages of Klozur sodium persulfate activated with sodium hydroxide, three dosages of unactivated Klozur sodium persulfate, and controls. Two replicates of each persulfate treatment were prepared in 783 mL bottles with 980 g soil with a density of 1.74 g/cm³ and 220 mL groundwater or approximately 72% by volume soil and 28% volume groundwater. Three replicates of the control were

prepared. The volumes of sodium hydroxide required to maintain the pH above 10.5 determined in the initial characterization step was added to the two sodium hydroxide amended replicates. The pH, redox potential, and persulfate of one bottle from each treatment was recorded over time. If the pH dropped below 10.5 for the sodium hydroxide amended treatments, additional 25% sodium hydroxide was added to both replicates. Two replicates of each unactivated persulfate treatment were prepared in 712 mL bottles with 980 g soil with a density of 1.74 g/cm³ and about 220 mL groundwater or approximately 72% by volume soil and 28% volume groundwater.

1.0 SUPPLY OF SAMPLES

WSP personnel sent representative soil and groundwater samples on ice and under standard Chain-of-Custody procedures directly to TSI at the following shipping address:

Michael D. Lee, Ph.D. Terra Systems, Inc. 130 Hickman Road, Suite 1 Claymont DE 19703 Phone: 302-798-9553 E-mail: <u>mlee@terrasystems.net</u>.

The following samples were supplied for the treatability studies:

- 10.7 kg (about 8 L) of groundwater from contaminated wells YP-1 and YMW-7
- 32.1 kg of contaminated soil. The soil samples were collected from within the treatment zone from MIP-2 (25-30') and MIP 8 (18-22').

The samples were collected with as little headspace as possible. The groundwater samples were collected on 9/19-20/17, shipped on 9/20/17, and received on 9/21/17. The soil samples were collected on 9/20-21/17, shipped on 9/21/17, and received on 9/22/17.

2.0 SCOPE OF WORK

A comprehensive workplan for the completion of the proposed work was drafted and submitted to WSP. The experimental design for the bench-scale treatability study consisted of four phases of work:

- 1 Initial compositing and characterization of the site soil and groundwater;
- 2 Treatment effectiveness for three loading of sodium hydroxide activated Klozur sodium persulfate, and an unamend control sampled over 14 days
- 3 Treatment effectiveness for three loading of un activated Klozur sodium persulfate, and an unamend control sampled over 91 days
- 4 Report.

Each phase of work is described in detail in the sections that follow.

2.1 Initial Characterization of Site Soils and Groundwater

Prior to beginning the actual treatability experiments, the soil and groundwater samples were composited separately. The soil was screened through a 4.5 cm screen into a 5-gallon bucket and mixed with an auger drill until homogenous. The composited soil was analyzed in duplicate for the following parameters by the Pace Laboratory: VOC and moisture (two Terra Core Kits per sample preserved with bisulfate and methanol), and TPH-DRO and TPH-GRO by 8015 (4-oz jar). The groundwater was analyzed for the following parameters: VOC (3-40 mL VOA vials preserved with hydrochloric acid), TPH-GRO (3-40 mL VOA vials preserved with hydrochloric acid), TPH-GRO (1 Liter amber glass with no preservative); and oxyanions - selenium, chromium, vanadium, molybdenum, and uranium (250 mL plastic bottle preserved with nitric acid). A trip blank for VOCs was also submitted.

TSI measured the soil density, soil moisture, soil field holding capacity, and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 30 mL groundwater for the following treatments: control, Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate. Each treatment received 1 g/L sodium azide to minimize biological losses. As the persulfate decomposes, it produces sulfuric acid and the pH drops. The pHs were monitored over an eight-day incubation period. When the pH drifted below 10.5, additional 25% sodium hydroxide was added.

2.2 Initial Characterization Results

Table 1 presents the results of the initial characterization. The groundwater contained 1,300 µg/L TPH-DRO, 4,300 µg/L TPH-GRO, no detectable chromium, molybdenum, selenium, uranium, or vanadium (detection limits 0.5 µg/L), 18.8 µg/L benzene, 359 µg/L ethylbenzene, 31.3 µg/L toluene, and 581 µg/L total xylenes with a pH of 6.5 and oxidizing ORP of 104 mV. The trip blank had no detectable BTEX. The soil contained between 99,100 and 223,000 µg/kg TPH-DRO, 53,300 to 89,300 µg/kg TPH-GRO, <244 µg/kg benzene, 909 to 1,610 µg/kg ethylbenzene, <244 µg/kg toluene, and 5,310 to 9,250 µg/kg total xylenes. The soil density was 1.74 g (the equivalent of 109 pounds per cubic foot) with a field holding capacity of 0.14 g/g soil. The soil pH was 6.5 and the redox potential 201 mV.

Table 2 shows the results of the 25% sodium hydroxide (NaOH) titrations with 136 g soil, 30 g groundwater, and 10,000, 20,000, and 40,000 mg/L Klozur sodium persulfate. The initial pH of the Control was 6.8. It took 0.25 mL 25% NaOH to raise the pH to 11.4 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand of the Control was 0.46 g/kg. The initial pH of the 10,000 mg/L persulfate treatment was 7.1. It took 0.4 mL of the 25% NaOH to raise the pH to 12.1 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand of the 8 days. The sodium hydroxide demand of the 25% NaOH to raise the pH to 12.1 and pH remained above 11.3 for the remainder of the 8 days. The sodium hydroxide demand for the 10,000 mg/L persulfate treatment was 0.74 g/kg or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The initial pH of the 20,000 mg/L persulfate treatment was 7.0. It took 0.35 mL of the 25% NaOH to raise the pH to 11.9 and pH fell below 11.0 on Day 8 and an additional 0.05 mL of 25% NaOH was added to

raise the pH to 11.3. The sodium hydroxide demand for the 20,000 mg/L persulfate treatment was 0.74 g/kg or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The initial pH of the 40,000 mg/L persulfate treatment was 6.9. It took 0.4 mL of the 25% NaOH to raise the pH to 12.5 and pH fell below 11.0 on Day 8 and an additional 0.4 mL of 25% NaOH was added to raise the pH to 11.3. The sodium hydroxide demand for the 40,000 mg/L persulfate treatment was 0.83 g/kg or the equivalent of 0.043 gallons of 25% sodium hydroxide per cubic foot of aquifer.

2.3 Site Soil Alkaline Activated Persulfate Demand and Contaminant Destruction Efficiency Testing

Two control vessels were prepared in separate 712 mL vessels containing 980 g site soil and 220 mL groundwater (ratio of 72% soil and 28% groundwater by volume). One control replicate was sampled over time and one remained unopened and undisturbed. Three loadings of Klozur sodium persulfate were added to separate 712 mL vessels containing 980 g site soil and 220 mL groundwater plus sodium hydroxide. Sodium azide (1 g/L) was added to all treatments to minimize biodegradation losses. The persulfate, sodium azide, and sodium hydroxide were added to the groundwater and mixed for several minutes with a magnetic stirrer to dissolve the persulfate, azide, and sodium hydroxide. The amended groundwater was then added to the soil to thoroughly distribute the oxidant. Sufficient groundwater was added to completely fill the bottles. The Klozur sodium persulfate loadings result in oxidant concentrations of 10, 20, and 40 g/L groundwater. The bottles with soil, groundwater, and persulfate were closed and inverted several times to mix. Periodic measurements of pH, ORP, and oxidant concentrations in the groundwater phase were made from one replicate of the treatment and control vessels after 1, 4, 7, 10, and 14 days. The oxidant concentrations were measured using a back-titration method wherein 0.4 M ferrous ammonium sulfate solution was added to a portion of the groundwater with 10 mL 25% sulfuric acid and titrated with potassium permanganate. The concentration of residual persulfate in the groundwater are correlated to the volume of permanganate solution consumed versus a blank. After 14 days, the groundwater from the unopened control and the persulfate and sodium hydroxide treatments were analyzed for pH, ORP, and oxidant concentrations. Groundwater samples from the unopened and undisturbed control and from the unopened and undisturbed persulfate and sodium hydroxide treatments were submitted to the Pace Laboratory for analysis of BTEX, TPH-DRO, and TPH-GRO. The groundwater was diluted 10-fold. The groundwater from the 20 g/L persulfate treatment was analyzed for oxyanions (Se, Cr, V, Mo, and U). After 14 days, soil samples from the unopened and undisturbed control and from the unopened and undisturbed persulfate and sodium hydroxide treatments were submitted to Pace Laboratory for analysis of BTEX, TPH-DRO, TPH-GRO, and moisture.

Sample	Units	GW	Trip Blanl	Units	Soil A	Soil B	Soil Avg
TPH C10-C28 (DRO)	µg/L	1300		µg/kg	223,000	99,100	161,050
TPH C06-C10 (GRO)	µg/L	4360		µg/kg	89,300	53,300	71,300
Chromium	µg/L	< 0.5		µg/kg			
Molybdenum	µg/L	< 0.5		µg/kg			
Selenium	µg/L	< 0.5		µg/kg			
Uranium-238	µg/L	< 0.5		µg/kg			
Vanadium	µg/L	< 0.5		µg/kg			
Benzene	µg/L	18.8	<1.0	µg/kg	<244	<245	<244
Ethylbenzene	µg/L	359	<1.0	µg/kg	1,610	909	1,260
Toluene	µg/L	31.3	<1.0	µg/kg	<244	<245	<244
Total Xylenes	μg/L	581	<1.0	µg/kg	9,250	5,310	7,280
% Moisture				%	13.5	16.0	15
TSI		GW					Soil
Soil Density	g/cm3						1.74
рН	SU	6.5					6.5
Redox Potential	mV	104					210
Field Holding Capacity	g/g						0.14

 Table 1. Initial Characterization Results

Sample	Control										Soil NaOH Demand g/kg
Date			10/3/2017			10/4/2017	10/6/2017	10/11/2017			
Day			0			1	3	8			
Soil	g	136									
GW	g	30									
Klozur Sodium	0										
Persulfate	g	0									
Sodium Azide	g	0.05									
mL 25% NaOH			0	0.2	0.25						
pН	SU		6.8	10.4	11.4	11.9	11.8	11.3			0.46
Sample	10,000 mg/L	Klozur									Soil NaOH Demand g/kg
Date			10/3/2017				10/4/2017	10/6/2017	10/11/2017		
Day			0				1	3	8		
Soil	g	136									
GW	g	30									
Klozur Sodium											
Persulfate	g	0.3									
Sodium Azide	g	0.05									
mL 25% NaOH			0	0.25	0.35	0.4					
pН	SU		7.1	9.2	10.5	12.2	12.1	11.9	11.3		0.74
Sample	20,000 mg/L	Klozur									Soil NaOH Demand g/kg
Date			10/3/2017				10/4/2017	10/6/2017	10/11/2017		
Day			0				1	3	8		
Day Soil	g	136	0						8		
	U	136 30	0						8		
Soil GW	g g		0						8		
Soil	U		0						8		
Soil GW Klozur Sodium	es S	30	0						8		
Soil GW Klozur Sodium Persulfate	g g	30 0.6	0	0.35					8	0.4	
Soil GW Klozur Sodium Persulfate Sodium Azide	g g	30 0.6		0.35					8	0.4	0.74
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH	g g SU	30 0.6 0.05	0				1	3			
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH	g g	30 0.6 0.05	0				1	3			0.74 Soil NaOH Demand g/kg
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample	g g SU	30 0.6 0.05	0 7.0				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date	g g SU	30 0.6 0.05	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day	g g g SU 40,000 mg/L	30 0.6 0.05 Klozur	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Date Day Soil GW Klozur Sodium	g g g SU 40,000 mg/L g	30 0.6 0.05 Klozur 136	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day Soil GW	g g g SU 40,000 mg/L g	30 0.6 0.05 Klozur 136 30 1.2	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Date Day Soil GW Klozur Sodium Persulfate Sodium Azide	g g g SU 40,000 mg/L g g	30 0.6 0.05 Klozur 136 30	0 7.0 10/3/2017				1	3	10.1		
Soil GW Klozur Sodium Persulfate Sodium Azide mL 25% NaOH pH Sample Date Day Soil GW Klozur Sodium Persulfate	g g g SU 40,000 mg/L g g g	30 0.6 0.05 Klozur 136 30 1.2	0 7.0 10/3/2017				1	3	10.1		

 Table 2. 25% Sodium Hydroxide Titrations

2.4 Unactivated Persulfate Demand and Contaminant Destruction Efficiency Testing

One control vessel was prepared in a separate 712 mL vessel containing 980 g site soil and 220 mL groundwater. The control remained unopened and undisturbed. Three loadings of Klozur sodium persulfate were added to separate 712 mL vessels containing 980 g site soil and 220 mL groundwater (ratio of 72% soil and 28% groundwater by volume). Sodium azide (1 g/L) was added to all treatments to minimize biodegradation losses. The persulfate was added to the groundwater and mixed with a magnetic stirrer for several minutes to dissolve the persulfate and azide. The amended groundwater was added to the soil to thoroughly distribute the oxidant. Sufficient groundwater was added to completely fill the bottles. The Klozur sodium persulfate loadings result in oxidant concentrations of 10, 20, and 40 g/L groundwater. The bottles with soil, groundwater, and persulfate were closed and inverted several times to mix. Periodic measurements of pH, ORP, and oxidant concentrations in the groundwater phase was made from one replicate of the treatment and control vessels after 1, 4, 7, 10, 14, 36, 56, and 91 days. After 91 days, the groundwater from the unopened and undisturbed persulfate replicates and the control were analyzed for pH, ORP, and oxidant concentrations. Groundwater samples from the unopened replicate and undisturbed control and persulfate amended treatments were submitted to the chosen laboratory for analysis of BTEX, TPH-DRO, and TPH-GRO. The sample volumes needed for these analyses are shown in Table 2. The groundwater was diluted 10-fold. The groundwater from the 20 g/L persulfate treatment was analyzed for oxyanions (Se, Cr, V, Mo, and U). After 91 days, soil samples from the unopened replicate of the control and persulfateamended treatments were submitted to Pace Laboratory for analysis of BTEX, TPH-DRO, TPH-GRO, and moisture.

3.0 RESULTS

3.1 Sodium Hydroxide Activated Persulfate Field Parameters

Table 3 presents the field parameter for the sodium hydroxide activated persulfate treatments. The pH of the Control ranged from 6.8 to 7.9 SU and the ORP mildly oxidizing from 108 to 225 mV. The pH of the 10 g/L persulfate activated with sodium hydroxide ranged from 11.1 to 12.4 SU and the ORP from -31 to 89 mV. The elevated pHs impacts the redox potential measurements. The persulfate fell from 10,000 mg/L to 6,925 mg/L from Days 1 to 4 and decreased to 3,280 mg/L in the opened bottle at Day 14. The sample from the unsampled bottle had <1,457 mg/L persulfate. The SOD of the sodium hydroxide activated 10 g/L persulfate treatment was estimated to be 1,509 mg/kg to >1,918 mg/kg with a requirement for 0.74 g sodium hydroxide/kg soil or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The pH of the 20 g/L persulfate activated with sodium hydroxide ranged from 11.6 to 12.6 SU and the ORP from 38 to 53 mV. The persulfate fell from 20,000 mg/L to 9,963 mg/L on Day 1 to 2,065 mg/L on Day 14. The 20 g/L persulfate amended activated with sodium hydroxide treatment had an SOD estimated to be 4,026 mg/kg with a requirement for 0.74 g sodium hydroxide/kg soil or the equivalent of 0.039 gallons of 25% sodium hydroxide per cubic foot of aquifer. The pH of the 40 g/L persulfate activated with sodium hydroxide ranged from 10.9 to 12.7 SU and the ORP from 62 to 112 mV. The persulfate fell from 40,000 mg/L to 28,797 mg/L on Day 1 to between 4,495 to 22,722 mg/L on Day 14. The 40 g/L persulfate amended treatment had an SOD estimated to be 3,879 to 7,791 mg/kg with a requirement for

0.83 g sodium hydroxide/kg soil or the equivalent of 0.043 gallons of 25% sodium hydroxide per cubic foot of aquifer.

Treatment	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	pН	ORP	Persulfate	
	g	g	g	g			SU	mV	mg/L	
Control 14	867	280	0	0						
Control 80	980	220	0	0						
Control Ex	980	220	0	0	10/17/2017	1	7.8	120		
					10/20/2017	4	6.9	221		
					10/23/2017	7	7.7	108		
					10/26/2017	10	7.7	221		
					10/30/2017	14	6.8	225		
					10/30/2017					
					Diluted 10X	14	6.9	204		
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g	Dute	Duj	SU	mV	mg/L	mg/kg
10 g/L PS + NaOH 14	980	220	2.2	0.73		0	~~		10,000	
10 g/L PS + NaOH Fx 10 g/L PS + NaOH Ex	980	220	2.2	0.73	10/17/2017	1	12.4	89	6,925	
10 g B 1 S + 1 a O II B I	,00	220		0170	10/20/2017	4	12.7	25	6,925	
					10/23/2017	7	12.4	-1	6,317	
					10/26/2017	10	12.4	7	6,925	
					10/30/2017	14	11.9	-31	3,280	1,509
					10/30/2017	14	11.7	51	5,200	1,507
					Diluted 10X	14	11.1	30	<1,457	>1.918
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g			SU	mV	mg/L	mg/kg
20 g/L PS + NaOH 14	980	220	4.4	0.73		0			20,000	
20 g/L PS + NaOH Ex	980	220	4.4	0.73	10/17/2017	1	12.3	41	9,963	
•					10/20/2017	4	12.6	38	8,748	
					10/23/2017	7	12.2	39	10,570	
					10/26/2017	10	12.0	52	10,570	
					10/30/2017	14	11.6	53	2,065	4,026
					10/30/2017					
					Diluted 10X	14	10.9	38	2,065	4,026
	Soil	GW	Klozur	Sodium Hydroxide	Date	Day	рН	ORP	Persulfate	SOD
	g	g	g	g			SU	mV	mg/L	mg/kg
40 g/L PS + NaOH 14	980	220	8.8	0.81		0			40,000	
40 g/L PS + NaOH Ex	980	220	8.8	0.81	10/17/2017	1	12.5	89	28,797	
					10/20/2017	4	12.7	81	27,582	
					10/23/2017	7	12.3	83	25,152	
					10/26/2017	10	12.2	83	25,152	
	l		l		10/30/2017	14	11.7	112	22,722	3,879
			1		10/30/2017					, .

Table 3. Sodium Hydroxide Activated Persulfate Field Data

3.2 Unactivated Persulfate Field Parameters

Table 4 presents the field parameter for the unactivated persulfate treatments. The pH of the Control ranged from 6.8 to 7.8 SU and the ORP oxidizing from 108 to 314 mV. The pH of the 10 g/L persulfate decreased from 8.6-9.2 SU to 6.2-6.3 SU on Day 91 and the ORP from 170 to 452 mV. The persulfate fell from 10,000 mg/L to 6,925 mg/L from Day 1 and 7,533 mg/L on Day 4 to a low of 3,544 to 3,842 mg/L on Day 91. The SOD of the unactivated 10 g/L persulfate treatment was estimated to be 1,382 to 1,449 mg/kg. The pH of the unactivated 20 g/L persulfate ranged from 8.0 SU on Day 1 to a low of 5.5-5.7 on Day 91 and the ORP increased from 230-256 mV to 514 to 535 mV on Day 91. The persulfate fell from 20,000 mg/L to 14,823 mg/L on Day 1 to between 7,418 to 8.877 mg/L on Day 91. The unactivated 20 g/L persulfate had an SOD estimated to be 2,497 to 2,825 mg/kg. The pH of the unactivated 40 g/L persulfate decreased from 7.5 on Day 1 to 3.6 SU on Day 91 and the ORP increased from 325 to between 16,060 to 19,605 mg/L on Day 91. The unactivated 40 g/L persulfate fell from 40,000 mg/L to 28,797 mg/L on Day 1 to between 16,060 to 19,605 mg/L on Day 91. The unactivated 40 g/L persulfate fell from 325 to 5,374 mg/kg.

3.3 Contaminant Concentrations

Table 5 presents the BTEX, TPH-DRO, TPH-GRO, and oxyanion concentrations in the aqueous and soil phases for each treatment.

The aqueous TPH DRO increased from 1,300 μ g/L in the initial Characterization to 14,000 μ g/L in the Control Day 14 sample presumably as TPH DRO partitioned from the soil phase into the aqueous phase. For the alkaline activated persulfate treatments, aqueous TPH DRO was only lower than the Control Day 14 at 7,900 μ g/L in the 20 g/L Persulfate treatment. At Day 91, aqueous TPH DRO was lowest in the Control Day 91 at 8,500 μ g/L followed by the 40 g/L unactivated persulfate treatment at 9,100 μ g/L.

The aqueous TPH GRO increased from 4,360 μ g/L in the initial Characterization to 4,470 μ g/L in the Control Day 14 sample presumably as TPH GRO partitioned from the soil phase into the aqueous phase. For the alkaline activated persulfate treatments, aqueous TPH GRO was lower than the Control Day 14 in the 10 g/L persulfate, 20 g/L persulfate, and 40 g/L persulfate treatments. At Day 91, aqueous TPH GRO was detected at 1,570 μ g/L in the Control Day 91 and was non-detect at <2,000 μ g/L in the unactivated persulfate amended treatments.

The 20 g/L alkaline persulfate treatment had between 258 μ g/L for Selenium to 19,000 μ g/L Chromium compared to the initial characterization samples with <0.5 μ g/L. The unactivated persulfate treatment only showed an increase to 11 μ g/L dissolved chromium and 5.0 μ g/L selenium with no detectable molybdenum, uranium, or vanadium (detection limits of 5 to 10 μ g/L). Alkaline conditions resulted in much higher oxyanions levels than the unactivated treatments.

Freatment	Soil	GW	Klozur	Date	Day	pН	ORP		
	g	g	g			SU	mV		
Control 14	867	280	0						
Control 90	980	220	0						
Control Ex	980	220	0	10/17/2017	1	7.8	120		
				10/20/2017	4	6.9	221		
				10/23/2017	7	7.7	108		
				10/26/2017	10	7.7	221		
				10/30/2017	14	6.8	225		
				11/21/2017	36	7.4	254		
				12/11/2017	56	7.6	314		
				1/15/2018	91	7.2	230		
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
10 g/L PS 14	980	220	2.2		0			10,000	
10 g/L PS Ex	980	220	2.2	10/17/2017	1	8.6	230	6,925	
-				10/20/2017	4	9.2	170	7,533	
				10/23/2017	7	8.0	259	6,925	
				10/26/2017	10	7.2	349	6,317	
				10/30/2017	14	6.7	305	5,710	
				11/21/2017	36	6.5	345	4,495	
				12/11/2017	56	6.4	340	6,317	
				1/15/2018	91	6.3	426	3,842	1,382
				1/15/2018	91	6.2	452	3,544	1,449
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
20 g/L PS 14	980	220	4.4		0			20,000	
20 g/L PS Ex	980	220	4.4	10/17/2017	1	8.0	256.0	14,823	
				10/20/2017	4	7.2	230	14,216	
				10/23/2017	7	6.9	233	12,393	
				10/26/2017	10	6.7	351	12,393	
				10/30/2017	14	6.3	284	9,963	
				11/21/2017	36	5.9	393	9,355	
				12/11/2017	56	5.9	469	11,785	
				1/15/2018	91	5.7	514	7,418	2.825
				1/15/2018	91	5.5	535	8,877	2,497
	Soil	GW	Klozur	Date	Day	pH	ORP	Persulfate	SOD
	g	g	g			SU	mV	mg/L	mg/kg
40 g/L PS 14	980	220	8.8		0			40,000	
40 g/L PS Ex	980	220	8.8	10/17/2017	1	7.5	325.0	28,797	
				10/20/2017	4	6.4	381	29,405	
				10/23/2017	7	5.8	375	27,582	
				10/26/2017	10	3.7	465	27,582	
				10/30/2017	14	4.6		24,544	
				11/21/2017	36	4.0	532	19,076	
		1	1	12/11/2017	56	3.8	498	22,722	
				12/11/2017	50	5.0	470	22,122	
				1/15/2018	91	3.6	621	16,060	5,374

Table 4. Unactivated Persulfate Field Data

Table 5. Contaminant Concentrati

				10 g/L Persulfate	20 g/L Persulfate	40 g/L Persulfate		10 g/L Unactivated	20 g/L Unactivated	40 g/L Unactivated
			Control	+ NaOH	+ NaOH	+ NaOH	Control	Persulfate	Persulfate	Persulfate
Treatment		Control 0	14	14	14	14	91	91	91	91
Day		0	14	14	14	14	91	91	91	91
Sample Recovered	g		230	106	113.5	156.1	142	105	110	144
DI Water Added	g		2070	954	1022	1405	1278	945	990	1296
Dilution			10	10	10	10	10	10	10	10
TPH C10-C28 (DRO)	µg/L	1,300	14,000	29,000	7,900	32,000	8,500	11,000	16,000	9,100
TPH C06-C10 (GRO)	µg/L	4,360	4,470	2,540	901	1570	2,810	<2,000	<2,000	<2,000
Chromium	μg/L	< 0.5			19,000				11	
Molybdenum	µg/L	< 0.5			4,850				<5.0	
Selenium	μg/L	< 0.5			258				5.0	
Uranium-238	µg/L	< 0.5			3,010				<5.0	
Vanadium	µg/L	< 0.5			18,800				<10	
Benzene	µg/L	18.8	<10	<10	<10	<10	<10	<10	<10	<10
Ethylbenzene	µg/L	359	122	44	11	29	100	47	26	<10
Toluene	µg/L	31.3	12	<10	<10	<10	<3.0	<10	<10	<10
Total Xylenes	µg/L	581	689	170	<30	<30	553	221	75	<30
TPH C10-C28 (DRO)	µg/kg	161,050	82,400	70,700	57,300	46,800	33,100	95,500	67,800	106,000
TPH C06-C10 (GRO)	µg/kg	71,300	11,000	25,000	13,200	15,700	17,600	14,300	<11,900	10,300
Benzene	µg/kg	<244	<4.1	<5.0	<4.5	<4.2	<4.7	<5.4	<4.4	<4.6
Ethylbenzene	µg/kg	1,260	104	32.6	10.3	12.7	64.4	<5.4	<4.4	<4.6
Toluene	µg/kg	<244	4.5	<5.0	<4.5	<4.2	<4.7	<5.4	<4.4	<4.6
Total Xylenes	µg/kg	7,280	572	148	23.9	20.7	323	<16.2	<13.3	<13.9
Moisture	%	14.8	14.0	25.5	17.3	20.5	22.7	24.0	22.0	17.3

The aqueous benzene decreased from 18.8 μ g/L in the initial Characterization to non-detect μ g/L in the Control Days 14 and 91 and the alkaline persulfate and unactivated persulfate samples. Aqueous ethylbenzene decreased from 359 μ g/L in the Initial Characterization sample to 122 μ g/L in the Control Day 14 and 100 μ g/L in the Control Day 91 samples with between <10 μ g/L in the 40 g/L unactivated persulfate treatment to 47 μ g/L in the 10 g/L unactivated persulfate treatment. Aqueous toluene decreased from 31.3 μ g/L in the Initial Characterization sample to 12 μ g/L in the Control Day 14 sample and were non-detect (<10 μ g/L) in the Control Day 91 and all persulfate-amended treatments. Aqueous total xylenes increased from 581 μ g/L in the Initial Characterization sample to 689 μ g/L in the Control Day 14 and decreased slightly to 553 μ g/L in the Control Day 91 sample. Aqueous total xylenes ranged from <30 μ g/L in the alkaline 20 g/L persulfate, alkaline 40 g/L persulfate, and the unactivated 40 g/L persulfate treatment to 221 μ g/L in the unactivated 10 g/L persulfate treatment.

The soil TPH DRO decreased from an average of 161,050 μ g/kg in the initial Characterization to 82,400 μ g/kg in the Control Day 14 sample and 33,100 μ g/kg in the Control Day 91 sample. For the alkaline activated persulfate treatments, soil TPH DRO was lower than the Control Day 14 in the 10, 20, and 40 g/L Persulfate treatments. At Day 91, soil TPH DRO was lowest in the Control Day 91 at 33,100 μ g/kg with between 67,800 to 106,000 μ g/kg in the unactivated persulfate treatments.

The soil TPH GRO decreased from 71,300 μ g/kg in the initial Characterization to 11,000 μ g/kg in the Control Day 14 sample. For the alkaline activated persulfate treatments, soil TPH GRO were higher than the Control Day 14 in the 10 g/L persulfate, 20 g/L persulfate, and 40 g/L persulfate treatments. At Day 91, soil TPH GRO was detected at 17,600 μ g/kg in the Control Day 91 and was non-detect at <11,900 μ g/L in the unactivated 20 g/L persulfate amended treatment and ranged from 10,300 to 14,300 μ g/kg in the unactivated 10 g/L and 40 g/L persulfate treatments.

The soil benzene was non-detect in the Control Days 0, 14, and 91 and the alkaline persulfate and unactivated persulfate samples. Soil ethylbenzene decreased from 1,260 µg/kg in the Initial Characterization sample to 104 µg/kg in the Control Day 14 and 64.4 µg/kg in the Control Day 91 samples with between 10.3 to 32.6 µg/kg in the alkaline activated treatments and non-detects in unactivated persulfate treatments. Soil toluene was non-detect (<244 µg/kg) in the Initial Characterization sample with 4.5 µg/kg in the Control Day 14 sample and were non-detect (<4.2 to 5.4 µg/kg) in the Control Day 91 and all persulfate-amended treatments. Soil total xylenes decreased from 7,280 µg/kg in the Initial Characterization sample to 572 µg/kg in the Control Day 14 and decreased to as low as 20.7 µg/kg in the 40 g/L alkaline persulfate treatment. The Control Day 91 sample had 323 µg/kg and with <13.4 to <16.2 µg/kg in the unactivated persulfate treatments.

Table 6 contains mass balance calculations for the soil and groundwater for TPH DRO, TPH GRO, and BTEX. Non-detect concentrations were considered zeros in the mass balance calculations. Table 7 shows the percent removal of the mass balances from the Control Day 0 (Initial Characterization) results.

Table 6 Mass Balances

		Control 0	Control 14	10 g/L Persulfate + NaOH 14	20 g/L Persulfate + NaOH 14	40 g/L Persulfate + NaOH 14	Control 91	10 g/L Unactivated Persulfate 91	20 g/L Unactivated Persulfate 91	40 g/L Unactivated Persulfate 91
TPH C10-C28 (DRO)	μg	158,115	83,832	75,666	57,892	52,904	34,308	96,010	69,964	105,882
TPH C06-C10 (GRO)	μg	70,833	11,763	25,059	13,134	15,731	17,866	14,014	0	10,094
Benzene	μg	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ethylbenzene	μg	1,313.3	128.8	41.6	12.5	18.8	85.1	10.3	5.7	0.0
Toluene	μg	6.9	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Xylenes	μg	7,262.2	712.1	182.4	23.4	20.3	438.2	48.6	16.5	0.0
BTEX	μg	8,586.5	848.0	224.1	35.9	39.1	523.3	59.0	22.2	0.0

Table 7. Percent Removal from Control Day 0

	Control 14	10 g/L Persulfate + NaOH 14	20 g/L Persulfate + NaOH 14	40 g/L Persulfate + NaOH 14	Control 91	10 g/L Unactivated Persulfate 91	20 g/L Unactivated Persulfate 91	40 g/L Persulfate Unactivated 91
TPH C10-C28 (DRO)	47.0	52.1	63.4	66.5	78.3	39.3	55.8	33.0
TPH C06-C10 (GRO)	83.4	64.6	81.5	77.8	74.8	80.2	100.0	85.7
Benzene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Ethylbenzene	90.2	96.8	99.0	98.6	93.5	99.2	99.6	100.0
Toluene	-2.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total Xylenes	90.2	97.5	99.7	99.7	94.0	99.3	99.8	100.0
BTEX	90.1	97.4	99.6	99.5	93.9	99.3	99.7	100.0

The Total TPH DRO mass balance decreased from 158,115 µg in the initial Characterization to 83,832 µg in the Control Day 14 and 34,308 µg in the Control Day 91. The TPH DRO mass balance were lower than the Control Day 14 in the three alkaline persulfate treatments, but were higher than the Control Day 91 in unactivated persulfate treatments at Day 91. The Total TPH GRO mass balance decreased from 70,833 µg in the initial Characterization to 11,763 µg in the Control Day 14 and 17,866 µg in the Control Day 91. The TPH GRO mass balance were higher than the Control Day 14 in the three alkaline persulfate treatments, but were lower than the Control Day 91 in unactivated persulfate treatments at Day 91. TPH-GRO was not detected in either the aqueous or soil phase of the unactivated 20 g/L persulfate treatment. Total benzene decreased from 4.1 µg in the initial Characterization to non-detect µg/L in the Control Days 14 and 91 and the alkaline persulfate and unactivated persulfate samples. Total ethylbenzene decreased from 1,313 µg in the Initial Characterization sample to 129 µg in the Control Day 14 and 85 µg in the Control Day 91 samples with between non-detect µg in the 40 g/L unactivated persulfate treatment to 42 µg in the 10 g/L alkaline persulfate treatment. Total toluene increased from 6.9 µg in the Initial Characterization sample to 7.1 µg in the Control Day 14 sample and were non-detect in the Control Day 91 and all persulfate-amended treatments. The mass balance for total xylenes decreased from 7,262 µg in the Initial Characterization sample to 712 µg in the Control Day 14 and decreased slightly to 438 µg in the Control Day 91 sample. Total xylenes mass balances ranged from 0 µg in the unactivated 40 g/L persulfate treatment to 182 µg in the unactivated 10 g/L persulfate treatment.

Overall removals of TPH-DRO ranged from 33.0% for the unactivated 40 g/L persulfate to a maximum of 78.3% in the Control Day 91 treatment. TPH GRO reductions ranged from 64.6% in the alkaline 10 g/L persulfate treatment to 100% in the unactivated 20 g/L persulfate treatment. Benzene and toluene were reduced to below the detection limits (100%) in the alkaline persulfate, Day 91 Control, and unactivated persulfate treatments. Ethylbenzene removals ranged from 90.2% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment. Total xylenes removals ranged from 90.2% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment. Total BTEX removals ranged from 90.1% in the Control 14 to a maximum of 100% in the unactivated 40 g/L persulfate treatment.

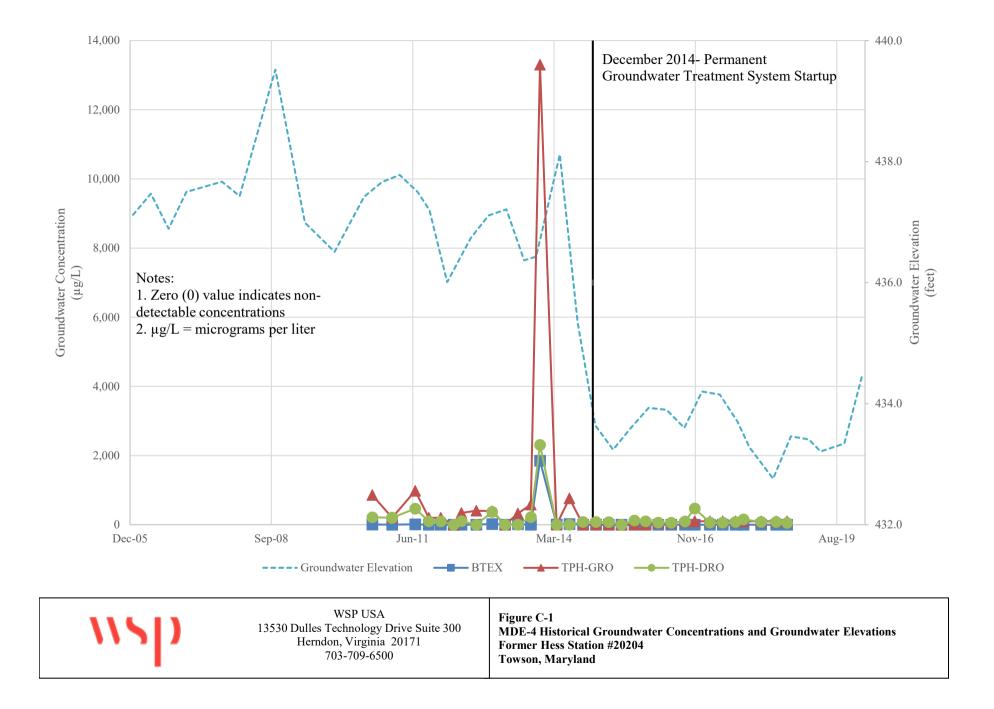
4.0 CONCLUSIONS

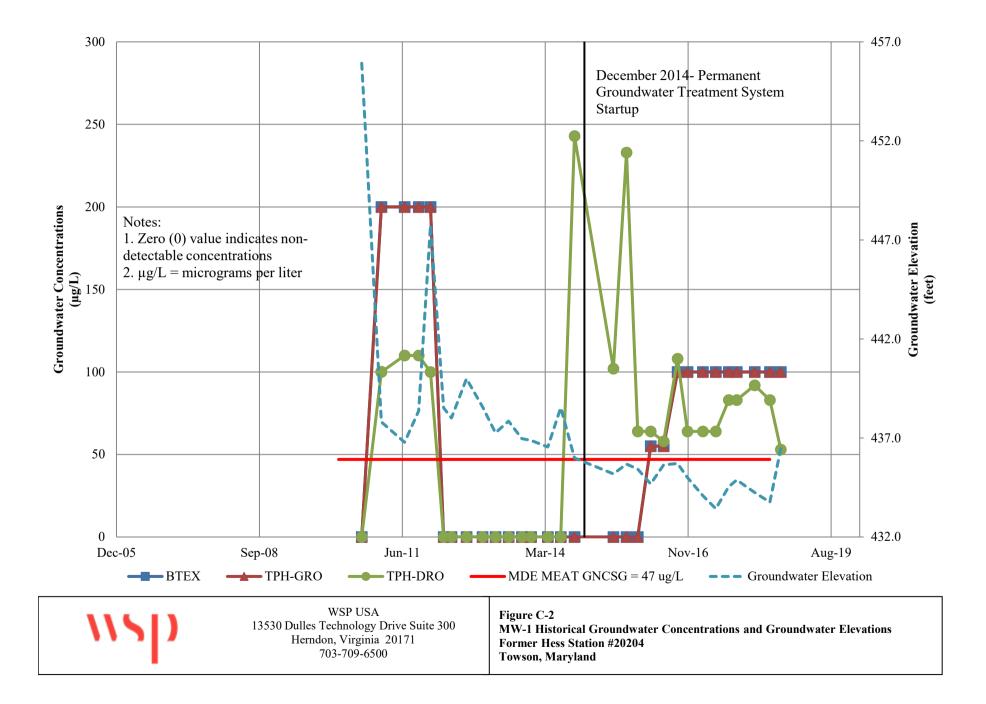
The following conclusions can be reached from the treatability study:

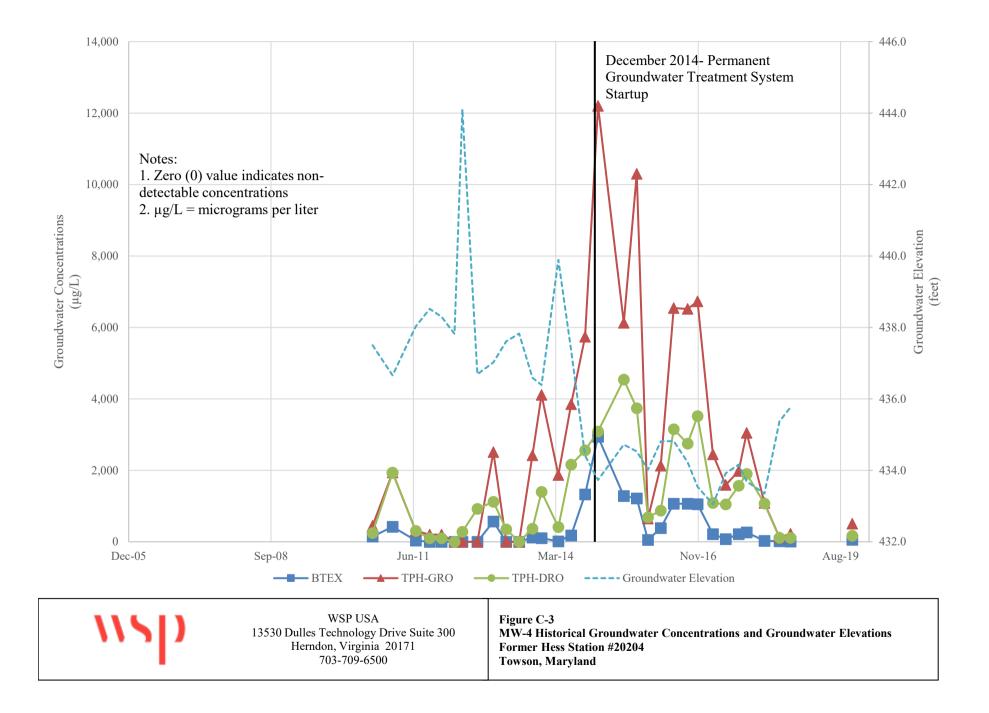
- The alkaline activation required between 0.039 to 0.043 gallons of 25% sodium hydroxide solution per cubic foot of aquifer to be treated with 10 to 40 g/L of sodium persulfate.
- The unactivated persulfate persisted for longer than the alkaline activated persulfate with lower soil oxidant demands.
- The TPH-DRO destruction efficiency was higher with alkaline activation. TPH-GRO treatment efficiency was greater with the unactivated persulfate. Total BTEX removal efficiency was slightly greater with the unactivated persulfate.
- The unactivated persulfate treatments resulted in lower oxyanion levels than the alkaline activation.

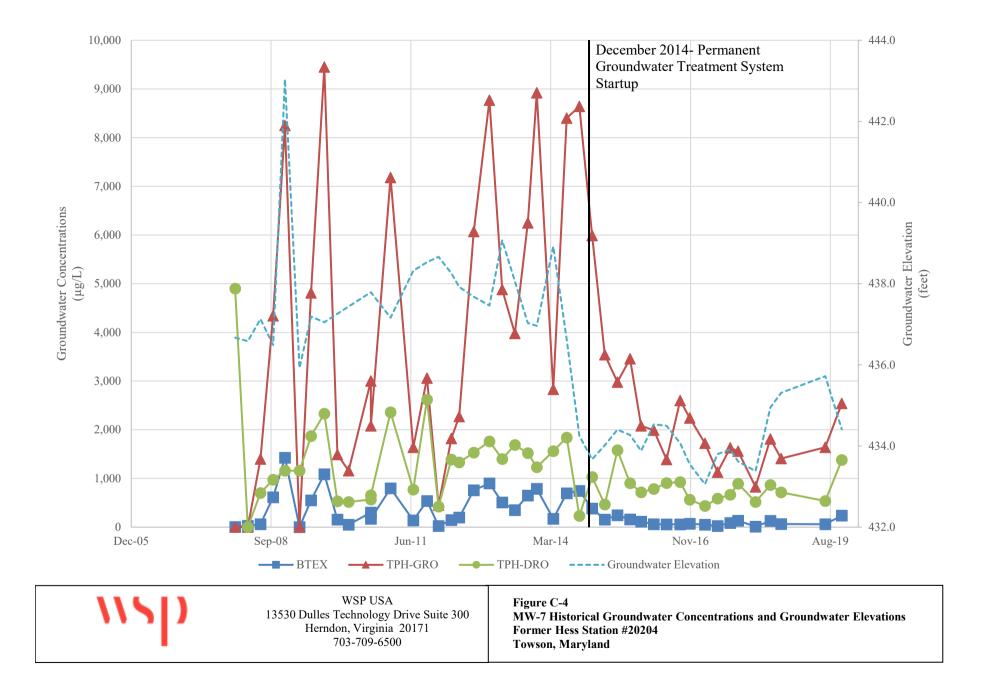
• Treatment efficiencies were generally slightly higher with the 40 g/L persulfate loadings than the 10 or 20 g/L loadings with highest removal of BTEX with the unactivated 40 g/L persulfate treatment. TPH-DRO and TPH-GRO were reduced, but not as completely as BTEX.

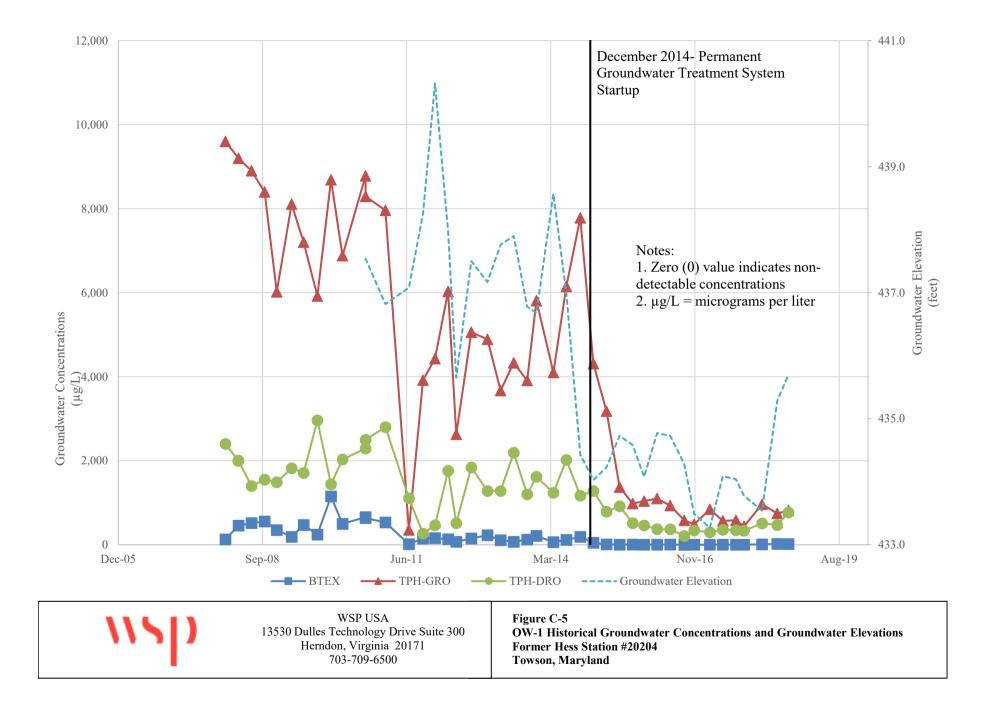
Should you have any questions about the draft report or need additional information, please feel free to contact me.

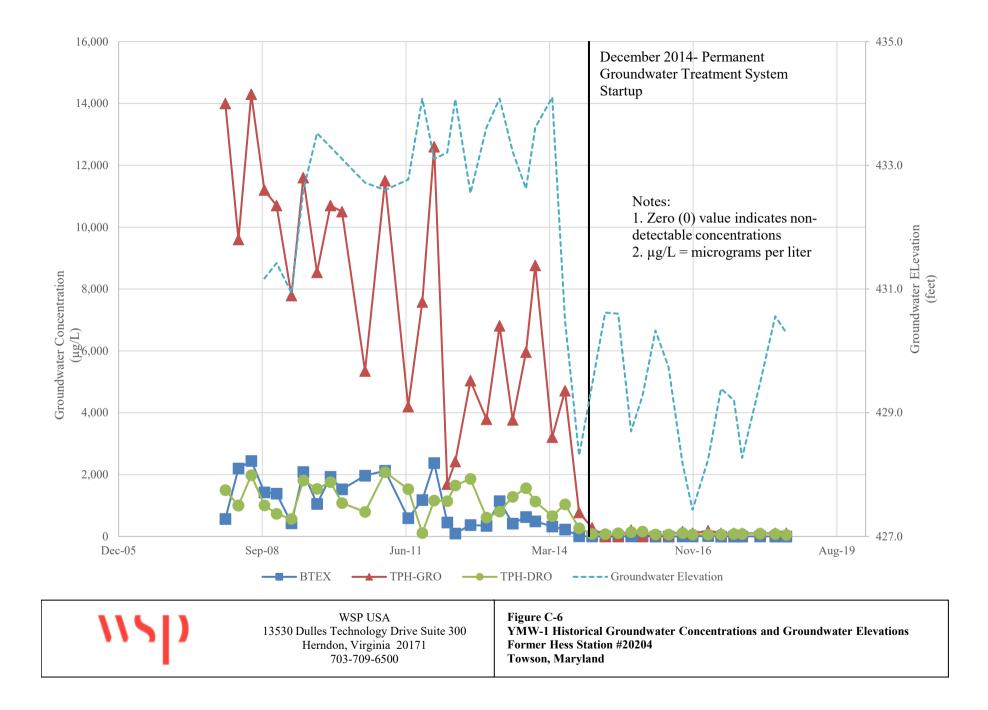

Sincerely, TERRA SYSTEMS, INC.

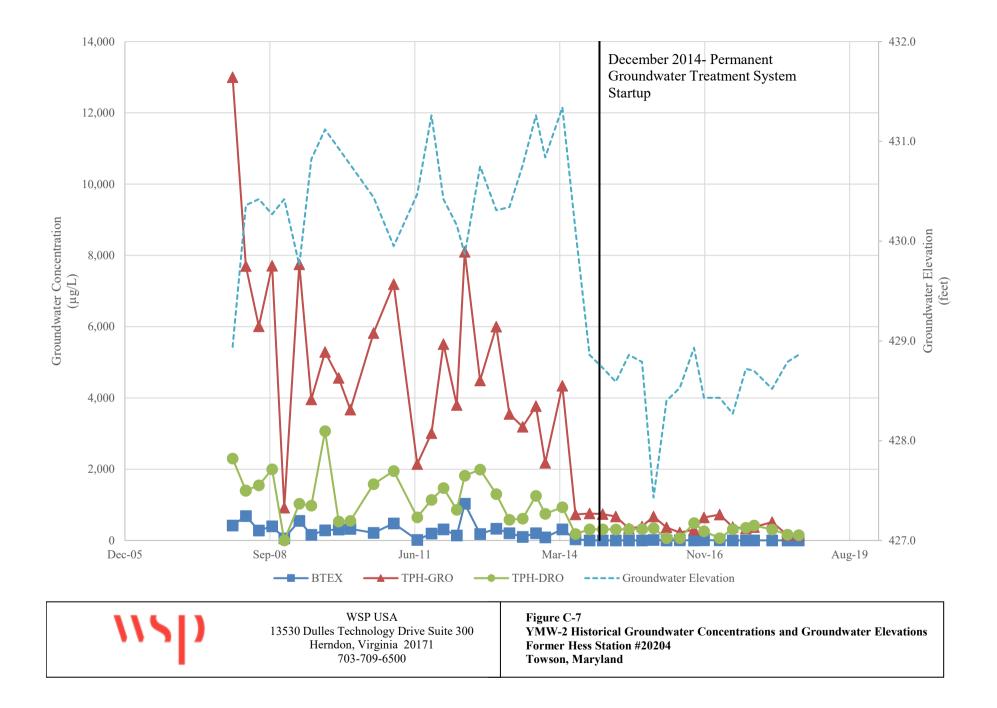

michael & lee, PRd.

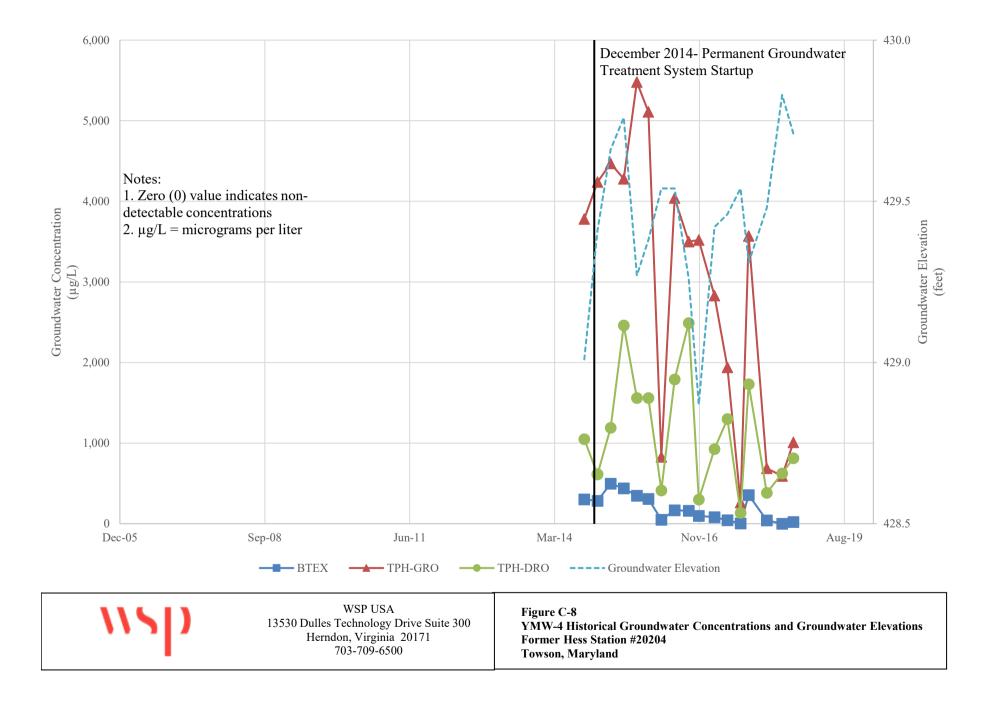

Michael D. Lee, Ph.D. Vice-President Research and Development

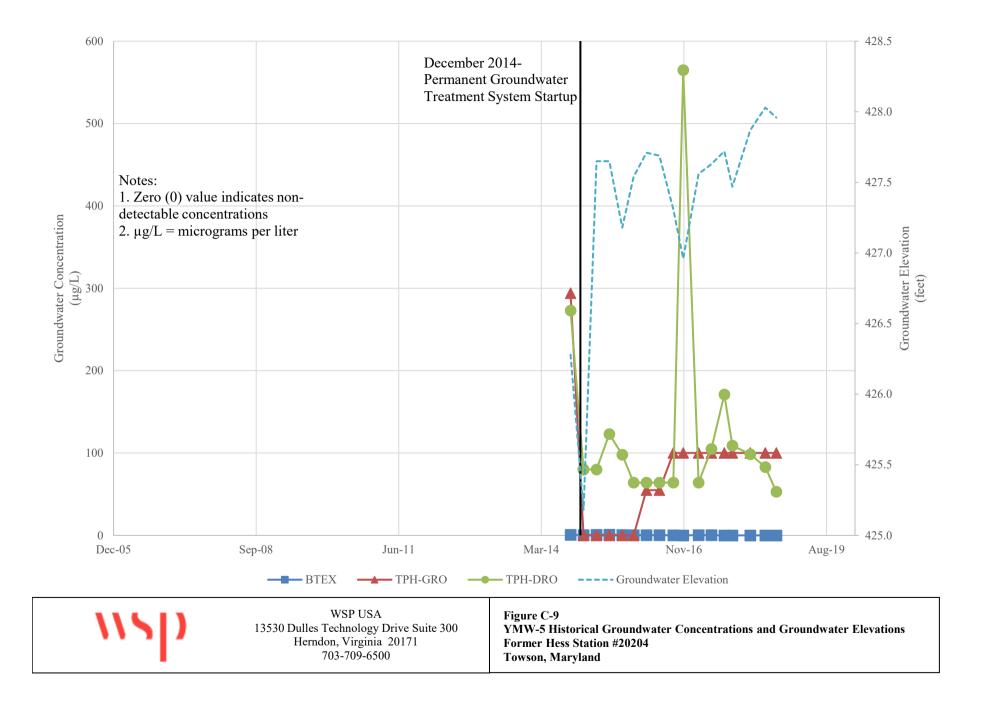


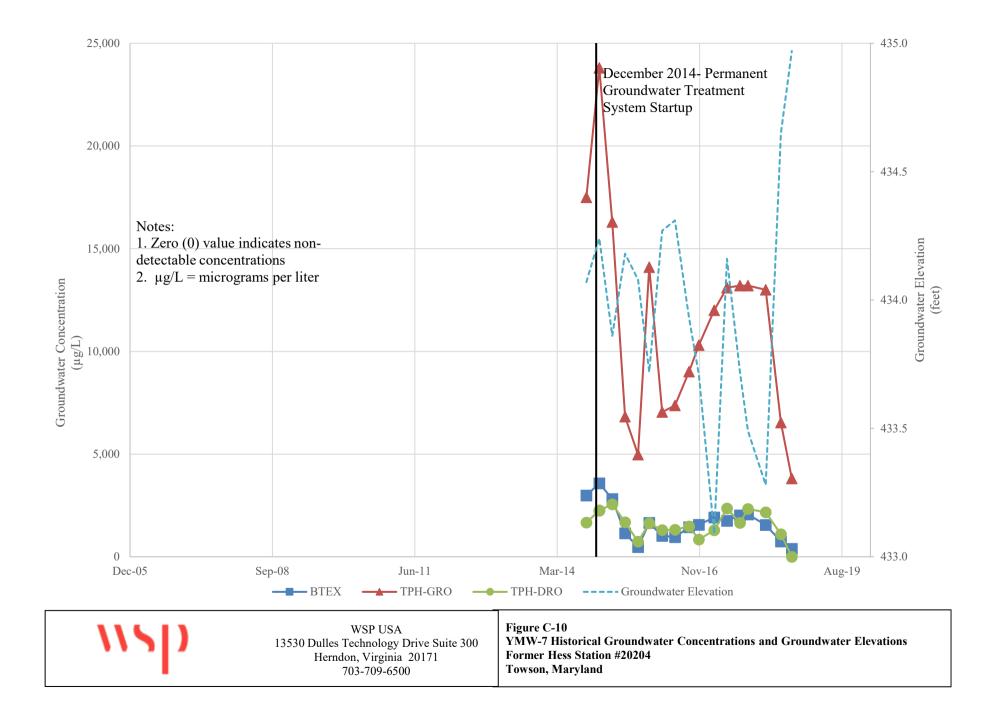

C TREND GRAPHS

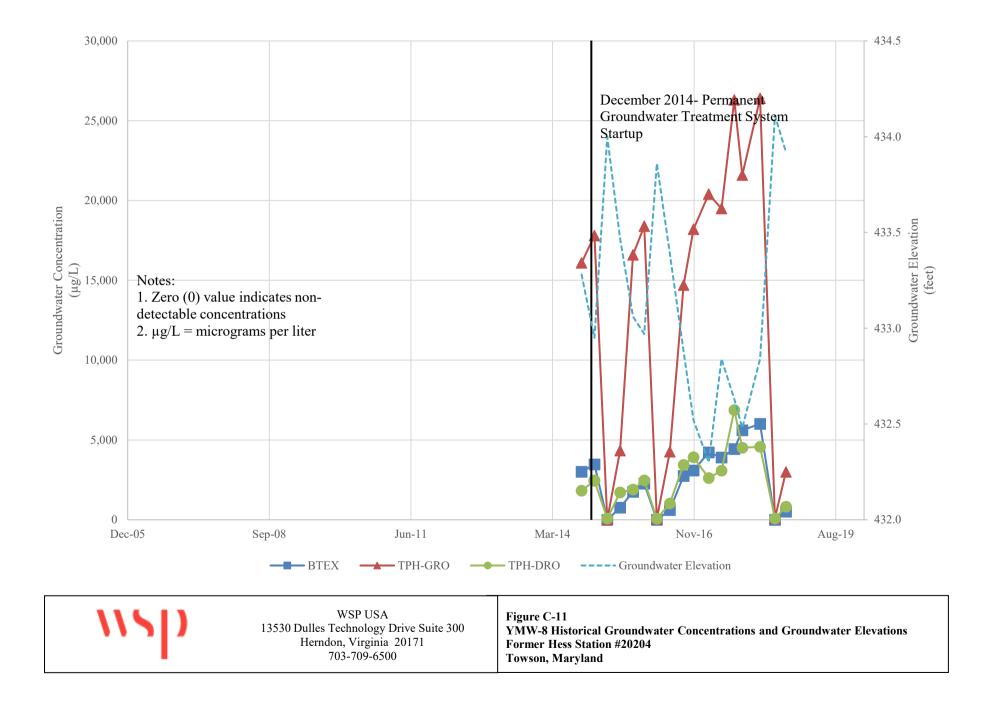


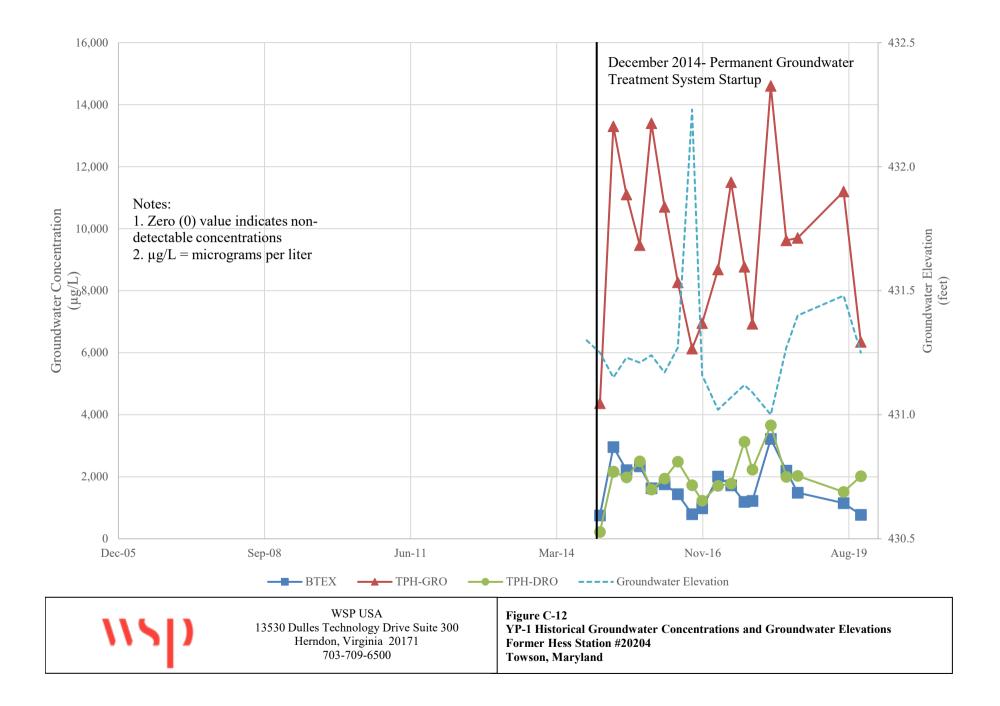


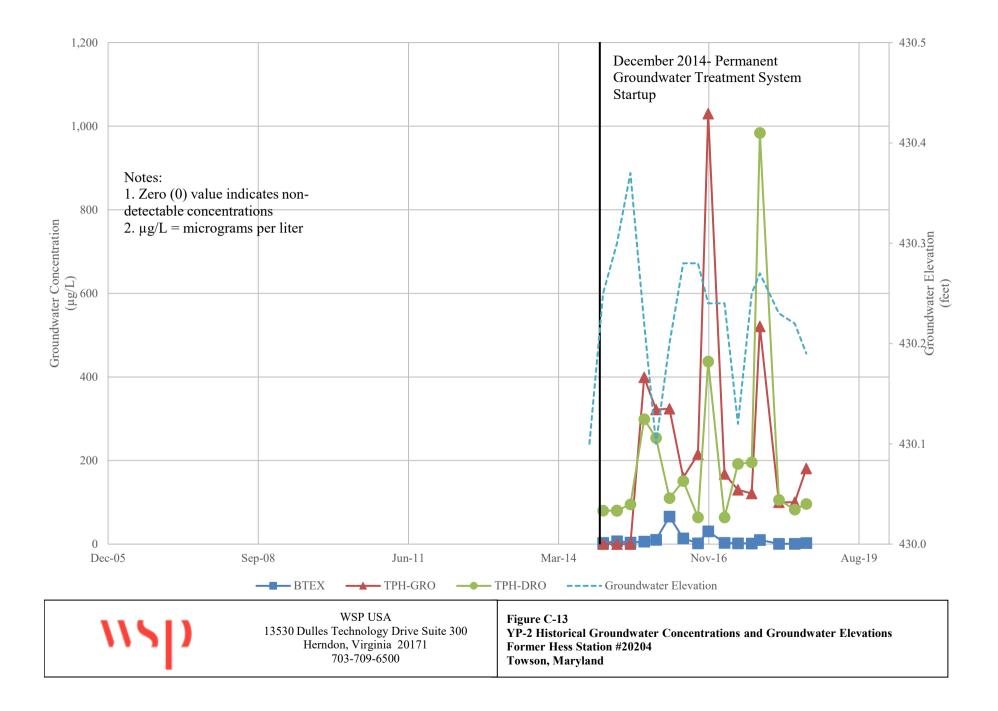


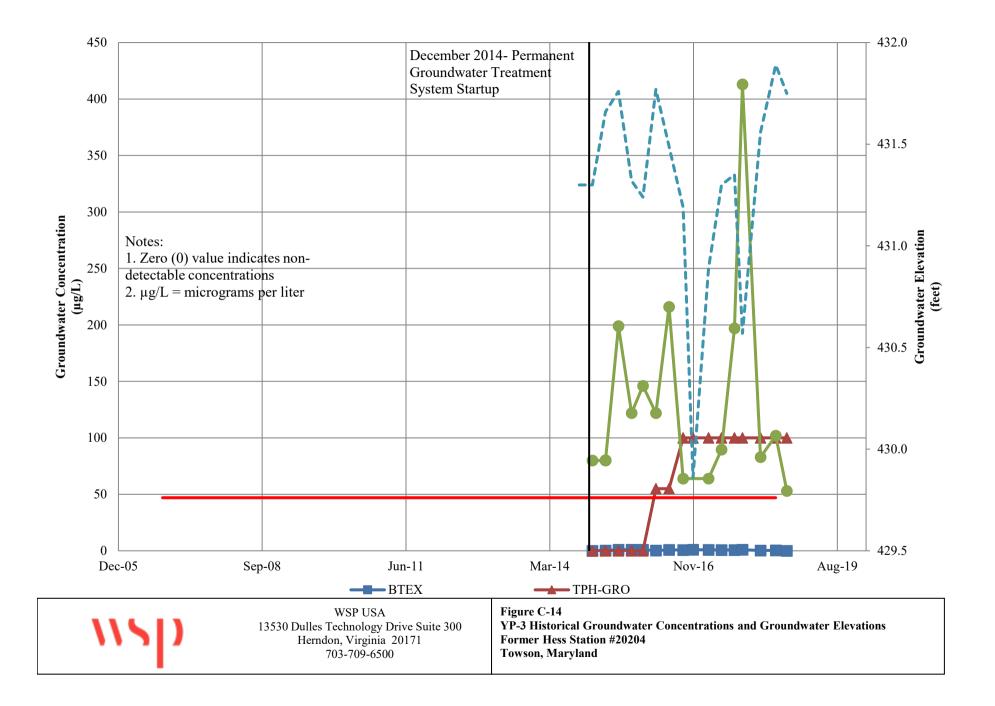


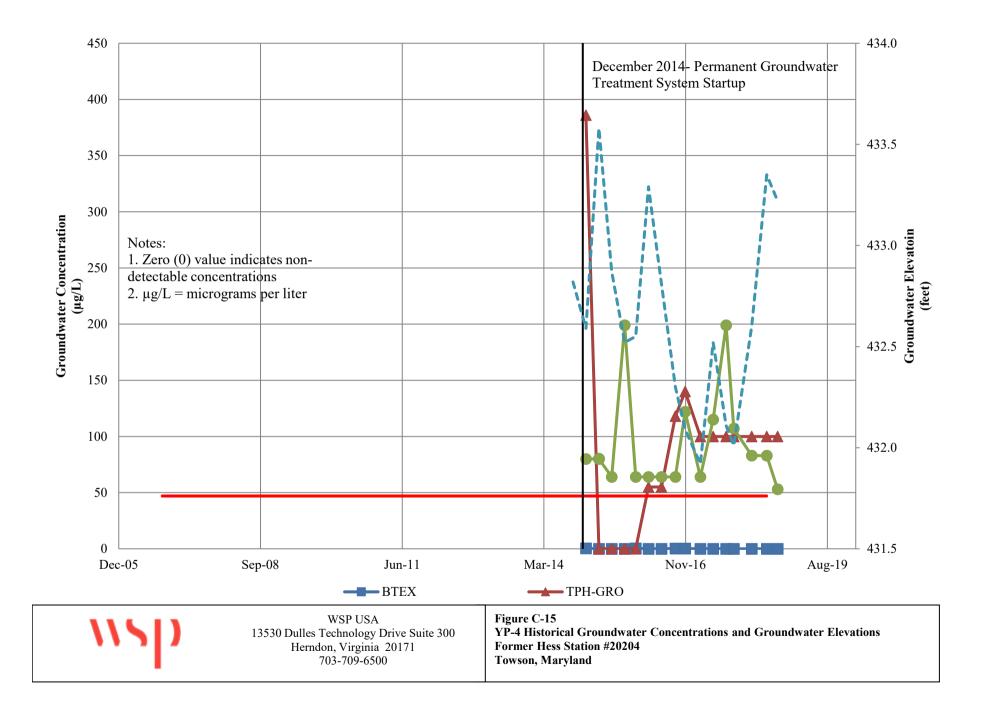


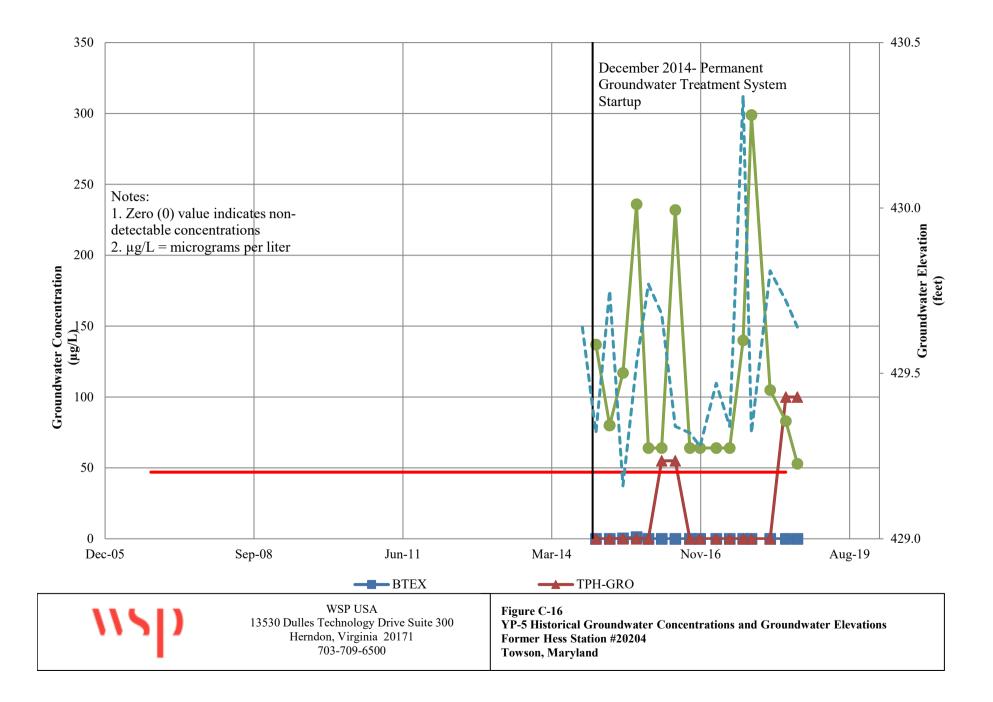




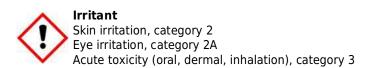








D SAFETY DATA SHEETS


according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Ammonium Sulfate,

SECTION 1 : Identification of the substance/mixture and of the supplier		
Product name :	Ammonium Sulfate,	
Manufacturer/Supplier Trade name:		
Manufacturer/Supplier Article number:	S25176A	
Recommended uses of the product and uses re	strictions on use:	
Manufacturer Details:		
AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331		
Supplier Details:		
Fisher Science Education		
15 Jet View Drive, Rochester, NY 14624		
Emergency telephone number:		
Fisher Science Education Emergency Telephone	e No.: 800-535-5053	
SECTION 2 : Hazards identification		

Classification of the substance or mixture:

Eye irrit. cat 2 Skin Sens, cat 2 STOT SE 3 AcTox Oral 4 Hazards Not Otherwise Classified - Combustible Dust

Signal word :Warning

Hazard statements:

Harmful if swallowed Causes skin irritation Causes serious eye irritation May cause respiratory irritation Precautionary statements: Wash ... thoroughly after handling Do not eat, drink or smoke when using this product Avoid breathing dust/fume/gas/mist/vapours/spray Use only outdoors or in a well-ventilated area Wear protective gloves/protective clothing/eye protection/face protection Specific treatment (see supplemental first aid instructions on this label) Rinse mouth Take off contaminated clothing and wash before reuse IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell IF ON SKIN: Wash with soap and water IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Page 1 of 7

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 2 of 7

Ammonium Sulfate,

If skin irritation occurs: Get medical advice/attention If eye irritation persists get medical advice/attention IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing Store locked up Store in a well ventilated place. Keep container tightly closed Dispose of contents/container to ...

> WHMIS NFPA/HMIS

Combustible Dust Hazard: :

May form combustible dust concentrations in air (during processing).

Other Non-GHS Classification:

HMIS RATINGS (0-4)

SECTION 3 : Composition/information on ingredients

Ingredients:		
CAS 7783-20-2	Ammonium Sulfate,ACS	>95 %
Percentages are by weight		

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Move exposed individual to fresh air. Loosen clothing as necessary and position individual in a comfortable position. Seek medical advice if discomfort or irritation persists. If breathing difficult, give oxygen.

After skin contact: Wash affected area with soap and water. Rinse/flush exposed skin gently using water for 15-20 minutes. Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye. Rinse/flush exposed eye(s) gently using water for 15-20 minutes. Remove contact lens(es) if able to do so during rinsing. Seek medical attention if irritation persists or if concerned.

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Seek medical attention if irritation, discomfort or vomiting persists.

Most important symptoms and effects, both acute and delayed:

Irritation, Nausea, Headache, Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention, provide SDS document to physician.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Ammonium Sulfate,

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: If in laboratory setting, follow laboratory fire suppression procedures. Use appropriate fire suppression agents for adjacent combustible materials or sources of ignition

For safety reasons unsuitable extinguishing agents:

Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors.Thermal decomposition can lead to release of irritating gases and vapors.Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.

Advice for firefighters:

Protective equipment: Use NIOSH-approved respiratory protection/breathing apparatus.

Additional information (precautions): Move product containers away from fire or keep cool with water spray as a protective measure, where feasible.Use spark-proof tools and explosion-proof equipment.

SECTION 6 : Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Wear protective equipment. Transfer to a disposal or recovery container.Use spark-proof tools and explosionproof equipment.Use respiratory protective device against the effects of fumes/dust/aerosol. Keep unprotected persons away. Ensure adequate ventilation.Keep away from ignition sources. Protect from heat.Stop the spill, if possible. Contain spilled material by diking or using inert absorbent.

Environmental precautions:

Prevent from reaching drains, sewer or waterway. Collect contaminated soil for characterization per Section 13

Methods and material for containment and cleaning up:

If in a laboratory setting, follow Chemical Hygiene Plan procedures.Place into properly labeled containers for recovery or disposal. If necessary, use trained response staff/contractor.Dust deposits should not be allowed to accumulate on surfaces, as these may form an explosive mixture if they are released into the atmosphere in sufficient concentration. Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Collect solids in powder form using vacuum with (HEPA filter)

Reference to other sections:

SECTION 7 : Handling and storage

Precautions for safe handling:

Minimize dust generation and accumulation. Wash hands after handling. Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Routine housekeeping should be instituted to ensure that dusts do not accumulate on surfaces. Dry powders can build static electricity charges when subjected to the friction of transfer and mixing operations. Follow good hygiene procedures when handling chemical materials. Do not eat, drink, smoke, or use personal products when handling chemical substances. If in a laboratory setting, follow Chemical Hygiene Plan.Use only in well ventilated areas.Avoid generation of dust or fine particulate.Avoid contact with eyes, skin, and clothing.

Conditions for safe storage, including any incompatibilities:

Store in a cool location. Provide ventilation for containers. Avoid storage near extreme heat, ignition sources or open flame. Store away from foodstuffs. Store away from oxidizing agents.Store in cool, dry conditions in well sealed containers. Keep container tightly sealed.Store with like hazards

SECTION 8 : Exposure controls/personal protection

Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 4 of 7

Ammonium Sulfate,

	MAN AND AND AND AND AND AND AND AND AND A
Control Parameters:	, , OSHA PEL TWA (Total Dust) 15 mg/m3 (50 mppcf*) , , ACGIH TLV TWA (inhalable particles) 10 mg/m3
Appropriate Engineering controls:	Emergency eye wash fountains and safety showers should be available in the immediate vicinity of use/handling.Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor or dusts (total/respirable) below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above.Use under a fume hood. It is recommended that all dust control equipment such as local exhaust ventilation and material transport systems involved in handling of this product contain explosion relief vents or an explosion suppression system or an oxygen deficient environment.Ensure that dust-handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment).
Respiratory protection:	Not required under normal conditions of use. Use suitable respiratory protective device when high concentrations are present. Use suitable respiratory protective device when aerosol or mist is formed. For spills, respiratory protection may be advisable.
Protection of skin:	The glove material has to be impermeable and resistant to the product/ the substance/ the preparation being used/handled.Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation.
Eye protection:	Safety glasses with side shields or goggles.
General hygienic measures:	The usual precautionary measures are to be adhered to when handling chemicals. Keep away from food, beverages and feed sources. Immediately remove all soiled and contaminated clothing. Wash hands before breaks and at the end of work. Do not inhale gases/fumes/dust/mist/vapor/aerosols. Avoid contact with the eyes and skin.

SECTION 9 : Physical and chemical properties

Appearance (physical state,color):	Colorless Solid	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined
Odor:	Odorless	Vapor pressure:	Not Determined
Odor threshold:	Not Determined	Vapor density:	Not Determined
pH-value:	5-6 (5% aq. sol.)	Relative density:	1.8
Melting/Freezing point:	280 C	Solubilities:	Material is water soluble.
Boiling point/Boiling range:	Not Determined	Partition coefficient (n- octanol/water):	n-octanol/water: log Pow: -5.1
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 5 of 7

Ammonium Sulfate,

Evaporation rate:	Insignificant	Decomposition temperature:	350 C
Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density: Not Determined			

SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions.

Chemical stability:No decomposition if used and stored according to specifications.

Possible hazardous reactions: None under normal processing

Conditions to avoid:Store away from oxidizing agents, strong acids or bases.Incompatible Materials.excess heat.Dust generation.

Incompatible materials:Strong acids.Strong bases.Strong oxidizing agents.

Hazardous decomposition products:sulfur dioxide.nitrogen.Ammonia.ammonium bisulfate.

SECTION 11 : Toxicological information

Acute Toxicity:		
Oral:	2840mg/kg	APS: LD50 orl-rat
Chronic Toxicity: No	additional information.	
Corrosion Irritation	: No additional information.	
Sensitization:		No additional information.
Single Target Organ (STOT):		No additional information.
Numerical Measures:		No additional information.
Carcinogenicity:		No additional information.
Mutagenicity:		No additional information.
Reproductive Toxicity:		No additional information.

SECTION 12 : Ecological information

Ecotoxicity Persistence and degradability: Readily degradable in the environment. Bioaccumulative potential: Mobility in soil: Other adverse effects:

SECTION 13 : Disposal considerations

Waste disposal recommendations:

Product/containers must not be disposed together with household garbage. Do not allow product to reach sewage system or open water. It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Consult federal state/ provincial and local regulations regarding the proper disposal of waste material that may incorporate some amount of this product.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Ammonium Sulfate,

SECTION 14 : Transport information

UN-Number

Not Dangerous Goods

UN proper shipping name

Not Dangerous Goods

Transport hazard class(es) Packing group:Not Dangerous Goods Environmental hazard: Transport in bulk: Special precautions for user:

SECTION 15 : Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

None of the ingredients is listed

SARA Section 313 (Specific toxic chemical listings):

7783-20-2 Ammonium Sulfate

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

None of the ingredients is listed

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16 : Other information

Page 6 of 7

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 12.28.2014

Page 7 of 7

Ammonium Sulfate,

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

Effective date : 12.28.2014 **Last updated** : 03.19.2015

SDS # : 7775-27-1-12 Revision date: 2018-07-13 Format: NA Version 1.04

1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier **Product Name** Klozur® SP 7775-27-1 CAS-No Sodium Persulfate; Sodium Peroxydisulfate; Disodium Peroxydisulfate; Peroxydisulfuric Synonyms acid, disodium salt; Peroxydisulfuric acid, sodium salt. Alternate Commercial Name Klozur® Persulfate Recommended use of the chemical and restrictions on use **Recommended Use:** In situ and ex situ chemical oxidation of contaminants and compounds of concern for environmental remediation applications **Restrictions on Use** No uses to be advised against were identified. Manufacturer/Supplier PeroxvChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com Emergency telephone numbers For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S. - Call Collect)

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute toxicity - Oral	Category 4
Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2B
Respiratory sensitization	Category 1
Skin sensitization	Category 1
Specific target organ toxicity (single exposure)	Category 3
Oxidizing Solids	Category 3

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Danger

Hazard Statements

- H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled
- H335 May cause respiratory irritation
- H320 Causes eye irritation
- H315 Causes skin irritation
- H317 May cause an allergic skin reaction
- H302 Harmful if swallowed
- H272 May intensify fire; oxidizer

Precautionary Statements - Prevention

- P261 Avoid breathing dust.
- P285 In case of inadequate ventilation wear respiratory protection
- P271 Use only outdoors or in a well-ventilated area
- P280 Wear protective gloves/ protective clothing
- P264 Wash face, hands and any exposed skin thoroughly after handling
- P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking
- P220 Keep/Store away from clothing/combustible materials
- P221 Take any precaution to avoid mixing with combustibles

Precautionary Statements - Response

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

- P337 + P313 If eye irritation persists: Get medical advice/ attention
- P302 + P352 IF ON SKIN: Wash with plenty of water.
- P333 + P313 If skin irritation or rash occurs: Get medical advice/ attention
- P304 + P341 IF INHALED: If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing
- P342 + P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor
- P301 + P312 IF SWALLOWED: Call a POISON CENTER or doctor if you feel unwell
- P330 Rinse mouth

P370 + P378 - In case of fire: Use water spray for extinction

Precautionary Statements - Storage

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

Other Information

Risk of decomposition by heat or by contact with incompatible materials

Unknown acute toxicity

0% of the mixture consists of ingredient(s) of unknown toxicity

3. COMPOSITION/INFORMATION ON INGREDIENTS

Formula

Na2O8S2

Chemical name	CAS-No	Weight %
Sodium Persulfate	7775-27-1	> 99
Sodium sulfate	7757-82-6	< 2

	4. FIRST AID MEASURES	
General Advice	May produce an allergic reaction.	
Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids intermittently. Consult a physician. If symptoms persist, call a physician.	
Skin Contact	Wash off immediately with soap and plenty of water while removing all contaminated clothes and shoes. Get medical attention if irritation develops and persists.	
Inhalation	Remove from exposure, lie down. If breathing is irregular or stopped, administer artificial respiration. Call a physician immediately.	
Ingestion	Do NOT induce vomiting. Call a physician or poison control center immediately. Rinse mouth. Drink 1 or 2 glasses of water.	
Most important symptoms and effects, both acute and delayed	Itching; Redness; Coughing and/ or wheezing.	
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically	
	5. FIRE-FIGHTING MEASURES	
Suitable Extinguishing Media	Water. Cool containers with flooding quantities of water until well after fire is out.	
Unsuitable extinguishing media	Do not use carbon dioxide or other gas filled fire extinguishers; they will have little effect or decomposing persulfate.	
Specific Hazards Arising from the Chemical	Decomposes under fire conditions to release oxygen that intensifies the fire.	
Flammable properties	Contact with combustible material may cause fire	
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.	
Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.	
	6. ACCIDENTAL RELEASE MEASURES	
Personal Precautions	Keep off any unprotected persons. Avoid contact with the skin and the eyes. Avoid breathing dust. Wear personal protective equipment.	
Other	Never add other substances or combustible waste to product residues.	
Environmental Precautions	Prevent material from entering into soil, ditches, sewers, waterways, and/or groundwater.	

	Version 1.04
	See Section 12, Ecological Information for more detailed information.
Methods for Containment	Vacuum, shovel or pump waste into a drum and label contents for disposal. Avoid dust formation. Store in closed container.
Methods for cleaning up	Clean up spill area and treat as special waste. Dispose of waste as indicated in Section 13.
	7. HANDLING AND STORAGE
Handling	Wear personal protective equipment. Use only in area provided with appropriate exhaust ventilation. Avoid dust formation. Handle product only in closed system or provide appropriate exhaust ventilation at machinery. Avoid contact with skin and eyes. Avoid breathing dust. Remove and wash contaminated clothing before re-use. Reference to other sections.
Storage	Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat. Do not store near combustible materials. Avoid contamination of opened product. Keep away from food, drink and animal feedingstuffs. Avoid formation and deposition of dust.
Incompatible products	Acids, Alkalis, Halides, Combustible materials, Organic material, Reducing agents. Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	-	-
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	TWA: 0.1 mg/m ³	TWA: 0.1 mg/m ³

Appropriate engineering controls

.

Engineering measures	Provide local exhaust or general ventilation adequate to maintain exposures below permissable exposure limits.
Individual protection measures, su	ch as personal protective equipment
Eye/Face Protection	Eye protection recommended. Chemical goggles consistent with EN 166 or equivalent.
Skin and Body Protection	Wear long-sleeved shirt, long pants, socks, and shoes.
Hand Protection	Protective gloves: Neoprene gloves, Polyvinylchloride, Natural Rubber.
Respiratory Protection	If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved respiratory protection should be worn: particulate filtering facepiece respirators.
Hygiene measures	Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Wash hands before breaks and after shifts. Keep work clothes separate, remove contaminated clothing - launder after open handling of product.
General information	Protective engineering solutions should be implemented and in use before personal protective equipment is considered.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance Physical State Color Odor Odor threshold pH Melting point/freezing point Boiling Point/Range Flash point Evaporation Rate Flammability (solid, gas) Flammability Limit in Air Upper flammability limit: Lower flammability limit: Lower flammability limit: Vapor pressure Vapor density Density Specific gravity Water solubility Solubility in other solvents	Crystalline solid Solid White odorless Not applicable 6.0 (1% solution) 180 °C (Decomposes) Decomposes upon heating Not flammable No information available Not flammable Not applicable No information available No information available 6.07E-30 mm Hg at 25°C No information available 2.59 g/cm ³ (crystal density) No information available 42 % @ 25 °C No information available
Water solubility	42 % @ 25 °C
Solubility in other solvents	No information available
Partition coefficient	No information available (inorganic)
Autoignition temperature	No evidence of combustion up to 600°C No evidence of combustion up to 600 °C
Decomposition temperature	> 100 °C (assume)
Viscosity, kinematic	No information available (Solid)
Viscosity, dynamic	No information available
Explosive properties	Not explosive
Oxidizing properties	oxidizer
Molecular weight	238.1
VOC content (%)	Not applicable
Bulk density	1.12 g/cm ³ (loose)

10. STABILITY AND REACTIVITY

Reactivity	None under normal use condtions. Oxidizer. Contact with other material may cause fire
Chemical Stability	Stable.
Possibility of Hazardous Reactions	None under normal processing.
Hazardous polymerization	Hazardous polymerization does not occur.
Conditions to avoid	Heat. Moisture.
Incompatible materials	Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds. Acids, Alkalis, Halides, Combustible materials, Organic material, Reducing agents.

Hazardous Decomposition Products Oxygen which supports combustion

11. TOXICOLOGICAL INFORMATION

Product Information

Unknown acute toxicity	0% of the mixture consists of ingredient(s) of unknown toxicity
LD50 Oral	Sodium Persulfate: 895 mg/kg (rat)
LD50 Dermal	Sodium Persulfate: > 10 g/kg
LC50 Inhalation	Sodium Persulfate: >5.10 mg/L (4h) (rat)
Serious eye damage/eye irritation	Irritating to eyes.
Skin corrosion/irritation	Minimally irritating.

Sensitization

Sodium Persulfate:. May cause sensitization by inhalation and skin contact.

Component Information

Chemical name	LD50 Oral	LD50 Dermal	LC50 Inhalation	NOAEL Oral Value
Sodium Persulfate	895 mg/kg (Rat)	> 10000 mg/kg (Rabbit)	>21.6 mg/L (Rat)4 h	
(7775-27-1)				
Sodium sulfate	> 10000 mg/kg (Rat)			
(7757-82-6)				

Information on toxicological effects

Symptoms	Symptoms of allergic reaction may include rash, itching, swelling and trouble breathing.
Delayed and immediate effects as v	vell as chronic effects from short and long-term exposure
Irritation corrosivity	Irritating to eyes, respiratory system and skin. None.
Carcinogenicity	Contains no ingredient listed as a carcinogen.
Mutagenicity	Did not show mutagenic effects in animal experiments
Neurological effects	Not neurotoxic
Reproductive toxicity Developmental toxicity Teratogenicity	This product is not recognized as reprotox by Research Agencies. None known. Not teratogenic in animal studies.
STOT - single exposure STOT - repeated exposure	May cause respiratory irritation. Not classified.
Target organ effects	Eyes, Lungs.
Aspiration hazard	No information available.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Ecotoxicity effects

Sodium Persulfate (7775	5-27-1)			
Active Ingredient(s)	Duration	Species	Value	Units
Sodium Persulfate	96 h LC50	Rainbow trout	163	mg/L
Sodium Persulfate	48 h LC50	Daphnia magna	133	mg/L
Sodium Persulfate	96 h LC50	Grass shrimp	519	mg/L
Sodium Persulfate	72 h EC50	Algae Selenastrum	116	mg/L
		capricornutum		

Persistence and degradability	Biodegradability does not pertain to inorganic substances.
Bioaccumulation	Does not bioaccumulate.
Mobility	Dissociates into ions.
Other Adverse Effects	None known.

13. DISPOSAL CONSIDERATIONS

Waste disposal methods	This material, as supplied, is a hazardous waste according to federal regulations (40 CFR 261). It must undergo special treatment, e.g. at suitable disposal site, to comply with local regulations.
Contaminated Packaging	Empty remaining contents. Dispose of in accordance with local regulations.
	14. TRANSPORT INFORMATION

DOT

UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
TDG UN/ID no Proper Shipping Name Hazard class Packing Group MEX	UN 1505 SODIUM PERSULFATE 5.1 III
UN/ID no Proper Shipping Name Hazard class Packing Group ICAO	UN 1505 SODIUM PERSULFATE 5.1 III
UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
ICAO/IATA UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>IMDG/IMO</u> UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>ADR/RID</u> UN/ID no Proper Shipping Name Hazard class Packing Group	UN 1505 SODIUM PERSULFATE 5.1 III
<u>ADN</u> Proper Shipping Name Hazard class Packing Group	SODIUM PERSULFATE 5.1 III

U.S. Federal Regulations

15. REGULATORY INFORMATION

<u>SARA 313</u>

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

SARA 311/312 Hazard Categories

This product is not subject to reporting under the Emergency Planning and Community Right-to-Know rule.

Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

US State Regulations

U.S. State Right-to-Know Regulations

This product contains the following substances regulated under state Right-to-Know laws:

Chemical name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sodium Persulfate		Х			
Sodium sulfate	Х		Х		

California Proposition 65

This product does not contain any Proposition 65 chemicals

CANADA

Environmental Emergencies

This product contains no substances listed under Canada's Environmental Emergency regulations.

Canadian National Pollutant Release Inventory

This product contains no substances reportable under Canada's National Pollutant Release Inventory regulations.

International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines)	AICS (Australia)	NZIoC (New Zealand)
Sodium Persulfate	Х	X	Х	Х	Х	Х	Х	Х	Х
7775-27-1 (> 99)									
Sodium sulfate	Х	X	Х	Х	X	Х	X	Х	Х
7757-82-6 (< 2)									

<u>Mexico</u>

Mexico - Grade

Slight risk, Grade 1

16. OTHER INFORMATION

NFPA	Health Hazards 1	Flammability 0	Stability 1	Special Hazards OX
HMIS	Health Hazards 1	Flammability 0	Physical hazard 1	Special precautions J

NFPA/HMIS Ratings Legend

Special Hazards: OX = Oxidizer

Protection=J (Safety goggles, gloves, apron, combination dust and vapor respirator)

SDS # : 7775-27-1-12 Revision date: 2018-07-13 Version 1.04

Revision date: Revision note Issuing Date: 2018-07-13 SDS sections updated: 3 2017-03-17

Disclaimer

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

Prepared By:

PeroxyChem

KLOZUR - Trademark of Peroxychem © 2018 PeroxyChem. All Rights Reserved. End of Safety Data Sheet

1. IDENTIFICATION OF THE MATERIAL AND SUPPLIER

Product Name:	DISODIUM HYDROGEN ORTHOPHOSPHATE
Other name(s):	Anhydrous disodium phosphate; sodium orthophosphate anhydrous; disodium hydrogen phosphate anhydrous; Disodium Phosphate Food Grade
Supplier: ABN: Street Address:	Ixom Operations Pty Ltd 51 600 546 512 Level 8, 1 Nicholson Street East Melbourne Victoria 3002 Australia
Telephone Number: Facsimile: Emergency Telephone:	+61 3 9906 3000 +61 3 9665 7937 1 800 033 111 (ALL HOURS)

Please ensure you refer to the limitations of this Safety Data Sheet as set out in the "Other Information" section at the end of this Data Sheet.

2. HAZARDS IDENTIFICATION

Not classified as Dangerous Goods by the criteria of the Australian Dangerous Goods Code (ADG Code) for transport by Road and Rail; NON-DANGEROUS GOODS.

Based on available information, not classified as hazardous according to Safe Work Australia; NON-HAZARDOUS CHEMICAL.

Poisons Schedule (SUSMP): None allocated.

3. COMPOSITION AND INFORMATION ON INGREDIENTS

Product Description: White powder or crystals.

Used in the chemical, fertilizer, pharmaceutical and textile industries; as a food additive (buffer 339); in boiler water treatment, detergents and fireproofing wood and paper.

Components	CAS Number	Proportion	Hazard Codes
Disodium hydrogen orthophosphate.	7558-79-4	100%	-

4. FIRST AID MEASURES

For advice, contact a Poisons Information Centre (e.g. phone Australia 131 126; New Zealand 0800 764 766) or a doctor.

Inhalation:

Remove victim from area of exposure - avoid becoming a casualty. Seek medical advice if effects persist.

Skin Contact:

If skin contact occurs, remove contaminated clothing and wash skin with running water. If irritation occurs seek medical advice.

Eye Contact:

If in eyes, wash out immediately with water. In all cases of eye contamination it is a sensible precaution to seek medical advice.

Ingestion:

Rinse mouth with water. If swallowed, give a glass of water to drink. If vomiting occurs give further water. Seek medical advice.

Indication of immediate medical attention and special treatment needed:

Treat symptomatically.

5. FIRE FIGHTING MEASURES

Suitable Extinguishing Media:

Fine water spray, normal foam, dry agent (carbon dioxide, dry chemical powder).

Specific hazards arising from the chemical:

Non-combustible material.

Special protective equipment and precautions for fire-fighters:

Decomposes on heating emitting toxic fumes. Fire fighters to wear self-contained breathing apparatus and suitable protective clothing if risk of exposure to products of decomposition.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions/Protective equipment/Methods and materials for containment and cleaning up:

Avoid accidents, clean up immediately. Wear protective equipment to prevent skin and eye contact and breathing in dust. Sweep up, but avoid generating dust. Collect and seal in properly labelled containers or drums for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling:

Avoid skin and eye contact and breathing in dust. Avoid handling which leads to dust formation.

Conditions for safe storage, including any incompatibilities:

Store in a cool, dry, well ventilated place and out of direct sunlight. Store away from incompatible materials described in Section 10. Keep containers closed when not in use - check regularly for spills.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters: No value assigned for this specific material by Safe Work Australia. However, Workplace Exposure Standard(s) for particulates:

Dusts not otherwise classified: 8hr TWA = 10 mg/m³

TWA - The time-weighted average airborne concentration of a particular substance when calculated over an eight-hour working day, for a five-day working week.

These Workplace Exposure Standards are guides to be used in the control of occupational health hazards. All atmospheric contamination should be kept to as low a level as is workable. These workplace exposure standards should not be used as fine dividing lines between safe and dangerous concentrations of chemicals. They are not a measure of relative toxicity.

Appropriate engineering controls:

Use in well ventilated areas. If inhalation risk exists: Use with local exhaust ventilation or while wearing dust mask. Keep containers closed when not in use.

Individual protection measures, such as Personal Protective Equipment (PPE):

The selection of PPE is dependent on a detailed risk assessment. The risk assessment should consider the work situation, the physical form of the chemical, the handling methods, and environmental factors.

OVERALLS, SAFETY SHOES, SAFETY GLASSES, GLOVES, DUST MASK.

Wear overalls, safety glasses and impervious gloves. If determined by a risk assessment an inhalation risk exists, wear a dust mask meeting the requirements of AS/NZS 1715 and AS/NZS 1716. Always wash hands before smoking, eating, drinking or using the toilet.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state:	Powder, Crystals
Colour:	White
Solubility:	Very soluble in water.
Specific Gravity:	2.10 at 20°C
Relative Vapour Density (air=1):	Not applicable
Vapour Pressure (20 °C):	Not applicable
Flash Point (°C):	Not applicable
Flammability Limits (%):	Not applicable
Autoignition Temperature (°C):	Not applicable
Boiling Point/Range (°C):	Not applicable
pH:	Not available.
Viscosity:	Not applicable

10. STABILITY AND REACTIVITY

Chemical stability:

May react violently with acids.

11. TOXICOLOGICAL INFORMATION

No adverse health effects expected if the product is handled in accordance with this Safety Data Sheet and the product label. Symptoms or effects that may arise if the product is mishandled and overexposure occurs are:

Ingestion:	No adverse effects expected, however, large amounts may cause nausea and vomiting.
Eye contact:	May be an eye irritant.
Skin contact:	Contact with skin may result in irritation.
Inhalation:	Breathing in dust may result in respiratory irritation.
Acute toxicity: Oral LD50 (rat): 17000 mg/kg	(1)

Chronic effects: No information available for the product.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Avoid contaminating waterways.

13. DISPOSAL CONSIDERATIONS

Disposal methods:

Refer to local government authority for disposal recommendations.

14. TRANSPORT INFORMATION

Road and Rail Transport

Not classified as Dangerous Goods by the criteria of the Australian Dangerous Goods Code (ADG Code) for transport by Road and Rail; NON-DANGEROUS GOODS.

Marine Transport

Not classified as Dangerous Goods by the criteria of the International Maritime Dangerous Goods Code (IMDG Code) for transport by sea; NON-DANGEROUS GOODS.

Air Transport

Not classified as Dangerous Goods by the criteria of the International Air Transport Association (IATA) Dangerous Goods Regulations for transport by air; NON-DANGEROUS GOODS.

15. REGULATORY INFORMATION

Classification:

Based on available information, not classified as hazardous according to Safe Work Australia; NON-HAZARDOUS CHEMICAL.

Poisons Schedule (SUSMP): None allocated.

All the constituents of this material are listed on the Australian Inventory of Chemical Substances (AICS).

16. OTHER INFORMATION

(1) Safety Data Sheet - Australia Pty Ltd; 08/ 1996.

This safety data sheet has been prepared by Ixom Operations Pty Ltd Toxicology & SDS Services.

Reason(s) for Issue:

5 Yearly Revised Primary SDS Creation in WERCS database

This SDS summarises to our best knowledge at the date of issue, the chemical health and safety hazards of the material and general guidance on how to safely handle the material in the workplace. Since Ixom Operations Pty Ltd cannot anticipate or control the conditions under which the product may be used, each user must, prior to usage, assess and control the risks arising from its use of the material.

If clarification or further information is needed, the user should contact their Ixom representative or Ixom Operations Pty Ltd at the contact details on page 1.

Ixom Operations Pty Ltd's responsibility for the material as sold is subject to the terms and conditions of sale, a copy of which is available upon request.

Ε

FIELD STANDARD OPERATING PROCEDURE #2

UTILITY LOCATING PROCEDURE

The purpose of this procedure is to ensure that all required and appropriate procedures are followed to locate and mark subsurface utilities (e.g., electrical lines, natural gas lines, communication lines) before initiating any intrusive field activities (e.g., drilling, test pits, trenching, excavation). The company's preference, as indicated in our subcontractor agreement templates, is for our contractors to be responsible for both public and private utility mark-outs; this includes contacting the public authority and obtaining a subcontractor for private utility locating services, if needed. Guidance for contractors to follow to conduct a utility clearance is provided in our request for proposal (RFP) template and must be included in all RFP's for intrusive field activities.

In rare circumstances, the company may choose to accept responsibility for clearing utilities, which will require a change to the language of our subcontractor agreement. This assumption of increased liability by the company requires written rationale and approval from the cognizant Regional Manager, with written concurrence from the Director of Operations, which shall be obtained prior to submitting the Request for Subcontract to Contract Administration.

For projects where the company will be responsible for clearing utilities, compliance with this procedure is mandatory. <u>ALL</u> deviations from this standard operating procedure (SOP) <u>MUST</u> be approved by the project manager and a Regional Manager, with confirmation from the Director of Operations <u>BEFORE</u> beginning intrusive work.

Field personnel have the authority and responsibility to postpone intrusive activities if a contractor has not completed utility clearances to the company's satisfaction; if sufficient information, as stipulated in this SOP, is not available; or if onsite reconnaissance identifies inconsistencies in the findings of utility locators. In these instances, field personnel must notify the project manager or the health and safety officer, or their designee, before proceeding with the proposed work; approval from a Regional Manager, with confirmation from the Director of Operations, is required before the work commences.

The user is advised to read the entire SOP and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities.

2.1 ACRONYMS AND ABBREVIATIONS

- HASP health and safety plan
- PSP project safety plan
- RFP request for proposal
- SOP standard operating procedure

2.2 MATERIALS

- Utility Locating Form (Attachment 1)
- Field book
- Wood stakes
- Spray paint
- Flagging tape
- As-built drawings for sub-grade utilities (if available)
- Hand auger or post-hole digger

2.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel

and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field SOPs, and the Quality Management System.

This procedure is intended to allow the work to proceed safely and minimize the potential for damaging underground and aboveground utilities. Intrusive work includes all activities that require the company's employees or its subcontractors to penetrate the ground surface. Examples of intrusive work include, but are not limited to, hand augering, probing, drilling, injections, test pit excavations, trenching, and remedial excavations.

This SOP assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1).

2.4 PRE-FIELD MOBILIZATION PROCEDURES

Regardless of who is responsible for completing these activities (company or a contractor), public rights-of-way and private property must be cleared of buried utilities and overhead utilities must be identified before any intrusive work can begin. The first step in this process is notifying the state public utility locating service of the planned work. These services provide a link between the entities performing the work and the various utility operators (e.g., the water company, the electric company, etc.). All of the public utility locating service call centers in the United States have been streamlined under a single "Call Before You Dig" phone number: 811. However, the appropriate state or provincial call center (http://call811.com/811-your-state) will need to be contacted.

<u>Please note</u>, some state or provincial laws require that the person who will actually be conducting the intrusive work must be the person who places the call to the public utility locating service. This means that the company cannot make this call on the contractor's behalf; the contractor must place the call in those states where required. If there is any doubt about the requirements for the state where a project is located, the relevant state authority must be contacted (http://call811.com/811-your-state).

When the appropriate call center is contacted, information regarding the site (e.g., location, nearest cross street, township, etc.) and work activity (e.g., drilling, excavation) will need to be provided to the operator to aid in locating the likely utilities at the work site. The information provided on the Utility Locating Form (Attachment 1) must be recorded (by the contractor or the company) and a completed copy of this form must be maintained as part of the project file. Be aware that several states, including California, require that the proposed drilling locations be marked with white spray paint before contacting the locating services.

The following information must accompany the field team at all times during the field project:

- The utility clearance ticket number
- The ticket's legal dig date
- The ticket's expiration date
- Utility providers that were contacted

The ticket number serves as a point of reference for both the utility service providers and for the company or contractor should follow up (e.g., renewing the ticket) with the locating service be required. The legal dig and expiration dates reflect the times when it will be legal to perform the proposed work. The legal dig date reflects the lead time necessary, typically between 48 and 72 hours after you call, for the utility service providers to mark the utilities in you work area. Be sure to include this delay when scheduling your work. Most utility clearance tickets expire about 2 weeks after the legal dig date. If your work is delayed beyond the expiration date, the 811 utility locating service will need to be called again and the ticket renewed. The renewed ticket will have a new legal dig date that incorporates the same lead-time (48 to 72 hours) as the original ticket.

The locating service will also provide the caller with a list of utility companies that will be notified. Compare this list with utilities generally expected at all sites (e.g., sewer, water, gas, communication, and electric). Some utilities (e.g., sewer, water, cable television) may not be included. If any expected utilities are absent from the contact list, the utilities <u>MUST</u> be contacted directly for clearance before the start of intrusive activities. All contacts should be recorded on the Utility Locating Form.

2.4.1 PRIVATE UTILITY LOCATORS AND OTHER SOURCES

Public utility service providers will generally mark their underground lines within the public right-of-way up to the private property boundary. A public utility locating service must be contacted prior to any intrusive work, regardless of whether the intrusive work is located on public or private property. However, be aware that most public utility locating services will not locate utilities on private property. If your work is to be conducted on private property, a private utility locating service <u>MUST</u> be used to clear the work area. These companies typically use a variety of methods (e.g., electromagnetic detectors, ground-penetrating radar, acoustic plastic pipe locator, trace wire) to locate utilities in the work area, including those that may be buried beneath onsite buildings. Psedudoscientific methods (e.g., dowsing, divining, witching) are not acceptable utility locating methods.

For all operating facilities and to the extent possible for closed facilities, identify a site contact familiar with the utilities on the property (e.g., plant manager, facility engineer, maintenance supervisor), and provide this individual with a site plan showing the proposed locations of all soil borings, monitoring wells, test pits, and other areas where intrusive activities will be conducted. These individuals often have knowledge of buried structures or process-specific utilities that may not be identified by the private utility locator. This is particularly important for work performed inside industrial buildings where reinforced concrete and other metallic components of the structure may interfere with the scanning devices used by the private utility locator. Ask the site contact for all drawings concerning underground utilities in the proposed work areas for future reference.

Keep in mind that no intrusive work may be done before the legal dig date provided by the state utility locating service and no digging, drilling, or other ground-breaking activities may be begin until all utilities on the list have been marked and visually verified in the work area (see below). It is **NOT ACCEPTABLE** to rely solely on as-built drawings or verbal utility clearances from the site contact (these should be used as guides only). A private locator may not be necessary in rare instances; however, nonconformity with the private locate requirement must be approved by the project manager **AND** a Regional Manager, with confirmation from the Director of Operations.

2.5 SITE MOBILIZATION PROCEDURES

Upon arrival, the first step in determining if you are clear of buried and overhead utilities is to locate all of the proposed drilling and trenching locations and mark them with (white) spray paint, stakes, or other appropriate markers. This will help you judge distances from marked drilling and trenching locations to underground and overhead utilities and minimizes any potential misunderstandings regarding the locations between you, the subcontractors (drillers, excavators, private utility locator), and the site contact.

Once you have the proposed work areas marked, verify that ALL utility companies listed by the state public utility locating service, and any contacted directly by the company or the contractor, have either marked the underground lines in the specified work areas or have responded (via telephone, facsimile, or e-mail) with "no conflict." Document on the Utility Locating Form (Attachment 1) and in the field book as each utility mark is visually confirmed. When receiving verbal clearances by telephone from utility companies, or their subcontractors, it is imperative that you verify the utilities that are being cleared, particularly when dealing with subcontractors that may be marking more than one utility.

Review all available as-built utility diagrams and plans for your general work area and conduct a site walk to identify potential areas where underground lines may be present; include the site contact in these activities. It is a good idea to survey your surroundings during the walk to identify any features that may indicate the presence of underground utilities, such as linear depressions in the ground, cuts in concrete or asphalt, old road cuts, catch basins, or manholes. Keep in mind that many sewer lines can be offset from catch basins. The presence of aboveground utilities, such as parking lot lights or pad-mounted transformers, is also a good indicator of

buried electrical lines. Check these items against the Utility Locating Form checklist and discuss the locations with the private utility locating service.

2.5.1 SAFE WORKING DISTANCES AND HAND CLEARING

A minimum of 5 feet clearance must exist between utilities and proposed drilling locations, and a minimum of 6 feet between utilities and proposed trenching locations. Be aware that some clients, states and localities (e.g., New York City, Long Island) may require greater minimum working distances, depending on the utility (e.g., for high pressure gas mains). A minimum distance of 15 feet must be maintained by heavy equipment (e.g., excavator buckets, drill rig towers and rods) from overhead power lines and a safe distance of 25 feet must be maintained from high-tension overhead power lines. In the event that work must be conducted within 25 feet of high tension wires, the lines must be wrapped and insulated by the local utilities. Increase these minimum distances whenever possible to offer additional assurance that buried or overhead utilities will not be encountered.

If a utility conflict is identified within the minimum safe clearance distance, adjust the proposed location(s) using the criteria given above. It is recommended to have the private utility locator sweep a relatively large area (e.g., a 20-foot circle around a proposed drilling location) to provide room for adjustment should the proposed drilling or excavation area need to be moved to avoid a buried utility. Subsurface work within five feet of a confirmed or suspected utility or other subsurface structure must be done by nondestructive clearing techniques to the point where either the utility/structure is visually located and exposed, or in the case of soil borings, where the bottom depth of the structure is surpassed and drilling may begin.

Uncertainty may exist in some circumstances (e.g., inside a building) even after the area has been swept for utilities. In these cases, advance the first few feet of a soil boring (or probe the area for excavation) using a hand auger or post-hole digger. If hand digging is unable to penetrate the subsurface soils, soft dig or air knife equipment service providers may be retained to clear the location. This equipment applies high pressure air to penetrate, loosen, and extract subsurface soils in the borehole, thereby safely exposing any utilities. If using either hand digging or soft digging, the probe hole should be advanced a minimum of 5 feet below ground surface at each proposed drilling or excavation location. Complete a sufficient number of probe holes so that the area is cleared for the proposed intrusive activity (i.e., use several holes for a proposed excavation). The use of hand digging or soft digging methods <u>does not</u> replace the need for state and private utility locating services.

Protect and preserve the markings of approximate locations of facilities until the work activities are completed. If the markings of utility locations are destroyed or removed before excavation commences or is completed, stop work. Notify the utility company, utility protection service, or the utility locating service to inform them that the markings have been destroyed. Do not continue work until the utilities have been re-marked.

2.5.2 EXPANDED WORK AREAS AND TICKET RENEWAL

Many projects begin with well-defined work areas only to expand quickly as the investigation or remediation progresses. If the scope of intrusion expands or includes new onsite or offsite area(s), you will need to review the existing ticket and work performed by the private utility locator to determine whether work can progress into the new area safely. It may be necessary, depending on the scope, to contact (or for the Contractor to contact) the state locating service and request another clearance for the new area(s) of investigation and retain a private locating service. Remember, the new request will provide a new legal dig date before which NO INTRUSIVE WORK CAN BEGIN. Additionally, if a clearance ticket will expire while the work is ongoing (typically after 2 weeks), a new clearance must be requested before the first ticket expires so that work can continue uninterrupted. Refer to the Utility Locating Form (Attachment 1) for the legal dig date time frame required by the state locating service.

2.5.3 UTILITY DAMAGE

It is possible, even if you followed all of the procedures outlined in this SOP, to damage an underground or overhead utility. Assuming it can be done safely, quickly turn off the drilling or excavating equipment, or move the equipment from the damaged line. Avoid contact with escaping liquids, live wires, and open flames. Abandon the equipment, evacuate the personnel from the area, and

maintain a safe perimeter if there are any concerns about safety. If a fiber optic cable is damaged, do not handle the cable or look into the end of the cable as serious eye damage may occur. Once personnel are in a secure location, immediately notify the facility operator or site contact and 811; additionally, send an immediate alert or notification via <u>iSMS</u> and send an email to <u>SafetyTeam@wsp.com</u>. You should also, as applicable, contact your immediate supervisor, human resources and sector management in accordance with company policy. If the damaged utility has the potential to cause, or is causing, dangerous conditions, immediately notify the local emergency response number listed in your HASP or PSP.

** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate.

Project Name	Project No. and Task	Work bein	g done for (C	ompany	or Individual Name)	Project Manager
Office Address	Office Phone		Field Conta	ict		Field Contact Phone
Project Location: Street Address		City/Town	ship		County	State
Nearest Intersecting Street						
Description of Work Area (street wor	king on, which side of st	reet, how fa	r in which diı	rection fr	om nearest intersecting street; etc.)	
Type of Work	Explosives (Y/N)	Directiona	l Borings (Y/I	N) [Dig Locations Marked (Y/N)	Mark Type (e.g., stake)
Scheduled Work Start (Date & Time)	Estimated Work Stop	Date	One-call Ph	none Num	nber/Website Address	One-call Service Name
					·····	
Call/Web Notification Made By (Name	e, Title and Company)		Date & Tim	e of Call/\	Web Notification	Operator Name
White the state	Level Dia Dete					Talat Day and Data
Ticket No.	Legal Dig Date		Ticket Expi	ration Da	ate	Ticket Renewal Date
		Commented		uin a Nati		. Utilities or Cubecatraster
Utilities Notifie	a	-	e After Recei resent (Y/N)	-	ification (e.g., e-mail, facsimile) fron e Meeting (Y/N; if "Y" Date & Time)	Contact Name and Phone
1	[U llines i i	esent (1/11)	Unsite		
2						
3						
4						
5						
6						
7						
8						
9						
10						
Form Completed By (Signature)	L					
		(e-mail cor	mpleted page	e 1 to Proj	ject Manager)	N

** This form is mandatory for all intrusive work, regardless of who is responsible for the public and/or private locate. Utility Locating Form Page 2 of 2

Private Utility Loca	tor Information			
Company		Contact Name	Phone	E-mail
Who Contracted Lo	ocator?		Scheduled Start (Date & Time)	Contract Executed (Y/N/NA)
	irmation of Utilities		Cleared or	
Marking Color	Utility Type and Visual Clues		Marked (Y/N)	No Markings - Comments
Blue	Potable water: fire hydrant, manholes connections, hose bib, valve box			
Yellow	Gas, oil steam, petroleum: gas meter, connections, valve box	manholes; yellow bollards, interior		
Red	Electric power lines, lighting cables, p (telephone poles), conduits: interior c manholes, transformers/switchgear, c	onnections, underground vaults, conduit on buildings		
Green	Sewer and drain lines: underground v field, sand mound, no evidence of sar			
Orange	Communication, alarm or signal lines, cables or conduits: red/orange bollards, telephone poles, interior connections; manholes; conduit on buildings			
Purple	Reclaimed water, irrigation, and slurry lines: sprinkler heads, hose bibs			
Pink	Survey markings			
White	Proposed locations for excavation and	d drilling		
Project Manager N	otified of any Conflicts? (Y/N)			
Notes:				
Marks Verified By (Signature)			
		(scan and save to	client file)	\\Sp
				-

FIELD STANDARD OPERATING PROCEDURE #3

SAMPLE PACKAGING AND SHIPMENT PROCEDURE

Shipping samples is a basic but important component of field work. The majority of field activities include the collection of environmental samples. Proper packing and preservation of those samples is critical to ensuring the integrity of our work product. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities. In accordance with the HASP or PSP, proper personal protective equipment (PPE) must be selected and used appropriately.

3.1 ACRONYMS AND ABBREVIATIONS

- CFR Code of Federal Regulations
- DOT U.S. Department of Transportation
- IATA International Air Transport Association
- HASP Health and safety plan
- PPE Personal protective equipment
- PSP Project safety plan
- SOP Standard operating procedure

3.2 MATERIALS

- Suitable shipping container (e.g., plastic cooler)
- Chain-of-custody forms
- Custody seals
- Sample container custody seals (as necessary)
- Mailing address labels (as necessary)
- Shipping form (with account number, as necessary)
- Tape (e.g., strapping, clear packing)
- Permanent marker
- PPE
- Bubble wrap or other packing material

Temperature-preserved samples:

- Large plastic garbage bag
- Wet ice
- Heavy-duty zipper-style plastic bags
- Universal sorbent materials

Note: Some materials will be supplied by the laboratory, while others are must be supplied by the sampler. Confirm supplier of materials prior to mobilizing to the field.

3.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel

and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field standard operating procedures, and the Quality Management System.

This SOP is designed to provide the user with a general outline for shipping samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample collection and quality assurance procedures (SOP 4), and investigation derived waste management procedures (SOP 5).

Most environmental samples are classified non-hazardous materials due to unknown characteristics and hazardous classes, however environmental samples can meet the definition of U.S. Department of Transportation (DOT) hazardous materials when shipped by air, ground, or rail from a project site to the laboratory (e.g., free product, samples preserved with a hazardous material [TerraCore® samplers]). As such, field staff must work with their assigned company compliance professional to determine whether the sample shipment is subject to any specific requirements (e.g., packaging, marking, labeling, and documentation) under the DOT hazardous materials regulations.

3.4 SAMPLE SHIPMENT PROCEDURES

The two major concerns in shipping samples are incidental breakage during shipment and complying with applicable DOT and courier requirements for hazardous materials shipments.

NOTE: Many couriers, including Federal Express and United Parcel Service, have requirements that the company register with them before shipping hazard materials. In most cases, it is the sampling location, not the company office address, which needs to be registered. Therefore, each project will likely have unique requirements. Please contact your company compliance professional to determine whether or not you will be required to register for your shipment.

Protecting the samples from incidental breakage can be achieved using "common sense." Pack all samples in a manner that will prevent them from moving freely about in the cooler or shipping container. Do not allow glass surfaces to contact each other. When possible, repack the sample containers in the same materials that they were originally received in from the laboratory. Cushion each sample container with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. A more detailed procedure for packing environmental samples is presented below.

3.4.1 NON-HAZARDOUS MATERIAL ENVIRONMENTAL SAMPLES

The first step in preparing your samples for shipment is securing an appropriate shipping container. In most cases, the analytical laboratory will supply the appropriate container for bottle shipment, which can be used to return samples once they have been collected. Be sure that the container is large enough to contain the samples plus a sufficient amount of packing materials, and if applicable, enough wet ice to maintain the samples at the preservation temperature (usually 4 degrees Celsius). Use additional shipping containers as needed so that sample containers are protected from breakage due to overcrowding. Do not use lunch-box sized coolers or soft sided coolers, which do not offer sufficient insulation or protection from damage.

3.4.1.1 TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Temperature-preserved samples should be shipped to the laboratory in an insulated container (e.g., cooler). If using a plastic cooler with a drain, securely tape the inside of the drain plug with duct tape or other material to ensure that no water leaks from the cooler during shipment. Place universal sorbent materials (e.g., sorbent pads) in the bottom of the insulated container. The amount of sorbent material must be sufficient to absorb any condensation from the wet ice and a reasonable volume of water from melted wet ice (if a bag were to rupture) or a damaged (aqueous) sample container.

The next step is to line the insulated container with a large, heavy-duty plastic garbage bag. If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples, including a temperature blank, on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between the sample containers. Place large or heavy sample containers on the bottom of the cooler with lighter samples placed on top to minimize the potential for breakage. Place all sample containers in the shipping container right-side up. Do not overfill the cooler with samples; room must be left for a sufficient volume of wet ice. Wet ice must be double-bagged in heavy-duty zipper-style plastic bags (1 gallon-sized, or less); properly seal both bags before placing in the insulated container. Place the bags of ice on top of or between the samples. Place as much ice as possible into the cooler to ensure the samples arrive at the lab at the required preservation temperature, even if the shipment is delayed. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice. Securely close the top of the heavy-duty plastic bag and knot or seal with tape.

3.4.1.2 NON-TEMPERATURE-PRESERVED SAMPLE CONTAINER PREPARATION

Non-temperature-preserved samples should be shipped to the laboratory in a durable package (e.g., hard plastic container or cardboard box). If shipping breakable sample containers (e.g., glass), place bubble wrap or other packing materials on the bottom of the container. Place the samples on the packing materials with sufficient space to allow for the addition of more bubble wrap or other packing material between and on top of the sample containers. Place large or heavy sample containers on the bottom of the container with lighter samples placed on top to minimize the potential for breakage. Place all sample containers within the shipping container right-side up. Fill any remaining space in the container with bubble wrap or other packing material to limit the airspace and minimize the shifting of the sample containers and in-transit melting of ice.

3.4.1.3 CONTAINER SHIPMENT

Samples in the container should be cross-checked against the chain-of-custory before signing off on the form and sealing the cooler. Place the original chain-of-custody form (i.e., laboratory copy) into a heavy-duty zipper-style plastic bag, affix/tape the bag to the shipping container's inside lid, and then close the shipping container; as required, include return shipping labels for the laboratory to return company-owned coolers. Only one chain-of-custody form is required to accompany one of the shipping containers per sample shipment; the other coolers in the shipment do not need to include chain-of-custody forms, unless required by the project. At this point, sample shipment preparations are complete if using a laboratory courier.

Once the shipping container is sealed, shake test the shipping container to make sure that there are no loose sample containers. If loose sample containers are detected, open the shipping container, repack the contents, and reseal the shipping container. If sending the sample shipment through a commercial shipping vendor, place two signed and dated chain-of-custody seals on alternate sides of the shipping container lid so that it cannot be opened without breaking the seals. Securely fasten the top of the shipping container shut with clear packing tape; carefully tape over the custody seals to prevent damage during shipping.

Affix a mailing label with the ship to and return to addresses to the top of the shipping container using clear shipping tape. Use the pre-printed return mailing label from the laboratory, if provided, or complete a new mailing label from the shipping carrier. Ship environmental samples to the contracted analytical laboratory using an appropriate delivery schedule. **Note: Samples can be shipped for Saturday delivery once the lab has been verified to be open and receiving samples on the weekend.**

wsp

Verify whether the shipment cost should be billed to the sender or recipient, and ensure the internal billing reference section on the mailing label includes either the laboratory's billing reference number, if the shipment is billed to the laboratory, or the project billable number, if the shipment is billed to WSP.

Declare the value of samples on the shipping form for insurance purposes, if applicable. When shipping samples to a lab, identify a declared value equal to the carrier's default value (\$100); additional fees will be charged based on a higher value declared. Our preferred carrier, Federal Express, will only reimburse for the actual value of the cooler and its contents if a sample shipment is lost; they will not reimburse for the cost of having to re-collect the samples. [Please note: if you are shipping something other than samples, such as field equipment, declare the replacement value of the contents.]

Record the tracking numbers from the shipping company forms (i.e., the airbill number) in the field book and retain a copy of the shipping airbill. On the expected delivery date, confirm sample receipt by contacting the laboratory or tracking the package using the tracking number; provide this confirmation information to the project manager.

NOTE: Most shipping carriers adhere to transit schedules with final pickup times each day; these schedules are subject to change and vary by service location. If shipping containers are dropped off at a service location after the final pickup time, transit to the laboratory will not be initiated until the following day, and samples may not be properly preserved. Therefore, confirm transit schedules in advance of each sampling event, and ensure samples are delivered to the carrier before the final pickup time of the day.

3.4.2 HAZARDOUS MATERIALS SAMPLES

Employees rarely ship hazardous materials due to DOT shipping requirements. If you find that your samples could be considered a DOT hazardous material, first coordinate with the assigned company compliance professional and project manager to make a hazardous material classification and, if necessary, establish the necessary protocols and to receive the appropriate training/certification.

NOTE: Employees shipping samples regulated as hazardous materials or exempt hazardous materials by air must have International Air Transport Association (IATA) training. IATA training is a separate training required in addition to DOT hazardous materials training for such shipments. Most of our employees do not have IATA training and therefore, anyone who needs to ship by air MUST consult with a company IATA-trained compliance professional.

FIELD STANDARD OPERATING PROCEDURE #4

SAMPLE COLLECTION AND QUALITY ASSURANCE PROCEDURE

The purpose of this procedure is to assure that sample volumes and preservatives are sufficient for analytical services required under U.S. Environmental Protection Agency (EPA) or other agency approved protocols. This operating procedure describes sample identification procedures, sampling order for select analytes, quality control and quality assurance (QA/QC) sampling procedures, and custody documentation. The user is advised to read the entire standard operating procedure (SOP) and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

4.1 ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
COC	chain-of-custody [form]
DI	laboratory-grade, analyte-free deionized water
DOT	US Department of Transportation
EDD	electronic data deliverable
EPA	US Environmental Protection Agency
HASP	health and safety plan
ID	identification [number]
MS/MSD	matrix spike and matrix spike duplicate
MSA	master services agreement
PPE	personal protective equipment
PSP	project safety plan
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	quality assurance project plan
SOP	standard operating procedure
VOCs	volatile organic compounds

4.2 MATERIALS

- Field book
- Indelible (waterproof) markers or pens
- PPE
- Sampling containers and labeling/shipping supplies

- Deionized (DI) water
- Cleaned or dedicated sampling equipment

4.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field SOPs, and the Quality Management System.

This SOP is designed to provide the user with a general outline for collecting environmental and quality assurance samples and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), investigation derived waste management procedures (SOP 5), and equipment decontamination (SOP 6). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a site-specific work plan or a dedicated quality assurance project plan (QAPP). This SOP does not include an special handling requirements for specific parameters such as low-level mercury or per- and polyfluoroalkyl substances. These requirements should be included in the QAPP.

4.4 SAMPLE IDENTIFICATION PROCEDURES

All sample containers (e.g., glass bottles, plastic jars, foil bags, plungers, etc.) should be identified by an affixed sample label. Unless otherwise approved by your project manager or specified in your site-specific work plan/QAPP, information on the sample container labels must include the site/project name, project/task number, unique alpha-numeric sample identification (ID) number, sample collection date, time of collection using the military or 24-hour clock system (i.e., 0000 to 2400 hours), analytical parameters, preservative, and the initials of the sampling personnel. Employees are advised to use pre-printed waterproof mailing labels (e.g., Avery® 5xxx-series Waterproof Address Labels) for all sample identification. Electronic label templates are available.

The sample identification (ID) number must, unless otherwise approved by your project manager or specified in your site-specific work plan/QAPP, follow the company's naming protocol. This protocol was developed to aid in determining the type of sample collected (e.g., soil, groundwater, vapor, etc.), the sample location, and, where appropriate, the sample depth. This protocol was also designed to ensure consistency across the company.

Construct sample IDs in the following format:

SB-10A (4-6)

Where, in this example:

- SB = the first two or three characters will define the sample type (see list of approved prefixes below); in this case, a soil boring
- 10A = the next two or three alpha-numeric digits (separated by a dash from the sample type identifier) indicate the location of the boring on the site; in this case, boring number 10A
- (4-6) = the depth the sample was collected, with the first number (including decimals, if necessary) indicating the top of the sample interval (in feet) and the second number indicating the bottom of the sample interval (in feet); not all sample types will include depth information.

wsp

Additional label information may be added after the last character of the sample ID number (e.g., sample date, underground storage tank number, area of concern number, "Area" number, client identifier, etc.). Separate any additional information from the required portion of the sample name by dash(es).

Sample Prefix	Permitted Use	
AA	Ambient outdoor air sample	
СС	Concrete core/chip sample	
CS	Confirmation/verification soil sample collected from an excavation	
НА	Soil sample collected with a hand auger	
IAB	Indoor air sample – basement	
IAC	Indoor air sample – crawl space	
IAF	Indoor air sample – first floor	
MW	Soil sample collected from a monitoring well borehole or a groundwater sample collected from a monitoring well	
PZ	Groundwater sample collected from a piezometer	
SB	Soil sample collected from boreholes that will not be converted to monitoring wells	
SED	Sediment sample	
SG	Soil gas sample other than a sub-slab sample (e.g., sample collected from a temporary or permanent polyvinyl chloride sample point or stainless steel screen implant)	
50		
SL	Sludge sample	
SS	Surface soil sample collected using hand tools (e.g., trowel, spoon, etc.) and typically at depths less than 2	
	feet below ground surface	
SSV	Sub-slab vapor sample	
SW	Surface water sample	
ТС	Tree core sample	
ТР	Soil sample collected from a test pit	
WC	Waste characterization sample	
WP	Wipe sample	
WW	Wastewater	

4.5 SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

The first step in sample collection is to verify that the correct number and type of sample containers were provided, and that each contains the appropriate preservatives for the proposed project (i.e., check against the sampling plan requirements outlined in the site-specific QAPP or, for those projects without a site-specific QAPP, the laboratory Task Order). Inspect all containers and lids for flaws (cracks, chips, etc.) before use. Do not use any container with visible defects or discoloration. Report non-receipt and any discrepancies of specific types of sample containers to the team leader or project manager immediately. Make arrangements to have missing or additional sampling containers provided on an expedited basis.

Precautions must be taken to prevent cross-contamination and contamination of the environment when collecting samples. Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact with gloves soiled during collection of the previous sample. The gloves must not contact the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. *In no case should gloved hands be used as a sampling device: always use the appropriate sampler to move the sample from the sampling device to the laboratory-supplied containers.*

Sample collection must follow all appropriate SOPs, state and federal regulations, or guidance, for the collection of environmental samples; the recommended order of sample collection is:

- Geochemical measurements (e.g., temperature, pH, specific conductance)
- Volatile organic compounds (VOCs)
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Per- and Polyfluoroalkyl substances
- Total metals
- Dissolved metals
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Fill the sample bottles to the appropriate level for the parameter analyzed including eliminating head space, as appropriate. Collected samples that require thermal preservation must be immediately (within 15 minutes) placed in a cooler with wet ice and maintained at a preservation temperature of 4° Celsius (°C).

4.6 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

Field quality assurance/quality control (QA/QC) samples may include equipment blanks, trip blanks, temperature blanks, duplicates, matrix spike and matrix spike duplicate samples, field blanks, and split samples. The project manager or QAPP must specify the type and frequency of QA/QC sample collection. The QA/QC sample identification number must, unless otherwise approved by your project manager or specified in your site-specific work plan, follow the company's naming protocol as discussed in the sections below. QA/QC samples must be clearly identified on our copy of the chain-of-custody (COC) form (described below) and in the field book. Failure to properly collect and submit required QA/QC samples can result in invalidation of an entire sampling event.

Several blanks, discussed below, require laboratory-grade analyte-free, deionized water (DI) be used. Only if all options to obtain laboratory-grade DI have been exhausted should store-grade distilled water be used to prepare blanks. If store-grade distilled water is used, be sure to record the source and lot number in the field book.

Collect, preserve, transport and document split samples using the same protocols as the related samples.

4.6.1 EQUIPMENT BLANKS

Equipment blanks, or rinsate blanks, are used to document contamination attributable to using non-dedicated equipment (i.e., equipment that must be decontaminated after each use). Collect equipment blanks in the field at a rate of one per type of sampling equipment per day, unless otherwise specified. If the site-specific work plan or QAPP indicates that an equipment blank is to be collected from dedicated sampling equipment, collect the equipment blank in the field before sampling begins. If field decontamination of sampling equipment is required, prepare the equipment blanks after the equipment has been used and field-decontaminated at least once.

Prepare equipment blanks by filling or rinsing the pre-cleaned equipment with DI and collecting the rinsate in the appropriate sample containers. Record the type of sampling equipment used to prepare the blank and how the equipment blank was generated in the field book. Decontamination of the equipment following equipment blank procurement is not required.

The samples must be labeled, preserved, and filtered (if required) in the same manner as the environmental samples. Have the equipment blanks analyzed for all the analytes for which the environmental samples are being analyzed, unless otherwise specified. Designate equipment blanks using "EB", followed by the date, and in the order of equipment blanks collected that day. For example, the first equipment blank collected on July 4, 2015, would be designated EB070415-1.

4.6.2 TRIP BLANKS

Trip blanks are used to document VOC contamination attributable to shipping and field handling procedures. Trip blanks are only required when analyzing samples for VOCs. The blanks are prepared by the analytical laboratory and shipped along with the empty sample containers. These pre-filled blanks should accompany the environmental sample containers wherever they are stored onsite (i.e., keep the trip blank sample bottles in the same shipping container used to ship and store VOC sample bottles during the sampling event). Never open the laboratory-supplied trip blank sample bottles. Only as a last resort, store-grade distilled water, can be poured into empty VOC sample bottles to generate event-specific trip blanks (or augment the laboratory-supplied ones, if they are provided in insufficient numbers).

The trip blanks, even those provided by the analytical laboratory, should be labeled in the field like other environmental samples collected during the investigation activities. Identify trip blanks using the prefix "TB", followed by the date. For example, the trip blank shipped with a cooler of samples on July 4, 2019, would be designated TB070419-1. If a second trip blank is needed on that same day, the designation would be TB070419-2. A minimum of one trip blank should accompany each shipping container of VOC samples, unless more stringent project requirements are in place. The number of trip blanks needed per shipment can be minimized by shipping all the VOC samples in the same shipping container (if possible).

4.6.3 FIELD BLANKS

The field blank is analogous to the trip blank in that it is designed to assess and document any contamination to the environmental samples that can be attributable to the (ambient) field conditions. Not all projects require the use of field blanks. Their use, if required, and the frequency of collection (often 1 blank per 10 or 20 environmental samples collected) is detailed in the QAPP and the site-specific work plan. The sample is collected by pouring DI water into empty glassware at the site <u>during</u> the sampling event. The intent is to expose the field blank to the same conditions in the atmosphere as those present when the environmental samples were collected.

Identify field blanks using the prefix "FB", followed by the date. For example, the field blank shipped collected on August 22, 2019, would be designated FB082219. If a second field blank is needed on that same day, the designation would be FB082219-2. At least one field blank should be collected for each analytical parameter identified in the sampling event.

4.6.4 TEMPERATURE BLANKS

Temperature blanks are used to determine if the samples are at the appropriate temperature for preservation at the time the sample container (cooler) is received by the analytical laboratory. The temperature is determined by measuring the temperature blank, which provides a proxy for the temperature of the sample container upon arrival at the laboratory. These temperature blanks are typically provided by the laboratory and should be included in each sample cooler used to ship and store the sample bottles during the sampling event. If laboratory-provided temperature blanks are not available, fill a clean, unpreserved sample bottle with potable, DI, or store-grade distilled water and identify the bottle as a temperature blank.

4.6.5 DUPLICATES

Duplicate samples, which are used for measuring the variability and documenting the precision of the sampling process, should be collected at a rate of at least 1 duplicate per 20 environmental samples collected, unless specific project requirements (as detailed in a QAPP) are in place. Be sure that the location selected for duplication has sufficient sample volume and is within the area of contamination, if known. Under no circumstances can equipment or trip blanks be used as duplicates.

Collect each duplicate sample at the same time, from the same sample aliquot, and in the same sampling order (i.e., volatile organic compounds, then semivolatile organic compounds, then inorganics, etc.) as the corresponding environmental sample. Sample bottle aqueous duplicate samples, for example, should be alternately filled with the environmental sample bottles (i.e., the actual sample bottle and the bottle to be used for the duplicate) from the same sampling device. If the sampling device does not hold enough volume to fill the sample containers, fill the first container with equal portions of the sample, and pour the remaining sample into the next

sample containers. Obtain additional sample volume and pour the first portion into the last sample container, and pour the remaining portions into the first containers. Continue with these steps until all containers have been filled.

Duplicate samples will be assigned <u>arbitrary</u> sample ID and a <u>false</u> collection time so that they are not identified as duplicates by the laboratory (i.e., submit the duplicates samples as *blind* to the lab). The blind duplicate sample "location designation" will be left up to the project manager; however, in no case will "<u>Dup</u>" be allowed to appear in the sample name. The duplicate samples should be analyzed for the same analytes as the original environmental sample. Be sure to record the sampling method, duplicate sample ID, the false time, and the actual time of collection in the field notebook. The duplicate should also be indicated in separate documentation, such as on <u>our carbon copy</u> of the chain-of-custody (i.e., the yellow copy), and <u>not</u> on the original chain-of-custody that accompanies the samples to the laboratory.

4.6.5 MATRIX SPIKE AND MATRIX SPIKE DUPLICATES

Matrix spike and matrix spike duplicate samples (i.e., MS/MSD samples) are used to determine the bias (accuracy) and precision of an analytical method for a specific sample matrix. Many of the company's projects require the collection of MS/MSD samples; however, laboratory generated MS/MSD samples are sufficient for some projects (as detailed in the QAPP or site-specific work plan). Collect MS/MSD samples at a rate of 1 MS and 1 MSD (i.e., 2 samples) for every 20 environmental samples, unless more stringent project requirements (as detailed in a QAPP) are in place. Clearly convey the MS/MSD identity to the laboratory by adding "MS" or "MSD" after the sample name (e.g., MW-01MS) <u>and/or</u> in the comments section of the chain-of-custody on the same line as the parent sample. Under no circumstances can equipment or trip blanks be used as MS/MSD samples.

4.6.6 SPLIT SAMPLES

Split samples may be collected as a means of determining compliance or as an added measure of quality control. Split samples measure the variability <u>between</u> laboratories and <u>not</u> the variability of sample collection and laboratory procedures (i.e., they are not equivalent to duplicate samples). The split samples must be subsamples of the same parent material used for the environmental sample: soil should be collected from the same in-place material (for VOCs) or, for non-discrete samples, the same mixing vessel after homogenization. Collect aqueous split samples using the same alternating bottle approach detailed in the duplicate sample description above. These procedures will ensure that the split samples are valid and are representative of the environmental sample collected as part of the investigation.

Collecting split samples of soil, sediment, waste, and sludge is not recommended because the homogenization necessary for a true split sample in these matrices is not possible and the resulting laboratory results would not be comparable.

Spilt samples should have the same sample location designation (e.g., MW-01, SB-03 (4-6), but are differentiated from each other by inserting the laboratory analyzing or the agency/consultant collecting the sample after the sample location (e.g., MW-01-WSP and MW-01-EPA).

4.7 CUSTODY DOCUMENTATION

Sample custody protocols are used to demonstrate that the samples and sample containers were handled and transferred in such a manner as to prevent tampering. Legal COC begins when the pre-cleaned sample containers are dispatched to the field from the laboratory and continues through sample analysis and eventual disposal of the sample and sample containers. Maintaining custody requires that samples must be in the actual possession or view of a person who is authorized to handle the samples (e.g., sample collector, laboratory technician, etc.), secured by the same person to prevent tampering, or stored in a designated secure area.

It is a good idea to limit, to the extent possible, the number of individuals who physically handle the samples. Samples must be placed in locked storage (e.g., locked vehicle, locked storeroom, etc.) when not in the possession or view of authorized personnel. Do not leave samples in unoccupied motel or hotel rooms or other areas where access cannot be controlled by the person(s) responsible for custody without first securing samples and shipping or storage containers with tamper indications in place (i.e., custody seals).

The COC form is used to trace sample possession from the time of collection to receipt at the analytical laboratory. It is recommended that the company's COC be used rather than the laboratory-supplied COC form to ensure that all necessary data are recorded. Submit one COC form per sample shipment, unless more stringent project requirements are in place (as detailed in the QAPP or site-specific work plan). The COC needs to have a unique COC number (pre-printed on the form), accompany all the samples, and include all appropriate project-specific information, such as:

- Project number, name, and location
- Sampler's printed name(s) and signature(s)
- Sample identification number
- Date and time (using the 24-hour clock) of collection
- Sample matrix (e.g., soil, aqueous, solid, etc.)
- Total number of containers per sample
- Parameters requested for analysis including number of containers per analyte.
- Remarks (e.g., irreducible headspace, field filtered sample, expected concentration range, specific turn-around time requested, etc.)
- Signatures of all persons involved in the chain of possession in chronological order
- Requested turn-around-time
- Name and location of analytical laboratory
- Custody seal numbers
- Shipping courier name and tracking information
- Internal temperature of shipping container upon shipment to laboratory, as needed
- Internal temperature of shipping container upon delivery to laboratory
- Employee contact information

Affix custody seals to all storage and shipping container closures when transferring or shipping sample container kits or samples to an off-property party. Place the seal so that the closure cannot be opened without breaking the seal. In the field book, record the time, date and signatures of responsible personnel affixing and breaking all seals for each sample container and shipping container. Affix new custody seals every time a seal is broken until continuation of evidentiary custody is no longer required.

FIELD STANDARD OPERATING PROCEDURE #6

DECONTAMINATION PROCEDURE

The decontamination procedures outlined in this standard operating procedure (SOP) are designed to ensure that all sampling equipment is free from the analytes that could potentially interfere with sample results. The user is advised to read the entire SOP and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities. In accordance with the HASP or PSP, proper personal protective equipment (PPE) must be selected and used appropriately.

6.1 ACRONYMS AND ABBREVIATIONS

- DI deionized water
- DOT U.S. Department of Transportation
- EPA U.S. Environmental Protection Agency
- HASP health and safety plan
- PPE personal protective equipment
- PSP project safety plan
- QAPP quality assurance project plan
- SOP standard operating procedure

6.2 MATERIALS

- Field book
- PPE
- Polyethylene sheeting and/or garbage bags
- Laboratory-grade non-phosphate detergent¹ (e.g., Luminox® or Liquinox®)
- Cleaning reagents, as needed (e.g., isopropyl alcohol, methanol, hexane, nitric acid)
- Potable water
- Deionized (DI) water
- Containers (e.g., plastic buckets)
- Bristle brushes
- Aluminum foil
- Spray bottles
- Paper towels
- Pressurized steam cleaner (e.g., steam jenny), as needed
- Waste collection containers (e.g., drums), as needed
- Decontamination pad, as needed

6.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel

¹ Not all laboratory-grade detergents are phosphate free. Be sure to verify the detergent's phosphate content before use.

and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company's SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field SOPs, and the Quality Management System.

This SOP is designed to provide the user with a general outline for decontamination and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), and investigation-derived waste management procedures (SOP 5). All decontamination references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or procedures
- Manufacturer's manuals
- Project-specific work plan, PSP and/or HASP, and QAPP

6.4 GENERAL PROCEDURES

The cleaning and decontamination procedures described below are designed to ensure that the equipment used for sample collection is free of analytes that could potentially alter the analytical results. These procedures are primarily targeted at preventing the incidence of cross-contamination (i.e., compounds of interest being transferred on the sampling equipment from one sample to another) in order to produce high quality, representative sample results. As with all analytical sampling, the effectiveness of the cleaning procedures must be demonstrated with the collection of equipment blanks; equipment blank sample collection procedures and frequency are discussed in SOP 4.

6.4.1 EQUIPMENT AND REAGENT SELECTION

It is important for employees to evaluate the expected types of contamination before mobilization to a site. State programs (or the U.S. Environmental Protection Agency [EPA], depending on the site) may require more stringent decontamination procedures than those listed in this SOP, specify the types and grades of various cleaning detergents and reagents (e.g., acids and solvents), or allow the use of phosphate-containing detergents, such as Liquinox® liquid detergent (preferred²) or the powdered Alconox®. Decontamination equipment (e.g., spray bottles, brushes, etc.) should be constructed of non-reactive, non-leachable materials (e.g., metal, glass, Teflon®-coated, polyethylene, etc.) which are compatible with the reagents and solvents being used for decontamination.

Many of the cleaning reagents (e.g., nitric acid, hexane, methanol) are U.S. Department of Transportation (DOT) hazardous materials and must be shipped using a ground delivery service. The Safety Data Sheets (SDSs) for any hazardous cleaning reagents to be used onsite must be reviewed before the commencement of work, and the potential hazards and protective measures to be employed must be addressed in the HASP. Do not use decontamination liquids that have been improperly stored (e.g., unsealed containers).

In specific cases, it may be necessary to steam clean the field equipment before proceeding with the decontamination steps presented in Section 6.5 (e.g., hollow stem augers). Generally, the company's subcontractors are responsible for bringing or building a decontamination pad, if necessary, to contain the spray from a steam jenny. As possible, decontamination pads should be constructed on a level, paved surface in an area known or believed to be free of surface contamination, and should be of sufficient size to contain the decontamination water. Equipment that is steam cleaned should be placed on racks or saw horses and not on the floor of the

² Liquinox[®] liquid detergent, manufactured by Alconox, Inc., is phosphate-free and does not contribute to nutrient loading or algae blooms in the environment.

decontamination pad. Decontamination water should be removed from the decontamination pad frequently to minimize the potential for leaks or overflow.

Consult and involve the company's compliance professionals for storage procedures and disposal requirements of cleaning reagents, detergents, wastes, and other decontamination-related materials.

6.4.2 OTHER CONSIDERATIONS

In preparing for decontamination, you should perform the following activities (with all observations and measurements noted in the field book):

- Perform a quick reconnaissance of the site to identify a decontamination (pad) area and evaluate the accessibility to and safety of the location.
- If working in a hazardous waste exclusion area, the decontamination area should be located in the contaminant reduction zone.
- Record a description of the decontamination (pad) area.

Survey the breathing zone around the decontamination area with the appropriate air quality meter(s), as necessary (see HASP), to ensure that the level of PPE is appropriate. When decontaminating equipment, it is important to find a suitable location away from any sources of cross-contamination that could compromise the integrity of the decontamination. As possible, position the decontamination area away from fuel-powered equipment, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling).

6.5 DECONTAMINATION PROCEDURES

The decontamination procedures described below are a four- to nine-step process, depending on the the applicable federal or state guidelines, the project-specific work plan, or the QAPP. Sampling activities must be initiated with clean, decontaminated equipment. Decontaminate all non-dedicated equipment that contacts the sample directly (e.g., spoons, trowels, pumps), before and between each sample location and sampling interval. record decontamination procedures in the field book. Disposable, single use items, such as bailers or tubing, do not require decontamination.

The decontamination process includes the following four basic steps:

- 1 Physical removal of soil or debris
- 2 Wash with non-phosphate detergent, such as Liquinox®, and nylon brush
- 3 Potable water rinse
- 4 Laboratory-supplied deionized (DI), analyte-free water rinse (distilled water can be used as a substitute, if necessary)

The first step is to remove as much soil or other debris from the sampling device as possible near the sampling area to limit the spread of potentially-contaminated materials into clean areas of the site. Containerize all soil or debris in DOT-compliant containers in accordance with SOP 5 or the project-specific work plan. Dispose of all wastes in conformance with the project-specific work plan and applicable regulations.

Cleaning and decontamination should occur at a designated area(s) (i.e., decontamination pad) on the site. If gross contamination or an oily film or residue is observed on the equipment, use a steam jenny or wash by hand, using a brush, to remove the particulate matter or surface film. Heavy oils or grease may be initially removed with paper towels soaked with isopropyl alcohol.

The physical removal of debris process is followed by soaking (a simple dunk of the equipment is insufficient) and hand scrubbing the equipment with a solution of potable water and non-phosphate detergent (mixed to the manufacturer's instructions) followed by a potable water rinse. If not using a decontamination pad, the most common set-up uses multiple 5-gallon plastic buckets (or equivalent) for washing and rinsing. The decontamination containers should be labeled as to their contents and pertinent information from original source, such as the date opened or transferred, and the expiration date (as well as any applicable hazardous labels), placed on polyethylene sheeting (to contain drips of decontamination fluids during the decontamination process), and sealed when not in use to prevent accidental release of the fluids. If decontaminating sealed submersible pumps, pump both the non-phosphate detergent wash

fluid and the potable water rinse through the pump body itself (usually done in separate buckets) to ensure that the internal components are thoroughly cleaned. Replace the detergent solution and rinse water at least daily or when it becomes oily or silty.

Next, place the DI water for the rinse in a small spray bottle or pour over the equipment after the potable water rinse.

Typically, this level of decontamination (i.e., steps 1 through 4) is sufficient.

Following Steps 1 through 4, additional decontamination (steps 5 through 9) may be required by the applicable federal or state guidelines, the project-specific work plan, or the QAPP. Typically, these decontamination steps are performed when sampling for inorganics or oil-related substances using non-motorized equipment. These steps include:

- 5 10% nitric acid rinse (if metals are part of the analyses)
- 6 Laboratory-supplied DI water rinse
- 7 Pesticide-grade solvent rinse (e.g., acetone [preferred], hexane, or isopropyl alcohol)
- 8 Air dry (solvent must evaporate)
- 9 Laboratory-supplied DI water rinse

Isopropyl alcohol is the recommended solvent for organic contaminants because it is readily available and is not a DOT hazardous material; where possible, lab-grade isopropyl alcohol should be used. However, other solvents (e.g., hexane and methanol) may be more effective in removing certain contaminants, such as oils or polychlorinated biphenyls, but any waste generated using these solvents must be managed accordingly. Solvents are never used for decontamination if sampling for volatiles organic compounds.

Handle the solvents and acid with care and store unused chemicals in their original, labeled, protective containers when not in use. It is a good idea to transfer small quantities of each solution into labeled, laboratory-grade spray bottles, which offer a convenient and controllable way to rinse the equipment. The equipment can then be rinsed over a 5-gallon plastic bucket or other suitable container placed on plastic sheeting as with the first part of the cleaning process. Nitric acid rinses must be used only on <u>non-carbon steel</u> sampling devices. Do not spray acid or solvent into pumps.

Decontamination steps used at sites where radioactive materials are contaminants of concern are similar with a few special considerations. Radiation contamination monitoring is used to help locate contamination and guide the success of the decontamination process. The liberal use of water and fluids as a decontamination agents are minimized, where practicable, because of the expense that can be incurred with disposing of radioactively contaminated decontamination water. Containerized decontamination wastes must be evaluated for radioactive content and disposed of appropriately depending on their content.

6.6 HANDLING DECONTAMINATED EQUIPMENT

Handle any decontaminated equipment using clean gloves to prevent re-contamination. Place the equipment away (preferably upwind) from the decontamination area once the process has been completed on clean plastic sheeting to allow it to air-dry. Once the equipment is dry, protect it from re-contamination by securely wrapping and sealing with aluminum foil (shiny side out) or clean, disposable plastic bags (inorganics only). Plastic bags may be wrapped directly around wet or dry equipment except when the expected contaminants include volatile and extractable organics; under those circumstances, allow the equipment to completely dry or wrap it in aluminum foil.

All sampling equipment must be decontaminated at the end of the investigation (i.e., prior to departure from the site). Label each piece of equipment with the date of decontamination, the initials of personnel performing the decontamination, and the type of decontamination solution(s) used. Containerize all decontamination fluids, and other disposable decontamination materials in DOT-compliant containers in accordance with SOP 5 or the project-specific work plan. Dispose of all wastes, including open and unused solvents or acids, in conformance with the project-specific work plan and applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #7

WATER QUALITY MONITORING EQUIPMENT PROCEDURE

The procedures outlined in this Standard Operating Procedure (SOP) are designed to ensure that water quality monitoring equipment is calibrated and used properly. Specifically, this SOP addresses the short-term or discrete-measurement use of portable water quality monitoring equipment for the collection of physical, chemical, or biological field measurements. Common field parameters include temperature, pH, specific conductance (SC), turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (DO). The user is advised to read the entire SOP and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities. In accordance with the HASP or PSP, proper personal protective equipment (PPE) must be selected and used appropriately.

7.1 ACRONYMS AND ABBREVIATIONS

DI	deionized water
DO	dissolved oxygen
°F	degrees Fahrenheit
HASP	health and safety plan
IDW	investigation derived waste
mg/l	milligrams per liter
mV	millivolts
NTU	nephelometric turbidity units
ORP	oxidation-reduction potential
PPE	personal protective equipment
PSP	project safety plan
QAPP	quality assurance project plan
SC	specific conductance
SDS	safety data sheets
SOP	standard operating procedure
SU	standard units
µS/cm	microsiemens per centimeter
(mS/cm)	millisiemens per centimeter

7.2 MATERIALS

- Field book
- PPE
- Water quality meter
- Flow-through cell, as appropriate
- Display/logger
- Communication cables
- Calibration cup or beaker

- Calibration reagents and standard solutions, as appropriate
- Deionized water (DI) or distilled water
- Decontamination supplies

7.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe and consistent manner, are in accordance with federal and state guidance, and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field SOPs, and the Quality Management System.

This SOP is designed to provide the user with a general outline for preparing water quality monitoring equipment for use and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), investigation derived waste (IDW) management procedures (SOP 5), and equipment decontamination (SOP 6). This SOP does not cover the selection of water quality monitoring equipment, nor does it cover water quality monitoring equipment-specific instructions. These topics require a significant amount of planning and are more appropriately addressed in a project-specific work plan. Be sure to review the project-specific work plan or Quality Assurance Project Plan (QAPP) and any applicable state and federal guidelines or calibration procedures. The sampler should be familiar with the use and calibration of all sampling and monitoring equipment. All sampling references must be available for consultation in the field, including:

- Company's SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan, PSP and/or HASP, and QAPP

7.4 GENERAL EQUIPMENT HANDLING AND MANAGEMENT PROCEDURES

Multi-parameter water quality meters are typically bundled in a single housing unit known as a sonde. These types of units offer a single, convenient device that is capable of measuring most or all of the parameters monitored during a typical sampling event. Individual parameter water quality meters are available and, in some cases, offer a higher degree of accuracy, although the difficulty in deploying multiple meters for most tasks relegates them to specialty use.

Field personnel must consult their assigned company compliance professionals for assistance in proper use, storage, and disposal of all calibration standard solutions.

The manufacturer's recommendations and instructions vary from one instrument to the next; however, all types of water quality monitoring equipment share common handling and management procedures designed to ensure the integrity of the measurements collected. Based on these procedures, the user should:

- Follow the manufacturer's instructions for transportation, assembly, operation, calibration, and maintenance specific to your equipment. The manufacturer's instructions should be followed explicitly in order to obtain accurate results.
- Keep either the sensor guard or transportation/calibration cup installed when not in use to avoid damaging the sensors. Some sensors require a small amount of water in the transportation/calibration cup; follow the manufacturer's recommendations.
- Inspect the sensors to be sure that they are clean, installed properly and are not damaged.

- Ensure that all equipment is in proper working condition, and that batteries are properly charged before using the equipment for field testing measurements.
- Protect instruments that are sensitive to static electricity.
- Record manufacturer name and model number for each instrument used in the field book.
- Calibrate the instrument, as close to the time of use as possible, and repeat at the frequency suggested by the project-specific work plan, QAPP, or manufacturer. All calibration records must be maintained in the project files.
- Protect the instrument from direct sunlight, precipitation, and extremely hot or cold temperatures.
- Store cables only after they are clean, dry, and neatly coiled do not bend or crimp cables, and attach any provided storage caps.
- Protect cables from abrasion or unnecessary tension when in use.
- Unless otherwise instructed by the manufacturer, decontaminate water quality monitoring equipment using a non-phosphate detergent solution with a small, nonabrasive brush, cotton swab or cloth, followed by a thorough DI water rinse.

7.5 CALIBRATION PROCEDURES

Water quality monitoring equipment must be inspected and the sensors calibrated before use. Calibration frequency is dependent upon project specifications, instrument performance, and manufacturer's recommendations; repeat the calibration procedures as directed in the project-specific work plan, QAPP, or manufacturer's guidance. Consult the manufacturer's guidelines before beginning the calibration process and contact the manufacturer's technical support if problems or questions arise. Maintain all calibration records in the project files.

Conduct the following procedures to ensure proper calibration and record observations in the field book:

- Complete field calibration in an area sheltered from wind, dust, and temperature/sunlight fluctuations such as inside a room or vehicle in which the ambient temperature of the standards is maintained at a temperature greater than 40 degrees Fahrenheit (°F) and less than 100°F, unless otherwise specified by the manufacturer.
- Use standard calibration solutions in accordance with the project-specific work plan, QAPP, or manufacturer's guidance. Allow
 water quality monitoring equipment to equilibrate to the air temperature for at least 15 minutes after being powered on, or for the
 specified time period recommended by the manufacturer.
- Record the brand, concentration, lot numbers and expiration dates of standard solutions in the field book.
- Handle standard solutions in a manner that prevents their dilution or contamination. Do not use expired standard solutions. Do not
 reuse standard solutions or pour solutions back into the bottle; ensure that proper chain-of-custody has been followed for standard
 solutions stored at a site.
- Ensure that the water quality monitoring equipment has been set to display or record the appropriate measurement units, as available – be sure to record the units of measure in the field book or field form.
- Unless otherwise instructed by the manufacturer, use the calibration cup that comes with the instrument for calibration.
- Use the recommended volume of standard solution when filling the calibration cup (e.g., the standard solution must cover the temperature sensor, as most sensors require temperature compensation).
- Be careful not to over tighten the calibration cup; many calibration cups have vents that allow their equilibration with ambient pressure.
- Rinse sensors thoroughly with DI water after use of each standard solution, followed by a rinse with the next standard solution to be used.
- Wait for readings to stabilize (approximately 30 seconds under normal conditions) before adjusting and saving the calibration point.
- If calibration fails to meet criteria, follow the manufacturer's instructions for corrective action to adjust instrument performance and note any indication of a substandard calibration.
- If the instrument does not start up, meet the requirements above, or calibrate properly, the instrument should not be used.
- Document the time, date, serial number (or other identifier) and calibration status for each instrument.

7.5.1 SPECIFIC CONDUCTANCE

Specific conductance, or, more commonly conductivity, measures the ability of water to conduct an electric current. It is generally reported in either microsiemens per centimeter (μ S/cm) or millisiemens per centimeter (mS/cm); be sure to note the units used in the field book. Natural waters, including groundwater, commonly exhibit SC below 1 μ S/cm. Elevated SC measurements (i.e., greater

than 500 μ S/cm) are a proxy for the amount of dissolved solids, which may be indicative of inadequate well development, grout contamination (or an inadequate grout seal), or contamination.

When calibrating water quality monitoring equipment for SC:

- If not specified in the project-specific work plan, choose a SC standard solution recommended by the instrument manufacturer; otherwise, select a standard that is similar to the anticipated conductivity of the water being sampled.
- The presence of air bubbles in conductivity electrodes will cause erroneous readings and incorrect calibration. Transmission lines, alternating-current electrical outlets and radio-frequency noise sources may cause interference; check with the instrument manufacturer's specifications for troubleshooting procedures.

7.5.2 DISSOLVED OXYGEN

Dissolved oxygen measurements are used to assess the water quality with respect to certain metals (the amount of oxygen can control the valence state of metals) and, more typically, biological activity. Concentrations of DO in groundwater under ambient conditions generally range from 1 to 4 milligrams per liter (mg/l). Erratic or elevated (greater than 4 mg/l) DO readings may indicate equipment maintenance issues, such as a fouled sonde, torn membrane, a sensor out of calibration range; or inappropriate monitoring procedures that are causing excessive agitation and aeration of the water column. The meters are sensitive to atmospheric interference: *ex situ* measurements (i.e., those measured outside of the well itself) should only be collected using a flow-through cell.

Dissolved oxygen meters vary widely in their sensitivity. Select the type of DO sensor (i.e., the polarographic [or Clark cell] sensor or the luminescent [optical] sensor) that is most appropriate for the scope of work detailed in the project-specific work plan. The guidance below is for the more common polarographic sensor; consult the manufacturer's guidance for maintenance and calibration procedures specific to optical DO meters.

- Check the DO membrane for bubbles, wrinkles or tears. If necessary, install a new membrane and replace worn or stretched Orings. Manufacturer guidance generally specifies membrane replacement should be completed at least 3 to 4 hours before use.
- Most manufacturers recommend that the sensor be allowed to equilibrate to the temperature of the water-vapor-saturated air before calibration, as specified in the manufacturer's instructions.
- Fill the calibration cup with less than 1/8 inch of water, or as recommended by the manufacturer.
- Remove any water droplets from the sensor without wiping the membrane. Water droplets on the sensor can cause a temperature compensation error in the DO calibration.
- Do not submerge or wet the sensor when loosely attaching the calibration cup.
- Enter the barometric pressure and wait for readings to stabilize before adjusting and saving the calibration point.

7.5.3 PH

The effective concentration (or activity) of hydrogen ions on a numerical scale known as pH, which is expressed as the negative base-10 logarithm of the hydrogen-ion activity in moles per liter. Natural (uncontaminated) waters typically exhibit a pH ranging from 5 to 9 Standard Units (SU). Deviation of pH from background may indicate the presence of groundwater contamination or well construction problems.

Typically, a two-point calibration is used for pH (i.e., a zero-point and span calibration[s]):

- If not specified in the project-specific work plan, select a 7 SU buffer (zero-point) plus a second pH buffer (4 SU or 10 SU) that brackets the range of expected pH.
- If applicable, calibrate the conductivity and DO sensors before calibrating the pH sensor. This helps prevent cross-contamination
 of the conductivity sensor from pH buffer solutions (pH buffers have much higher conductivities than most environmental
 waters).
- Allow time for the pH and temperature sensors to equilibrate to the temperature of the buffer and stabilize before adjusting and saving the calibration point. Record the temperature reading and use the chart provided by the buffer manufacturer to determine the true pH of the buffer at that temperature and adjust the calibration reading to that value.
- Repeat the calibration process with the second buffer.

7.5.4 OXIDATION-REDUCTION POTENTIAL

Oxidation-reduction potential is a numerical index of the intensity of the oxidizing or reducing conditions within an aqueous solution. Oxidizing conditions are indicated by positive potentials and reducing conditions are indicated by negative potentials. These values are frequently used when evaluating the biodegradation capacity of a system. The ORP of natural (uncontaminated) waters typically ranges from +500 to -100 millivolts (mV). The meters for ORP, like those for DO, are sensitive to atmospheric interference and must be measured using a flow-through cell. Avoid touching the sensors during calibration and measurement as calibration can be affected by static electricity.

A one-point calibration, at a known temperature, is used to calibrate the ORP sensor:

- Fill the calibration cup with enough standard solution (i.e., ZoBell's solution) to completely cover the temperature and ORP sensors.
- Allow time for the ORP and temperature sensors to equilibrate to the temperature of the buffer and stabilize before adjusting and saving the calibration point. Record the temperature reading and use the chart provided by the manufacturer to determine the true ORP of the solution at that temperature and adjust the calibration reading to that value.

7.5.5 TURBIDITY

Turbidity is the presence of suspended mineral and organic particles in a water sample. Turbid water may indicate inadequate well construction, development or improper sampling procedures, such as purging at an excessive rate that exceeds the well yield. Purging and sampling in a manner that minimizes turbidity is particularly important when analyzing for total metals and other hydrophobic compounds, such as polychlorinated biphenyls, which may exhibit artificially elevated concentrations in high-turbidity samples due to their adsorption to colloidal material. Generally, the turbidity of *in situ* groundwater is very low (at or below 10 nephelometric turbidity units, NTUs); however, some groundwater zones may have natural turbidity higher than 10 NTUs.

Standard turbidity solutions are not necessarily interchangeable. Serious calibration errors can result from using inappropriate standards. Use only those standard turbidity solutions that are prescribed for the sensor by the instrument manufacturer.

Turbidity consists of a zero-point calibration and a span calibration(s):

- Fill the calibration cup to the reference line with DI or a zero-point standard.
- Allow time for the turbidity sensors to stabilize before adjusting and saving the calibration point.
- Record the temperature and use the chart provided by the manufacturer to determine the true turbidity of the standard and adjust the calibration reading to that value.
- Repeat the calibration process with the standard span calibration standard(s).

7.6 EQUIPMENT USE PROCEDURES

The monitoring equipment is ready to use once the calibration has been completed. The specific use of the device will be dictated by the project-specific work plan or QAPP; however, all projects should follow these general procedures during use:

- Charge instrument batteries per the manufacturer's instructions, as necessary.
- Ensure that instrument is warmed up and the measured value(s) on the water quality monitoring equipment are equilibrated (i.e., readings are representative of the solution, not ambient air) before recording in the field book.
- Biological growth or debris in the water can foul sensors; as possible, avoid inserting the sonde in areas that will result in having to stop and clean algae, sediment, or debris from the sensors (e.g., do not place on bottom of a well or streambed).
- If continuous monitoring is required, follow the manufacturer's instructions for performing continuous data logging events.

For flow through cells:

- Inspect the integrity of the flow-through cell and O-rings.
- Connect the discharge tubing to the bottom of the flow-through cell using properly-sized tubing and fittings. Connect the effluent tubing to the top of the flow-through cell and secure the end of the tubing into the designated groundwater purge container.
- Shield the flow-through cell from direct sunlight to minimize changes in the temperature.

- Do not record any measurements until all the air from the flow-through cell and the effluent tubing has been displaced and the sensors have equilibrated. The presence of air bubbles in the flow-through cell will result in highly biased readings.
- Do not collect samples for laboratory analysis from the groundwater in the flow-through cell.

7.7 CLOSING NOTES

Once field activities are complete, secure the site in accordance with the project-specific work plan. Decontaminate all equipment prior to departure and properly manage all PPE and IDW in conformance with SOP 6, the project-specific work plan, and applicable regulations.

FIELD STANDARD OPERATING PROCEDURE #11

GROUNDWATER SAMPLING PROCEDURE

Groundwater sampling procedures outlined in this Standard Operating Procedure (SOP) are designed to ensure that collected samples are representative of current site conditions. These procedures can be applied to permanently or temporarily installed monitoring wells, direct-push sample points, water supply wells with installed plumbing, extraction wells for remedial groundwater treatment systems, and excavations where groundwater is present. The user is advised to read the entire SOP and review the site health and safety plan (HASP) and/or project safety plan (PSP) before beginning any onsite activities. In accordance with the HASP, proper personal protective equipment (PPE) must be selected and used appropriately.

11.1 ACRONYMS AND ABBREVIATIONS

ID	inside diameter
DI	deionized
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DTW	depth-to-water
HASP	health and safety plan
IDW	investigation-derived waste
l/min	liters per minute
LNAPL	light non-aqueous phase liquid
mg/l	milligrams per liter
mV	millivolts
NAPL	non-aqueous phase liquid
NTU	nephelometric turbidity unit
ORP	oxygen reduction potential
PID	photoionization detector
PPE	personal protective equipment
PSP	project safety plan
QAPP	quality assurance project plan
SOP	standard operating procedure
SU	standard units
TD	total depth
TOC	top-of-casing
VOCs	volatile organic compounds

11.2 MATERIALS

- Field book
- PPE
- Air quality monitoring equipment (e.g., photoionization detector [PID]) with calibration reagents and standards, as needed
- Electronic water level indicator or interface probe
- Water quality meter(s) with a flow-through cell, and calibration reagents and standards, as needed
- Field test kits, as needed
- Adjustable wrench or manhole wrench, as needed
- Well key(s), as needed
- Power supply, as needed
- Sampling containers and labeling/shipping supplies
- Deionized (DI) water
- Container(s) for water storage (e.g., bucket, drum)
- Pump or bailers, tubing, and associated lanyard materials
- Filters, as needed
- Decontamination supplies

11.3 PRECONDITIONS AND BACKGROUND

This SOP has been prepared as part of the company's Environmental Quality Management Plan and is designed to provide detailed procedures for common field practices. Compliance with the methods presented in this document is mandatory for all field personnel and will ensure that the tasks are performed in a safe, consistent manner; are in accordance with federal and state guidance; and are technically defensible.

This SOP is written for the sole use of company employees and will be revised periodically to reflect updates to company policies, work practices, and the applicable state and/or federal guidance. Employees must verify that this document is the most recent version of the company SOPs. Employees are also strongly advised to review relevant state and/or federal guidance, which may stipulate program-specific procedures, in advance of task implementation.

WSP requires that all personnel performing specific project assignments be appropriately qualified, including having required certifications or licenses, and properly trained in accordance with the requirements of their assignment, the Environmental Service Line's field SOPs, and the Quality Management System.

This SOP is designed to provide the user with a general outline for conducting groundwater sampling and assumes the user is familiar with basic field procedures, such as recording field notes (SOP 1), utility location (SOP 2), sample shipment procedures (SOP 3), sample collection and quality assurance procedures (SOP 4), investigation derived waste (IDW) management procedures (SOP 5), equipment decontamination (SOP 6), and use and calibration of all sampling and monitoring equipment (SOPs 7 and 8). This SOP does not cover investigation planning, nor does it cover the analysis of the analytical results. These topics are more appropriately addressed in a project-specific work plan. Before groundwater sampling, be sure to review the project-specific work plan or quality assurance project plan (QAPP) and any applicable state and federal guidelines or sampling procedures. All sampling and monitoring references must be available for consultation in the field, including:

- Company SOPs
- Applicable state and federal guidelines or sampling procedures
- Manufacturer's manuals
- Project-specific work plan, PSP and/or HASP, and QAPP

11.4 GENERAL PROCEDURES

Although the techniques used to sample groundwater are varied, most sampling events can be broken down into a three-step sequence:

1 Gauging: The measurement of the water column height (i.e., total well depth less depth-to-water) within the well.

- 2 Purging: The removal of stagnant water from the well bore to ensure that samples collected are representative of groundwater conditions in the water-bearing zone surrounding the well.
- 3 Sample Collection: After purging, the collection of aliquots of groundwater in method-specific, preserved (as needed) containers.

The procedures and equipment that are used to accomplish these steps are project-specific and should be discussed by the project team before arriving onsite. All types of groundwater sampling, however, regardless of the equipment used, share common handling and management procedures that are designed to ensure the integrity of the samples collected. These procedures include:

- The use of new, disposable, decontaminated, or dedicated sampling equipment
- The use and rotation of the appropriate PPE
- Selection of a suitable sampling location and staging area

Wear a clean pair of new, disposable gloves each time a different sample is collected and don the gloves immediately prior to collection. This limits the possibility of cross-contamination from accidental contact with gloves soiled during collection of the previous sample. The gloves must not contact the medium being sampled and must be changed any time during sample collection when their cleanliness is compromised. *Gloved hands should not be used as a sampling device; always use the appropriate equipment to move the sample from the sampling device to the laboratory-supplied containers.*

11.5 EQUIPMENT SELECTION

Collect all samples using either new, disposable equipment or properly decontaminated sampling equipment. Groundwater purging and sampling equipment should be selected based on the analytical requirements of the project and the project-specific conditions (e.g., well diameter, depth to water, dissolved constituents, etc.) likely to be encountered. The equipment should be constructed of non-reactive, non-leachable materials (e.g., stainless steel, Teflon®, Teflon®-coated steel, polyethylene, polypropylene, etc.) that are compatible with the chemical constituents at the site. Note that project or regulatory guidance may limit the type of equipment for groundwater sampling.

Consider the following when choosing groundwater purging and sampling equipment:

- the diameter and depth of the well
- the depth to groundwater
- the volume of water to be withdrawn
- the sampling and purging technique
- the volume of sample required
- the analytes of interest

Select the decontamination procedures based on the types of sampling to be performed and media encountered; decontamination may require multiple steps or differing cleaning methods (see SOP 6 for decontamination procedures). In no case, should disposable, single-use materials be used to collect more than one sample.

11.6 PRE-SAMPLING CONSIDERATIONS

You should perform the following activities in preparing for sampling with all observations and measurements noted in the field book and on the project-specific groundwater monitoring log, if appropriate:

- Perform a quick reconnaissance of the site to identify sampling locations and evaluate the accessibility to the sampling location.
- Record the approximate ambient air temperature, precipitation, wind (direction and speed), tide, and other field conditions. In
 addition, any site-specific conditions or situations that could potentially affect the samples at the sample locations should be
 recorded.
- Record temporary sampling locations with respect to approximate distance to and direction from at least one permanent feature.
- Survey the breathing zone around the sampling location with the appropriate air quality meter(s), as necessary (see HASP), to
 ensure that the level of PPE is appropriate.
- Install the pump, tubing, passive sampler or other appropriate sampling equipment to the depth prescribed in the project-specific work plan or QAPP.

- Containerize and manage purge water in accordance with the project-specific work plan.

It is important to minimize any sources of cross-contamination that could compromise the integrity of the groundwater samples. Consider the following:

- Position fuel-powered equipment away from the sample collection area, such as drill rigs or excavators, and upwind of other site activities (e.g., purging, sampling, decontamination) that could influence the sample. This is particularly important when screening samples in the field for volatile organic compounds with a PID but should not be limited to the active sample collection.
- Establish a secure sample staging area in an uncontaminated area of the site.

11.7 GAUGING PROCEDURES

All wells should be opened to the atmosphere in advance of sampling to allow any pressure differentials, which could artificially raise or depress the water column in the well, to dissipate. The wells should be inspected to ensure that the protective casing is intact and has not been damaged. Remove the well covers and all standing water around the top of the well casing (for flush mounted-protective covers), as necessary, before opening the inner well cap or plug. Unlock and carefully remove well cap and allow the well to stand undisturbed for a minimum of 15 minutes, or as required by the project-specific work plan, before conducting any down-hole testing or measurements. If required by the HASP, survey the open well casing and the breathing zone around the wellhead with a PID to ensure that the level of PPE is appropriate.

11.7.1 GROUNDWATER LEVEL AND TOTAL DEPTH MEASUREMENT PROCEDURES

Depth to water (DTW) and total depth (TD) measurements are collected prior to sampling and are used to determine the volume water to be purged from the well (if using techniques other than no-purge or low flow sampling). The DTW measurements are also used after the field event to establish the groundwater elevation, flow direction, and gradient. Unless otherwise directed, do not place any objects inside the casing of private water wells; accordingly, DTW and TD measurements should not be collected at private water wells. Measurements of TD are not required for low flow and no-purge sampling applications and should not be measured before sampling the well.

Water level measurements must be collected within the shortest interval possible from all the wells to be gauged during the event <u>before</u> beginning any purge and sampling procedures at the site. This will ensure a nearly instantaneous snapshot of the water levels before the formations are disturbed by pumping or acted upon by other outside influences, such as tides, precipitation, barometric pressure, river stage, or intermittent pumping of production, irrigation, or supply wells.

Record the following observations and measurements (and the time when they were collected) in the field book:

- Measure the casing inside diameter (ID) and record in inches
- Measure the DTW with an electronic water level indicator (or an interface meter, if non-aqueous phase liquid [NAPL] is potentially present – see procedures below) from the top-of-casing (TOC) at the surveyor's mark, if present, and record the depth (to the nearest 0.01 foot) in feet below TOC
- If no mark is present, measure from the north side of the casing and mark the measuring point with a knife, metal file (if the inner casing is metal) or indelible marker for future reference
- Measure the TD from TOC at the surveyor's mark or north side of the casing, as appropriate.

Measuring the depth of deep wells with long water columns can be problematic due to tape buoyancy and weight effects or sediment in the bottom of the well casing. Care must be taken, and proper equipment selection must be used in these situations to ensure accurate measurements. Multiple TD measurements in silt-laden wells can provide a more precise assessment of the bottom depth.

11.7.2 GAUGING WELLS WITH NON-AQUEOUS PHASE LIQUID

If NAPL is potentially present at the site, the DTW and NAPL thickness measurements are collected using an interface meter capable of distinguishing between the NAPL and the groundwater, or a weighted tape coated with the appropriate reactive indicator paste for the suspected NAPL. Measuring NAPL thicknesses must be done with care to avoid agitating the liquids and generating an emulsion. This is particularly the case for light NAPL (LNAPL; those having a density less than water), which are typically viscous oils that

cling to the probe. Oil coating the probe can result in thickness measurements that are biased high (i.e., overestimate the thickness of the NAPL).

Conduct the following procedures to ensure an accurate measurement of the NAPL thickness:

- For LNAPL, slowly lower the electronic interface probe in the well casing until the electronic tone indicates the probe is at the top
 of the LNAPL layer; measure the depth below the TOC to the nearest 0.01 foot.
- To gauge the NAPL thickness, advance the probe slowly through the layer until the electronic tone indicates top of the water column and then slowly bring the probe back up to the bottom of the LNAPL. Repeat this process several times to ensure an accurate measurement of the bottom of the LNAPL layer (which can include bubbles and an emulsion layer).
- For dense NAPL (DNAPL), advance the probe through the water column until the tone indicates the top of the DNAPL layer; record the depth below TOC.
- To gauge the DNAPL thickness, advance the probe through the layer to the bottom of the well.

11.8 GROUNDWATER PURGING PROCEDURES

Purging is a process whereby potentially stagnant water is removed allowing the collection of samples that are representative of groundwater conditions in the water-bearing zone. The water in a well bore that has not been purged may be different than the surrounding formation due to exposure to ambient air. There are several purging (and no-purge) methods that may be used, depending on specific conditions encountered (e.g., DTW, hydraulic conductivity of the formation, etc.) and the sampling requirements. The purge/no purge options are described below.

- Multiple Volume Purge: Traditional well purging technique that relies on the withdrawal of the volume of the well bore and the surrounding filter pack (if present); three to five well volumes are typically removed using pumps or bailers. This methodology relies on equipment that is easy to obtain and use and is generally accepted in most states as an appropriate purging method.
- Temporary Well Purge: A variation of the multiple volume purge technique that often uses inertia lift pumps, peristaltic pumps, or bailers to remove water from a temporary well or discrete groundwater sampler (e.g., a groundwater profiler or direct-push screen point sampler). This is a less stringent technique that is typically done to minimize the turbidity of the samples, which can be high due to the lack of a well filter pack.
- Private Water Well or In-Place Plumbing Purge: A variation on the multiple volume purge technique whereby a tap or faucet is opened on a fixed water supply pipe and is allowed to remain open until the potentially stagnant water within the well casing and other components of the system (e.g., fixed piping, pressure tanks, etc.) has been removed and groundwater representative of the water-bearing zone is discharged at the tap.
- Low Flow (Minimal Drawdown/Low Stress) Purge (and Sampling): A modified purging technique that establishes an isolated, discrete, horizontal flow zone directly adjacent to the pump intake; this method requires the pump to be placed within a screened-interval or open borehole. Pumping rates are typically 0.1 to 0.5 liters per minute (l/min) or less to minimize the stress on the surrounding formation and reduce the geochemical alteration of the groundwater caused by pumping.
- No-Purge/Passive Sampling Techniques: These techniques use specialized equipment, such as trap-style samplers or permeable diffusion bags, to sample the undisturbed water column within a screened interval or open borehole. This methodology assumes that the water in the well is representative of the surrounding formation. This approach is well suited for some volatile organic compounds (VOCs), metals, and hydrophobic compounds, depending on the sampling device used.

11.8.1 CALCULATING ONE PURGE VOLUME

Multiple volume purging techniques require that a *minimum* of three well volumes of water must be removed before sample collection. The actual amount of water removed may be greater than the three volumes, depending on geochemical parameter stabilization (the field measurement of these parameters is discussed below).

Calculate the volume of water in a well or boring using the following equation:

Volume (gallons) = $(TD - DTW) \times ID^2 \times 0.041$

where:

TD = total depth (feet)

DTW = depth to water (feet)

ID = inner diameter (inches)

Alternately, the volume of water in a well or boring may also be calculated by multiplying the water column height by the gallons per foot of water for the appropriate well or boring diameter:

ID	Gallons per foot of water	Gallons per three water columns
1-inch	0.04	0.12
2-inch	0.16	0.48
3-inch	0.37	1.11
4-inch	0.65	1.98

Calculate the total volume of the pump, associated tubing and container for in situ measurements (flow-through cell), using the following equation:

Volume (in gallons) = P + ((0.0041)*D2*L) + fc

where:

P = volume of pump (gallons)
D = tubing diameter (inches)
L = length of tubing (feet)
fc = volume of flow-through cell (gallons)

11.8.2 MULTIPLE VOLUME PURGE PROCEDURES

Begin purging at a rate that will not cause excessive turbulence and drawdown in the well; commonly less than 1 gallon per minute for a typical 2-inch diameter monitoring well. You may need to observe the water elevation after the pump is started and adjust the flow rate to minimize the amount of drawdown in the well casing. The objective is to remove the stagnant water in the casing and surrounding filter pack or open borehole allowing water from the surrounding water-bearing zone to enter the well for sampling with as little disturbance as possible. Excessive pump rates or well dewatering can result in higher turbidity, potential volatilization, and geochemical alteration of dissolved parameters.

Typically collect geochemical parameters (i.e., pH, specific conductance, dissolved oxygen [DO], oxygen-reduction potential [ORP], and temperature) at a minimum frequency of once for every well volume of water removed during the purge process. Record the measurements in the field book along with any other pertinent details, such as the visual quality of the water (e.g., color, odor, and presence of suspended particulates) and the approximate withdrawal rate (this can be estimated using a calibrated container and stopwatch). Review the geochemical measurements to ensure that readings have stabilized (after the minimum purge volume has been achieved). This is a proxy for determining that you are purging formation water rather than potentially stagnant water in the casing. Stabilization occurs when at least three consecutive measurements are within the following tolerances:

Multiple Volume Purge Stabilization Parameters		
pH	± 0.1 standard units (SU)	
Specific Conductance	± 3%	
Temperature	± 3%	
Dissolved Oxygen (DO)	\pm 0.2 milligrams per liter (mg/l) or 10% (flow-through cell only)	
Turbidity	\pm 10% for values greater than 10 nephelometric turbidity units (NTU)	
Oxygen Reduction Potential (ORP)	± 10 millivolts (mV; flow-through cell only)	

Parameter stabilization that does not occur within five well volumes may require you consult your project manager to decide whether to collect a sample or to continue purging. Wells with extremely slow recharge may also be problematic. Purging these wells, in some cases, may result in dewatering the well before the minimum purge can be completed. Allow wells or borings purged dry to recharge to a level of approximately 90% of the static (pre-purge) water elevation and proceed immediately to sample collection. If recovery exceeds 2 hours, sample as soon as sufficient sample volume is available, in accordance with applicable regulations.

11.8.3 LOW FLOW PURGE PROCEDURES

Low flow purging and sampling is used to obtain representative groundwater samples without removing all the water within the well. The protocol uses relatively low pumping rates (i.e., less than 0.5 l/min) to establish an isolated zone around the inlet of the pump where flow is horizontal (i.e., from the water bearing zone) rather than from the stagnant water in the well casing above and below the pump. Selection of an appropriate pump is critical to establishing the flow zone: it must be well suited for both low pumping rates and the analytes being sampled. Bailers are not appropriate for low flow sampling.

The set-up for low flow sampling includes positioning the pump at the appropriate depth within the casing such that the pump inlet is within the screened section of the well. Slowly lower the pump, where appropriate, and tubing into the water column to avoid agitating the water column; use of a lanyard is recommended (i.e., do not use the extraction tubing to lift or lower the pump). Secure the pump and/or tubing at the wellhead once the specified sampling depth has been achieved and record the depth in the field book. Avoid contacting the bottom of the well by using pre-cut tubing at the appropriate length or by lowering the pump/tubing simultaneously with an electronic water level indicator. Once the pump/tubing has been inserted and secured, allow the water levels to return to static conditions before initiating the purge.

The discharge tubing must be connected to an in-line flow-through cell equipped with a multi-parameter real-time water quality meter. The flow-through cell minimizes the exposure of the groundwater to ambient air, which can influence DO and ORP measurements.

Start the pump and maintain a steady flow rate that results in a stabilized water level (less than 0.3 feet of drawdown or as specified in the project-specific work plan). The pumping rate may need to be adjusted depending on the response of the water levels in the well. Record each adjustment made to the pumping rate and the water level measured immediately after each adjustment. Purging should not exceed 0.5 l/min.

During purging, monitor and record the flow rate and geochemical parameters at 30 seconds to 5-minute intervals (depending on the hydraulic conductivity of the aquifer, diameter of the well, and pumping rate). Stabilization occurs once the following criteria have been met over three successive measurements made at least three minutes apart:

vsp

Low Flow Purge Stabilization Parameters		
Water Level Drawdown	<0.3 feet	
рН	± 0.1 SU	
Specific Conductance	± 3%	
Temperature	± 3%	
DO	± 0.2 mg/l or 10% (flow-through cell only)	
Turbidity	\pm 10% for values greater than 10 NTU	
ORP	\pm 10 mV (flow-through cell only)	

Record any other notable observations in the field book (e.g., groundwater color).

11.8.4 NO-PURGE SAMPLING TECHNIQUES

Several alternate sampling devices are available, such as equilibrated grab samplers, passive diffusion samplers, and other in situ sampling devices, that will allow sample collection without purging the well. These devices may be particularly useful for sampling low permeability geologic materials, assuming the device is made of materials compatible with the analytical parameters, meets data quality objectives, and has been properly evaluated.

No-purge grab or trap samplers are placed in the well before sampling and typically remain closed (i.e., no water is allowed into the sampler during insertion) until the sampler is activated. This allows the sampler device to equilibrate with the surrounding groundwater (to prevent adsorption to the sampler materials) and for the groundwater to recover and re-establish the natural flow after the disturbance caused by the sampler insertion into the well. Typical equilibration times depend on the well recovery rates and the type of sampler used. Samples recovered using the no-purge devices are either transferred to containers at the well head or the sampler itself is shipped to the laboratory for analysis. Examples of equilibrated grab samplers include HydraSleeveTM, Snap SamplerTM, and Kemmerer samplers.

Equilibration time for diffusion samplers are generally dictated by the diffusion rate through the permeable membrane and, thus, are less sensitive to changes induced within the well during deployment. Most diffusion bag samplers have a minimum equilibration time of 14 days prior to sample collection. The samplers may be deployed for an extended period (e.g., three months or longer), although the continuous exchange between the sampler and the well water means that the sampler will likely reflect only the conditions in the few days preceding the sample collection.

11.8.5 TEMPORARY WELL PURGE PROCEDURES

Procedures used to purge temporary groundwater monitoring wells differ from permanent wells because temporary wells are installed for immediate sample acquisition. Wells of this type may include open bedrock boreholes, standard polyvinyl chloride well screen and riser placed in open boreholes, or drilling rod-based sampling devices (e.g., Wellpoint®, Geoprobe® screen point or Hydropunch® samplers). Purging temporary wells of this type may not be necessary because stagnant water is typically not present. However, if water is used in the drilling process, purging would be necessary. Purging can minimize the turbidity in the sample, which can be significant due to the disturbance caused by the sampler installation and to rinse the sampling system with groundwater. The exception is for groundwater profiling applications (e.g., using a Waterloo Profiler®) where a more rigorous purge is used (using the multiple volume purge techniques described above) to limit the potential for cross-contamination between sample intervals.

11.8.6 PRIVATE WATER WELL OR IN-PLACE PLUMBING PURGE PROCEDURES

The configuration and construction of private water wells varies widely and access points for obtaining groundwater samples may be limited. WSP personnel should coordinate with the property owner or site representative to access functioning ports and valves to avoid causing any inadvertent damage.

Collect the groundwater sample as close to the well as possible (e.g., from a sample port at the well head) to ensure the sample is representative. Ideally, the sample should be collected upstream of the piping and treatment equipment (e.g., particulate filter, water softener, carbon filters, ultra-violet lights), heating unit, or storage tanks. The following potential sampling locations are presented in order of preference:

- Sampling port or spigot near the well head or piping system prior to entry into the storage tank
- Sampling port or spigot at storage tank
- Sampling port or spigot downstream of the pressure tank or holding tank but upstream of any water treatment equipment
- Tap or faucet

If purging from a tap or faucet, try to remove any aerators, filters, or other devices from the tap before purging and work with the property owner or site representative to bypass any water treatment systems. Document where the sample was collected and any steps that were taken to minimize the potential alteration of the water sample in the field book.

Purge the system by opening the tap or spigot and allowing the water to run for several minutes. Observe and record the purge rate for the system. The minimum purge volume must be more than the combined volume of the pump, tanks, piping, etc. Review the geochemical measurements (after the minimum purge volume has been removed) to ensure that readings have stabilized using the same procedures as those used for the multiple volume purge detailed above. Purge the system for a minimum of 15 minutes if the minimum volume is unknown. Sample only after the geochemistry parameters have stabilized and no there are no suspended particles (e.g., iron or rust) visible. Record the final purge volume in the field book and any water quality observations.

11.9 GROUNDWATER SAMPLE COLLECTION PROCEDURES

Collect groundwater samples as soon as possible after the geochemical parameters indicate representative groundwater is present. As practically possible, reduce the pump flow rate, but maintain a flow rate high enough to deliver a smooth stream of water without splashing or undue agitation. Collect samples directly from the tubing as it exits the well bore; do not sample on the downstream side of flow-through cells or any other instrumentation. If using a bailer for sample collection, lower and raise the bailer slowly and smoothly to minimize the disturbance to the water within the well.

Collect groundwater samples in order of volatilization sensitivity with organic compounds sampled first followed by inorganic compounds:

- VOCs
- Extractable organics, petroleum hydrocarbons, aggregate organics, and oil and grease
- Per- and Polyfluoroalkyl substances
- Total metals
- Dissolved metals (see filtering procedures below)
- Inorganic non-metallic and physical and aggregate properties
- Microbiological samples
- Radionuclides

Collect quality assurance/quality control samples in accordance with SOP 4 and the project-specific work plan or QAPP.

As necessary, conduct field tests or screening in accordance with the project-specific work plan and manufacturer's specifications for field testing equipment. Field samples must be directly transferred from the sampling equipment to the container that has been specifically prepared for that given parameter; intermediate containers should be avoided. If field chemical preservation is required, check the pH preservation by pouring a small portion of sample onto a pH test strip Adjust pH with additional preservative, if necessary.

Record the sample depth interval, if applicable, in the field book. Note the volume, phases, odor, and color of the groundwater.

11.9.1 GROUNDWATER FILTRATION PROCEDURES

Filtered groundwater samples are sometimes used for field kit analyses and should only be collected for laboratory analysis after approval from the appropriate regulatory agency or project manager. The filtered samples can be collected by attaching the in-line filter directly to the outlet tubing for a pressurized bailer, a submersible pump or a peristaltic pump. Intermediate containers can be used with a peristaltic pump if the well is too deep to use the pump to recover the sample directly. The intermediate container should be unpreserved laboratory-supplied glassware to avoid any cross-contamination during the filtering process.

Filtered samples using pumps should use the following procedures:

- Use a variable speed peristaltic pump with the in-line filter fitted on the outlet end of the tubing and the pump inlet tubing into the intermediate container holding the unpreserved groundwater sample; or,
- If a submersible pump is used to collect the groundwater sample, attached the in-line filter to the outlet end of the tubing (do not allow the groundwater to pass through flow-through cells or any other instrumentation while sampling)

Once the filter is connected:

- Turn on the pump and maintain a flow rate high enough to deliver a smooth stream of water without splashing or undue agitation.
 Hold the filter upright with the inlet and outlet in the vertical position and pump groundwater through the filter until all atmospheric oxygen has been removed and the minimum volume of water has been flushed through the filter, in accordance with the manufacturer's specifications
- Collect the filtered samples by placing the filtered output directly into the sample container
- If sediment is visible in the sample container after filtration, filter break-through has occurred and the sampling and filtering
 process should be repeated
- Discard the tubing and filter appropriately

Record sample filtration in the field book.

11.9.2 NON-AQUEOUS PHASE LIQUID SAMPLING PROCEDURES

Non-aqueous phase liquid is typically sampled to identify the compound, usually through an analytical "fingerprint" analysis. If samples are to be collected, the sampling options and techniques should be discussed with the assigned WSP compliance professional and project manager to ensure that the NAPL is either not considered to be a hazardous material for shipping to the laboratory or is properly shipped by qualified personnel using appropriate shipping containers (SOP 3). Samples of NAPL should be collected using the same procedures as above and placed in the appropriate laboratory-supplied containers, packed on ice, and shipped to the analytical laboratory using procedures outlined in SOP 3.

11.9.3 SAMPLE LABELING AND PREPARATION FOR SHIPMENT

Groundwater samples for offsite laboratory analysis should be prepared as follows:

- 1 Clean the outside of the sample container, if necessary
- 2 Affix a sample tag or label to each sample container and complete all required information (sample number, date, time, sampler's initials, analysis, preservatives, place of collection)
- 3 Place clear tape over the tag or label (if non-waterproof labels are used), as needed
- 4 If needed, preserve samples immediately after collection by placing them into an insulated cooler filled with bagged wet ice to maintain a temperature of approximately 4°Celcius
- 5 Record the sample designation, date, time, and the sampler's initials in the field book and on a sample tracking form, if appropriate
- 6 Complete the chain-of-custody forms with appropriate sampling information, including:
 - location
 - sample name
 - sample collection date and time
 - number of sample containers

- analytical method
- field filtration status
- 7 Secure the sample packing and shipping in accordance with proper procedures

Do not ship hazardous waste samples without first consulting a WSP compliance professional.

11.10 CLOSING NOTES

Secure and restore the site once sampling is completed. This may include locking permanent monitoring wells, staging the IDW, and disposing of (in conformance with applicable regulations) sampling expendables, such as plastic sheeting, tubing, and PPE. All locations where temporary wells or other sampling devices (e.g., profilers or direct-push equipment) should be marked with spray paint, stakes, or other appropriate method for future reference or survey, including collecting Global Positioning System coordinates and photographs, in accordance with the project-specific work plan. Decontaminate all equipment prior to departure and properly manage all PPE and investigation-derived wastes in conformance with SOP 6, the project-specific work plan, and applicable regulations.

RELEASE MONITORING AND RESPONSE PLAN

Persulfate Release Prevention Persulfate Injection at 1613 East Joppa Road, Towson

The following steps will be taken to monitor potential persulfate migration and water quality impacts in the groundwater collection system at Ridgely Manor Park and prevent downstream water quality impacts.

Before conducting the injections, establish an on-call arrangement with an emergency response contractor in case groundwater entering the collection system is significantly impacted by persulfate injection and needs to be recovered to prevent discharge to surface water.

Materials:

- PPE
- Field book
- Crowbar or alternate tool to open manhole covers
- Pocket knife or scissors
- Water sampling equipment (peristaltic pump with tubing and power supply [battery])
- Inflatable plugs or caps for 6-inch manhole discharge pipes (one for MH-23 discharge, and one for MH-21 discharge, if necessary).
- Lime/limestone for pH adjustment in the manholes, if necessary
- Water quality meter and calibration equipment for pH and ORP measurements
- Field test kits for iron, and persulfate testing
- Sample containers for field tests
- Distilled water
- Waste containers for water with test kit reagents and solid waste (tubing, test kit materials).
- Decontamination supplies
- Monitoring Program (CAP Addendum Table 1)

Emergency Contacts

- Pam Robertson, WSP 703-709-6500 (o) or 571-217-3621 (c)
- Dave Sarr, WSP 703-709-6500 (o) or 571-217-3628 (c)
- Ellen Jackson, MDE 410-537-3482 (o) or 410-365-6717 (c)
- 1. Manhole Monitoring Procedures Before Injection
 - a. Locate and open collection lateral cleanouts to make sure they are accessible, then close them.
 - b. Confirm operation of the groundwater treatment system, including the submersible pump in MH-21.
 - c. Collect field measurements of pH, ORP, iron and persulfate from MH-21 and MH-23 to establish baseline levels, then close manholes MH-21.
 - d. Place inflatable plug in the discharge (western wall) pipe in MH-23 but do not inflate, or place cap on the discharge.
 - e. Ensure lime/limestone is available for pH adjustment if necessary ('baskets' or socks to place in manholes).

- 2. Begin Injections
 - a. Start injections in IP-1 (farthest from collection system).
 - b. Injections in IP-2 may begin while IP-1 injection is underway.
 - c. Complete IP-1 and IP-2 injections before injecting material into IP-3.
 - d. Inflate plug (or install cap) in the MH-23 discharge pipe before beginning injection in IP-3.
- 3. Procedures to Monitor Manholes During Injection (separate from wells)
 - a. Measure pH and ORP in MH-23 at minimum 2-hour interval during IP-1 and IP-2 injections.
 - b. Measure pH and ORP in MH-23 at 1-hour interval during IP-3 injection.
 - c. If pH in MH-23 decreases by 1 standard units (SU) or more, or if ORP increases by 200 mV or more, double frequency of pH and ORP testing and begin testing for persulfate and iron with colorimetric field test kits.
 - d. If the pH action level is triggered in MH-23 (see below), begin monitoring of water in MH-21 and the treated groundwater discharge.
 - e. Contact Pam Robertson or Dave Sarr (WSP) by telephone if any action level is triggered.

MH-23 pH Action Levels

- At pH 5.5 SU Reduce injection rate
- At pH 5 SU Inflate plug or place cap in the MH-23 discharge pipe (if not already done). Place lime/limestone in MH-23 and downgradient manholes (MH-22, MH-21)
- At pH 4.5 SU Stop injections and implement contingency plan for MH-21 pH adjustment system

MH-23 Persulfate Action Levels

- Target persulfate in groundwater concentration is 20 grams per liter (g/l).
- Action level for monitoring is 2 g/l persulfate (1 g/l is test kit detection limit)
- At 2 g/l Reduce injection rate
- At 5 g/l Inflate plug in the MH-23 discharge pipe, if not already inflated, or confirm cap on discharge pipe is stopping flow. Place lime/limestone in MH-23 and downgradient manholes (MH-22, MH-21).
- At 10 g/l Stop injections
- 4. Post-Injection Manhole Monitoring Procedures
 - a. Continue monitoring pH and ORP of water in MH-23 (and persulfate and iron, if necessary) for at least 2 hours following the end of injections, using the procedures specified in Step 3.
 - b. If a pH or persulfate action level is triggered in MH-23, leave the discharge pipe plugged for at least 8 additional hours. Otherwise, remove the plug.
 - c. Once plug is removed in MH-23, monitor pH of the water in MH-21 and of the treated groundwater discharge. If an action level is triggered (see Step 3), plug the discharge end at MH-21 and continue monitoring every 2 hours. Alternately, conduct water quality monitoring at two downstream locations (see Step 5) and implement the contingency plan to add pH adjustment step to the treatment system (See Step 6).
 - d. If no action level is exceeded, close and secure all manholes. Conduct daily monitoring of MH-21 and MH-23 for one week and bi-monthly monitoring for three months as listed in Table 1.

- e. Purged groundwater with a pH greater than 5 s.u. and persulfate concentration less than 5 g/l will be discharged to the groundwater collection system and processed through the on-site GAC treatment system. Purged groundwater that does not meet these criteria will be drummed and characterized for offsite treatment and disposal with other liquid IDW. Spent tubing, used PPE, and sample containers will be decontaminated and disposed of as general trash.
- 5. Contingency Plan for Downstream Water Quality Monitoring
 - a. If groundwater entering MH-21 has a pH less than 4.5 or persulfate concentration greater than 5 g/l, conduct water quality monitoring at the two locations shown in Figure F-1.
- 6. Contingency Plan to Add pH Adjustment to Treatment System
 - a. If groundwater entering MH-21 has a pH less than 4.5, a calcite pH neutralizing filter containing NSF Standard 60 certified calcite media (APEC Water Systems Whole House Calcite Low pH Neutralizing Filter or equivalent) will be installed in the water treatment vault. Two filter housings will be installed in parallel downstream of the GAC units to raise the pH of treated water.

