

5405 Twin Knolls Road, Suite 1 • Columbia, MD 21045 • ph: 410.740.1911 • fax: 410.740.3299 • www.cgs.us.com

July 12, 2021

Mr. Matt Mueller Maryland Department of the Environment Oil Control Program 1800 Washington Boulevard Baltimore, MD 21230

RE: June 2021 Sampling Event

George's Deli & Gas

602 Deer Park Road & 2139 Sykesville Road

Westminster, Maryland

MDE Case No. 2007-0096-CL

Administrative Consent Order OCP-081564

CGS Project No. CG-08-0348

Dear Mr. Mueller:

On behalf of the Country Side Trust, Chesapeake GeoSciences, Inc. (CGS) is pleased to submit this report which documents the methodology and results of the June 2021 Sampling Event performed at the George's Deli & Gas property located at 602 Deer Park Road in Westminster, Maryland ("Property") and the adjacent Victoria Farms property located at 2139 Sykesville Road ("Adjacent Property"). The two properties will be collectively referred to as the "Site" (**Figure 1**).

1.0 FIELD INVESTIGATION - METHODOLOGY AND FIELD OBSERVATIONS

1.1 Monitoring Well Gauging and Sampling

The monitoring well network at the Site is comprised of 17 groundwater monitoring wells: H-1A, H-3, H-4A, H-6, MW-1, MW-1A, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7A, MW-7B, MW-7R, the Lot 4 Well, the Lot 7 Well, and the Sentinel Well. Well construction, survey, and groundwater monitoring well gauging data for the wells are presented in **Table 1**. The well locations are shown in **Figure 2**.

Consistent with approvals specified in the October 12, 2018 and May 6, 2020 correspondence received from Ms. Ellen Jackson, Northern Region Supervisor at the Maryland Department of the Environment, Oil Control Program (MDE-OCP), 1) the frequency of groundwater sampling events at the Site was reduced from quarterly to semi-annually; and 2) the number of wells included in each groundwater sampling event was reduced from 17 to 12.

1.1.1 Monitoring Well Gauging

CGS gauged all 17 of the monitoring wells on June 2, 2021. The wells were gauged to determine the depth to groundwater using an electronic water level meter. Well gauging data are presented in **Table 1**.

1.1.2 Monitoring Well Sampling

CGS sampled 12 of the monitoring wells on June 2 through June 8, 2021 (i.e., all of the wells with the exception of H-3, H-4A, MW-3, MW-4, MW-5, MW-6, and the Lot 4 Well). The wells were purged before samples were collected according to low-flow methodology using a Proactive Hurricane variable speed submersible pump and disposable tubing until stabilization of the monitored field parameters was achieved. Field parameters recorded during low-flow well purging included dissolved oxygen (DO), oxidation-reduction potential, conductivity, pH, and temperature. These field parameters were measured with a water quality meter using a flow-through cell. Turbidity was also measured using a separate meter. Samples were then collected from the submersible pump discharge stream. All down-well equipment and supplies were decontaminated prior to use in each well.

Quality Assurance/Quality Control (QA/QC) samples that were collected included one duplicate groundwater sample, collected from the Lot 7 Well, one trip blank, and one equipment rinsate blank. Groundwater sampling logs were generated and are included in **Attachment A**.

Well purge water was collected and placed into a temporary holding tank and treated on-site using a granular activated carbon (GAC) filtration system before discharge to the ground surface. A post treatment water sample was collected from the GAC filtration system.

The groundwater, QA/QC, and water treatment system samples were packaged in iced coolers and delivered with accompanying chain-of-custody forms to Maryland Spectral Services (MSS) in Baltimore, Maryland for laboratory analysis. The groundwater and QA/QC samples were analyzed for VOCs, including methyl tert-butyl ether (MTBE), associated fuel oxygenates, and naphthalene, via EPA Method 8260. The water treatment system sample was analyzed for VOCs via EPA Method 8260 and total petroleum hydrocarbons gasoline-range organics (TPH-GRO) via EPA Method 8015.

1.2 Water Supply Well Sampling

Drinking water samples were collected from the Site's drinking water supply well and from the private drinking water supply well at 2040 Don Avenue. CGS collected water samples on June 3, 2021 at the locations specified below in **Table A**. Water was purged from the lines and pressure tank by allowing the water to run approximately 10 minutes before collecting the samples.

Table A
Water Supply Well Sampling Event Locations

602 Deer Park Road (On-Site)	2040 Don Avenue (Off-Site Residence)
Interior sink	Outside spigot located on the west side of the house, between the well and the
	house.

The drinking water samples were packaged in iced coolers and delivered with accompanying chain-of-custody forms to MSS for analysis of VOCs, including MTBE, associated fuel oxygenates, and naphthalene, via EPA Method 524.2.

2.0 INVESTIGATION RESULTS

2.1 Well Gauging Results

Well gauging data are presented in **Table 1**. A groundwater contour map was generated from the gauging data and is presented in **Figure 3**. In general, the direction of groundwater flow is toward the north from 602 Deer Park Road (the Property) to 2139 Sykesville Road (Victoria Farms, the Adjacent Property). However, the groundwater flow on the Property is historically toward the northwest, and generally at a steep hydraulic gradient. The steep hydraulic gradient on the Property is indicative of a bedrock fracture zone that trends from the Property to the northeast and the Lot 7 Well.

Groundwater levels recorded on June 2, 2021 were higher than those recorded on November 13, 2020 and are similar to the groundwater levels recorded in June 2018, June 2019, and May 2020. The June 2018, June 2019, May 2020, and June 2021 groundwater levels appear to reflect typical seasonal conditions for this time of year.

2.2 Analytical Laboratory Results

The analytical results for the detected analytes in the groundwater samples are presented in **Table 2**, and the analytical results for the detected analytes in the water supply well samples are presented in **Table 3**. A summary of historical groundwater sample results is presented in **Table 4**. The VOC results are reported in the tables in micrograms per liter [µg/L or parts per billion (ppb)]. Concentrations for detected analytes are shown in the tables in bold text. Method Reporting Limits (MRLs) for analytes that were not detected in a particular sample are shown in **Tables 2**, **3**, and **4** in gray text and qualified with a "U" or a "<", respectively. Any analyte detected at a concentration above the Method Detection Limit (MDL), but below the MRL is presented in the tables with a "J" qualifier, indicating that the result is considered an estimated concentration. The laboratory reports and chain-of-custody documentation are included in **Attachment B**.

The analytical results shown in **Tables 2, 3, and 4** were compared to MDE Groundwater Standards for Type I and Type II Aquifers (the MDE Groundwater Standards). Analyte concentrations which exceeded a respective standard are shown in the tables as bold, red, and underlined text. Brief summaries of the analytical results and the results of the screening are included below in Sections 2.2.1 and 2.2.2. A more detailed interpretation of the analytical results is included below in Section 3.1.

2.2.1 Groundwater Sampling Results

Twelve (12) wells were sampled during the June 2021 Sampling Event (Table 2) at the Site. Three petroleum hydrocarbon related VOCs [tert-amyl methyl ether (TAME), tert-butanol (TBA), and MTBE] were detected in the groundwater samples. Other than acetone, no other VOCs were detected in the groundwater samples. Acetone can be naturally occurring and is a common laboratory contaminant. No petroleum related VOCs were detected in the groundwater samples obtained from monitoring wells H-6, MW-4, MW-6, MW-7B, MW-7R, and the Sentinel Well. No VOCs, other than MTBE, were detected in the groundwater samples obtained from monitoring wells MW-1, MW-2, and MW-7A. No VOCs were detected in the equipment rinsate blank (GDG-EFB) or the trip blank (GDG-GW-TB).

MTBE was detected in the groundwater samples from five wells at concentrations ranging from 1.8 to 254 μ g/L. Two of these wells (i.e., MW-1A and the Lot 7 Well) had MTBE concentrations that exceeded its MDE Groundwater Standard (20 μ g/L). The groundwater sample with the highest MTBE concentration was collected from the Lot 7 Well (254 μ g/L). MW-1A had a MTBE concentration of 69.1 μ g/L.

Figure 4 is an isoconcentration map generated from the groundwater monitoring well MTBE analytical data. Note that historic data (i.e., all non-detects since November 2015 or earlier) from wells that were not sampled, including H-3, H-4A, MW-3, MW-5, and the Lot 4 Well, were used as control data for the isoconcentration map.

2.2.2 Water Supply Well Sampling Results

The analytical results for the detected analytes in the June 2021 water supply well samples are presented in **Table 3**.

MTBE was detected in the sample collected from the Site (0.85 $\mu g/L$) and in the sample collected from 2040 Don Avenue (0.90 $\mu g/L$) at concentrations below the MDE Groundwater Standard (20 $\mu g/L$). No other VOCs were detected in these samples.

As shown in the second laboratory report included in **Attachment B**, bromodichloromethane, chloroform, and dibromochloromethane were detected in the trip blank (GDG-DW-TB). The laboratory noted the detection of these analytes as suspect and discovered that the water it used to create the trip blank had inadvertently been obtained from a chlorinated municipal water source and not from its organic free water source. Methylene chloride, a common laboratory contaminant, was also detected in the trip blank. None of these analytes were detected in the samples from the Site or 2040 Don Avenue.

2.2.3 GAC Treatment Sampling Results

The analytical results for the water treatment system sample are contained in the fifth laboratory report included in **Attachment B**. No VOCs were detected in this sample, and TPH-GRO was not detected in this sample. These results document that the GAC filtration system was effective in removing petroleum contaminants before discharging the treated purge water.

3.0 DISCUSSION OF RESULTS

3.1 Groundwater Sample Analytical Data Evaluation

Table 4 presents a historical summary of the analytical data obtained during each of the groundwater sampling events conducted at the Site since September 2008. Evaluation of the analytical data is discussed below in Section 3.1.1.

3.1.1 Data Evaluation Discussion

The historical analytical data presented in **Table 4** demonstrate a significant reduction in petroleum hydrocarbon analyte concentrations at the Site since September 2008. Because the primary constituent of concern (COC) for the Site is MTBE, the discussion presented herein will focus on MTBE. As discussed above in Section 2.2.1, an isoconcentration map generated from the June 2021 MTBE analytical data is presented in **Figure 4**. Isoconcentration maps generated from the MTBE analytical data collected between September 2008 and November 2020, as presented in prior reports for the Site, are included in **Attachment C**. A graph which illustrates the MTBE concentration variations with time is presented in **Figure 5**.

Between September 2008 and April 2012, the highest MTBE concentrations were detected in MW-1 followed by MW-1A. These are the wells located closest to the former underground storage tank (UST) field at the Site (**Figure 2**). During this time frame the next set of highest MTBE concentrations were detected in the Lot 7 Well, MW-7A, and MW-4. These wells are aligned with the bedrock fracture zone that trends from the Property to the northeast. High MTBE concentrations (greater than 2,000 µg/L) have also historically been

detected in MW-7B and MW-7R consistent with their alignment with the bedrock fracture zone. The highest MTBE concentrations were also generally present in these seven wells during the sampling events performed between June 2013 and February 2016 though in a differing order and with the exception that MTBE was not detected in MW-7B during the June 2013 and November 2015 sampling events.

MTBE has been detected in 15 of the 17 monitoring wells included in the network (i.e., all of the wells except the Lot 4 Well and the Sentinel Well). As shown in **Figure 5**, the peak MTBE concentrations recorded for most of these wells occurred in September 2008. Some rebound in the MTBE concentrations was observed in April and May 2010. MTBE concentrations in all 15 of these wells have decreased since their peak concentrations were detected as summarized below and listed below in **Table B**.

Seven wells with peak MTBE concentrations greater than 2,000 μg/L

- MTBE concentrations in six of these wells (MW-1, MW-1A, MW-4, MW-7A, MW-7B, and MW-7R) have demonstrated a drastic decrease where the June 2021 concentrations range from non-detect to 0.49% of the peak concentrations.
- The MTBE concentration in one of these wells (the Lot 7 Well) has demonstrated a significant decrease where the June 2021 concentration is 3.4% of the peak concentration.

Four wells with peak MTBE concentrations between 400 and 1,400 µg/L

• MTBE concentrations in these wells (H-1A, H-6, MW-2, and MW-6) have demonstrated a marked decrease where the June 2021 concentrations range from non-detect to 0.44% of the peak concentrations.

Four wells with peak MTBE concentrations below 20 μg/L

• These four wells (H-4A, H-3, MW-3, and MW-5) and the Lot 4 Well were eliminated from sampling as of December 2018. MTBE was last detected in one of these wells in August 2015.

Table B
MTBE Concentration Decreases
(Wells listed in order of Highest to Lowest Peak MTBE Concentration)

***	Peak MTBE	Date of Peak	June 2021 MTBE	% Remaining (June 2021
Well	Concentration	MTBE	Concentration	Concentration/Peak
	(μg/L)	Concentration	(μg/L)	Concentration)
MW-1	25,400	9/2008	1.8	0.007%
MW-1A	14,100	9/2008	69.1	0.49%
MW-4	9,460	9/2008	Non-detect	-
MW-7A	7,510	9/2008	3.4	0.045%
Lot 7 Well	7,510	12/2009	254	3.4%
MW-7B	3,910	12/2009	Non-detect	-
MW-7R	2,990	4/2010	Non-detect	-
MW-2	1,350	9/2008	6.0	0.44%
H-1A	1,150	9/2008	Non-detect	-
H-6	597	9/2008	Non-detect	-
MW-6	457	5/2010	Non-detect	-
H-4A	17	9/2008	Not Sampled	-
H-3	3.9	9/2008	Not Sampled	-
MW-3	0.7	9/2008	Not Sampled	-
MW-5	0.6	9/2008	Not Sampled	-
Lot 4 Well	Non-detect	-	Not Sampled	-
Sentinel Well	Non-detect	-	Non-detect	-

The isoconcentration maps included in **Figure 4** and in **Attachment C** demonstrate that the lateral extent of the MTBE groundwater contamination plume, detected in the groundwater monitoring wells at concentrations above 5 μ g/L has significantly decreased since September 2008.

3.1.2 Data Evaluation Summary

The source of continued groundwater contamination at the Site (i.e., the UST system, including the three tanks and all associated piping) was removed from the Site in February 2008. As shown in **Table 4**, illustrated in **Figure 5**, and discussed above in Section 3.1.1, the MTBE concentrations have decreased dramatically since 2008. The data demonstrate the primary line of evidence for remediation by natural attenuation (i.e., decreasing MTBE concentrations and reduction in the size of the groundwater contamination plume) in the former source area, on the remainder of the Property, and down-gradient of the Property with a 94.6% or better reduction in the MTBE concentrations.

3.2 Water Supply Well Sample Analytical Data Evaluation

602 Deer Park Road (On-Site)

Table C below presents a historical summary of the MTBE analytical data obtained for the 602 Deer Park Road drinking water sampling events performed between November 2017 and June 2021. Prior to the November 2017 sampling event, drinking water samples were last collected from the Site on August 14, 2015 prior to removal of the GAC treatment system. At that time, the MTBE concentration in the non-treated (pre-GAC) water sample was 4.21 μ g/L. All of the MTBE concentrations, detected since November 2017, are lower than the August 2015 concentration, and all are below the MDE Groundwater Standard for MTBE (20 μ g/L).

Table C Historical Summary of Drinking Water Sample MTBE Results at 602 Deer Park Road

Sample Date	MTBE Concentration (μg/L)	EPA Method 524.2 MTBE MRL (μg/L)
11/15/17	0.84	0.50
6/19/18	0.86	0.50
12/3/18	0.58	0.50
6/11/19	0.50 U	0.50
11/19/19	0.81	0.50
5/20/20	1.11	0.50
11/17/20	0.67	0.50
6/3/21	0.85	0.50

2040 Don Avenue (Off-Site Residence)

Table D below presents a historical summary of the MTBE analytical data obtained for the 2040 Don Avenue drinking water sampling events. The detection of MTBE at estimated concentrations between MSS' EPA Method 524.2 MTBE MDL (previously 0.21 μg/L) and its EPA Method 524.2 MTBE MRL (0.50 μg/L) was reported for the samples collected on April 27, 2012, August 14, 2015, and September 23, 2015 (i.e., 0.26 J, 0.22 J, and 0.39 J μg/L, respectively). CGS previously contacted MSS to gain additional information regarding the results of the May 19, 2010 and June 5, 2013 samples which were reported relative to the MRL as opposed to the MDL. MSS revisited the raw data and reported that MTBE was not detected in the May 19, 2010 sample at a concentration above the then current MDL (0.21 μg/L) and that MTBE was detected in the June 5, 2013 sample at an estimated concentration of 0.25 J μg/L.

MTBE was detected in the drinking water sample obtained from 2040 Don Avenue on February 22, 2016 at a concentration of $8.38~\mu g/L$. This concentration represented an increase from the stabilized concentrations previously detected at this location. The increased MTBE concentration, and the detection of TAME and TBA, at this location were attributed to the unusually high February 2016 groundwater levels and were assumed to represent a momentary pulse in the groundwater system and not a long-term condition. 2040 Don Avenue was sampled again in June 2016 to evaluate the anomalous nature of this detection. MSS reported MTBE as not detected relative to the MRL. CGS again contacted MSS to gain additional information regarding this result. MSS revisited the raw data and reported that MTBE was detected in the June 17, 2016 sample at an estimated concentration of 0.10 J μ g/L and that its current laboratory statistical MDL for MTBE was 0.05 μ g/L. MSS also reported that TAME and TBA were not detected in the June 17, 2016 2040 Don Avenue sample at concentrations above their statistical MDLs (i.e., no estimated concentrations were detected for TAME and TBA).

As shown in **Table D**, the November 2017 MTBE result for 2040 Don Avenue was reported as not detected relative to the MRL, consistent with MSS' routine practice for reporting results for EPA Method 524.2. Upon CGS' request, MSS revisited the raw data and reported that MTBE was detected in the November 16, 2017 sample at an estimated concentration of 0.15 J μ g/L. MSS also reported that TAME and TBA were not detected in the November 16, 2017 2040 Don Avenue sample at concentrations above their statistical MDLs (i.e., no estimated concentrations were detected for TAME and TBA).

As shown in **Table D**, MTBE was detected in the June 2018, December 2018, June 2019, November 2019, May 2020, November 2020, and June 2021 samples collected from 2040 Don Avenue at concentrations ranging from 0.40 µg/L to 1.85 µg/L. It should be noted that, upon CGS' request, MSS reported the

November 2019 and November 2020 MTBE results for 2040 Don Avenue relative to the MDL as opposed to its routine practice of reporting relative to the MRL. These concentrations represent a slight increase from the previously stabilized level, but continue to be well below the MDE Groundwater Standard (20 µg/L).

Table D
Historical Summary of Drinking Water Sample MTBE Results at 2040 Don Avenue

Sample Date	Reported MTBE Concentration (µg/L)	Revisited MTBE Concentration (µg/L)	EPA Method 524.2 MTBE MRL (μg/L)	EPA Method 524.2 MTBE MDL (µg/L)
5/19/2010	0.50 U	0.21 U*	0.50	0.21 *
4/27/2012	0.26 J	0.26 J	0.50	0.21
6/5/2013	0.50 U	0.25 J*	0.50	0.21 *
8/14/2015	0.22 J	0.22 J	0.50	0.21
9/23/2015	0.39 J	0.39 J	0.50	0.21
2/22/2016	8.38	8.38	0.50	0.21
6/17/16	0.50 U	0.10 J**	0.50	0.05 **
11/16/17	0.50 U	0.15 J***	0.50	NR
6/20/18	0.77	0.77	0.50	NR
12/5/18	1.78	1.78	0.50	NR
6/12/19	0.83	0.83	0.50	NR
11/18/19	0.49 J	0.49 J	0.50	NR
5/20/20	1.85	1.85	0.50	NR
11/17/20	0.40 J	0.40 J	0.50	0.10
6/3/21	0.90	0.90	0.50	NR

^{*} As reported by MSS in email correspondence dated September 30, 2015.

NR – Information Not Requested

4.0 CONCLUSIONS

CGS has performed a groundwater and water supply well sampling event at the George's Deli & Gas Site near Westminster, Maryland. Based on the results of the June 2021 sampling event in conjunction with prior site data, CGS concludes the following:

- In general, the direction of groundwater flow at the Site is toward the north from the Property to the Adjacent Property, Victoria Farms. A steep hydraulic gradient to the northwest generally exists on the Property that is indicative of a bedrock fracture zone trending to the northeast. Groundwater levels recorded at the Site during the June 2021 sampling event appear to reflect typical seasonal conditions for this time of year.
- MTBE, the primary COC at the Site, was detected at concentrations exceeding its MDE Groundwater Standard in two of the 12 sampled monitoring wells during the June 2021 sampling event.
- A review of the historic groundwater MTBE concentration data resulted in the following observations:
 - MTBE has been detected in 15 of the 17 monitoring wells at the Site. In all 15 of these
 wells, the MTBE concentrations have demonstrated drastic reductions since their peak
 concentrations were detected between September 2008 and May 2010. MTBE

^{**} As reported by MSS in email correspondence dated July 1, 2016.

^{***} As reported by MSS in email correspondence dated December 27, 2017.

concentrations in the former source area, on the remainder of the Property, and down-gradient of the Property have demonstrated a 94.6% or better reduction in the MTBE concentrations.

- \circ The lateral extent of the MTBE groundwater contamination plume, at concentrations above 5 μ g/L, on the Property as well as on the Adjacent Property, has drastically decreased since the peak concentrations were detected.
- The MTBE data demonstrate the primary line of evidence for remediation by natural attenuation (i.e., decreasing MTBE concentrations and overall reduction in the size of the groundwater contamination plume).
- A review of the drinking water MTBE concentration data from 602 Deer Park Road (On-Site) and 2040 Don Avenue (Off-Site Residence) demonstrate low level MTBE concentrations well below the MDE Groundwater Standard (20 μg/L).

5.0 RECOMMENDATIONS

Based on review of the May 6, 2020 MDE-OCP correspondence, CGS recommends that Country Side Trust perform the following:

- Remove the GAC filtration system at 2173 Sykesville Road if the property owner does not opt to retain and maintain it and provide written documentation to MDE of the removal or conveyance;
- Provide formal written documentation to MDE regarding current and future plans for the Victoria Farms Property;
- Properly abandon the Lot 2, 3, 5, and 6 Wells that are no longer proposed for use as residential supply wells and provide well abandonment reports to MDE: and
- Provide the names and mailing addresses for all current Trust members responsible for managing the Trust Fund for the Site.

6.0 LIMITATIONS

The work performed in conjunction with this project, and the data developed, are intended as a description of available information at the locations indicated and dates specified. Generally accepted industry standards were used in the conduct of this project and the preparation of this report.

Laboratory data are intended to approximate actual conditions at the time of sampling. Results from future sampling and testing may vary significantly as a result of natural conditions, a changing environment, or the limits of analytical capabilities. This report does not warrant against future operations or conditions, nor does it warrant against operations or conditions present of a type or at a specific location not investigated. The limited sampling conducted is intended to approximate subsurface conditions by extrapolation between data points. Actual subsurface conditions may vary.

CGS has based its conclusions on observable conditions and analytical results from an independent analytical laboratory which is solely responsible for the accuracy of its methods and results.

If you have any questions regarding this letter report, please contact this office at (410) 740-1911. Our facsimile number is (410) 740-3299.

Sincerely,

Chesapeake GeoSciences, Inc.

Nancy D. Love, PG

Principal

Kevin W. Howard, PG

President

cc: Project File

Attachments:

Figures

Figure 1 - Site Location Map

Figure 2 - Site Diagram and Well Location Map

Figure 3 - Groundwater Contour Map

Figure 4 - MTBE Isoconcentration Map

Figure 5 - MTBE Concentration Variations with Time

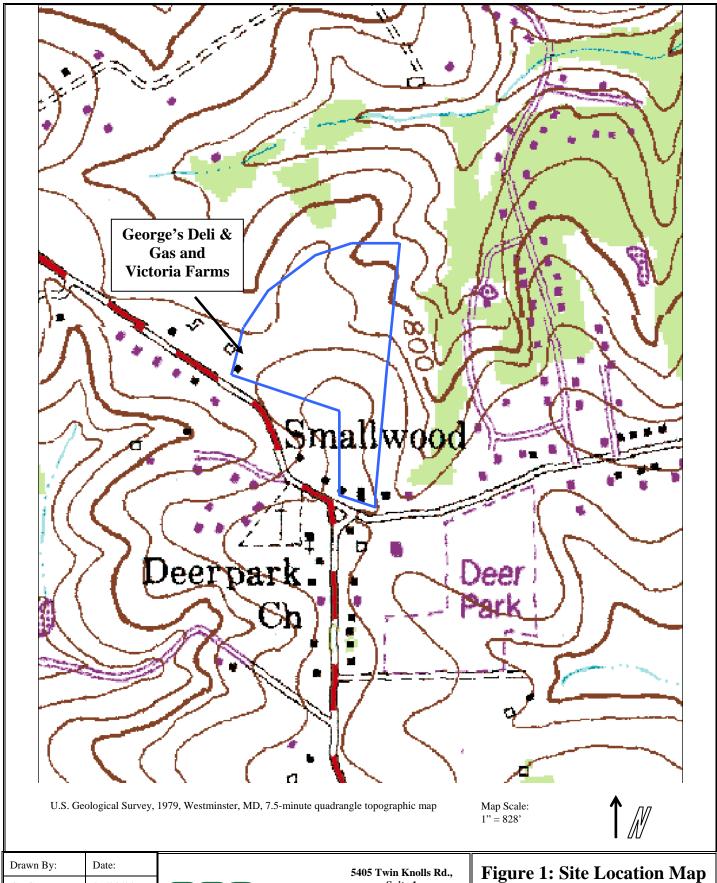
Tables

Table 1 - Well Construction, Survey, and Gauging Data

Table 2 - Summary of Groundwater Sample Results – Detected Analytes

Table 3 - Summary of Water Supply Well Sample Results – Detected Analytes

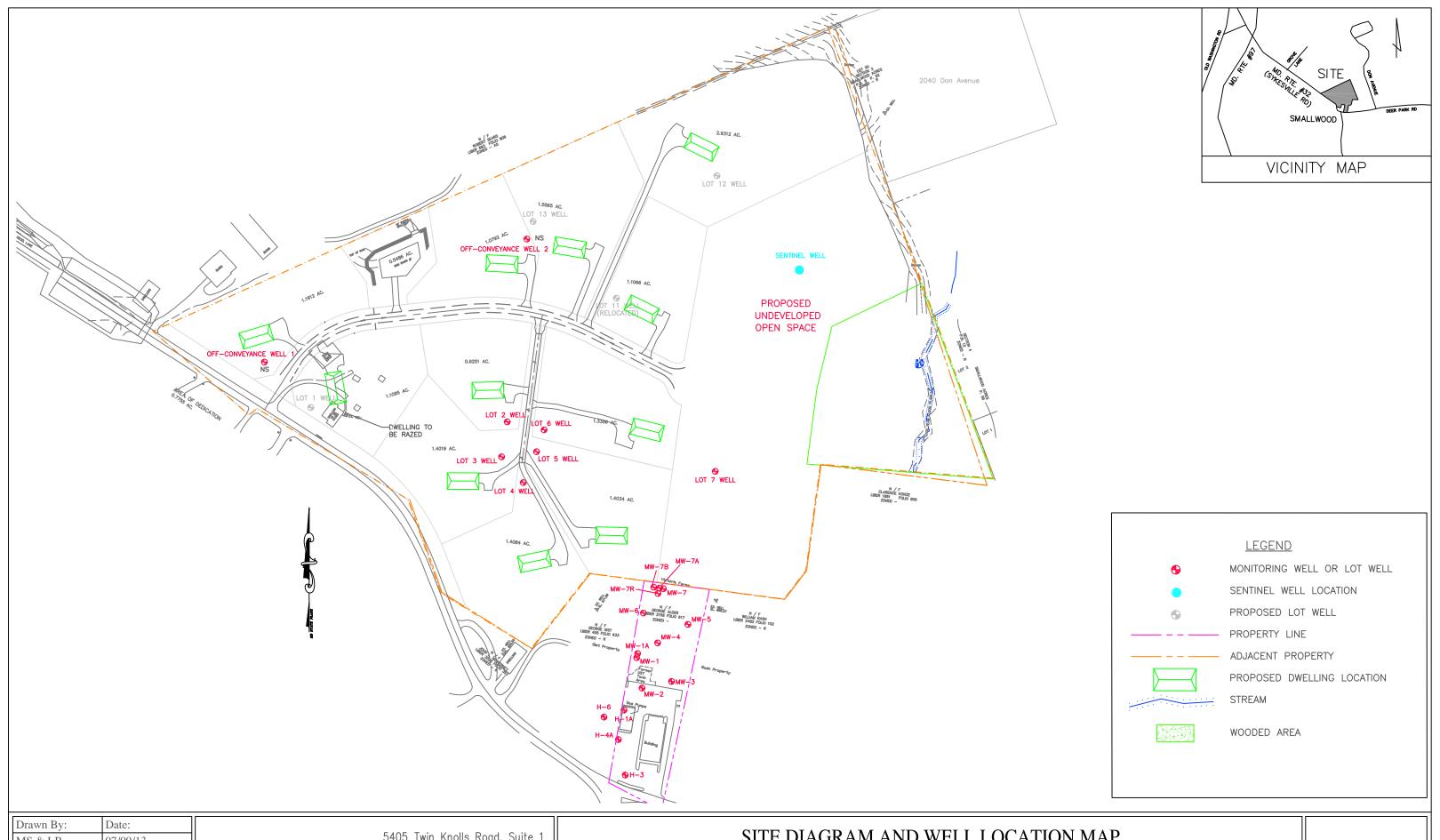
Table 4 - Historical Summary of Groundwater Sample Results


Attachments

Attachment A – Groundwater Sampling Logs

Attachment B – Laboratory Analytical Reports and Chain-Of-Custody Records

Attachment C – Prior MTBE Isoconcentration Maps



Drawn By:	Date:
CDG	09/08/08
Job#:	Proj. Mang.:
CG-08-0348	KH

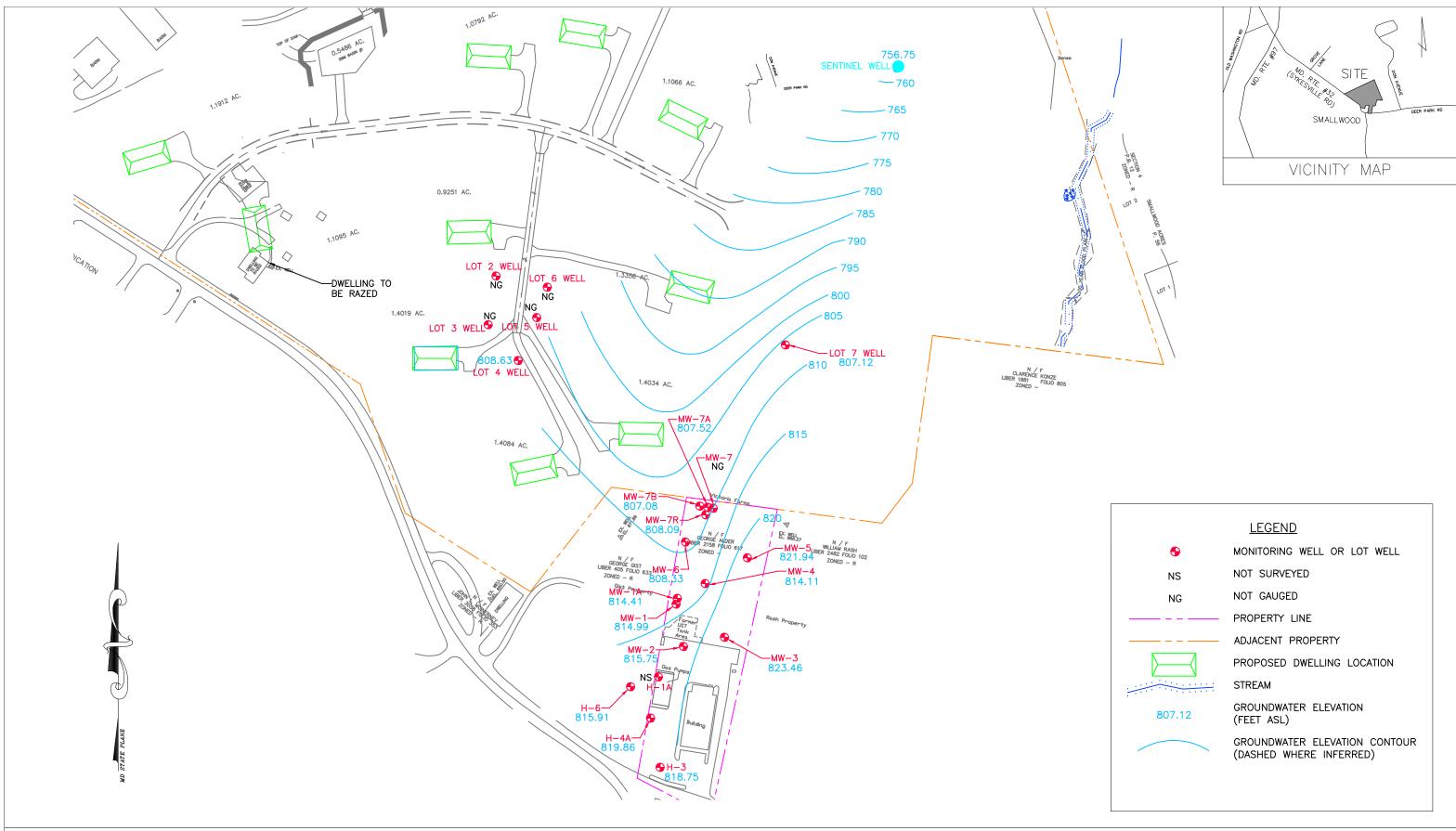
5405 Twin Knolls Rd., Suite 1 Columbia, MD 21045 Phone (410) 740-1911 FAX (410) 740-3299

Figure 1: Site Location Map George's Deli & Gas and Victoria Farms

 Drawn By:
 Date:

 MS & LB
 07/09/13

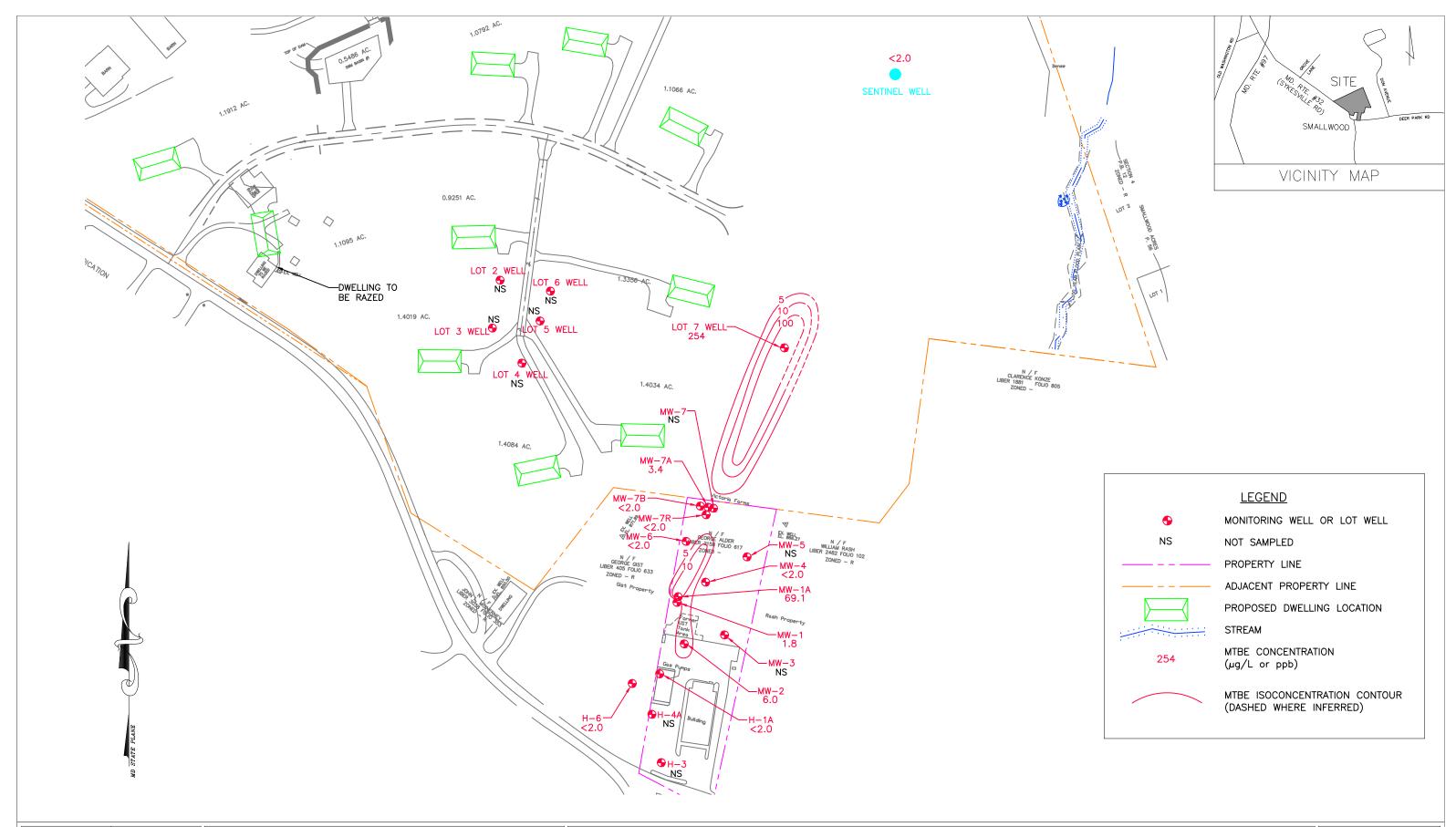
 Job #:
 Proj. Manager:


 CG-08-0348
 Kevin Howard

 Scale: 1" = 180'

5405 Twin Knolls Road, Suite 1 Columbia, Md 21045 Phone (410) 740-1911 Fax (410) 740-3299 SITE DIAGRAM AND WELL LOCATION MAP 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

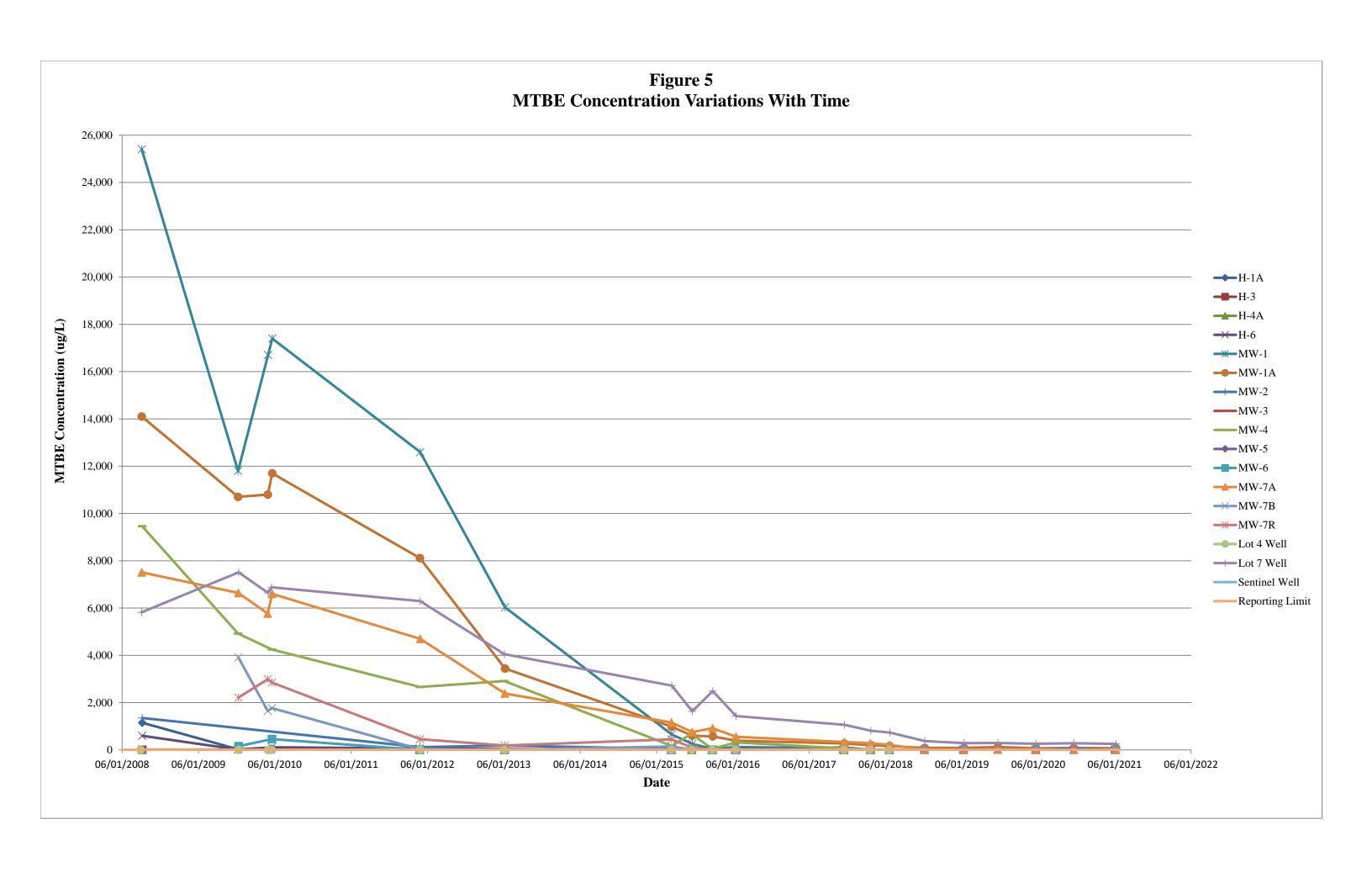
Figure 2



Drawn By:	Date:
MRW	07/06/2021
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" - 130'	·

5405 Twin Knolls Road, Suite 1 Columbia, Md 21045 Phone (410) 740—1911 Fax (410) 740—3299 GROUNDWATER CONTOUR MAP - JUNE 2, 2021 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Figure 3



Drawn By:	Date:
MRW	06/06/2021
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	•

5405 Twin Knolls Road, Suite 1 Columbia, Md 21045 Phone (410) 740—1911 Fax (410) 740—3299 MTBE ISOCONCENTRATION MAP - JUNE, 2021 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Figure 4

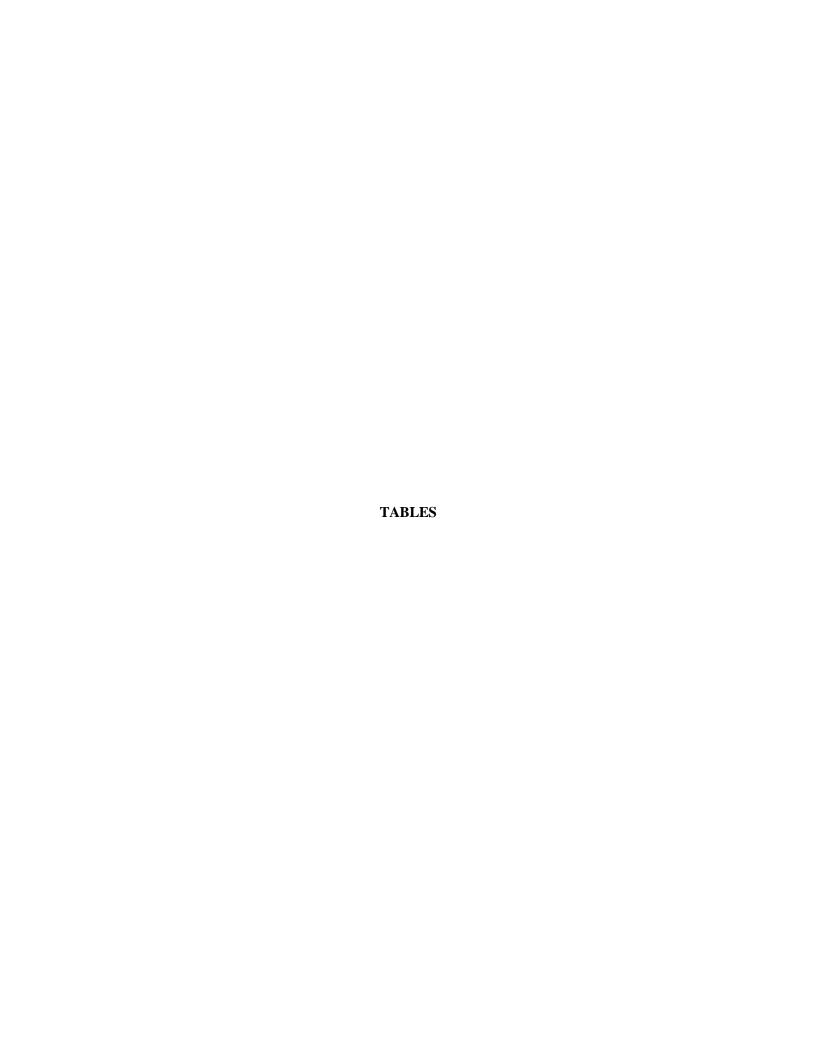


Table 1
Well Construction, Survey, and Gauging Data
George's Deli & Gas and Victoria Farms
602 Deer Park Road and 2139 Sykesville Rd, Westminster, Maryland

Well ¹	Permit	Well	Screened	Well	Horizontal	Coordinates	Elevation	June 2	, 2021
	Number	Depth BTOC ² (ft)	Interval BTOC ³ (ft)	Dia- meter (in)	Northing ⁴	Easting ⁴	TOC (ft) ⁵	Depth to Ground- water from TOC (ft)	Ground- water Elevation (ft)
H-1A	CL-81-5726	66.28	25-65	8	672669.71	1319354.73	NR	51.11	NA
H-3	CL-81-5728	56.42	38-58	4	672536.59	1319356.07	863.07	44.32	818.75
H-4A	CL-81-5729	86.84	47-87	4	672609.31	1319342.63	865.14	45.28	819.86
H-6	NA	70.13	32-72	4	672655.52	1319313.60	864.26	48.35	815.91
MW-1	NA	84.49	NA	2	672776.49	1319381.57	870.63	55.64	814.99
MW-1A	CL-95-1261	143.32	105-145	4	672785.11	1319383.51	870.89	56.48	814.41
MW-2	NA	84.80	NA	2	672714.01	1319391.88	867.70	51.95	815.75
MW-3	NA	77.50	NA	2	672727.32	1319452.39	867.27	43.81	823.46
MW-4	CL-95-0729	68.59	38-68	2	672806.58	1319424.79	871.58	57.47	814.11
MW-5	CL-95-0727	71.76	42-72	2	672843.83	1319487.11	869.89	47.95	821.94
MW-6	NA	72.93	43-73	2	672867.64	1319396.20	874.66	66.33	808.33
MW-7A	CL-95-1260	145.39	125-145	4	672918.51	1319429.50	878.35	70.83	807.52
MW-7B	CL-95-1558	286.10	223-283	4	672920.62	1319419.52	879.10	72.02	807.08
MW-7R	CL-95-1557	100.35	45-100	4	672907.68	1319428.18	878.34	70.25	808.09
Lot 4 Well	CL-94-5262	123.25	20-120	6	673136.86	1319152.68	865.80	57.17	808.63
Lot 7 Well	CL-94-5394	141.91	21-142	6	673156.33	1319545.83	858.42	51.30	807.12
Sentinel Well	CL-11-0045	72.58	47-70	6	673396.92	1319919.96	805.32	48.57	756.75

Table Notes:

TOC - Top of Casing at Measuring Point BTOC - Below TOC NA - Data Not Available

NR - The TOC Elevation of Well H-1A changed during site work (paving, cleanup, repairs) and was not resurveyed afterward.

¹ Well MW-1A is the deeper well in the well pair. Well MW-1 is the shallower well in the pair. Wells MW-7R, MW-7A, and MW-7B comprise a well cluster, with MW-7R being the shallow well, MW-7A being the intermediate well, and MW-7B being the deep well. Well MW-7R is a replacement for shallow well MW-7, which went dry at times.

² As measured on August 10, 2015 following well re-development. Lot 7 Well depth measured on June 8, 2021.

³ In the case of the Lot 4 Well, Lot 7 Well, and the Sentinel Well, this is the open bedrock portion of the well.

⁴ Horizontal coodinates in Maryland State Plane Coordinate System (NAD83/91). Sentinel Well coordinates are approximate.

⁵ Elevations in the 1988 North American Vertical Datum (NAVD88). The Sentinel Well elevation was surveyed by John Sweeney.

Table 2

Summary of Groundwater Sample Results George's Deli & Gas and Victoria Farms 602 Deer Park Road and 2139 Sykesville Rd, Westminster, Maryland

June 2 through June 8, 2021

Volatile Organic Compounds (VOCs)

Sample ID	H-1A	Н-6	MW-1	MW-1A	MW-2	MW-4	MW-6	MW-7A	MW-7B	MW-7R	LOT 7 WELL	LOT 7 WELL [GDG-DUPE]	SENTINEL WELL	GDG-EFB	GDG-GW-TB	MDE Groundwater
Sample Date	06/04/21	06/02/21	06/04/21	06/08/21	06/07/21	06/03/21	06/03/21	06/07/21	06/07/21	06/07/21	06/08/21	06/08/21	06/02/21	06/04/21	05/21/21	Standard
Dilution Factor	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	Standard
Sample Type	Groundwater Blanks															
VOCs								Concentr	ation (ug/L)							
Acetone	12.9	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10.0 U	1.4E+03
tert-Amyl methyl ether (TAME)	2.0 U	2.0 U	2.0 U	4.0	2.0 U	2.0 U	13.0	13.3	2.0 U	2.0 U	2.0 U	na				
tert-Butanol (TBA)	24.3	15.0 U	15.0 U	38.8	15.0 U	15.0 U	102	112	15.0 U	15.0 U	15.0 U	na				
Methyl tert-butyl ether (MTBE)	2.0 U	2.0 U	1.8 J	<u>69.1</u>	6.0	2.0 U	2.0 U	3.4	2.0 U	2.0 U	<u>241</u>	<u>254</u>	2.0 U	2.0 U	2.0 U	2.0E+01

<u>**Table Notes:**</u>
VOCs Analytical Method: EPA Method 8260B

[Sample ID] - Sample Identification as shown on COC and/or in Lab Report. GDG-DUPE is a blind duplicate of the groundwater sample collected from the Lot 7 Well. μg/L - micrograms per liter or parts per billion (ppb)

- U Analyte not detected above specified Method Reporting Limit (MRL) (shown as a gray tone).
- J The reported concentration is less than the MRL but greater than the Limit of Detection (LOD). The concentration is considered to be estimated. na - not applicable

Bold - Detected analyte concentration

Screening Evaluation Notes:

MDE Groundwater Standards: MDE Groundwater Cleanup Standards for Type I and II Aquifers (October 2018)

<u>Underline</u> - MRL exceeds the respective MDE Groundwater Standard.

Red, bold, and underline - Detected analyte concentration exceeds the respective MDE Groundwater Standard.

Additional Screening Level Notes:

Analyte MDE Groundwater Standard

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

Table 3

Summary of Water Supply Well Sample Results - Detected Analytes George's Deli & Gas and Victoria Farms 602 Deer Park Road and 2139 Sykesville Rd, Westminster, Maryland June 3, 2021

Volatile Organic Compounds (VOCs)

Sample ID	602-DW	2040-DW	MDE Groundwater
Sample Date	06/03/21	06/03/21	Standard
Dilution Factor	1	1	
Sample Type	Potable Dri	nking Water	
VOCs	C	oncentration (ug/L)	•
Methyl tert-butyl ether (MTBE)	0.85	0.90	2.0E+01

Table Notes:

VOCs Analytical Method: EPA Method 524.2 μg/L - micrograms per liter or parts per billion (ppb)

U - Analyte not detected above specified Method Reporting Limit (MRL) (shown as a gray tone).

Bold - Detected analyte concentration

Screening Evaluation Notes:

MDE Groundwater Standards: MDE Groundwater Cleanup Standards for Type I and II Aquifers (October 2 No detected analyte concentrations exceed the respective MDE Groundwater Standard.

Well	Date VOCs TAA TAME Renzone TRA sec.Rutyl DIPE Isonronyl MTRE Naphtha.															Geochem	ical Parameters	3									
,,,		TAA	TAME	Benzene	TBA	sec-Butyl	DIPE	Isopropyl	MTBE	Naphtha-	1,2,4-	1,3,5-	o-Xylene	m,p-Xylene	Methane	Manganese	Nitrate	Sulfate	Ferrous		Conductivity	pН	Oxidation/	Temperature			
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene	(ug/L)	benzene	(ug/L)	lene	Trimethyl	Trimethyl	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(as N)	(mg/L)	Iron	Oxygen (DO)	(mS/cm)		Reduction	(°C)			
						(ug/L)		(ug/L)		(ug/L)	benzene	benzene					(mg/L)		(mg/L)	(% of			Potential				
MDE GW St	andard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	(ug/L) 5.6E+00	(ug/L) 6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na	saturation) na	na	na	na	na			
H-1A	9/5/2008	677	85.0	273	<300	<15.0	<15.0	34.0	1,150	46.0	18.0	<15.0	<15.0	31.0													
	12/7/2009	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	25.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	4/30/2010			T		T = ==		Vell not sample							Prior to Natural Attenuation Monitoring Period												
	5/18/2010 4/24/2012	<20.0 <10.0	2.9 J	<5.0 <0.5	<15.0 <9.8	<5.0 <0.4	<5.0 <0.6	<5.0 <0.5	53.0 27.8	<5.0 <0.7	<5.0 <0.5	<5.0 <0.7	<5.0 <0.4	<5.0 <0.6													
	6/5/2013	<20.0	<0.3 <5.0	< 5.0	<9.8	<5.0	< 5.0	<0.5	12.8	<0.7 <5.0	<0.5	< 5.0	<5.0		<5.0												
	8/12/2015	28.7	2.9 J	8.0	16.0	<5.0	<5.0	<5.0	32.5	<5.0	<5.0	<5.0	<5.0	<5.0 0.019 11.4 3.0 5.6 0 30.7 0.525 6.15 244.5													
	11/19/2015	<20.0	< 5.0	7.7	<15.0	< 5.0	< 5.0	3.9 J	16.6	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	0.0185	13.0	3.2	2.3	0	5.4	0.494	5.59	121.5	17.85			
	2/25/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0061	<u>1.51</u>	4.3	4.8	0	37.1	0.343	5.55	172.0	14.45			
	6/14/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0062	2.24	3.0	8.0	0	9.5	0.313	5.51	179.2	16.98			
	11/13/2017	<20.0	< 5.0	<5.0	<15.0	<5.0	<5.0	<5.0	3.6 J	<u><5.0</u>	<5.0	<5.0	<5.0	< 5.0	0.0090	<u>6.83</u>	0.3	13.4	0	17.7	0.287	5.72	173.9	17.91			
	3/22/2018 6/19/2018	<20.0 <20.0	<5.0 <5.0	4.4 J <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	2.4 J <5.0	9.4 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0													
	12/4/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0													
	6/10/2019	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0													
	11/19/2019	26.1	1.9 J	4.5	<15.0	1.4 J	<2.0	2.0	23.0	<2.0	<2.0	<2.0	<2.0	<2.0	1		MDE det	ermined that r	reporting geoc	hemical paramet	ters was no longe	er required					
	5/20/2020	<20.0	<2.0	<2.0	<15.0	<2.0	< 2.0	< 2.0	<2.0	<u><2.0</u>	< 2.0	<2.0	< 2.0	<2.0													
	11/16/2020	<20.0	<2.0	<2.0	<15.0	< 2.0	<2.0	< 2.0	6.2	<u><2.0</u>	< 2.0	<2.0	<2.0	<2.0													
_	6/4/2021	<20.0	<2.0	<2.0	24.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0													
H-3	9/5/2008	<10.0	< 0.5	< 0.5	<10.0	< 0.5	< 0.5	<0.5	3.9	<u><0.5</u>	< 0.5	< 0.5	< 0.5	< 0.5													
	12/7/2009 4/30/2010	Well not sampled. Well not sampled.																									
	5/18/2010							Vell not sample Vell not sample										Prior to	to Natural Atte	enuation Monitor	ing Period						
	4/24/2012	<10.0	< 0.3	< 0.5	< 9.8	< 0.4	< 0.6	<0.5	1.5 J	< 0.7	< 0.5	< 0.7	< 0.4	< 0.6													
	6/5/2013	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0													
	8/11/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0056	<u>0.630</u>	10.0	21.1	0	57.4	0.419	5.52	289.4	20.00			
	11/17/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0060	0.677	11.0	16.5	0	73.1	0.588	4.92	184.5	17.69			
	2/24/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<u><5.0</u>	<5.0	<5.0	<5.0	<5.0	<0.0058	0.028	1.7	11.1	0	63.9	0.173	6.40	147.6	14.67			
	6/13/2016 11/13/2017	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.0055 <0.0059	0.496 0.555	12.6 9.2	21.4 12.9	0	38.4 48.3	0.491 0.420	5.36 4.95	182.7 296.4	18.44 18.15			
	3/22/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<0.0039	<u>0.555</u>	9.2	12.9	U	46.3	0.420	4.93	290.4	16.13			
	6/19/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0													
	12/4/2018						V	Vell not sample	rd.		•																
	6/9/2019							Vell not sample									MDF det	ormined that r	renorting geoc	hemical paramet	ters was no long	er required					
	11/19/2019							Vell not sample									MDL act	erminea inai r	eporting geoc	петісаі рагатеі	ers was no longe	er requireu					
	5/19/2020 11/16/2020							Vell not sample Vell not sample																			
	6/4/2021							Veii not sampie Vell not sample																			
H-4A	9/5/2008	<10.0	1.4	< 0.5	<10.0	< 0.5	< 0.5	<0.5	17.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5													
11	12/7/2009	11010		10.0	(1010			Vell not sample		3010	1010	1010	1010	10.0													
	4/30/2010							Vell not sample]			Prior to	to Natural Atta	enuation Monitor	ing Period						
	5/18/2010		1					Vell not sample			1							1 1101 10	o manana Alle	manion Monitor	ing i criou						
	4/24/2012	<10.0	< 0.3	< 0.5	<9.8	<0.4	< 0.6	< 0.5	0.8 J	<0.7	< 0.5	< 0.7	< 0.4	< 0.6													
	6/5/2013	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	< <u><5.0</u>	<5.0	<5.0	<5.0	<5.0	NT A	NT A	NT A	NT A	NT A	50.1	0.705	6 27	227.2	20.24			
	8/11/2015 11/17/2015	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	2.9 J <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	NA 0	50.1 76.7	0.795 0.929	6.37 5.10	237.2 180.1	20.34 16.61			
	2/24/2016	<20.0	<5.0 <5.0	<5.0	<15.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	0	54.2	0.369	5.77	165.9	13.92			
	6/14/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA	0	31.5	0.633	5.28	189.8	17.42			
	11/14/2017	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	NA	NA	NA	NA	0	46.1	0.673	5.21	322.8	17.07			
	3/22/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		<u></u>					·	-					
	6/21/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	<5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	12/4/2018	Well not sampled.																									
	6/9/2019		Well not sampled.														MDE det	ermined that r	reporting geoc	hemical paramet	ters was no longe	er required					
	11/19/2019 5/19/2020		Well not sampled. Well not sampled. Well not sampled.																	-		-					
	11/16/2020							Vell not sample Vell not sample							1												
	6/4/2021							Vell not sample Vell not sample																			
	0/ 1/2021						,	noi sumpie							<u> </u>												

Well	Date							VOCs											Geochem	ical Parameters							
VV CII	Date	TAA	TAME	Benzene	TBA	sec-Butyl	DIPE	Isopropyl	MTBE	Naphtha-	1,2,4-	1,3,5-	o-Xylene	m,p-Xylene	Methane	Manganese	Nitrate	Sulfate	Ferrous	Dissolved	Conductivity	рΗ	Oxidation/	Temperature			
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene	(ug/L)	benzene	(ug/L)	lene	Trimethyl	Trimethyl	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(as N)	(mg/L)	Iron	Oxygen (DO)		pII	Reduction	(°C)			
		(48/2)	(4.8/2)	(4.8/2)	(48/2)	(ug/L)	(4.8/2)	(ug/L)	(4.8/2)	(ug/L)	benzene	benzene	(48/2)	(ug/2)	(111g/ L)	(g, 2.)	(mg/L)	(111g/12)	(mg/L)	(% of	(1115/ 1111)		Potential	(0)			
						, , ,				, ,	(ug/L)	(ug/L)					, , ,		, , ,	saturation)							
MDE GW S	tandard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	5.6E+00	6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na								
H-6	9/5/2008	<150	42.0	<u>58.0</u>	<150	8.6	<7.5	<u>29.0</u>	<u>597</u>	<u>41.0</u>	<u>9.3</u>	<u><7.5</u>	10.0	<7.5													
	12/7/2009	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	<5.0	13.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	4/30/2010	<20.0	7.7	3.7 J	<15.0	<5.0	<5.0	Vell not sample 2.4 J		2.7 J	3.5 J	<5.0	1.5 J	<5.0		Prior to Natural Attenuation Monitoring Period											
	5/18/2010 4/24/2012	<10.0	5.0 J	5.9	<15.0 16.4	3.0 J	<0.6	6.3	111 59.0	4.1 J	<0.5	<0.7	<0.4	< 0.6													
	6/4/2013	<20.0	2.5	3.7	<15.0	<5.0	<5.0	2.8	36.6	<5.0	<5.0	<5.0	<5.0	<5.0													
	8/13/2015	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	5.1	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0061	6.52	4.6	3.5	0	36.5	0.216	6.26	253.7	18.60			
	11/17/2015	<20.0	<5.0	<5.0	<15.0	2.1 J	<5.0	<5.0	5.5	<5.0	<5.0	<5.0	<5.0	<5.0	0.0063	< 0.010	5.1	1.6	0	34.6	0.265	5.11	148.3	16.90			
	2/25/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.208	1.05	5.7	2.7	0	26.7	0.204	5.78	-99.5*	13.95			
	6/14/2016	<20.0	< 5.0	< 5.0	<15.0	2.1 J	< 5.0	< 5.0	3.9 J	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0.601	7.06	1.5	2.4	0	3.4	-129.6*	6.11	0.264*	18.40			
	11/14/2017	<20.0	< 5.0	4.6 J	<15.0	4.8 J	< 5.0	8.9	10.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	0.854	8.93	< 0.2	2.9	0	15.1	0.282	5.90	212.7	16.30			
	3/22/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	6/19/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< <u>5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	12/3/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0													
	6/6/2019	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	<5.0	< 5.0	< 5.0			MDE dete	ermined that i	reporting geoc	hemical parame	ters was no longe	er reauired					
	11/18/2019	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	2.1	<2.0	<2.0	<2.0	<2.0	<2.0					7			1					
	5/18/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0													
	11/16/2020 6/2/2021	<20.0 <20.0	<2.0 <2.0	1.4 J <2.0	<15.0 <15.0	3.8 <2.0	<2.0 <2.0	2.0 <2.0	3.5 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0													
MW-1	9/3/2008	<7,500	1.630	<375	26,400	<375	<375	<375	25.400	<375	<375	<375	<375	<375													
IVI VV - 1	12/8/2009	<2,000	883	<500	9,090	<500	<500	<500	25,400 11,800	<500	<500	<500	<500	<500													
	4/30/2010	NA	1,420	91.2	17,700	1.0 J	29.0	4.2	16,700	12.3	4.7	1.2	13.7	3.5													
	5/20/2010	1,100 J	1,370	140 J	17,800	<500	<500	<500	17,400	<500	< 500	<500	<500	<500				Prior i	to Natural Atte	nuation Monitor	ing Period						
	4/27/2012	<998	794	<49.0	12,900	<35.5	<64.7	<50.5	12,600	<68.2	<53.9	<68.0	<43.3	<61.3													
	6/7/2013	<800	428	<200	4,760	<200	<200	<200	6,030	<200	<200	<200	<200	<200													
	8/13/2015	<20.0	39.8	< 5.0	263	< 5.0	< 5.0	< 5.0	655	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 0.0060	<u>4.66</u>	6.1	6.8	0	39.2	0.476	5.94	273.0	17.41			
	11/20/2015	<40.0	13.6	<10.0	51.1	<10.0	<10.0	<10.0	<u>255</u>	<10.0	<10.0	<10.0	<10.0	<10.0	< 0.0056	<u>2.90</u>	5.5	4.7	0	7.1	0.313	5.16	137.6	17.47			
	2/26/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	<u>36.5</u>	< <u>5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0055	<u>2.88</u>	6.1	10.6	0	15.5	0.279	5.33	255.5	14.19			
	6/15/2016	<20.0	5.5	< 5.0	27.6	< 5.0	< 5.0	< 5.0	122	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0053	<u>3.77</u>	6.1	7.7	0	4.1	0.350	5.31	170.3	18.73			
	11/17/2017	<20.0	3.9 J	< 5.0	28.3	< 5.0	< 5.0	< 5.0	<u>59.4</u>	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0059	<u>2.53</u>	5.3	5.0	0	11.9	0.268	4.75	267.2	17.13			
	3/23/2018	<20.0	<5.0	< 5.0	<15.0	<5.0	< 5.0	<5.0	5.8	<5.0	< 5.0	<5.0	<5.0	< 5.0													
	6/21/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	4.8 J	<u><5.0</u>	<5.0	<5.0	<5.0	< 5.0													
	12/6/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	2.4 J	<5.0	<5.0	<5.0	<5.0	<5.0													
	6/12/2019 11/20/2019	<20.0 <20.0	<5.0 <2.0	<5.0 <2.0	<15.0 <15.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	2.8 J 3.7	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0			MDE dete	ermined that i	reporting geoc	hemical parame	ters was no longe	er required					
	5/19/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	1.7 J	<2.0	<2.0	<2.0	<2.0	<2.0													
	11/18/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	2.2	<2.0	<2.0	<2.0	<2.0	<2.0													
	6/4/2021	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	1.8 J	<2.0	<2.0	<2.0	<2.0	<2.0													
MW-1A		<6.000	916	<300	12900	<300	<300	<300	14,100	<300	<300	<300	<300	<300													
	12/8/2009	<2,000	802	<500	7,650.0	< 500	< 500	<500	10,700	< 500	<500	<500	< 500	< 500													
	4/29/2010	NA	880	<u>75.8</u>	11,200.0	1.5	20.3	4.1	10,800	10.4	1.1	0.3 J	9.3	0.7 J				Duion	to Matural Atta	nuation Monitor	ina Daviad						
	5/20/2010	<1,600	853	<u>94.0</u> J	14,600.0	<400	<400	<400	11,700	<400	<400	<400	<400	<400				FILOT	ю машта Апе	muation Montior	ing Ferioa						
	4/26/2012	<499	511	<24.5	8,860.0	<17.8	<32.4	<25.3	<u>8,110</u>	<34.1	<27.0	<34.0	<21.7	<30.7													
	6/7/2013	< 500	197	<125	<1,600.0	<125	<125	<125	<u>3,440</u>	<125	<125	<12 <u>5</u>	<125	<125				T	•	1			_				
	8/13/2015	56.3	64.1	4.3 J	658.0	< 5.0	< 5.0	< 5.0	<u>982</u>	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0058	4.16	6.3	7.5	0	345.7*	0.621	5.83	278.1	14.58			
	11/20/2015	<80.0	34.2	<20.0	221.0	<20.0	<20.0	<20.0	<u>603</u>	<20.0	<20.0	<20.0	<20.0	<20.0	0.0081	3.15	5.6	6.0	0	4.7	0.541	5.04	173.9	13.96 12.31			
	2/26/2016	<80.0	25.9	<20.0	314	<20.0	<20.0	<20.0	<u>570</u>	<20.0	<20.0	<20.0	<20.0	<20.0	<0.0057												
	6/15/2016	<80.0	19.6 J	<20.0	168	<20.0	<20.0	<20.0	390	<20.0 <10.0	<20.0	<20.0 <10.0	<20.0	<20.0 <10.0		0.0062 3.21 5.4 6.6 0 3.6 0.480 5.44 160.3 0.0054 3.07 5.3 5.4 0 14.1 0.442 4.92 310.7											
	11/16/2017 3/23/2018	<40.0 23.0	18.2 13.9	<10.0 <5.0	226 135	<10.0 <5.0	<10.0 <5.0	<10.0 <5.0	272 194	<10.0 <5.0	<10.0 <5.0	<10.0 <5.0	<10.0 <5.0	<10.0 <5.0	<0.0054 3.07 5.3 5.4 0 14.1 0.442 4.92 310.7												
	6/21/2018	<20.0	10.3	<5.0	92.2	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	194 161	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0													
	12/6/2018	<20.0	5.5	<5.0	29.4	<5.0	<5.0	<5.0	82.2	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0												
	6/12/2019	<20.0	5.3	<5.0	60.7	<5.0	<5.0	<5.0	85.4	<5.0	<5.0	<5.0	<5.0	<5.0													
	11/21/2019	<20.0	7.4	1.4 J	93.2	<2.0	<2.0	<2.0	125	<2.0	<2.0	<2.0	<2.0	<2.0			MDE dete	ermined that i	reporting geoc	hemical parame	ters was no longe	er required					
	5/21/2020	<20.0	3.5	<2.0	32.9	<2.0	<2.0	<2.0	67.5	<2.0	<2.0	<2.0	<2.0	<2.0													
	11/18/2020	<20.0	4.2	1.2 J	86.1	<2.0	<2.0	<2.0	79.8	<2.0	<2.0	<2.0	<2.0	<2.0													
	6/8/2021	<20.0	4.0	<2.0	38.8	<2.0	<2.0	<2.0	69.1	<2.0	<2.0	<2.0	<2.0	<2.0													

Well	Date							VOCs						1					Geochem	ical Parameters				
wen	Date	TAA	TAME	Benzene	TBA	sec-Butyl	DIPE	Isopropyl	MTBE	Naphtha-	1,2,4-	1,3,5-	o-Xylene	m,p-Xylene	Methane	Manganese	Nitrate	Sulfate	Ferrous		Conductivity	рН	Oxidation/	Temperature
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene	(ug/L)	benzene	(ug/L)	lene	Trimethyl	Trimethyl	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(as N)	(mg/L)	Iron	Oxygen (DO)		pii	Reduction	(°C)
		(g)	(-8-)	(-8-)	((ug/L)	(8)	(ug/L)	(-8-)	(ug/L)	benzene	benzene	(-g-)	(-g-)	(8 ,)	((mg/L)	((mg/L)	(% of	()		Potential	()
						(8 /		(8 /		,	(ug/L)	(ug/L)					,		\ 0 /	saturation)				
MDE GW St	andard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	5.6E+00	6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na	na	na	na	na	na
MW-2	9/5/2008	<400	40	<20.0	<400	<20.0	<20.0	<20.0	<u>1,350</u>	<20.0	<20.0	<20.0	<20.0	<20.0										
	12/8/2009							Vell not sample																
	4/30/2010							Vell not sample										Prior to	o Natural Atte	enuation Monitori	ing Period			
	5/18/2010	-1.0	3.5	-0.5	30.3	z0.4		Vell not sample		-0.7	-0.5	-0.7	-0.4	40.C							Ü			
	4/26/2012 6/6/2013	<1.0 <20.0	8.0	<0.5 <5.0	64.6	<0.4 <5.0	<0.6 <5.0	<0.5 <5.0	116 186	<0.7 <5.0	<0.5 <5.0	<0.7 <5.0	<0.4	<0.6 <5.0										
	8/13/2015	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	40.6	<5.0	<5.0	<5.0	<5.0	<5.0	0.0068	0.878	11.0	16.5	0	5.45	0.686	6.18	260.5	19.58
	11/19/2015	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	17.1	<5.0	<5.0	<5.0	<5.0	<5.0	0.0000	0.919	12.5	17.8	0	7.3	0.775	5.10	149.0	17.38
	2/25/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	2.8 J	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0059	1.09	11.8	8.0	0	14.1	0.591	5.36	176.7	15.41
	6/15/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	56.3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0057	1.05	10.3	14.0	0	3.7	0.651	5.43	170.4	18.18
	11/15/2017	<20.0	2.9 J	< 5.0	17.9	< 5.0	< 5.0	< 5.0	105	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	0.0079	0.894	13.8	14.6	0	13.6	0.735	5.03	169.5	18.69
	3/23/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	3.1 J	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	6/19/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	2.1 J	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	12/4/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<u><5.0</u>	<5.0	<5.0	<5.0	<5.0										
	6/10/2019 11/18/2019	<20.0 <20.0	<5.0 <2.0	<5.0 <2.0	<15.0 <15.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	<5.0 13.9	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0	<5.0 <2.0			MDE det	ermined that r	eporting geoc	hemical paramet	ers was no longe	er required		
	5/20/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	2.6	<2.0	<2.0	<2.0	<2.0	<2.0										
	11/16/2020	<20.0	2.1	<2.0	<15.0	<2.0	<2.0	<2.0	78.0	<2.0	<2.0	<2.0	<2.0	<2.0										
	6/7/2021	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	6.0	<2.0	<2.0	<2.0	<2.0	<2.0										
MW-3	9/5/2008	<10.0	< 0.5	< 0.5	<10.0	< 0.5	< 0.5	< 0.5	0.7	1.4	5.8	< 0.5	6.0	7.6										
	12/7/2009						V	Vell not sample																
	4/30/2010						V	Vell not sample	d.									Prior t	o Natural Atta	enuation Monitori	ing Pariod			
	5/18/2010						V	Vell not sample										17107 1	o Natural Alle	лишноп топпот	ing I eriou			
	4/24/2012	<10.0	< 0.3	< 0.5	<9.8	< 0.4	< 0.6	< 0.5	< 0.3	<u><0.7</u>	< 0.5	< 0.7	< 0.4	< 0.6										
	6/5/2013	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<u><5.0</u>	<5.0	<5.0	<5.0	<5.0	0.004	0.00		<10			0.250		200.4	10.00
	8/11/2015 11/18/2015	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.0061	0.305 0.311	5.5 4.9	61.8 62.8	0	54.6 57.5	0.279 0.399	5.56 13.60*	289.4 133.7	18.30 16.57
	2/24/2016	<20.0	<5.0	<5.0 <5.0	<15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.0061	0.255	6.2	45.3	0	28.8	0.399	5.42	178.6	15.13
	6/14/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0061	0.311	6.0	51.5 E	0	39.6	0.249	5.38	162.0	17.68
	11/15/2017	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0065	0.152	5.5	67.5	0	43.5	0.264	4.86	311.5	16.50
	3/22/2018	<20.0	<5.0	<5.0	<15.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0										
	6/21/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0										
	12/4/2018						V	Vell not sample	d.															
	6/9/2019							Vell not sample									MDE dei	ermined that r	eporting geoc	hemical paramet	ers was no longe	er reauired		
	11/19/2019							Vell not sample											-F					
	5/19/2020 11/16/2020							Vell not sample																
	6/4/2021							Vell not sample Vell not sample																
MW-4	9/5/2008	<3.000	536	<150	7,140	<150	<150	<150	9.460	<150	<150	<150	<150	<150										
1,1,1,	12/8/2009	<800	356	<200	2,930	<200	<200	<200	4,920	<200	<200	<200	<200	<200										
	4/30/2010				,			Vell not sample										Dad a 4	Natural Arr	mustion Manie	ina Davis J			
	5/18/2010	<800	279	<200	3,040	<200	<200	<200	4,250	<200	<200	<200	<200	<200				Prior to	o maiurai Atte	enuation Monitori	ing rerioa			
	4/26/2012	<150	155	<u><7.4</u>	2,400	<5.3	<9.7	<7.6	<u>2,660</u>	<10.2	<8.1	<10.2	< 6.5	<9.2										
	6/4/2013	< 500	175	<125	1,570	<125	<125	<125	<u>2,910</u>	<125	<u><125</u>	<u><125</u>	<125	<125		1			1					
	8/14/2015	<20.0	8.0	<5.0	59.5	<5.0	<5.0	<5.0	<u>171</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<0.0057	NA NA	NA NA	NA NA	NA	1	NM (purged			
	11/16/2015	<100	34.9	<25.0	244	<25.0	<25.0	<25.0 <5.0	<u>688</u>	<25.0	<25.0	<25.0	<25.0	<25.0 <5.0	NA NA	NA NA	NA NA	NA NA	0	+	NM (purged NM (purged			
	2/22/2016 6/17/2016	<20.0 <20.0	<5.0 16.2	<5.0 <5.0	<15.0 66.6	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	42.3 316 K	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	NA NA	NA NA	NA NA	NA NA	NA	1	NM (purged			
1	11/13/2017	_U.U	10.2	VJ.U	00.0	\J.U		not sampled -		<u>\J.U</u>	\J.U	\J.U	\J.U	\J.U	11/1	11/1	11/1	11/1		sampled - Dry.	1111 (purgea	ана затріва	i via vanet j	
1	3/20/2018	<20.0	<5.0	<5.0	<15.0	< 5.0	<5.0	<5.0	2.5 J	<5.0	<5.0	< 5.0	<5.0	< 5.0						The Dij.				
	6/18/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	12/4/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0										
	6/11/2019	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0			MDF das	ermined that "	enortina acce	hemical paramet	ere was no long	or required		
	11/21/2019	<20.0	<2.0	<2.0	<15.0	< 2.0	<2.0	<2.0	<u>22.3</u>	<2.0	<2.0	<2.0	<2.0	<2.0			MDE UEI	стиней інші Г	cporting geoc	петиса рагатен	ers was no longe	лтеципеи		
	5/20/2020	<20.0	<2.0	< 2.0	<15.0	< 2.0	<2.0	< 2.0	<2.0	<2.0	< 2.0	<2.0	<2.0	<2.0										
	11/16/2020	20.0	2.0	2.0	1 = 0			not sampled -		2.0	2.0	2.2	2.0											
	6/3/2021	<20.0	<2.0	<2.0	<15.0	< 2.0	<2.0	<2.0	<2.0	<2.0	<2.0	< 2.0	<2.0	< 2.0										

Table 4 **Historical Summary of Groundwater Sample Results** George's Deli & Gas and Victoria Farms

602 Deer Park Road and 2139 Sykesville Rd, Westminster, Maryland

Well	Date							VOCs											Geochen	nical Parameters				
		TAA	TAME	Benzene	TBA	sec-Butyl	DIPE	Isopropyl	MTBE	Naphtha-	1,2,4-	1,3,5-	o-Xylene	m,p-Xylene	Methane	Manganese	Nitrate	Sulfate	Ferrous	Dissolved	Conductivity	pН	Oxidation/	Temperatu
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene	(ug/L)	benzene	(ug/L)	lene	Trimethyl	Trimethyl	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(as N)	(mg/L)	Iron	Oxygen (DO)			Reduction	
		(8)				(ug/L)		(ug/L)	\ 0 /	(ug/L)	benzene	benzene	, ,	()		(8 /	(mg/L)		(mg/L)	(% of	, ,		Potential	` ´
										()	(ug/L)	(ug/L)								saturation)				
MDE GW St	andard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	5.6E+00	6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na	na	na	na	na	na
MW-5	9/5/2008	<10.0	< 0.5	< 0.5	<10.0	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	0.7										
	12/7/2009		•		•	•	•	Well not sample	d.		•	•												
	4/30/2010							Well not sample	d.									Duian	40 Matumal Att		in a Dania d			
	5/18/2010							Well not sample	d.									Prior	io Naturat Att	enuation Monitor	ing Perioa			
	4/24/2012	<10.0	< 0.3	< 0.5	< 9.8	< 0.4	< 0.6	< 0.5	< 0.3	< 0.7	< 0.5	< 0.7	< 0.4	< 0.6										
	6/5/2013	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	8/14/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0057	<u>0.227</u>	5.1	3.2	0	57.2	0.105	5.39	317.3	17.71
	11/18/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0062	0.322	7.0	< 2.0	0	259.0*	0.198	12.78*	149.7	18.55
	2/25/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< <u>5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0058	<u>0.326</u>	4.7	5.0	0	26.7	0.113	4.92	184.7	14.46
	6/15/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< <u>5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0058	0.249	6.2	<1.0	0	27.0	0.065	4.77	226.1	16.57
	11/15/2017	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< <u>5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0083	<u>0.320</u>	8.6	<1.0	0	36.7	0.144	4.49	281.2	18.33
	3/22/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	6/21/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	12/4/2018							Well not sample																
	6/9/2019							Well not sample									MDE det	ermined that	reporting geod	chemical paramet	ers was no long	er reauired		
	11/19/2019							Well not sample											7			4		
	5/19/2020							Well not sample	***															
	11/16/2020							Well not sample																
	6/4/2021							Well not sample																
MW-6	09/2008	20.0	1		1			ll not sampled -																
	12/10/2009	<20.0	11	< 5.0	94	< 5.0	< 5.0	<5.0	<u>155</u>	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0										
	4/30/2010	20.0	1 22	20.0		20.0		Well not sample		20.0	20.0	20.0	20.0	20.0				Prior	to Natural Att	enuation Monitor	ing Period			
	5/19/2010	<80.0	32	<20.0	<60.0	<20.0	<20.0	<20.0	<u>457</u>	<20.0	<20.0	<20.0	<20.0	<20.0										
	4/25/2012	<10.0	<0.3	< 0.5	< 9.8	<0.4	< 0.6	<0.5	<0.3	<0.7	< 0.5	< 0.7	< 0.4	< 0.6										
	6/5/2013	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	3.5	<u><5.0</u>	<5.0	<5.0	<5.0	<5.0	NT A	NTA I	NT A	I NIA	NTA.	1	NM (muno a d		d 1\	
	8/12/2015 11/16/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	<5.0	<5.0 ot sampled - Ned	2.7 J	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA	NA	NA	NA Wall not say	npled - Nearly Di	NM (purged	ana sampiea	i via bailer)	
	2/22/2016	-20.0	-5.0	-5 O	<15.0	-5 O	1	<5.0		<5.0	-5 O	-5 O	-5.0	<5.0	NA	NA	NA	NA		пріва - пвану Ді	NM (purged	and sample	d via bailer)	
	6/17/2016	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	NA NA	NA NA	NA NA	NA NA	0		NM (purged			
	11/13/2017	<20.0	<5.0	<5.0	<15.0	< 5.0		ll not sampled -		<5.0	<5.0	<5.0	<5.0	<5.0	INA	NA	NA	NA		t sampled - Dry.	IVIVI (purgea	ана затріев	i via bailer)	
	3/20/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<i>S</i> <5.0	<5.0	<5.0	<5.0	<5.0	<5.0					Well Hol	sumpleu - Dry.				
	6/18/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	12/4/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	6/10/2019	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	11/19/2019	\20.0	\(\sigma\).0	\(\) .0	<15.0	₹3.0		ll not sampled -		<u> </u>	₹3.0	₹3.0	₹3.0	₹3.0			MDE det	ermined that	reporting geod	chemical paramet	ers was no long	er required		
	5/20/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
	11/16/2020	120.0	12.0	(2.0	(15.0	12.0		ll not sampled -		12.0	~2.0	12.0	(2.0	\2.0										
	6/3/2021	<20.0	<2.0	<2.0	<15.0	< 2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
MW-7A	9/3/2008		421	<125	5,710	<125	<125	<125	7.510	<125	<125	<125	<125	<125										
11111 //1	12/9/2009	<1,000	445	68.0	3,280	<250	<250	<250	6,640	<250	<250	<250	<250	<250										
	4/28/2010	NA	442	65.9	4,810	0.5 J	13.1	4.0	5,770	8.6	<0.5	<0.2	11.9	<0.4										
	5/20/2010	410 J	452	61.0 J	6,650	<200	<200	<200	6,600	<200	<200	<200	<200	<200				Prior	to Natural Att	enuation Monitor	ing Period			
	4/27/2012	<250	276	<12.3	4,380	<8.9	<16.2	<12.6	4,700	<17.1	<13.5	<17.0	<10.8	<15.3										
	6/6/2013	< 500	146	<125	1,270	<125	<125	<125	2,390	<125	<125	<125	<125	<125										
	8/12/2015	<200	57.8	<50.0	953	<50.0	< 50.0	<50.0	1,160	<50.0	<50.0	<50.0	<50.0	< 50.0	< 0.0060	0.072	5.9	6.9	0	34.1	0.409	5.58	285.6	14.16
	11/19/2015	<200	34.2 J	<50.0	303	< 50.0	< 50.0	<50.0	752	<50.0	<50.0	<50.0	< 50.0	< 50.0	< 0.0057	0.061	6.3	4.6	0	4.0	0.415	4.96	223.3	14.36
	2/25/2016	<100	46.9	<25.0	452	<25.0	<25.0	<25.0	917	<25.0	<25.0	<25.0	<25.0	<25.0	< 0.0082	0.064	6.1	6.0	0	3.4	0.392	5.37	228.2	12.53
	6/16/2016	<100	38.3	<25.0	329	<25.0	<25.0	<25.0	557	<25.0	<25.0	<25.0	<25.0	<25.0	< 0.0056	0.064	6.0	5.8	0	3.5	0.389	5.35	187.3	15.03
	11/16/2017	<60.0	20.4	<15.0	253	<15.0	<15.0	<15.0	332	<15.0	<15.0	<15.0	<15.0	<15.0	< 0.0057	0.0518	6.6	4.7	0	13.6	0.371	4.77	326.3	14.02
	3/20/2018	<40.0	18.4	<10.0	151	<10.0	<10.0	<10.0	282	<10.0	<10.0	<10.0	<10.0	<10.0					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	6/21/2018	<20.0	12.1	<5.0	67.8	< 5.0	< 5.0	< 5.0	210 E	<5.0	< 5.0	< 5.0	< 5.0	< 5.0										
	12/5/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	9.3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0										
	6/11/2019	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0			MDE J.	arminad that	ranortina acc	chemical paramet	are was no lo	ar raquinal		
	11/20/2019	<20.0	< 2.0	<2.0	<15.0	<2.0	< 2.0	<2.0	13.3	<2.0	<2.0	<2.0	< 2.0	< 2.0			MDE det	erminea inat	reporting geod	летісш рағатет	ers was no tong	г гецигеа		
		<20.0	< 2.0	< 2.0	<15.0	< 2.0	< 2.0	< 2.0	1.2 J	<2.0	< 2.0	< 2.0	< 2.0	<2.0										
	5/19/2020	<20.0	\2.0	(210																				
	5/19/2020 11/17/2020	<20.0	<2.0	<2.0	<15.0	<2.0	< 2.0	<2.0	3.9	<2.0	<2.0	<2.0	<2.0	< 2.0										

Well	Date							VOCs											Geochen	nical Parameters				
		TAA	TAME	Benzene	TBA	sec-Butyl	DIPE	Isopropyl	MTBE	Naphtha-	1,2,4-	1,3,5-	o-Xylene	m,p-Xylene	Methane	Manganese	Nitrate	Sulfate	Ferrous		Conductivity	pН	Oxidation/	Temperature
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	benzene	(ug/L)	benzene	(ug/L)	lene	Trimethyl	Trimethyl	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(as N)	(mg/L)	Iron	Oxygen (DO)	(mS/cm)		Reduction	(°C)
						(ug/L)		(ug/L)		(ug/L)	benzene (ug/L)	benzene (ug/L)					(mg/L)		(mg/L)	(% of saturation)			Potential	
MDE GW Sta	ndard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	5.6E+00	6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na	na	na	na	na	na
MW-7B	09/2008						Well not so	ampled - instal	led in 2009.															
	12/9/2009	< 500	273	<125	2,170	<125	<125	<u><125</u>	<u>3,910</u>	<u><125</u>	<u><125</u>	<12 <u>5</u>	<125	<125										
	4/29/2010	NA	135	<0.3 <50.0	555	<0.4 <50.0	3.4 J	<0.2 <50.0	1,650	<0.5 <50.0	<0.5 <50.0	< 0.2	<0.1 <50.0	<0.4				Prior to	to Natural Atte	enuation Monitor	ing Period			
	5/19/2010 4/27/2012	<200 <10.0	120 <0.3	<0.5	<150 <9.8	<0.4	<50.0 <0.6	<0.5	1,770 26.1	<0.7	<0.5	<50.0 <0.7	<0.4	<50.0 <0.6										
	6/6/2013	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	8/12/2015	<20.0	5.1	<5.0	64.9	<5.0	< 5.0	<5.0	143	<5.0	< 5.0	<5.0	< 5.0	< 5.0	< 0.0060	2.08	0.7	3.6	0	22.6	0.404	6.76	205.9	17.70
	11/19/2015	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0065	0.334	0.8	1.8	0	10.8	0.390	6.53	125.8	14.02
	2/25/2016	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	16.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0053	<u>0.096</u>	11.8	2.3	0	53.2	0.167	5.28	212.4	11.31
	6/16/2016	<20.0	<5.0	< 5.0	<15.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	< 0.0072	0.176	10.9	3.3	0	39.9	0.183	5.26	224.7	15.77
	11/16/2017	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0057	<u>0.186</u>	11.9	3.1	0	37.2	0.192	4.70	360.1	13.13
	3/19/2018 6/22/2018	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	-									
	12/5/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1									
	6/11/2019	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			MDE			.1 1				
	11/20/2019	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0]		MDE det	ermined that r	reporting geoc	chemical paramet	ers was no longe	er required		
	5/19/2020	<20.0	<2.0	< 2.0	<15.0	< 2.0	<2.0	< 2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
	11/17/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
) (IV. 7D	6/7/2021	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	< 2.0	<2.0	<2.0										
MW-7R	09/2008 12/9/2009	<400	165	<100	1,420	vell not sampled	- installed in <100	2009. MW-/ w <100	as dry. MW-/. 2.210	R replaced MV <100	/-/. <100	<100	<100	<100										
	4/29/2010	NA	255	6.8	2,710	<0.4	4.8 J	0.4 J	2,210	1.6	<0.5	<0.2	1.4	<0.4										
	5/19/2010	<500	205	<130	1,810	<130	<130	<130	2,850	<130	<130	<130	<130	<130				Prior to	to Natural Atte	enuation Monitor	ing Period			
	4/27/2012	<29.9	27.5	<1.5	284	<1.1	<1.9	<1.5	455	<2.0	<1.6	<2.0	<1.3	<1.8	1									
	6/6/2013	57.1	11.6	<10.0	94.7	<10.0	<10.0	<10.0	<u>188</u>	<10.0	<10.0	<10.0	<10.0	<10.0										
	8/12/2015	<80.0	23.9	<u><20.0</u>	180	<20.0	<20.0	<20.0	<u>447</u>	<u><20.0</u>	<u><20.0</u>	<20.0	<20.0	<20.0	< 0.0055	0.595	6.0	24.6	0	33.0	0.286	5.35	286.5	17.43
	11/19/2015	<20.0	3.9 J	<5.0	<15.0	<5.0	< 5.0	<5.0	<u>95.1</u>	<u><5.0</u>	< 5.0	<5.0	<5.0	< 5.0	< 0.0055	0.491	6.2	28.6	0	13.4	0.274	4.81	252.1	16.77
	2/26/2016 6/16/2016	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	12.4 17.4	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.0052 <0.0065	0.254 0.354	5.6 6.2	30.6	0	44.0 22.2	0.200 0.236	5.18 4.99	219.1 220.1	13.22 16.08
	11/16/2017	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	11.5	<5.0	<5.0	<5.0	<5.0	<5.0	<0.0058	0.256	7.5	22.8	0	26.3	0.236	4.59	345.8	16.10
	3/20/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	13.9	<5.0	<5.0	<5.0	<5.0	<5.0	10.0000	00200			· ·		0.250		2.5.0	10.10
	6/21/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0										
	12/5/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0										
	6/11/2019	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	< 5.0	< 5.0	< 5.0			MDE det	termined that r	reporting geoc	chemical paramet	ers was no long	er reauired		
	11/20/2019	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	2.3	<2.0	<2.0	<2.0	<2.0	<2.0					7	,		4		
	5/19/2020 11/17/2020	<20.0 <20.0	<2.0 <2.0	<2.0 <2.0	<15.0 <15.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0	<2.0	<2.0 <2.0	-									
	6/7/2021	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
Lot 4 Well	8/29/2008	<10.0	<0.5	<0.5	<10.0	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5										
	12/10/2009	<20.0	<5.0	<5.0	<15.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0]									
	4/30/2010	NA	< 0.3	< 0.3	<2.6	< 0.4	< 0.3	< 0.2	< 0.4	< 0.5	< 0.5	< 0.2	< 0.1	< 0.4				Prior to	to Natural Atta	enuation Monitor	ing Period			
	5/17/2010	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0				1110111						
	4/26/2012	<10.0	<0.3	< 0.5	< 9.8	< 0.4	< 0.6	< 0.5	< 0.3	<0.7	< 0.5	< 0.7	<0.4	< 0.6	-									
	6/4/2013 8/11/2015	<20.0 <20.0	<5.0 <5.0	<5.0 <5.0	<15.0 <15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	< 0.0061	< 0.010	7.1	5.8	0	66.8	0.644	5.34	280.6	15.33
	11/17/2015	<20.0	<5.0 <5.0	<5.0 <5.0	<15.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	0.0056	<0.010	6.9	4.1	0	83.6	0.883	5.34	179.2	15.55
	2/23/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 0.0053	< 0.010	<0.4	4.0	0.25	53.4	0.668	5.92	136.6	12.35
	6/13/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 0.0056	< 0.010	8.1	4.0	0	52.9	0.611	6.10	125.4	14.82
	11/14/2017	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.0061	< 0.010	7.7	5.3	0	57.8	0.682	5.65	328.7	14.01
	3/19/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	< 5.0	< 5.0	< 5.0	<u><5.0</u>	< 5.0	<5.0	< 5.0	< 5.0	ļ									
	6/18/2018	<20.0	< 5.0	< 5.0	<15.0	< 5.0	<5.0	<5.0	<5.0	<u><5.0</u>	< 5.0	< 5.0	<5.0	< 5.0										
	12/4/2018 6/9/2019							Vell not sample							-									
	11/19/2019							Vell not sample Vell not sample							-		MDE det	termined that r	reporting geoc	chemical paramet	ers was no longe	er required		
	5/19/2020							veu not sampte Vell not sample							1									
	11/16/2020							Vell not sample																
	6/4/2021							Vell not sample							<u> </u>									

Table 4

Historical Summary of Groundwater Sample Results

George's Deli & Gas and Victoria Farms

602 Deer Park Road and 2139 Sykesville Rd, Westminster, Maryland

Select Detected Petroleum Hydrocarbon Volatile Organic Compounds (VOCs) and Geochemical Parameters

Well	Date							VOCs											Geochei	mical Parameters	3			
		TAA (ug/L)	TAME (ug/L)	Benzene (ug/L)	TBA (ug/L)	sec-Butyl benzene (ug/L)	DIPE (ug/L)	Isopropyl benzene (ug/L)	MTBE (ug/L)	Naphtha- lene (ug/L)	1,2,4- Trimethyl benzene (ug/L)	1,3,5- Trimethyl benzene (ug/L)	o-Xylene (ug/L)	m,p-Xylene (ug/L)	Methane (mg/L)	Manganese (mg/L)	Nitrate (as N) (mg/L)	Sulfate (mg/L)	Ferrous Iron (mg/L)	Dissolved Oxygen (DO) (% of saturation)		pН	Oxidation/ Reduction Potential	(°C)
DE GW Sta	andard	na	na	5.0E+00	na	na	na	4.5E+01	2.0E+01	1.7E-01	5.6E+00	6.0E+00	1.0E+04	1.0E+04	na	4.3E-02	na	na	na	na	na	na	na	na
Lot 7 Well	9/2/2008	<2,500	293	<12 <u>5</u>	3,170	<125	<125	<12 <u>5</u>	<u>5,820</u>	<125	<12 <u>5</u>	<125	<125	<125										
	12/10/2009	<1,000	<475	<u>79.0</u>	4,630	<250	<250	<u><250</u>	<u>7,510</u>	<u><250</u>	<u><250</u>	<250	<250	<250										
	4/30/2010	NA	473	<u>74.2</u>	5,350	1.3	14.5	4.1	<u>6,640</u>	<u>9.0</u>	< 0.5	< 0.2	13.6	< 0.4				Prior	to Natural At	tenuation Monitor	ing Period			
	5/17/2010	<1000	461	<u>78.0</u> J	8,790	<250	<250	<250	<u>6,880</u>	<u><250</u>	<250	<250	<250	<250				1.10.						
	4/27/2012	<499	350	<24.5	5,580	<17.8	<32.4	<25.3	<u>6,290</u>	<34.1	<27.0	<34.0	<21.7	<30.7										
	6/4/2013	< 500	227	<u><125</u>	1,670	<125	<125	<125	<u>4,050</u>	<125	<125	<125	<125	<125					1		1 1		1	1
	8/14/2015	< 500	120 J	<u><125</u>	2,410	<125	<125	<125	<u>2,720</u>	<125	<125	<125	<125	<125	0.0053	<u>0.046</u>	5.5	4.8	0	705.3*	0.533	6.23	275.2	14.30
	11/20/2015	<200	80.2	<u><50.0</u>	667	< 50.0	<50.0	<50.0	1,630	<50.0	<50.0	<50.0	<50.0	< 50.0	0.0101	0.037	5.7	3.3	0	3.0	0.535	5.11	78.8	13.89
	2/26/2016	<200	97.4	<u><50.0</u>	1,670	<50.0	<50.0	<u><50.0</u>	2,490	<u><50.0</u>	<u><50.0</u>	<u><50.0</u>	<50.0	<50.0	0.0076	0.028	5.6	3.8	0	3.1	0.532	5.45	205.1	12.53
	6/16/2016	<100	73.4 J	<u><25.0</u>	719	<25.0	<25.0	<25.0	<u>1,430</u> E	<u><25.0</u>	<25.0	<u><25.0</u>	<25.0	<25.0	< 0.0058	0.029	6.1	6.2	0	3.4	0.514	5.45	172.3	14.00
	11/17/2017	<200	69.2	<u><50.0</u>	901	< 50.0	<50.0	<u><50.0</u>	1,060	<50.0	<50.0	<50.0	< 50.0	< 50.0	< 0.0064	0.034	5.4	3.3	0	11.4	0.491	4.92	277.0	13.29
	3/23/2018	<100	56.3	<u><25.0</u>	609	<25.0	<25.0	<25.0	<u>814</u>	<u><25.0</u>	<u><25.0</u>	<u><25.0</u>	<25.0	<25.0										
	6/22/2018	<100	47.1	<u><25.0</u>	507	<25.0	<25.0	<25.0	<u>734</u>	<u><25.0</u>	<u><25.0</u>	<u><25.0</u>	<25.0	<25.0										
	12/6/2018	<40.0	23.1	<u><10.0</u>	120	<10.0	<10.0	<10.0	<u>372</u>	<10.0	<10.0	<10.0	<10.0	<10.0										
	6/12/2019	<40.0	16.1	<u><10.0</u>	219	<10.0	<10.0	<10.0	<u>289</u>	<10.0	<10.0	<10.0	<10.0	<10.0			MDE det	ermined that	reporting geo	chemical parame	ters was no longe	er reauired		
	11/21/2019	<60.0	15.0	<u><6.0</u>	159	< 6.0	< 6.0	< 6.0	<u>291</u>	<u><6.0</u>	<u><6.0</u>	< 6.0	< 6.0	< 6.0			in B B det	critica mai	reporting 800	enemiea parame	ers was no tonge	or required		
	5/21/2020	<40.0	12.6	<4.0	109	<4.0	<4.0	<4.0	<u>259</u>	<u><4.0</u>	<4.0	<4.0	<4.0	<4.0										
	11/18/2020	<40.0	13.2	<4.0	260	<4.0	<4.0	<4.0	<u>280</u>	<u><4.0</u>	<4.0	<4.0	<4.0	<4.0										
	6/8/2021	<40.0	13.3	<4.0	112	<4.0	<4.0	<4.0	<u>254</u>	<4.0	<4.0	<4.0	<4.0	<4.0										
inel Well	9/5/2008 12/7/2009 4/30/2010 5/18/2010 4/24/2012							ampled - install										Prior	to Natural At	tenuation Monitor	ing Period			
	6/5/2013	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	< <u>5.0</u>	<5.0	<5.0	<5.0	< 5.0	0.00.50	0.010		1.0	1	1	1 0.450	7.00	200.2	1.00
	8/11/2015	<20.0	<5.0	< 5.0	<15.0	< 5.0	< 5.0	<5.0	<5.0	<u><5.0</u>	<5.0	< 5.0	<5.0	< 5.0	<0.0063	< 0.010	6.9	<1.0	0	54.6	0.170	5.23	309.2	16.25
	11/17/2015	<20.0	<5.0	< 5.0	<15.0	< 5.0	<5.0	<5.0	<5.0	<u><5.0</u>	<5.0	< 5.0	< 5.0	< 5.0	<0.0055	<0.010	7.3	<1.0	0	73.0	0.212	4.97	191.8	13.72
	2/23/2016	<20.0	<5.0	<5.0	<15.0	< 5.0	< 5.0	<5.0	<5.0	<u><5.0</u>	<5.0	< 5.0	<5.0	< 5.0	<0.0050	0.040	7.0	<1.0	0	46.6	0.168	5.45	156.2	12.80
	6/13/2016	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	< <u>5.0</u>	<5.0	<5.0	<5.0	<5.0	<0.0056	< 0.010	7.2	<1.0	0	52.1	0.160	5.42	175.5	14.37
	11/14/2017	<20.0	<5.0	< 5.0	<15.0	<5.0	< 5.0	<5.0	<5.0	<u><5.0</u>	<5.0	< 5.0	<5.0	< 5.0	< 0.0063	< 0.010	7.2	<1.0	0	45.1	0.171	5.11	316.4	14.07
	3/19/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	6/19/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0										
	12/3/2018	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0										
	6/6/2019	<20.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<u><5.0</u>	<5.0	<5.0	<5.0	<5.0			MDE det	ermined that	reporting geo	chemical parame	ters was no longe	er required		
	11/18/2019	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0						•	· ·	•		
	5/18/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
	11/16/2020	<20.0	<2.0	<2.0	<15.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0										
	6/2/2021	<20.0	< 2.0	< 2.0	<15.0	< 2.0	< 2.0	< 2.0	< 2.0	<u><2.0</u>	<2.0	<2.0	< 2.0	<2.0										

Analytical Methods for Groundwater Samples: VOCs - EPA Method 8260B (September 2008 Samples: VOCs - EPA Method 524.2); Methane - EPA Method 8015M; Manganese - EPA Method 200.7; Nitrate and Sulfate - EPA Method 300.0; and Ferrous Iron - Hach color disc test kit. μg/L - micrograms per liter or parts per billion (ppb)

mg/L - milligrams per liter or parts per million (ppm)

- < Analyte not detected above the specified Method Detection Limit (MDL) or Method Reporting Limit (MRL) (shown as a gray tone).
- J The reported concentration is less than the MRL but greater than the MDL. The concentration is considered to be estimated.
- K Result taken from alternate analysis. Sample analyzed at a higher dilution factor to allow calibration of this analyte.
- E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

Bold - Detected analyte concentration. In cases where a sample had a duplicate, the higher result (sample or duplicate result) or lower MDL/MRL is reported.

na - Not Applicable NA - Analyte not analyzed.

NM - Parameter not measured. * - Erroneous Reading

TAA - tert-Amyl alcohol

TAME - tert-Amyl methyl ether TBA - tert-Butanol

DIPE - Diisopropyl ether MTBE - Methyl tert-butyl ether

Screening Evaluation Notes:

MDE GW Standards: MDE Groundwater Cleanup Standards for Type I and II Aquifers (October 2018)

<u>Underline</u> - MDL or MRL exceeds the respective MDE GW Standard.

Red, bold, and underline - Detected analyte concentration exceeds the respective MDE GW Standard.

Additional Screening Level Notes:

MDE Groundwater Standard **Analyte**

m+p-Xylenes Total Xylenes o-Xylene Total Xylenes

ATTACHMENT A GROUNDWATER SAMPLING LOGS

LOCATION	Site: Victoria Farms - George's De	eli & Gas	LocID:	H-1	4			Date: C	6 104	21		
LOCATION	Project Name: Victoria Farms - Geo	rge's Deli & Gas	Project #:	CG-08-034	8			Recorded B	By: M19	Checke	d By:	
		\sim										
EQUIPMENT	Water Level Indicator Type/ID #:	Heron Willor H.Oil IFP	Sampling	Equipment: H	F Scientific Mi	cro TPW turbidity me	eter, Proactive®	Equipment	Decon.: 1. So	apy wash, 2	2. Potable wa	iter rinse,
EGOILMENT	PID Type/ID #: NA		Hurricaine	2" low-flow s	ubmersible pu	mp w/ controller, and	I HDPE tubing	3. Distilled	water rinse.			
	Casing I.D. (in) [a]:	8	Water Col	umn Thicknes	ss (ft) [d-c]:	14.98		Ambient Pl	D (ppm):	N	A	
WELL	Unit Casing Volume (gal/lin ft) [b]:	2.6	Well Volur	ne (gal) {[d-c]	x b}:	38.95		Well Mouth	PID (ppm):	N	A	
INFO	Initial Depth to Water (ft) [c]	51.04	Screened	Interval (ft TC	OC):	25-65	5	Ground Co	ndition of Wel		_	
	Total Well Depth (ft) [d]:	66.02	Pump dep	th (ft TOC):	59	Pump depth (ft b	gs):	Remarks:	TOC=	0.44	171 8	ig .
CASING	Casing I.D. (in) [a]:		1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing Volume (gal/lin ft) [b]:		0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6

Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/04/21	13:05	51.10	0	0	0.25				1	-/-		NA	Started: clear
	13:10	51.47	0.37	1.25	0.25	6.86	0.148	146.9	9,78:	19.9/3,04	14.32	NA	Clear
	13:15	51.75	0.28	2.50	0.25	6.83	0.137	147.0	9.40 9	78/2.84	14.82	NA	
	13:20	52.18	0.43	3.75	0.25	6.76	0.163	146.9	9,79:	4.6/252	14.31	NA	
	13:25	52,48	0.30	5.00	0.25	6.74	0.160	146.8	16.05	3.7/2.43	14.22	NA	
	13:30	52,79	0.31	6.25	0.25	6.73	0.162	146.5	11.65:	13.4 12.40	14:27	- NA	
	13:35	53 11	0.33	7.50	0.25	6.72	0.171	146.0	10.23	3.22.37	14.31	NA	
Dumping Potos <=0	13:40		0.36	8.75	0.25	271	0.152	145.7		12.9/2.33	14.42	NA	V

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)		No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump QR Bailer	Parameter(s)
H-1A 6/4/21 1	3:40	3 40-mL borosilicate glass vials	HCI	N	Pump	VOCs 8260
The Little of the t	0.10			-		
		i.				

MONITORING WELL SAMPLE COLLECTION FORM

LOCAT	LION	Site: Victori	a Farms - Ge	orge's Deli &	Gas		LocID:	H-6				Date:	6121	200	김	
LOOK		Project Nam	e: Victoria Far	ms - George's	Deli & Gas		Project #.	: CG-08-0348				Recorded B	y: MIS	Check	ed By:	
EQUIPM	VIENI I	Water Level PID Type/ID		e/ID#: Heer NA	(Solinst Model-	a WLI	10 10	55		TPW turbidity me w/ controller, and		Equipment 3. Distilled v	Decon.: 1. Soa vater rinse.	py wash,	2. Potable wat	er rinse,
		Casing I.D. (in) [a]:		4		Water Co	olumn Thickness	(ft) [d-c]:	22 27		Ambient PII) (ppm):	N	IA	1474747474747474
WEL	ı [Unit Casing	Volume (gal/lir	n ft) [b]:	0.65		Well Volu	ıme (gal) {[d-c] x	b: 14.5	(X3=	43.4)	Well Mouth	PID (ppm):	١	IA	
INF	0	Initial Depth	to Water (ft) [c) 	48.35	Š.	Screened	Interval (ft TOC		32-72	•		ndition of Well:	O	K_	
		Total Well D	epth (ft) [d]:		70.62		Pump de	pth (ft TOC): 5	59.5	Pump depth (ft b	gs): 60.75	Remarks:	TOC=	1.2	5113	a l
CASI	,	Casing I.D. (W:	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INF	0	Unit Casing	Volume (gal/lir	n ft) [b]:		10	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
												وسيرسا				
Dat	e	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	pН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	(0	Remarks dor, clarity, e	tc.)
06/02	/ 21	1इ:51	48.03	0	0	0,25	_		-)	/	1	NA	Sta	rtealc	leas
		15:55	49.85	1.82	1.0	0.25	691	0.210	136.7		A.0/2.7E	TH:46	NA	Cles	~ /	
		16:00	50,47	0-62	2.0	0.2	6.75	0.184	146.1	11.55	\$57.57	14,73	NA			
		16:05	51.20	0.73	3.5	0.3	6.72	0,172	148.6	12.18	24,4/2,43	14.62	NA			
		16:10	51.38	0.18	6.0	0.3	6.71	0-169	148.4		2.8/230		NA			
		16:15	51.55	6.17	6.0	0.2	6.71	0.169	148.5		21.8/2.20	14.89	NA			
		16:20	51.62	0.07	7.0	0.2	6.71	0.162	147.6	7.22	81.1/2.13	15.04	NA		_	7.5

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
H-6 6/2/21 16:3	3 40 m L borosillicate vials	HCL	N	rung	NoCs 8260

LOCA	ATION	Site: Victori	ia Farms - Ge	orge's Deli &	Gas		LocID:	MW-				Date: C	6103/	2021		
		Project Nam	e: Victoria Fai	rms - George's	Deli & Gas		Project #:	CG-08-0348				Recorded I	By: MIS	Checked B	y:	
EQUIP	MENT	Water Level PID Type/ID		e/ID#: HeGo NA	Λ Solinst-Model 1	H-WLI				TPW turbidity me w/ controller, and			Decon.: 1. Soa water rinse.	ipy wash, 2. Po	table wat	er rinse,
		Casing I.D. (in) [a]:		2		Water Co	lumn Thickness	(ft) [d-c]:	27.96		Ambient PI	D (ppm):	NA		
WE		Unit Casing	Volume (gal/li	n ft) [b]:	0-16		Well Volu	me (gal) {[d-c] x	b): 4,45	7 (X3=	=13.42	Well Mouth	PID (ppm):	NA	898	
INI	FO	Initial Depth	to Water (ft) [c]:	55.64	i	Screened	Interval (ft TOC): U	nknow		Ground Co	ndition of Well:	old-no	e he	1+9
		Total Well D	epth (ft) [d]:		83.60		Pump de	pth (ft TOC):	70	Pump depth (ft b			No ma			19
										C=0.67	H-BG		2 COV	u i	7)	
CAS		Casing I.D. (1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
IN	FO	Unit Casing	Volume (gal/li	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
Da	ite	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp.	Salinity	1	emarks clarity, e	etc.)
06/0	3/2	11:55	55.65	0	0	0.2	-		_	~	-/-		NA	8:14	3	ncha
		12:00	56.45	0.80	1.0	0.2	7.05	0.183	137.8	776.6	6.2/47:	314.06	NA	17)	24 / 50
			56.56		2.0	0.2	5.84	0.223	152.9		10.2/4.14		NA	Vestic	Jou	1
		12:10.	56.60	0.09	3.5	0.3	1/ /	0.172	156.0	114.33	7.013.82	13.80	NA	Clay	Ju	ag .
		12:15.	56.61	0.0	4.5	0.21	6.73	0.212	155.8	58.17	35.1/3.68	13.61	NA (Clear	sha	
		18:20	56.79	0.18	5.5	0.2	6.70	0.189	157.6	25-CH	3,53,47	13.64	NA	Clear)	
		12 25	56.75	-0.09	7.0	0.3	6.70	0.201	156.8	15,52	31.98.31	13.57	- NA			
	<u></u>	12:30		-0.03	8.0	0.2			156.9		30.98.22		NA	V		
Pumping	Rate: <=().5 L/min D	rawdown: <	0.33 ft Mea	surements: 3-5	min Stabiliz	ation: +/-	0.1 pH, +/- 3% c	conductivity, +/-	10 mv redox pot.,	+/- 10% turb (<=	10 NTU idea	al), and +/- 10%	DO for 3 cons	ecutive re	adings
Sample ID) #(s)/Tim	ne(s)				No. Containe	rs/Volume	/Туре		Preserv.	Filter (Y/N)	Pump OR I	Bailer	Parameter(s)		
MI	<i>w</i> -	1 6/4	4/21	12:30	,	3 40	mL	glass	Plair	HCl	N	Pu	mp	Voce		<i>GO</i>

LOCATION	Site: Victor	ia Farms - Ge	eorge's Deli &	Gas		LocID:	MW-	1A			Date: O	6 108	1206	21	
200/111011	Project Nam	ne: Victoria Fai	rms - George's	s Deli & Gas		Project #:	CG-08-0348	}			Recorded E	By: MS	Check	ed By:	
EQUIPMENT		Indicator Type	2000	Heron WLI or H	.Oil IFP	-			TPW turbidity m			Decon.: 1. So	apy wash,	2. Potable wa	ater rinse,
Colorerererererere	PID Type/ID) #: ====================================	NA			Hurricaine	e 2" low-flow su	bmersible pump	w/ controller, an	d HDPE tubing	3. Distilled	water rinse.			
	Casing I.D.			4		+	lumn Thickness		96.2		Ambient Pl	D (ppm):	N	Α	
WELL		Volume (gal/li		0.65		Well Volu	me (gal) {[d-c] >	(b): 56.0	74 (X3	= 168)	Well Mouth	PID (ppm):	Ŋ	Α	
INFO	Initial Depth	to Water (ft) [c]:	57,10	2	Screened	I Interval (ft TO	C):	105-1	45		ndition of Well	Old	mo no	bolts
	Total Well D	epth (ft) [d]:	st. This participate the Color	143.3	2	Pump de	pth (ft TOC):	125	Pump depth (ft	ogs): 125,5	Remarks:	Toc=	0,5	# BG	→
CASING	Casing I.D.		60 FL 1			1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	n π) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
		Water		Volume	D	Т 1	04			1			1		
Date	Time	Level	Draw-	Removed	Pumping Rate	Hq	Conduc- tivity	Redox	Turb.	DO	Temp.	Salinity		Remarks	
	(24 hr)	(FTOC)	down	(Gal)	(gal/min)	ļ	(mS/cm)	Potential	(NTU)	(% / mg/L)	(C)	Jannity	(0	dor, clarity,	etc.)
06/08/21	09:32	57,10	0	0	0.33	-	1			-/-		NA	Glas	tedio	ear
	69:35	57.95	0.85	1.0	0.33	6.89	0,331	153.5	2.54	28.7/3.00	12.98	NA	Cles		
	09:40	58.2C	0.31	2,0	0.20	6.71	0.341	153,4	1.84	13,9/2.51	12.98	NA			
	09:45	58.28	0.02	3.0	0.20	6.65	0,342	154.4	3.67	215/22	H3.00	2 NA			
	09:50	58.30	0.02	4.5	0.30	6.63	0.340	54.1	3.82	19.3/203	13.09	NA			-
	09:55	58.23	0.07	5.5			0.339	153.6	3,67	1791.87	13.07	NA			
		58.15		6.5			0.339	153-8	2.71	15.9/1.66	13.22	- NA			
W	10:05	58,08	0.07	7.5	0.20			153.7	2.43	15601.64	13.21	NA NA		180	do La
Pumping Rate: <		rawdown: <		surements: 3-5	min Stabiliz					, +/- 10% turb (<=	10 NTIL idea		DO for 3	Ogur.	TIM

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
MW-1A 06/08/21 10:05	3 40-mL borosilicate glass vials	HCI	N	Pump	VOCs 8260
1100 11 00/00/14 10 10				1	

VOCs 8260

MONITORING WELL SAMPLE COLLECTION FORM

LOCATION	Site: Victor	ia Farms - Ge	eorge's Deli &	Gas		LocID:	MW-	2			Date: O	6/071	2021		
LOGATION	Project Nam	ne: Victoria Fa	rms - George's	s Deli & Gas		Project #	: CG-08-0348	3		4	Recorded B	By MIS	Checked B	y:	
EQUIPMENT	Water Level	Indicator Typ	e/ID#:	Heron WLI or H	.Oil IFP	-			TPW turbidity m	•	1 ' '		apy wash, 2. Po	table wat	er rinse,
	PID Type/ID) #:	NA	entermitation and Ligarian Co.		Hurricain	e 2" low-flow su	bmersible pump	w/ controller, and	d HDPE tubing	3. Distilled	water rinse.			
	Casing I.D.	(in) [a]:		2		Water Co	olumn Thickness	s (ft) [d-c]:	31.7	7 、	Ambient Pl	D (ppm):	NA		
WELL	Unit Casing	Volume (gal/li	in ft) [b]:	0.16		Well Volu	ıme (gal) {[d-c] >	(b): 5.08	(X3	= 15.3)	Well Mouth	PID (ppm):	NA		
INFO	Initial Depth	to Water (ft) [51,95		Screened	Interval (ft TO	C):	Unkno	Men	Ground Co	ndition of Well:	06	_	
	Total Well D	epth (ft) [d]:	ϵ	3.72		Pump de	pth (ft TOC):	68	Pump depth (ft)	ogs):68.33				#1	35
CASING	Casing I.D.					1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	in ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
		T	,							r			·		
Date	Time	Water Level	Draw-	Volume Removed	Pumping		Conduc-	Redox	Turb.	DO	Temp.	• " "	R	emarks	
Date	(24 hr)	(FTOC)	down	(Gal)	Rate (gal/min)	pH	tivity (mS/cm)	Potential	(NTU)	(% / mg/L)	(C)	Salinity	(odor,	clarity, e	tc.)
06/07/21	13:39	52.04	0	0	0.1	-	-	-	~	-/-		NA	Blarte	LV	cloud
	13:40	5351	0.53	0.1	0.1	7.38	0.424	113.2	99.13	B.4 13.66	16.22	NA	Conc		
		53.84	0.33	0.8	0,14:	7,15	0.421	122.5	1426	24.1 R.83	16.42	NA	Verue	17	du
	13:50	54,36	0.62	1.6	0.14	6.95	0.392	136.0	76.72	21.6/2.13	5.89	NA	Clared		
	13:55	54.42	0.06	2.2	0.12	6.91	0.384	139.8	119-1	20.0/197	16.07	NA	Veryc	1 1	11
	14:00	59.63	0.21	2.9	0.14	6.87	0.385	141.8	115.4	19.6/1.94	15,89	NA	1	V	7
	14:05	54.85	0.22	3.5	0,12	6.85	0.383	142.3	89.56	19.0/1.88	15.77	NA	Cou	Lu -	
V	14:10	54.95	0.10	4,1	0.12	6.84	0.38	141.8	60.61	18.0/1.78	15.99	NA	Dam		mo
Pumping Rate: <=	0.5 L/min C	rawdown: <	0.33 ft Mea	surements: 3-5	min Stabili z	zation: +/-	0.1 pH, +/- 3%	conductivity, +/-	10 mv redox pot.	, +/- 10% turb (<=		al), and +/- 10%	6 DO for 3 con	ecutive re	eadings
Sample ID #(s)/Tin	ne(s)				No. Containe	rs/Volume	/Type		Preserv.	Filter (Y/N)	Pump OR	Railor	Parameter(s)		
	. ,									1. 1101 (1114)		Danel	I arameter(5)		

HCI

3 40-mL borosilicate glass vials

MW-2 06/07/21 14:10

LOCATION	Site: Victor	ia Farms - Ge	eorge's Deli 8	Gas		LocID;	MW-4				Date: (36 103	202	21	
200711010	Project Nam	ie: Victoria Fa	rms - George'	s Deli & Gas		Project #	#: CG-08-034	8	8,		Recorded	4	Checke		
EQUIPMENT	Water Level	Indicator Typ	e/ID#: Hela	Solinet-Model	101 WLI	Sampling	g Equipment: H	Scientific Micro	o TPW turbidity m	eter, Proactive®	Equipment	Decon.: 1. Soa	apv wash. 2	2. Potable w	ater rinse
	PID Type/ID	#:	NA			Hurricair	ne 2" low-flow su	ıbmersible pum _l	p w/ controller, an	d HDPE tubing		water rinse.	,,		
	Casing I.D.			2		Water Co	olumn Thicknes	s (ft) [d-c]:	10.9	2 ~	Ambient P	ID (ppm):	N	A	alajutatatatuturu-12
WELL		Volume (gal/li		0.16		Well Vol	ume (gal) {[d-c] :	x b}: 1.75	5 (X3:	5,24)	Well Mouth	n PID (ppm):	N.	A	
INFO	Initial Depth	to Water (ft) [c]:	57.47	7	Screene	d Interval (ft TO			8	Ground Co	ondition of Well:	012	no	ooHs
	Total Well D	epth (ft) [d]:		68.39	7	Pump de	epth (ft TOC):	63'	Pump depth (ft l	98)63.52	Remarks:	TOC =			3G
CASING	Casing I.D.					1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
							_								
Date	Time	Water Level	Draw-	Volume Removed	Pumping Rate	На	Conduc- tivity	Redox	Turb.	DO	Temp.	Salinity		Remarks	
	(24 hr)	(FTOC)	down	(Gal)	(gal/min)	P	(mS/cm)	Potential	(NTU)	(% / mg/L)	(C)	Salinity	(00	dor, clarity,	etc.)
06/03/21	10:53	57.24	0	0	0.25	-	_	_		-/-	_	NA	Clar	ide 8	Jarte
	10:55	58.3	0.89	0.5	0.25	6.81	0.080	153.8	171.1	76.17.60	13.92	NA	- 1	-	11-04 100
	11:00	5791	0.22	1.5	0.20		0.078			46.64.7	14.79	NA	0	เร ยพ	ml.co
	11:05	Were	wh	Low				P. C. S. C.	A COL	dnoto	1000			13 500	.) 4
	11:10	flow	·The						in the is	17		ades	Stal	peo	TUMA
	11:15	colu		ound						of the	ort w				
	11:20	3 vo				1	15 44	ISOM	a de la la	ith clea	0	ailed			
V	11:25	2 40	·		- 9 -		ns am	a Jun	npuo w	ith clea	m po	ulear.	4		
Pumping Rate: <=0		rawdown: <	0.33 ft Mea	surements: 3-5	min Stabiliz	ation: +/-	0.1 pH, +/- 3% (conductivity +/-	10 my redox not	+/- 10% turb (<=	10 NTIL idos	NA	DO 6 2 :		
							p ,		To life rodox pot.	·/ 10 /0 tulb (<=	TO NITO IDEA	ai), aliu +/- 10%	DO 101 3 (consecutive	readings
Sample ID #(s)/Tim	e(s)				No. Container	s/Volume	e/Type	1	Preserv.	Filter (Y/N)	Pump OR	Bailer	Paramete	ır(e)	
44.1	/	2/01	11:1	D	3 40	mL	9 293		HO	N	Bai			9 BQ	CA
M W)-4	1 6/3	5/21	11:3				.]	5,000		1.4	Dal	Leci	NU.	000	00

LOCATION	Site: Victori	ia Farms - Ge	orge's Deli	& Gas		LocID:	1/ww-	6			Date: (06 103/	202	2(
LOCATION	Project Nam	ne: Victoria Fa	rms - George	e's Deli & Gas		Project #	: CG-08-0348	3				By: MG			
			.,,												
EQUIPMENT	Water Level	Indicator Type	e/ID#Heso	n-Solinst Model	101-WLI	Sampling	Equipment: HF	Scientific Micro	o TPW turbidity n	neter, Proactive®	Equipment	Decon.: 1. So	apy wash,	2. Potable wa	ater rinse,
EGOIFMEN	PID Type/ID		NA			_			p w/ controller, ar		3. Distilled	water rinse.			
	Casing I.D. ((in) [a]:		2		Water Co	olumn Thickness	s (ft) [d-c]:	6.42	_	Ambient P	ID (ppm):	٨	IA	
WELL	Unit Casing	Volume (gal/li	n ft) [b]:	0.16		Well Volu	ıme (gal) {[d-c] >	(b): 1.03		=3.09)	Well Mouth	n PID (ppm):	. N	IA	
INFO	Initial Depth	to Water (ft) [c]:	66.33		Screened	I Interval (ft TOC		43-7	3	Ground Co	ondition of Well	Old	out ol	Z
**************************************	Total Well D	epth (ft) [d]:	-1-1-1-100000000000	72,79)	Pump de	pth (ft TOC):	70	Pump depth (ft	bgs):70.25	Remarks:	TOC=	-0,2	5#1	3G
CASING	Casing I.D. (1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate	рН	Conduc- tivity	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp.	Salinity	(0	Remarks dor, clarity,	

Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/03/21	10:00	65.85	Ne -	ried w	Sing-	he E	amo	ntew	times	but		NA	Started silty
	6:05		pres	umat	/ IA W	S		lader	Colui	,	otho	NA	1 30111
	10:10		dales	5e- 0	oula	J. M	of Su	star	flow	^		NIA	
	b:15		to be	eilina	- ba	ilee	N AD	o um				NA	
	6:30						•					NA	
	6:25											NA	
	10:30											NA	Sampletimo
V	10:35											NA	Confee time

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
MW-6 6/3/21 Sampletin	2 3 40 mL glass vials	HCI	Ņ	Bailer	VOCS 8260

LOCATION	Site: Victor	ia Farms - Ge	eorge's Deli	& Gas		LocID:	MW-	74			Date: 6	6 167	1200	21	
LOCATION	Project Nam	e: Victoria Fa	rms - George	e's Deli & Gas		Project #:	CG-08-0348	3				By: MIS		ked By:	
EQUIPMENT	Water Level	Indicator Typ	e/ID #:	Heron WLI)r H.	Oil IFP	Sampling	Equipment: HF	Scientific Micr	o TPW turbidity me	ter, Proactive®	Equipment	Decon.: 1. So	apy wash	2. Potable w	ater rinse,
EQUIT MENT	PID Type/ID	#:	NA	ANNUAL CONTRACTOR AND A		Hurricaine	e 2" low-flow su	bmersible pum	p w/ controller, and	HDPE tubing		water rinse.			·
	Casing I.D.	(in) [a]:		4		Water Co	lumn Thickness	s (ft) [d-c]:	74,56	,	Ambient Pl	D (ppm);		NA	
WELL	Unit Casing	Volume (gal/li	in ft) [b]:	0.65		Well Volu	me (gal) {[d-c] :	(b): 48 .5		145)	Well Mouth	PID (ppm)		NA	
INFO	Initial Depth	to Water (ft) [c]:	70.83		Screened	Interval (ft TO	C): [25-14	5	Ground Co	ndition of Wel	Sti	F10.	9000
	Total Well D	epth (ft) [d]:	1	45.39		Pump de	oth (ft TOC):	137.1	Pump depth (ft b	gs): 135	Remarks:	TOC=	2.11	PLOP	25
CASING	Casing I.D. (1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
							Ti-								
	T:	Water		Volume	Pumping	1	Conduc-	_							

Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/07/21	12:22	71.38	0	0	0.40	1		_		-/-		NA	Started char
	12:25	71.54	0.16	1.25	0.40	6.93	0.277	134.6	3.83 8	4.8/2.78	13.34	NA	Clear
	12:30	71.55	0.01	2.50	0.40	£.83	0.276	142,9	3.08 8	21.7/2.26	13.44	NA	
	2:35	71.55	0	4.00	0.30	6.75	0.274	145.7	1.93:	0.4/213	13,47	NA	
	12:40	71.55		5.50	0.30	6.71	0.274	146.0	1.24	195/2.02	13.7·2	NA	
	12:45	71.55	0	6.75	0.25	6.69	0.276	146.0	2.33	18.5/1.91	13.91	NA	
	12:50	71.55	0	8.0	0.25	268	0,279	145.8	2.66	18.1/1.86	14.11	NA	0 11
L V	12:55				-	_				-/-	-	NA	V Sample time

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
MW-7A 6/7/21 12:55	3 40-mL borosilicate glass vials	HCI	N	Yump	VOCs 8260
111 0: 121 12:00				1	
				-	

Date	Time	Water Level	Draw-	Volume Removed	Pumping Rate	рH	Conduc- tivity	Redox	Turb.	DO	Temp.	Salinity		Remarks	
										1,	2.10		1.0	2.0	
INFO	Unit Casing '	Volume (gal/lir	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
CASING	Casing I.D. (in) [a]:				1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0 T	7.0	8.0
	Total Well De	epth (ft) [d]:	2	86.10		Pump der	oth (ft TOC):	155	Pump depth (ft	bgs) 157.32	Remarks:	TOC-	2:	324	AGS
INFO	Initial Depth	to Water (ft) [c	}:	72.02		Screened	Interval (ft TO	c): 2	23 - 2	83	Ground Co	ndition of Well	Chia	SUP/20	200
WELL		Volume (gal/lir		0.65		Well Volu	me (gal) {[d-c] >	(b): 139	(x3=	418)		PID (ppm):		IA ,	-
							lumn Thickness		214.0		Ambient Pl	D (ppm):	1	IA.	
	Casing I.D. (in) foli		- 77		Tw-1 0-	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	/f() f 1 1	~ .						
	THE TYPENE								woodeneer, an		Distilled	water mise.			stationalities
EQUIPMENT	PID Type/ID		NA					bmersible pump				Decon.: 1. So water rinse.	apy wasn,	Z. Potable w	ater rinse,
	Water Level	Indicator Type	e/ID #:	Heron WLI or H.	Oil IFP	Sampling	Fauinment HF	Scientific Micro	TPW turbidity m	eter Proactive®	Equipment	Doggo 1 Co		0 Detekter	
											Interest in the second control of the second	-y. /V(\C	5 Check	ida by.	
LOOATION	Project Nam	e: Victoria Far	ms - George	's Deli & Gas		Project #:	CG-08-0348	3 2 2			Recorded B	By 1/1 <		ed By:	
LOCATION	Site: Victori	a Farms - Ge	orge's Deli 8	& Gas		LocID:	MW-	-7B			Date: C	06/07	120	21	

Date	,	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/07	1/21	10:13	71.16	0	0	0.25	-				-/,-		NA	Otorted clear
	_	10:15	72.90	0.26	0.5	0.25	6.91	0.167	150.8	7.79	£18560	14.71	NA	Ores
		0:20	74.02	1.12	1.5	0.20	6.66	0.170	149.8	9,42	53,96,48	14.65	NA	
		10:25	44.84	0.28	2.0	0.10	6.62	0.170	151.0	9,23	13.35.40	14.80	NA NA	
		10:30	15.84	1.00	2.75			0.167	151.7	13,50	3.75.49	14.32	NA	
		0:35	17.05	1.31	3.75	0.20	652	0. 165	152.8	12.29	11.915.27	14.75	NA	
		0:40	77.62	.0.57	4.25	0.10	.51	0.165	152.6	12.02	50.6/5.09	5.03	NA	
Pumping P		10:45		0.00.0			-	0.4 + 4 004		_	-/-		NA	V Sample time

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump-QR Bailer	Parameter(s)
MW-7B 06/07/2021 10:45	3 40-mL borosilicate glass vials	HCI	N	Pump	VOCs 8260
				1	
				+	-

154 1

GDG-GW-TO

MONITORING WELL SAMPLE COLLECTION FORM

LOCATION	Site: Victoria Farms - George's De	eli & Gas	LocID:	1W-:	7R			Date: 06/07/2021						
LOCATION	Project Name: Victoria Farms - Geo	rge's Deli & Gas	Project #:	CG-08-034	8			Recorded E	By: MIS	S Check	ed By:			
EQUIPMENT	Water Level Indicator Type/ID #:	Heron WLI or H.Oil IFP	Sampling E	Equipment: H	F Scientific Micro	TPW turbidity me	ter, Proactive®	Equipment	Decon.: 1. So	apy wash,	2. Potable wa	ater rinse,		
LQOII MILITI	PID Type/ID #: NA		Hurricaine	2" low-flow st	ubmersible pump	w/ controller, and	HDPE tubing	3. Distilled				•		
	Casing I.D. (in) [a]:	4	Water Colu	ımn Thicknes	s (ft) [d-c]:	30.1		Ambient PII	D (ppm):	N	IA			
WELL	Unit Casing Volume (gal/lin ft) [b]:	0.65	Well Volum	ne (gal) {[d-c]	x b}: 19.6	(X3=	58.7)	Well Mouth	PID (ppm):		IA ,			
INFO	Initial Depth to Water (ft) [c]:	70.25	Screened I	Interval (ft TO	C): 2	15-100)	Ground Cor	ndition of Well	Shi	sup/a	300		
	Total Well Depth (ft) [d]:	100.35	Pump dept	th (ft TOC):	85.3	Pump depth (ft be	gs): 83	Remarks:	TOC=	2.	314	165		
CASING	Casing I.D. (in) [a]:		1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0		
INFO	Unit Casing Volume (gal/lin ft) [b]:		0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6		

Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/07/21	11:13	70.25	0	0	0.25				-	-/,-		NA	Started clear
	11:15	70,95	0.70	0.5	0.30	7.02	0.203	133.8	7.81	15.9 A.76	13.59	NA	Clear
	11,30	70.96	0.01	2.0	0.20	6.81	0.201	151.6	3.64	13.7/6.60	13.69	ÿ NA	
	11 25	70.96	0	3.0	0.20	6.78	0.199	150.4	4.71	72.7/7.29	13.96	NA	
	11:30	70.96	0	4.0	0.20	6.63	0.199	156.0	3.07	好,45.72	13.88	NA	
	11:35	70.96	Ö	5.0		459	0-198	158.9	5.67	13.85.56	13.82	. NA	
	11.40	70.96	0	6.5	0.30	0.57		159.5	3 25 8	12.7/5.44	13.84	NA	
Pumping Pate: <=(11,45	70.96	0	8.0	0.30	700	0.260	-0 / 1 0	3,20	52.2/5,40	13,82	, NA	V

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Fifter (Y/N)	Pump R Bailer	Parameter(s)
MW-7R 06/07/21 11:4	3 40-mL borosilicate glass vials	HCI	N	Pump	VOCs 8260

MONITORING WELL SAMPLE COLLECTION FORM

LOCATION	Site: Victoria Farms - George's D	eli & Gas	LocID;	Lot .	7 Nel			Date: 6	6 108	/200	2]	
LOOATION	Project Name: Victoria Farms - Geo	rge's Deli & Gas	Project #:	CG-08-034	8				By: MIS			
EQUIPMENT	Water Level Indicator Type/ID #:	Heron WLI or H.Oil IFP	Sampling E	Equipment: HI	F Scientific Micro	TPW turbidity me	ter, Proactive®	Equipment	Decon.: 1. So	papy wash,	2. Potable wa	ater rinse,
LOCOII MILITI	PID Type/ID#: NA		Hurricaine	2" low-flow su	ıbmersible pum _l	w/ controller, and	HDPE tubing	3. Distilled	water rinse.			
	Casing I.D. (in) [a]:	6	Water Colu	ımn Thicknes	s (ft) [d-c]:	90.11		Ambient PI	D (ppm):	N	Α	
WELL	Unit Casing Volume (gal/lin ft) [b]	1.5	Well Volum	ne (gal) {[d-c]	x b} \$	135.17	<i>y</i> :	Well Mouth	PID (ppm):	N	A	4
INFO	Initial Depth to Water (ft) [c]:	51.96	Screened I	Interval (ft TO	C):	21-14		Ground Co	ndition of Wel	Good	Shi	ckup
Minustra et al Companyo	Total Well Depth (ft) [d]:	142.07	Pump dept	th (ft TOC):	97	Pump depth (ft b	98) 96.0 4	Remarks:	TOC=	0.96	A A	951
CASING	Casing I.D. (in) [a]:		1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing Volume (gal/lin ft) [b]:		0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6

Date	Time (24 hr)	Water Level (FTOC)	Draw- down	Volume Removed (Gal)	Pumping Rate (gal/min)	рН	Conduc- tivity (mS/cm)	Redox Potential	Turb. (NTU)	DO (% / mg/L)	Temp. (C)	Salinity	Remarks (odor, clarity, etc.)
06/08/21	10:56	51.96	0	0	0.125					-/,-		NA	Started clear
	11:00	58.25	0.29	0.5	0.125	6.93	0.360	151.1	3,632	7.2/2.84	13.71	NA	Clear
	11:05	52.31	0.06	1.0	0.1	6.85	0,365	154.5	6.56 2	35/246	13.19	NA	
	11:10	52.26	-0.05	1.75	0.15	6.78	0.366	154.2	4.93	195/2.03	13.58	NA	
	11:15.	52.22	-0.04	2.25	0.	6.75	0.366	153.6	6.63	17.9/1.87	13.37	NA	
		52.59	0.37	3.50	0.25	6.71	0.361	154.2	7.18	19.9/1.57	12.73	NA	
	11:25	52.68	0.09	4.50	0.2	6.68	0.360	154.1	7.09	13.91.47	12.70	NA	
Dumping Potes 6-6	11:30	3 3 41 0	0.02	5,50		6.68	0.360	153.5	9.71	13.6/1.44	12.71	NA	V

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

Sample ID #(s)/Time(s)	No. Containers/Volume/Type	Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
1 +7 x 0 06/08/21 11:30	3 40-mL borosilicate glass vials	HCI	N	Pump	VOCs 8260
Lot 7 Well 06/08/21 11:30					
and alla the				-	
Duplicate		•		-	

NA NA

MONITORING WELL SAMPLE COLLECTION FORM

							_	1111							
LOCATION	Site: Victor	ia Farms - Ge	eorge's Deli &	Gas		LocID:	Senti	rel Wel			Date: O	6102			
LOCATION	Project Nam	e: Victoria Fa	rms - George':	s Deli & Gas		Project #	: CG-08-0348	3			Recorded E	A	Check	ked By:	
			.,,												
EQUIPMENT	Water Level	Indicator Type	e/ID#:	A Selinst Model	101-WLI	Sampling	Equipment: HF	Scientific Micro	TPW turbidity m	eter, Proactive®	Equipment	Decon.: 1. Soa	apy wash,	2. Potable wa	iter rinse,
LOCOII WILIT	PID Type/ID	#:	NA			Hurricain	e 2" low-flow su	bmersible pump	w/ controller, ar	d HDPE tubing	3. Distilled v				·
	Casing I.D. ((in) [a]:		6		Water Co	olumn Thickness	s (ft) [d-c]:	23,9		Ambient Pli	O (ppm):		NA	
WELL	Unit Casing	Volume (gal/li	in ft) [b]:	1.5		Well Volu	ıme (gal) {[d-c] >	(b): 35,	9 (X3	= (08)	Well Mouth	PID (ppm):		VA_	
INFO	Initial Depth	to Water (ft) [c]:	48.5-	7	Screened	Interval (ft TOC		47-7	10	Ground Cor	ndition of Well:	Goo	od-ne	w
	Total Well D	epth (ft) [d]:	=	72.48)	Pump de	pth (ft TOC):	60,5	Pump depth (ft	bgs):		Toc =			75
CASING	Casing I.D.					1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/li	in ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
	1	Water	4.	\/-t	l pi	T									
Date	Time	Level	Draw-	Volume Removed	Pumping Rate	Hq	Conduc- tivity	Redox	Turb.	DO	Temp.	Salinity		Remarks	
	(24 hr)	(FTOC)	down	(Gal)	(gal/min)	ļ P	(mS/cm)	Potential	(NTU)	(% / mg/L)	(C)	Sammy	(0	odor, clarity, o	etc.)
06/02/21	14:43	48.57	20	0	0.[_	_	_	_	-/		NA	Ofa	red	-leaf
1	14:45	48.61	0.04	0.2	0.1	696	0.129	123.0	11.76	14.17.86	13.32	NA	Cle		2029
	14:50	48.61	0	1.2	0.2	-	0.129	143.7		59.316.72	13.21	NA			
	14:55	48.63	0.02	2.0		6.60	-	157.1	6.68	12/644	13.02	NA			
					0.125			62.2/6.61	2 00	NA					

Pumping Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.1 pH, +/- 3% conductivity, +/- 10 mv redox pot., +/- 10% turb (<= 10 NTU ideal), and +/- 10% DO for 3 consecutive readings

15:05 48.66 0.02

Sample ID #(s)/Time(s)	No. Containers/Volume/Type Preserv.	Filter (Y/N)	Pump OR Bailer	Parameter(s)
Sentine Well 6/2/21 15:15	3 40 mL borosillicaterials HCl	N	Punsp	VOC3 8260

ATTACHMENT B LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

14 June 2021

Kevin Howard Chesapeake GeoSciences, Inc. 5405 Twin Knolls Rd, Suite 1 Columbia, MD 21045

RE: GEORGE'S DELI & GAS

Enclosed are the results of analyses for samples received by the laboratory on 06/02/21 17:28.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

lakecka Koms

1500 Caton Center Dr Suite G
Baltimore MD 21227
410-247-7600

www.mdspectral.com Reported:

06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SENTINEL WELL		1060243-01	Nonpotable Water	06/02/21 15:15	06/02/21 17:28
H-6		1060243-02	Nonpotable Water	06/02/21 16:25	06/02/21 17:28

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

lakecka Koms

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

SENTINEL WELL

1060243-01RE2 (Nonpotable Water) Sample Date: 06/02/21

		0/02/21						
			Reporting	Detection				
Analyte	Result Note	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepar	ed by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 11:54	WB
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/14/21	06/14/21 11:54	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Benzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Bromobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Bromoform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Bromomethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 11:54	WB
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/14/21	06/14/21 11:54	WB
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 11:54	WB
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Chloroethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 11:54	WB
Chloroform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Chloromethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 11:54	WB
-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Dibromomethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rakecha Koms

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

SENTINEL WELL

1060243-01RE2 (Nonpotable Water) Sample Date: 06/02/21

			Sample Date. 0	UI VEI EI				
			Reporting	Detection	-			
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepare	ed by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
2-Hexanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 11:54	WB
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 11:54	WB
Methylene chloride	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 11:54	WB
Naphthalene	ND	ug/L	2.0	2.0	1	06/14/21	06/14/21 11:54	WB
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Styrene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Toluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Trichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

SENTINEL WELL

1060243-01RE2 (Nonpotable Water) Sample Date: 06/02/21

•			Reporting	Detection	•			
Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
MS) Prepar	ed by GCM	S-WATE	R-VOLATILES (co	ontinued)				
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 11:54	WB
	70-	-130	98 %	06/14/21		06/14/21 11:54		
	75-	-120	97 %	06/14/21		06/14/21 11:54		
	75-	-120	97 %	06/14/21		06/14/21 11:54		
	MS) Prepar ND ND ND ND ND ND	ND N	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	Result Notes Units Limit (MRL) MS) Prepared by GCMS-WATER-VOLATILES (co. ND) ug/L 2.0 ND 98 % 75-120 97 % 75-120 97 %	Result Notes Units Limit (MRL) Limit (LOD) MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 ND 98 % 06/14/21 75-120 97 % 06/14/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 1 ND 98 % 06/14/21 75-120 97 % 06/14/21	Notes Units Limit (MRL) Limit (LOD) Dilution Prepared	Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-6 1060243-02 (Nonpotable Water) Sample Date: 06/02/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pi	repared by GCMS	-WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/07/21	06/07/21 18:44	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/07/21	06/07/21 18:44	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Benzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/07/21	06/07/21 18:44	AS
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/07/21	06/07/21 18:44	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/07/21	06/07/21 18:44	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/07/21	06/07/21 18:44	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/07/21	06/07/21 18:44	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS

alacka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-6 1060243-02 (Nonpotable Water) Sample Date: 06/02/21

			Sample Date. 0	0/02/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (c	ontinued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/07/21	06/07/21 18:44	AS
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/07/21	06/07/21 18:44	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/07/21	06/07/21 18:44	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/07/21	06/07/21 18:44	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Styrene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Toluene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
, ,-		S		-10				

Palacka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-6 1060243-02 (Nonpotable Water) Sample Date: 06/02/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	TER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/07/21	06/07/21 18:44	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	108 %	06/07/2	I	06/07/21 18:44	4	
Surrogate: Toluene-d8		75-120	105 %	06/07/2	I	06/07/21 18:44	4	
Surrogate: 4-Bromofluorobenzene		75-120	97 %	06/07/2	I	06/07/21 18:44	4	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/14/21 16:45

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

Notes and Definitions

S-FAIL Surrogate recovery was outside of established QC limits

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accreditation

custody documen

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Company Name: Chesapeake GeoSciences, Inc		Project I Kevin H	_	:	Analysis					Requ	este	d			CHAIN	-OF-C	USTODY	RECC	RD				
Project Name: George's Deli & Gas Case No. 2007-0096-CL		Project I CG-08-0)348						2								1500 410–24	Caton Baltimo 7–7600	pectral Service Center Drive pre, MD 212 O o Fax 410- Omdspectral	, Suite (!27 -247-76	3		
Sampler(s): Meg Staines & Devin Glancey	1	P.O. Nu CG0803					Containers	EPA 8260	EPA 524.2								trix Codes: NW (potable wate	(nonpo					
Field Sample ID		Date	Time	Water	Soil	Other	No. of Cor	VOCs via I	VOCs via							1+	Preservative: 1 HCL, H ₂ SO ₄ , Methanol, S ₂ O ₃ , NaHCO ₃	Chlo Req	oH, Residual orine, QC uest, Trip Field Blank	MS	S Lab	ID	
Sentinel Well	4	6/2/21	15:15	×			3	X								HC	4440			106	Ô.	243	}
H-6		6/2/21	16:25	×			3	X									01440				لل		1
													ļ										-
																							-
				<u></u>					<u> </u>				<u> </u>										
Pelinquished by: (Signature) Dew Houy (Printed) Devin Glances		Date/Ti 6/2/2 17:3		Receiv (Printe		: (Sigi	nature					inquish	ed by	: (Sign	ature)		Date/Tin	ie	Received by: (Signature)	-		
Relinquished by: (Signature) (Printed)	\	Date/Ti	me 2 X -	Receiv		Lab:	(Signa	ture)	, ,	Je.	X	5 da 4 da	mal (y y	l Tim 7 day			Lab Use: Temp: Received Received Preserva	same o					
Courier	cial Instr		•							, , , ,				day)			Sample Disp	osal:					
UPS PedEx USPS Sa	mples	clude. 8260. Peline	fuel a this juish	23	sunates + naphthalene Specif					er:		Date:		□ Return to □ Disposal □ Archive	by lab				·				
*PI	ease	2-8	lag 4	he	do	cta	X														Page	10 of	10

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com MD DW LabID 153

Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.

24 June 2021

Kevin Howard Chesapeake GeoSciences, Inc. 5405 Twin Knolls Rd, Suite 1 Columbia, MD 21045

RE: GEORGE'S DELI & GAS

Enclosed are the results of analyses for samples received by the laboratory on 06/03/21 14:45.

Please visit our website at www.mdspectral.com for a complete listing of our accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

MD DW LabID 153

Project Manager: Kevin Howard 06/24/21 16:37

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-6		1060319-01	Nonpotable Water	06/03/21 10:30	06/03/21 14:45
MW-4		1060319-02	Nonpotable Water	06/03/21 11:30	06/03/21 14:45
602-DW		1060319-03	Drinking Water	06/03/21 12:30	06/03/21 14:45
2040-DW		1060319-04	Drinking Water	06/03/21 12:50	06/03/21 14:45
GDG-DW-TB		1060319-05	Drinking Water	06/02/21 00:00	06/03/21 14:45

Narrative

The laboratory observed that the trip blank (MSS ID 1060319-05) contained contaminants typically associated with municipal water. Upon investigation, the staff member that prepared the trip blank noted that it was filled using a chlorinated municipal water source and not the organic free spigot which should have been used.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

Project Manager: Kevin Howard 06/24/21 16:37

MW-6

1060319-01 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared	by GCMS-	WATER-VOLA	ΓILES				
Acetone	ND	ug/L	10.0	10.0	1	06/09/21	06/09/21 15:47	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/09/21	06/09/21 15:47	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Benzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/09/21	06/09/21 15:47	AS
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/09/21	06/09/21 15:47	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/09/21	06/09/21 15:47	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/09/21	06/09/21 15:47	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/09/21	06/09/21 15:47	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

> www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Manager: Kevin Howard 06/24/21 16:37

MW-6

1060319-01 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared b	y GCMS-	WATER-VOLA	TILES (continue	ed)			
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/09/21	06/09/21 15:47	AS
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/09/21	06/09/21 15:47	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/09/21	06/09/21 15:47	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/09/21	06/09/21 15:47	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Styrene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Toluene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard

06/24/21 16:37

MW-6

1060319-01 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Pre	pared by GCMS-	WATER-VOLA	FILES (continue	d)			
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/09/21	06/09/21 15:47	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	117 %	06/09/21	,	06/09/21 15:47		
Surrogate: Toluene-d8		75-120	105 %	06/09/21		06/09/21 15:47		
Surrogate: 4-Bromofluorobenzene		75-120	96 %	06/09/21		06/09/21 15:47		

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

Project Manager: Kevin Howard 06/24/21 16:37

MW-4

1060319-02RE1 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared	by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 12:21	WB
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/14/21	06/14/21 12:21	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Benzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Bromobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Bromoform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Bromomethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 12:21	WB
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/14/21	06/14/21 12:21	WB
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 12:21	WB
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Chloroethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 12:21	WB
Chloroform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Chloromethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 12:21	WB
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Dibromomethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

06/24/21 16:37

Project Number: CG-08-0348 Project Manager: Kevin Howard

MW-4

1060319-02RE1 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepare	d by GCMS-	WATER-VOLA	TILES (continue	ed)			
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
2-Hexanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 12:21	WB
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 12:21	WB
Methylene chloride	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 12:21	WB
Naphthalene	ND	ug/L	2.0	2.0	1	06/14/21	06/14/21 12:21	WB
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Styrene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Toluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Trichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard 06/24/21 16:37

MW-4

1060319-02RE1 (Nonpotable Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result No	tes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
-						Frepared	Allalyzeu	Allalyst
Volatile Organics by EPA 8260B (C	<u>GC/MS) Prepa</u>	red by GCMS-	<u> WATER-VOLA</u>	FILES (continued	d)			
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
o-Xylene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 12:21	WB
Surrogate: 1,2-Dichloroethane-d4		70-130	100 %	06/14/21		06/14/21 12:21		
Surrogate: Toluene-d8		75-120	97 %	06/14/21		06/14/21 12:21		
Surrogate: 4-Bromofluorobenzene		75-120	98 %	06/14/21		06/14/21 12:21		

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

06/24/21 16:37

Project Number: CG-08-0348 Project Manager: Kevin Howard

602-DW

1060319-03 (Drinking Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (GC/MS) Prepared	by GCMS-V	VATER-VOLAT	TLES		_	·	_
tert-Amyl alcohol (TAA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:30	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Benzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Bromobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Bromochloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Bromodichloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Bromoform	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Bromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
tert-Butanol (TBA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:30	WB
n-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
sec-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
tert-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Carbon tetrachloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Chlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Chloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Chloroform	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Chloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
2-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
4-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Dibromochloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2-Dibromo-3-chloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2-Dibromoethane (EDB)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Dibromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,3-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,4-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Dichlorodifluoromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
cis-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
trans-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard

06/24/21 16:37

602-DW

1060319-03 (Drinking Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (C	GC/MS) Prepared	l by GCMS-V	VATER-VOLAT	ILES (continue	d)			
1,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,3-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
2,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
cis-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
trans-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Diisopropyl ether (DIPE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Ethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Hexachlorobutadiene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Isopropylbenzene (Cumene)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
4-Isopropyltoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Methyl tert-butyl ether (MTBE)	0.85	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Methylene chloride	ND	ug/L	1.00	1.00	1	06/14/21	06/14/21 16:30	WB
Naphthalene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
n-Propylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Styrene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Tetrachloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Toluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2,3-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2,4-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1,1-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,1,2-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Trichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Trichlorofluoromethane (Freon 11)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2,3-Trichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,2,4-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
1,3,5-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Vinyl chloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
o-Xylene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard 06/24/21 16:37

602-DW

1060319-03 (Drinking Water) Sample Date: 06/03/21

Analyte	Result	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (GC/MS) Pro	epared by GCMS-	WATER-VOLAT	TILES (continued	1)			
m- & p-Xylenes	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:30	WB
Surrogate: 4-Bromofluorobenzene		80-120	97 %	06/14/2	1	06/14/21 16:30		
Surrogate: 1,2-Dichlorobenzene-d4		80-120	95 %	06/14/2	1	06/14/21 16:30		

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Manager: Kevin Howard 06/24/21 16:37

2040-DW

1060319-04 (Drinking Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (Go	C/MS) Prepared	by GCMS-V	VATER-VOLAT	ILES				
tert-Amyl alcohol (TAA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:53	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Benzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Bromobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Bromochloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Bromodichloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Bromoform	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Bromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
tert-Butanol (TBA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:53	WB
n-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
sec-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
tert-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Carbon tetrachloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Chlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Chloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Chloroform	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Chloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
2-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
4-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Dibromochloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2-Dibromo-3-chloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2-Dibromoethane (EDB)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Dibromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,3-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,4-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Dichlorodifluoromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
cis-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
trans-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB

Project Number: CG-08-0348 Project Manager: Kevin Howard 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported: Reported:

06/24/21 16:37

2040-DW

1060319-04 (Drinking Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result Note:	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (C	GC/MS) Prepared	l by GCMS-V	VATER-VOLAT	TLES (continue	d)			
1,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,3-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
2,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
cis-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
trans-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Diisopropyl ether (DIPE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Ethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Hexachlorobutadiene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Isopropylbenzene (Cumene)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
4-Isopropyltoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Methyl tert-butyl ether (MTBE)	0.90	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Methylene chloride	ND	ug/L	1.00	1.00	1	06/14/21	06/14/21 16:53	WB
Naphthalene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
n-Propylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Styrene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Tetrachloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Toluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2,3-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2,4-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1,1-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,1,2-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Trichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Trichlorofluoromethane (Freon 11)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2,3-Trichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,2,4-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
1,3,5-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Vinyl chloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
o-Xylene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard

06/24/21 16:37

2040-DW

1060319-04 (Drinking Water) Sample Date: 06/03/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (C	GC/MS) Pro	epared by GCMS-V	WATER-VOLAT	TILES (continued)			
m- & p-Xylenes	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 16:53	WB
Surrogate: 4-Bromofluorobenzene		80-120	96 %	06/14/21		06/14/21 16:53		
Surrogate: 1,2-Dichlorobenzene-d4		80-120	95 %	06/14/21		06/14/21 16:53		

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

> www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Manager: Kevin Howard 06/24/21 16:37

GDG-DW-TB

1060319-05 (Drinking Water) Sample Date: 06/02/21

			Reporting	Detection				
Analyte	Result Notes	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (C	GC/MS) Prepared	l by GCMS-V	WATER-VOLAT	TLES				TB-01
tert-Amyl alcohol (TAA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:16	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Benzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Bromobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Bromochloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Bromodichloromethane	12.2	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Bromoform	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Bromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
tert-Butanol (TBA)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:16	WB
n-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
sec-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
tert-Butylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Carbon tetrachloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Chlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Chloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Chloroform	41.1	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Chloromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
2-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
4-Chlorotoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Dibromochloromethane	2.82	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2-Dibromo-3-chloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2-Dibromoethane (EDB)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Dibromomethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,3-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,4-Dichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Dichlorodifluoromethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2-Dichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
cis-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
trans-1,2-Dichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB

> www.mdspectral.com MD DW LabID 153

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

Project Number: CG-08-0348 Project Manager: Kevin Howard 06/24/21 16:37

GDG-DW-TB

1060319-05 (Drinking Water) Sample Date: 06/02/21

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (G	C/MS) Prepared	by GCMS-V	VATER-VOLAT	TLES (continue	d)			TB-01
1,3-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
2,2-Dichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
cis-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
trans-1,3-Dichloropropene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Diisopropyl ether (DIPE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Ethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Hexachlorobutadiene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Isopropylbenzene (Cumene)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
4-Isopropyltoluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Methyl tert-butyl ether (MTBE)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Methylene chloride	1.06	ug/L	1.00	1.00	1	06/14/21	06/14/21 17:16	WB
Naphthalene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
n-Propylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Styrene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Tetrachloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Toluene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2,3-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2,4-Trichlorobenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1,1-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,1,2-Trichloroethane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Trichloroethene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Trichlorofluoromethane (Freon 11)	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2,3-Trichloropropane	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,2,4-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
1,3,5-Trimethylbenzene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
Vinyl chloride	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
o-Xylene	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB
m- & p-Xylenes	ND	ug/L	0.50	0.50	1	06/14/21	06/14/21 17:16	WB

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

MD DW LabID 153

Project Manager: Kevin Howard 06/24/21 16:37

GDG-DW-TB

1060319-05 (Drinking Water) Sample Date: 06/02/21

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 524.2 (C	GC/MS) Pro	pared by	GCMS-V	WATER-VOLAT	ILES (continued)			TB-01
Surrogate: 4-Bromofluorobenzene		8	0-120	98 %	06/14/21		06/14/21 17:16		
Surrogate: 1,2-Dichlorobenzene-d4		8	0-120	95 %	06/14/21		06/14/21 17:16		

1500 Caton Center Dr Suite G **Baltimore MD 21227** 410-247-7600 www.mdspectral.com

Project: GEORGE'S DELI & GAS
Report revised to include narrative and sample qualifier. Original report ID 1060319 06 1521 1431.
Reported:

Reported:

MD DW LabID 153

Project Manager: Kevin Howard 06/24/21 16:37

Notes and Definitions

TB-01 The laboratory provided trip blank sample was prepared using a chlorinated municipal water source and not the organic free water

source that should have been used.

S-FAIL Surrogate recovery was outside of established QC limits

Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

Project Number: CG-08-0348

Analyte DETECTED DET

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accreditation

Company Name: Chesapeake GeoSciences, Inc.	Project Kevin F	Manage łoward	r:						Д	naly	sis R	equ	ested				CHAIN	-OF-0	CUSTODY	RECORE)
Project Name: George's Deli & Gas Case No. 2007-0096-CL Sampler(s): Meg Staines & Devin Glancey	Project CG-08- P.O. Ni CG080	0348 umber:				iers	8260	524.2			Rep	ort ı	evis e d t	o inc	ilude n	a rl\A iti\	1500 410–24	Caton Baltim 7–760 abman(pectral Service Center Drive ore, MD 212 O o Fax 410- Omdspectral	e, Suite G 227 -247-7602 .com	1521 1431
						Containers	EPA	EPA					oviova t				(potable wate		Sity Sity Sity Sity Sity Sity Sity Sity		102111011
Field Sample ID	Date	Time	Water	Soil	Other	No. of Co	VOCs via	VOCs via								1+	reservative: HCL, H ₂ SO _{4,} Methanol, S ₂ O ₃ , NaHCO ₃	Ch Red	pH, Residual Iorine, QC quest, Trip , Field Blank	MSS L	ab ID
MW-6	6/3/2	10:30	X			3	X									1-1	1 HCl			/0603	19-0
MW-4	6/3/21	11:30	X			3	X									1-1	1 HCl			- 0.	2
602-DW	6/3/21	12:30	X		ļ	3	ļ	X								1-	1 HCl			- 0	3
2040-DW	65	12:50	X			3		X						<u> </u>		Vt	·IHCL			_ 0	4
GDG-DW-TB	6/2/21		X			2		X								1+	- 1 HCl	DW	Trip Blant	- 0	5
																ļ					
			-				ļ							-							
			-											-	_		<u></u>				
			ļ		:									+	-						
Relinquished by: (Signature)	Date/T	ime f	Receive	ed by	 : (Sigi	nature,	<u> </u>	<u> </u>		<u> </u>	Relingu	uishe	d by: <i>(Si</i>	gnatu	ire)		Date/Tim	le	Received by: (Signature)	
Dein Hance	6/3/	2.1																			
(Printed)	management.		(Printe	ed)							(Printe	ed)					1		(Printed)		
Relinguished by: (Signature)	/ Date/T		Receive	ed by	Lab:	(Signa	ture)				Turn	Δro	und Ti	ne.			Lab Use:				
,	16:	ں کا																°C	44		
(Printed)	```		(Printe				1	/	, 1		_ \ _	day		ay)			□ Received				
		5-21	7						Sk		□ 4 □ 3	day day					□ Received□ Preservat		•		
□ Courier □ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nstructions/	9000	th c	メン	MP	129 I	211	$Q \downarrow \downarrow$	SMG	CA.	⊐ F	lusi	າ (2 day Day	()			Sample Disp		F 3 -		
Client Email re	sults to ^l <u>kho</u> nclude fuel c	ward@c⊴	gs.us	.con	ฏ ลกัด	<u>oln</u> t	ve@i	ខ្លាំន.ប	JS.CO	<u>m</u> .`		the	-	_			□ Return to		:		
Please J	-flag the res	ults.									⊐ S	pec	ific Du	Da	ite:		□ Disposal ★ Archive f		days		
USPS 9W	rip blan	K do	, be	ر بار	e ii.	nqu	5W	w	orj								*				
□ Other: fina	GW :	sampl	MQ	CH	WY.												<u></u>			Pac	ge 19 of 19

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

Revised Report. Original report ID 1060421 06 15 21 1258

30 June 2021

Kevin Howard Chesapeake GeoSciences, Inc. 5405 Twin Knolls Rd, Suite 1 Columbia, MD 21045

RE: GEORGE'S DELI & GAS

Enclosed are the results of analyses for samples received by the laboratory on 06/04/21 15:22.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

UlliBurgle

President

nelao

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported:

 $06/30/21\ 10:19$ Revised Report. Original report ID 1060421 06 15 21 1258

Project:	GEORGE'S DELI & GAS
Project Number:	CG-08-0348

Project Manager: Kevin Howard

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1		1060421-01	Nonpotable Water	06/04/21 12:30	06/04/21 15:22
H-1A		1060421-02	Nonpotable Water	06/04/21 13:40	06/04/21 15:22
GDG-EFB		1060421-03	Nonpotable Water	06/04/21 14:10	06/04/21 15:22

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

enelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1

1060421-01 (Nonpotable Water) Sample Date: 06/04/21

			Sample Date: 0	0/04/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:47	WB
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/14/21	06/14/21 16:47	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Benzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Bromobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Bromoform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Bromomethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 16:47	WB
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/14/21	06/14/21 16:47	WB
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 16:47	WB
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Chloroethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 16:47	WB
Chloroform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Chloromethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 16:47	WB
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Dibromomethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Milleburgher

e nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1

1060421-01 (Nonpotable Water) Sample Date: 06/04/21

				Sample Date: 0	6/04/21				
Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GC	MS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
trans-1,2-Dichloroethene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Dichlorofluoromethane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2-Dichloropropane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,3-Dichloropropane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
2,2-Dichloropropane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1-Dichloropropene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
cis-1,3-Dichloropropene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
trans-1,3-Dichloropropene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Diisopropyl ether (DIPE)	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Ethyl tert-butyl ether (ETBE)	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Ethylbenzene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Hexachlorobutadiene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
2-Hexanone	ND		ug/L	10.0	10.0	1	06/14/21	06/14/21 16:47	WB
Isopropylbenzene (Cumene)	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
4-Isopropyltoluene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Methyl tert-butyl ether (MTBE)	1.8	J	ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
4-Methyl-2-pentanone	ND		ug/L	10.0	10.0	1	06/14/21	06/14/21 16:47	WB
Methylene chloride	ND		ug/L	10.0	10.0	1	06/14/21	06/14/21 16:47	WB
Naphthalene	ND		ug/L	2.0	2.0	1	06/14/21	06/14/21 16:47	WB
n-Propylbenzene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Styrene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1,1,2-Tetrachloroethane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1,2,2-Tetrachloroethane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Tetrachloroethene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Toluene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2,3-Trichlorobenzene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2,4-Trichlorobenzene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1,1-Trichloroethane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,1,2-Trichloroethane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Trichloroethene	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
Trichlorofluoromethane (Freon 11)	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
1,2,3-Trichloropropane	ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1

1060421-01 (Nonpotable Water) Sample Date: 06/04/21

		•	Reporting	Detection	•			
Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
/MS) Prepar	ed by GCM	AS-WATE	R-VOLATILES (c	ontinued)				
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
ND		ug/L	2.0	1.0	1	06/14/21	06/14/21 16:47	WB
	70)-130	100 %	06/14/21		06/14/21 16:47		
	75	5-120	97 %	06/14/21		06/14/21 16:47		
	75	5-120	97 %	06/14/21		06/14/21 16:47		
	C/ MS) Prepar ND ND ND ND ND	ND N	ND ug/L ND ug/L	Result Notes Units Limit (MRL) E/MS) Prepared by GCMS-WATER-VOLATILES (compared by GCMS-WATER-VOLATI	Result Notes Units Limit (MRL) Limit (LOD) E/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 70-130 100 % 06/14/21 75-120 97 % 06/14/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution C/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 1 ND 06/14/21 06/14/21 06/14/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared C/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 1 06/14/21 ND ug/L 2.0 0.0 1.0 1 06/14/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed C/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 2.0 1.0 1 06/14/21 06/14/21 16:47 70-130 100 % 06/14/21 0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-1A

1060421-02 (Nonpotable Water) Sample Date: 06/04/21

			Sample Date: 0	6/04/21				
			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared	by GCMS-	WATER-VOLA	ΓILES				
Acetone	12.9	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:14	WB
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/14/21	06/14/21 17:14	WB
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Benzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Bromobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Bromoform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Bromomethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 17:14	WB
ert-Butanol (TBA)	24.3	ug/L	15.0	15.0	1	06/14/21	06/14/21 17:14	WB
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:14	WB
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Chloroethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 17:14	WB
Chloroform	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Chloromethane	ND	ug/L	5.0	5.0	1	06/14/21	06/14/21 17:14	WB
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Dibromomethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

* nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-1A

1060421-02 (Nonpotable Water) Sample Date: 06/04/21

			Sample Date: 0	0/04/21				
			Detection					
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
2-Hexanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:14	WB
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:14	WB
Methylene chloride	ND	ug/L	10.0	10.0	1	06/14/21	06/14/21 17:14	WB
Naphthalene	ND	ug/L	2.0	2.0	1	06/14/21	06/14/21 17:14	WB
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Styrene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Toluene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Trichloroethene	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/14/21	06/14/21 17:14	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

enelac #

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

H-1A

1060421-02 (Nonpotable Water) Sample Date: 06/04/21

			Reporting	Detection				
Analyte	Result	Notes Uni	ts Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-W	ATER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
1,3,5-Trimethylbenzene	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Vinyl chloride	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
o-Xylene	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
m- & p-Xylenes	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Xylenes, Total	ND	ug/	L 2.0	1.0	1	06/14/21	06/14/21 17:14	WB
Surrogate: 1,2-Dichloroethane-d4		70-130	99 %	06/14/	/21	06/14/21 17:14		
Surrogate: Toluene-d8		75-120	96 %	06/14/	/21	06/14/21 17:14		
Surrogate: 4-Bromofluorobenzene		75-120	95 %	06/14/	/21	06/14/21 17:14		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227

410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFB

1060421-03RE1 (Nonpotable Water) Sample Date: 06/04/21

			Sample Date: 0	0/04/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by GCMS-	WATER-VOLA	ΓILES				O-0
Acetone	ND	ug/L	10.0	10.0	1	06/25/21	06/25/21 02:20	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/25/21	06/25/21 02:20	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Benzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/25/21	06/25/21 02:20	AS
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/25/21	06/25/21 02:20	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/25/21	06/25/21 02:20	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/25/21	06/25/21 02:20	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/25/21	06/25/21 02:20	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelac =

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFB

1060421-03RE1 (Nonpotable Water) Sample Date: 06/04/21

			Sample Date. 0	0/04/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (c	continued)				O-0
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/25/21	06/25/21 02:20	AS
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/25/21	06/25/21 02:20	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/25/21	06/25/21 02:20	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/25/21	06/25/21 02:20	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Styrene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Toluene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/25/21	06/25/21 02:20	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelac =

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/30/21 10:19

Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFB

1060421-03RE1 (Nonpotable Water) Sample Date: 06/04/21

			Reporting	Detection				
Analyte	Result	Notes Unit	s Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GO	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	(continued)				O-04
1,2,4-Trimethylbenzene	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
1,3,5-Trimethylbenzene	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Vinyl chloride	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
o-Xylene	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
m- & p-Xylenes	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Xylenes, Total	ND	ug/l	2.0	1.0	1	06/25/21	06/25/21 02:20	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	103 %	06/25/	21	06/25/21 02:20)	
Surrogate: Toluene-d8		75-120	99 %	06/25/	21	06/25/21 02:20)	
Surrogate: 4-Bromofluorobenzene		75-120	98 %	06/25/	21	06/25/21 02:20)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

 $06/30/21\ 10:19$ Revised Report. Original report ID 1060421 06 15 21 1258

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

Notes and Definitions

O-04 This sample was analyzed outside the EPA recommended holding time.

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accreditation

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

Company Name: Chesapeake GeoSciences, Inc.	Project Kevin F	Manager Ioward	•						,	Anal	ysis I	Requ	este	d				CHAIN	-OF-CUSTODY	RECC	ORD	
Project Name: Little George's Deli & Gas Case No. 2007-0096-CL Sampler(s):	Project CG080	ID: 348					0	2										1500 410–24	land Spectral Service Caton Center Drive Baltimore, MD 212 7-7600 • Fax 410- abman@mdspectral	, Suite (227 -247-7	G	
Meg Staines & Devin Glancey	CG080	348KH				Containers	EPA 8260	EPA 524.2									Matr PW (ix Codes: NW potable wate	(chou botable repateri	106042	1 06 15 21 1258	
Field Sample ID	Date	Time	Water	Soil	Other	No. of Cont	VOCs via El	VOCs via EF									1+1	eservative: HCL, H ₂ SO ₄ , Methanol, G ₂ O ₃ , NaHCO ₃	Field pH, Residual Chlorine, QC Request, Trip Blank, Field Blank	MS	SS Lab ID	
MW-1	6/4/21	12:30	X			3	X										1 -	FIRER		106	0421-	01
H minds J.A		13:40				3	X											HIHOL	*		- 01	
GIG-EFB		14:10				3	X										1.4	- I HCl	Equi Fred B	lank	- 03	
																			f l			
										Ï												
							<u> </u>					—										
				†			†	1								Г						1
										†	<u> </u>]				<u> </u>			1
			1					1	1		\top						-					1
				+	$\frac{1}{1}$		 	\vdash		+	+	<u> </u>				ļ						4
Relinquished by: (Signature)	Date/	l'ime f	Receiv	ed by	/Lab:	(Signa	tyre	<u>l</u>			Tur	n Ar	bund	Tim	e:			Lab Use:				1
MO	6/4	2)		5	رر	1 7	Ho	$\lambda \gamma$	سر	1	1	Norr	nal (7 da	v)			Temp: 70	°c / /			
(Printed)		1	'(Print	ed)		11	'				10°	5 da	у	,	,,			Received	on Ice			
Sear P. Daniel	17	22	\supset	Aw	າ	H 6	f m	M	万			4 da 3 da							tion Appropriate 🗀			
Delivery Method: Special In	structions	/QC Requ	uiren	nent	s & (Comn	nent:	s: -∤⊬	- 101	<u>ار</u>	₽	Rus	h (2		+			Sample Disp	osal:			
Courier Client UPS Delivery Method: Special III	inclu	de th		OX. 1/20	146	<u>viai</u>	60 54	LI.		K		Next Othe		<u> </u>				□ Return to				
D UPS Thater	UM !	j sike c			~2 716		J.	UM VM	10	8/21				Due	Date	e:		□ Disposal □ Archive	by lab for days			
USPS Of	ienay.	····· ()							61-	1 "									-8 8 •			
o Other:	<u>e U-</u>	-tla	9	he	10	<u> </u>	II.	Ö			Т.										Page 13 of 1	3

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

16 June 2021

Kevin Howard Chesapeake GeoSciences, Inc. 5405 Twin Knolls Rd, Suite 1 Columbia, MD 21045

RE: GEORGE'S DELI & GAS

Enclosed are the results of analyses for samples received by the laboratory on 06/07/21 15:39.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Ulliburghe

President

nelao

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project:	GEORGE'S	DELI	X	GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-7B		1060721-01	Nonpotable Water	06/07/21 10:45	06/07/21 15:39
MW-7R		1060721-02	Nonpotable Water	06/07/21 11:45	06/07/21 15:39
MW-7A		1060721-03	Nonpotable Water	06/07/21 12:55	06/07/21 15:39
MW-2		1060721-04	Nonpotable Water	06/07/21 14:10	06/07/21 15:39

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Contar Dr Suito C

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7B

1060721-01 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/0//21				
			Reporting	Detection				
Analyte	Result N	lotes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prep	ared by GCMS-	WATER-VOLA	FILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:18	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 18:18	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:18	AS
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 18:18	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:18	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:18	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:18	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

e nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7B

1060721-01 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/0//21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:18	AS
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:18	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:18	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 18:18	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7B

1060721-01 (Nonpotable Water) Sample Date: 06/07/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WATI	ER-VOLATILES (continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:18	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	96 %	06/15/21	!	06/15/21 18:18	}	
Surrogate: Toluene-d8		75-120	96 %	06/15/21	!	06/15/21 18:18	}	
Surrogate: 4-Bromofluorobenzene		75-120	99 %	06/15/21	!	06/15/21 18:18	}	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millesente

nelad

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7R

1060721-02 (Nonpotable Water) Sample Date: 06/07/21

			Reporting	Detection				
Analyte	Result N	otes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepa	ared by GCMS-	WATER-VOLA	ΓILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:45	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 18:45	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:45	AS
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 18:45	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:45	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:45	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:45	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7R

1060721-02 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/0//21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:45	AS
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:45	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:45	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 18:45	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7R

1060721-02 (Nonpotable Water) Sample Date: 06/07/21

Al.d.			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	GC/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:45	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	94 %	06/15/2	I	06/15/21 18:43	5	
Surrogate: Toluene-d8		75-120	97 %	06/15/2	I	06/15/21 18:43	5	
Surrogate: 4-Bromofluorobenzene		75-120	99 %	06/15/2	I	06/15/21 18:43	5	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

nelad

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7A

1060721-03 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/0//21				
			Reporting	Detection				
Analyte	Result No	otes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepa	red by GCMS-	WATER-VOLA	ΓILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:11	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 19:11	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:11	AS
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 19:11	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:11	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:11	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:11	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

* nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7A

1060721-03 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/07/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
rans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:11	AS
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Methyl tert-butyl ether (MTBE)	3.4	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:11	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:11	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 19:11	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Гoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Γrichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Γrichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

e nelac =

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-7A

1060721-03 (Nonpotable Water) Sample Date: 06/07/21

	•			Reporting	Detection	•			•
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC	C/MS) Prepar	ed by GCM	IS-WATE	R-VOLATILES (co	ontinued)				
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Vinyl chloride	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
o-Xylene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Xylenes, Total	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 19:11	AS
Surrogate: 1,2-Dichloroethane-d4		70-	-130	94 %	06/15/21		06/15/21 19:11		
Surrogate: Toluene-d8		75-	-120	96 %	06/15/21		06/15/21 19:11		
Surrogate: 4-Bromofluorobenzene		75-	-120	98 %	06/15/21		06/15/21 19:11		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

* nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-2

1060721-04 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date: 0	0/0//21				
			Reporting	Detection				
Analyte	Result No	es Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepa	red by GCMS-	WATER-VOLA	ΓILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:39	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 19:39	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:39	AS
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 19:39	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:39	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:39	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 19:39	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-2

1060721-04 (Nonpotable Water) Sample Date: 06/07/21

			Sample Date. 00	7/07/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/M	S) Prepar	ed by GCMS-WATE	R-VOLATILES (c	ontinued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:39	AS
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Methyl tert-butyl ether (MTBE)	6.0	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:39	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 19:39	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 19:39	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Trichlorofluoromethane (Freon 11)		, rr	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Trichioroffuoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	00/13/21	00/13/21 19:39	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-2

1060721-04 (Nonpotable Water) Sample Date: 06/07/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	ER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 19:39	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	97 %	06/15/21	!	06/15/21 19:39	9	
Surrogate: Toluene-d8		75-120	96 %	06/15/21	!	06/15/21 19:39	9	
Surrogate: 4-Bromofluorobenzene		75-120	99 %	06/15/21	!	06/15/21 19:39	9	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millesente

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/16/21 16:58

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348 Project Manager: Kevin Howard

Notes and Definitions

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accreditation

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Company Name: Chesapeake GeoSciences, Inc.	1 '	Project Manager: Kevin Howard								٩nal	ysis I	Requ	este	d			CHAIN-OF-CUSTODY RECORD						
Project Name: George's Deli & Gas Case No. 2007-0096-CL Sampler(s):	Project CG-08-	ID: 0348					Q	.2										1500 410-24	Caton Baltimo 7-7600	pectral Service Center Drive pre, MD 212 D o Fax 410- Omdspectral	, Suite 227 -247-7	G	
Meg Staines & Devin Glancey	l l	348MS				Containers	PA 8260	EPA 524.											/ (nonp	otable water			
Field Sample ID	Date	Time	Water	Soil	Other	No. of Con	VOCs via EPA	VOCs via E									l + 1 H M	servative: HCL, H₂SO₄ ethanol, O₃, NaHCO₃	Chl Req	oH, Residual orine, QC uest, Trip Field Blank	М	SS Lab ID	
MW-78	47/21	10:45				3	X										1+	I HCO			10	007	2 1-0
MW-7R		11:45	X			3	X										1+	THCL			-	0)_	
MW-7A		12:55	X			3	X										1.+	I HOI			-	03	
MW-2		14:10				3	X										1+	1 HQ			\	64	
	*																1+	1 HCl				05	
																				,			
Relinquished by: (Signature)	Date/1		Receive	ed by:	(Sigi	nature	;	•	. !_	<u>.</u>	Relin	quishe	d by:	(Sign	ature)) 		Date/Tin	ie	Received by: /	Signature)	
Devin Glanay	15:4	₹0	(Printe	d)							(Prin	ited)								(Printed)			
Relinquished by: (Signature)	Date/آ مب	ime	Receive	d by	Lab:	(Signa	ture)				Turi	n Ard	und	Tim	e:		L	.ab Use:		~ ~			
(Printed)	15:	39	(Printe	<u>~</u>								Norm		7 da	y)				°C) - +			
(France)	6-7	- 41	1	0	 -	. 1	Fi	s S	, Ne	سا.		5 day 4 day 3 day	/						same	•			
Courier Client Client Client Please in Please	Instructions 3 CCC sults to kho nclude fuel of	S 6/2 ward@c oxygenat sults.	gs.us gs.us es +	com nap	t d g and ohtha loo	d <u>nlo</u> alene	/2 <u>ve@</u> in V W	cgs. OCs	us.c 820	<u>om</u> . 30.		Rush Next Othe Spec	n (2 d Day r:			ə:	- V	Sample Disp Return to Disposal	osal: Client by lab,				
	ushed, a	200 to	el Ob	104	3)	0) 205	βa 21.	mf	113	9	,												
<u> </u>	- 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		کستا اس	,	14 0	~ <u>~~</u> ~~	~! /				<u> </u>						L					Page 16 o	f 16

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

17 June 2021

Kevin Howard Chesapeake GeoSciences, Inc. 5405 Twin Knolls Rd, Suite 1 Columbia, MD 21045

RE: GEORGE'S DELI & GAS

Enclosed are the results of analyses for samples received by the laboratory on 06/08/21 13:58.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Ulliburghe

President

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GDG-GW-TB		1060808-01	Nonpotable Water	05/21/21 00:00	06/08/21 13:58
MW-1A		1060808-02	Nonpotable Water	06/08/21 10:05	06/08/21 13:58
GDG-EFF		1060808-03	Nonpotable Water	06/08/21 10:30	06/08/21 13:58
LOT 7 WELL		1060808-04	Nonpotable Water	06/08/21 11:30	06/08/21 13:58
GDG-DUPE		1060808-05	Nonpotable Water	06/08/21 00:00	06/08/21 13:58

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

n Center Dr Suite G

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-GW-TB

1060808-01 (Nonpotable Water) Sample Date: 05/21/21

			Sample Date: 0:					
			Reporting	Detection				
Analyte	Result No	otes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepa	red by GCMS-	WATER-VOLA	FILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:32	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 17:32	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:32	AS
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 17:32	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:32	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:32	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:32	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-GW-TB

1060808-01 (Nonpotable Water) Sample Date: 05/21/21

			Sample Date: 0	3/21/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WAT	ER-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:32	AS
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:32	AS
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:32	AS
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 17:32	AS
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-GW-TB

1060808-01 (Nonpotable Water) Sample Date: 05/21/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (C	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:32	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	94 %	06/15/2	!	06/15/21 17:32	2	
Surrogate: Toluene-d8		75-120	97 %	06/15/2	!	06/15/21 17:32	2	
Surrogate: 4-Bromofluorobenzene		75-120	86 %	06/15/2	!	06/15/21 17:32	2	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1A

1060808-02 (Nonpotable Water) Sample Date: 06/08/21

			Sample Date: 0					
			Reporting	Detection				
Analyte		Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Pre	pared by GCMS-	WATER-VOLA	FILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:56	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 17:56	AS
tert-Amyl methyl ether (TAME)	4.0	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:56	AS
tert-Butanol (TBA)	38.8	ug/L	15.0	15.0	1	06/15/21	06/15/21 17:56	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:56	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:56	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 17:56	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

* nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1A

1060808-02 (Nonpotable Water) Sample Date: 06/08/21

Sample Date: 06/08/21									
			Reporting	Detection					
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst	
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)					
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:56	AS	
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Methyl tert-butyl ether (MTBE)	69.1	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:56	AS	
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 17:56	AS	
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 17:56	AS	
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willesseyle

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

MW-1A

1060808-02 (Nonpotable Water) Sample Date: 06/08/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	ER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
o-Xylene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Xylenes, Total	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 17:56	AS
Surrogate: 1,2-Dichloroethane-d4		70-130	93 %	06/15/21	!	06/15/21 17:50	5	
Surrogate: Toluene-d8		75-120	99 %	06/15/21	!	06/15/21 17:50	5	
Surrogate: 4-Bromofluorobenzene		75-120	87 %	06/15/21	!	06/15/21 17:50	5	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227

410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFF

1060808-03 (Nonpotable Water) Sample Date: 06/08/21

			Sample Date: 0	0/00/21				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by GCMS	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:19	AS
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/15/21	06/15/21 18:19	AS
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Benzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Bromobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Bromoform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Bromomethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:19	AS
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/15/21	06/15/21 18:19	AS
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:19	AS
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Chloroethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:19	AS
Chloroform	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Chloromethane	ND	ug/L	5.0	5.0	1	06/15/21	06/15/21 18:19	AS
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Dibromomethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFF

1060808-03 (Nonpotable Water) Sample Date: 06/08/21

Sample Date: 06/08/21									
			Reporting	Detection					
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst	
Volatile Organics by EPA 8260B (GC/	MS) Prepare	ed by GCMS-WATE	R-VOLATILES (continued)					
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
2-Hexanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:19	AS	
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:19	AS	
Methylene chloride	ND	ug/L	10.0	10.0	1	06/15/21	06/15/21 18:19	AS	
Naphthalene	ND	ug/L	2.0	2.0	1	06/15/21	06/15/21 18:19	AS	
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Styrene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Toluene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Trichloroethene	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G
Baltimore MD 21227
410-247-7600

www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-EFF

1060808-03 (Nonpotable Water) Sample Date: 06/08/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GC	MS-WATE	R-VOLATILES (c	ontinued)				
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Vinyl chloride	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
o-Xylene	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Xylenes, Total	ND		ug/L	2.0	1.0	1	06/15/21	06/15/21 18:19	AS
Surrogate: 1,2-Dichloroethane-d4		7	0-130	94 %	06/15/21		06/15/21 18:19		
Surrogate: Toluene-d8		7.	5-120	98 %	06/15/21		06/15/21 18:19		
Surrogate: 4-Bromofluorobenzene		7.	5-120	85 %	06/15/21		06/15/21 18:19		
GASOLINE RANGE ORGANICS	BY EPA 8	8015C Pro	epared by	GC-WATER-VO	DLATILES				
Gasoline-Range Organics	ND		ug/L	100	100	1	06/16/21	06/16/21 12:03	RH
Surrogate: a,a,a-Trifluorotoluene [2C]		8	5-115	101 %	06/16/21	·	06/16/21 12:03		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

1500 Caton Center Dr Suite C

Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

LOT 7 WELL

1060808-04 (Nonpotable Water) Sample Date: 06/08/21

			Sample Date: 0					
A 1.	D 1: 37	** *.	Reporting	Detection	D'I -	D 1		
Analyte	Result No		Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (
Acetone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 18:42	AS
tert-Amyl alcohol (TAA)	ND	ug/L	40.0	40.0	2	06/15/21	06/15/21 18:42	AS
tert-Amyl methyl ether (TAME)	13.0	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Benzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Bromobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Bromochloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Bromodichloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Bromoform	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Bromomethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 18:42	AS
tert-Butanol (TBA)	102	ug/L	30.0	30.0	2	06/15/21	06/15/21 18:42	AS
2-Butanone (MEK)	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 18:42	AS
n-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
sec-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
ert-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Carbon disulfide	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Carbon tetrachloride	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Chlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Chloroethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 18:42	AS
Chloroform	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Chloromethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 18:42	AS
2-Chlorotoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
4-Chlorotoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Dibromochloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,2-Dibromoethane (EDB)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Dibromomethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,2-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,3-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,4-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Dichlorodifluoromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,1-Dichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,2-Dichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,1-Dichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite **Baltimore MD 21227**

> 410-247-7600 www.mdspectral.com

06/17/21 09:30

Reported:

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348 Project Manager: Kevin Howard

LOT 7 WELL

1060808-04 (Nonpotable Water) Sample Date: 06/08/21

			Sample Date. 0	0/00/21					
			Reporting	Detection					
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst	
Volatile Organics by EPA 8260B (GC/MS) Prepared by GCMS-WATER-VOLATILES (continued)									
cis-1,2-Dichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
trans-1,2-Dichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Dichlorofluoromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,2-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,3-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
2,2-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,1-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
cis-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
trans-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Diisopropyl ether (DIPE)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Ethyl tert-butyl ether (ETBE)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Ethylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Hexachlorobutadiene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
2-Hexanone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 18:42	AS	
Isopropylbenzene (Cumene)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
4-Isopropyltoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Methyl tert-butyl ether (MTBE)	241	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
4-Methyl-2-pentanone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 18:42	AS	
Methylene chloride	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 18:42	AS	
Naphthalene	ND	ug/L	4.0	4.0	2	06/15/21	06/15/21 18:42	AS	
n-Propylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Styrene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,1,1,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,1,2,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Tetrachloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Toluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,2,3-Trichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,2,4-Trichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,1,1-Trichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,1,2-Trichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Trichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
Trichlorofluoromethane (Freon 11)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
1,2,3-Trichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS	
= =									

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

LOT 7 WELL

1060808-04 (Nonpotable Water) Sample Date: 06/08/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC	C/MS) Prepar	ed by GCM	S-WATE	R-VOLATILES (co	ontinued)				
1,2,4-Trimethylbenzene	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
1,3,5-Trimethylbenzene	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Vinyl chloride	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
o-Xylene	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
m- & p-Xylenes	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Xylenes, Total	ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 18:42	AS
Surrogate: 1,2-Dichloroethane-d4		70-	130	90 %	06/15/21	!	06/15/21 18:42		
Surrogate: Toluene-d8		75-	120	99 %	06/15/21	!	06/15/21 18:42		
Surrogate: 4-Bromofluorobenzene		75-	120	85 %	06/15/21	!	06/15/21 18:42		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-DUPE

1060808-05 (Nonpotable Water) Sample Date: 06/08/21

	D I N		Reporting	Detection	D'I d'	D 1		
Analyte		otes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (
Acetone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 19:05	AS
ert-Amyl alcohol (TAA)	ND	ug/L	40.0	40.0	2	06/15/21	06/15/21 19:05	AS
tert-Amyl methyl ether (TAME)	13.3	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Benzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Bromobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Bromochloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Bromodichloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Bromoform	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Bromomethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 19:05	AS
tert-Butanol (TBA)	112	ug/L	30.0	30.0	2	06/15/21	06/15/21 19:05	AS
2-Butanone (MEK)	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 19:05	AS
n-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
sec-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ert-Butylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Carbon disulfide	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Carbon tetrachloride	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Chlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Chloroethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 19:05	AS
Chloroform	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Chloromethane	ND	ug/L	10.0	10.0	2	06/15/21	06/15/21 19:05	AS
2-Chlorotoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1-Chlorotoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Dibromochloromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2-Dibromo-3-chloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2-Dibromoethane (EDB)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Dibromomethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1.2-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,3-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,4-Dichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Dichlorodifluoromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1-Dichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2-Dichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1-Dichloroethene	ND ND	ug/L ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

e nelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-DUPE

1060808-05 (Nonpotable Water) Sample Date: 06/08/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
trans-1,2-Dichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Dichlorofluoromethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,3-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
2,2-Dichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
cis-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
trans-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Diisopropyl ether (DIPE)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Ethyl tert-butyl ether (ETBE)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Ethylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Hexachlorobutadiene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
2-Hexanone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 19:05	AS
(Sopropylbenzene (Cumene)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
4-Isopropyltoluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Methyl tert-butyl ether (MTBE)	254	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
4-Methyl-2-pentanone	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 19:05	AS
Methylene chloride	ND	ug/L	20.0	20.0	2	06/15/21	06/15/21 19:05	AS
Naphthalene	ND	ug/L	4.0	4.0	2	06/15/21	06/15/21 19:05	AS
n-Propylbenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Styrene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1,1,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1,2,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Tetrachloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Toluene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2,3-Trichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
,2,4-Trichlorobenzene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
,1,1-Trichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,1,2-Trichloroethane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Trichloroethene	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
Trichlorofluoromethane (Freon 11)	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
1,2,3-Trichloropropane	ND	ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348
Project Manager: Kevin Howard

GDG-DUPE

1060808-05 (Nonpotable Water) Sample Date: 06/08/21

•			Reporting	Detection				
Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
/MS) Prepar	ed by GCM	S-WATE	R-VOLATILES (co	ntinued)				
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
ND		ug/L	4.0	2.0	2	06/15/21	06/15/21 19:05	AS
	70-	130	92 %	06/15/21		06/15/21 19:05		
	75-	120	99 %	06/15/21		06/15/21 19:05		
	75-	120	85 %	06/15/21		06/15/21 19:05		
	ND ND ND ND ND ND ND ND ND	ND N	ND ug/L ND ug/L	Result Notes Units Limit (MRL) Image: Composition of the properties of the propert	Result Notes Units Limit (MRL) Limit (LOD) I/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 4.0 2.0 ND ug/L 92 % 06/15/21 75-120 99 % 06/15/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution C/MS) Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 4.0 2.0 2 ND 92 % 06/15/21 75-120 99 % 06/15/21	Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 4.0 2.0 2 06/15/21 ND ug/L 92 % 06/15/21 06/15/21 06/15/21 19:05 75-120 99 % 06/15/21 06/15/21 <td>Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 4.0 2.0 2 06/15/21 06/15/21 19:05 70-130 92 % 06/15/21 0</td>	Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Prepared by GCMS-WATER-VOLATILES (continued) ND ug/L 4.0 2.0 2 06/15/21 06/15/21 19:05 70-130 92 % 06/15/21 0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 06/17/21 09:30

Project: GEORGE'S DELI & GAS

Project Number: CG-08-0348 Project Manager: Kevin Howard

Notes and Definitions

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

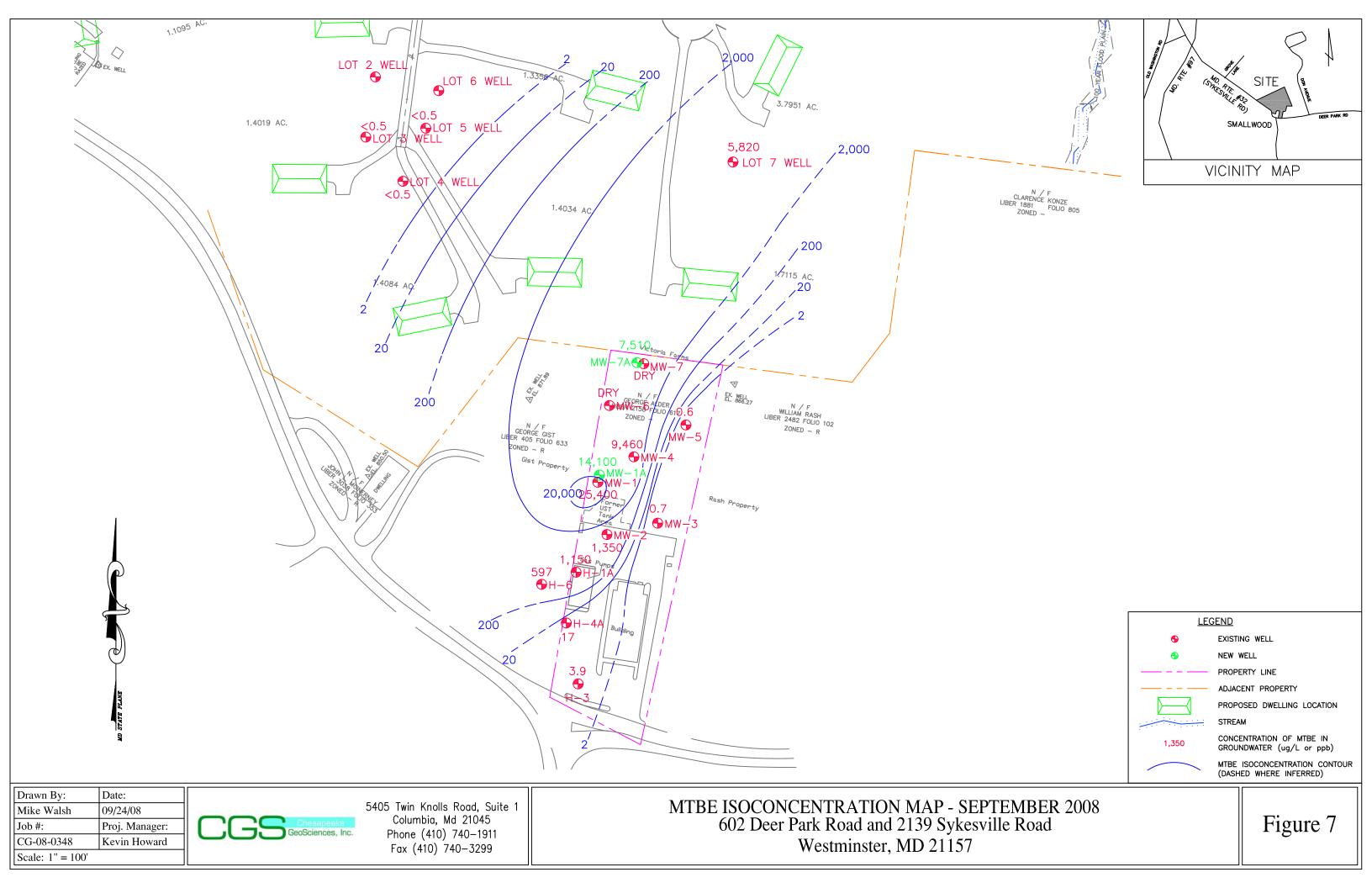
DET Analyte DETECTED

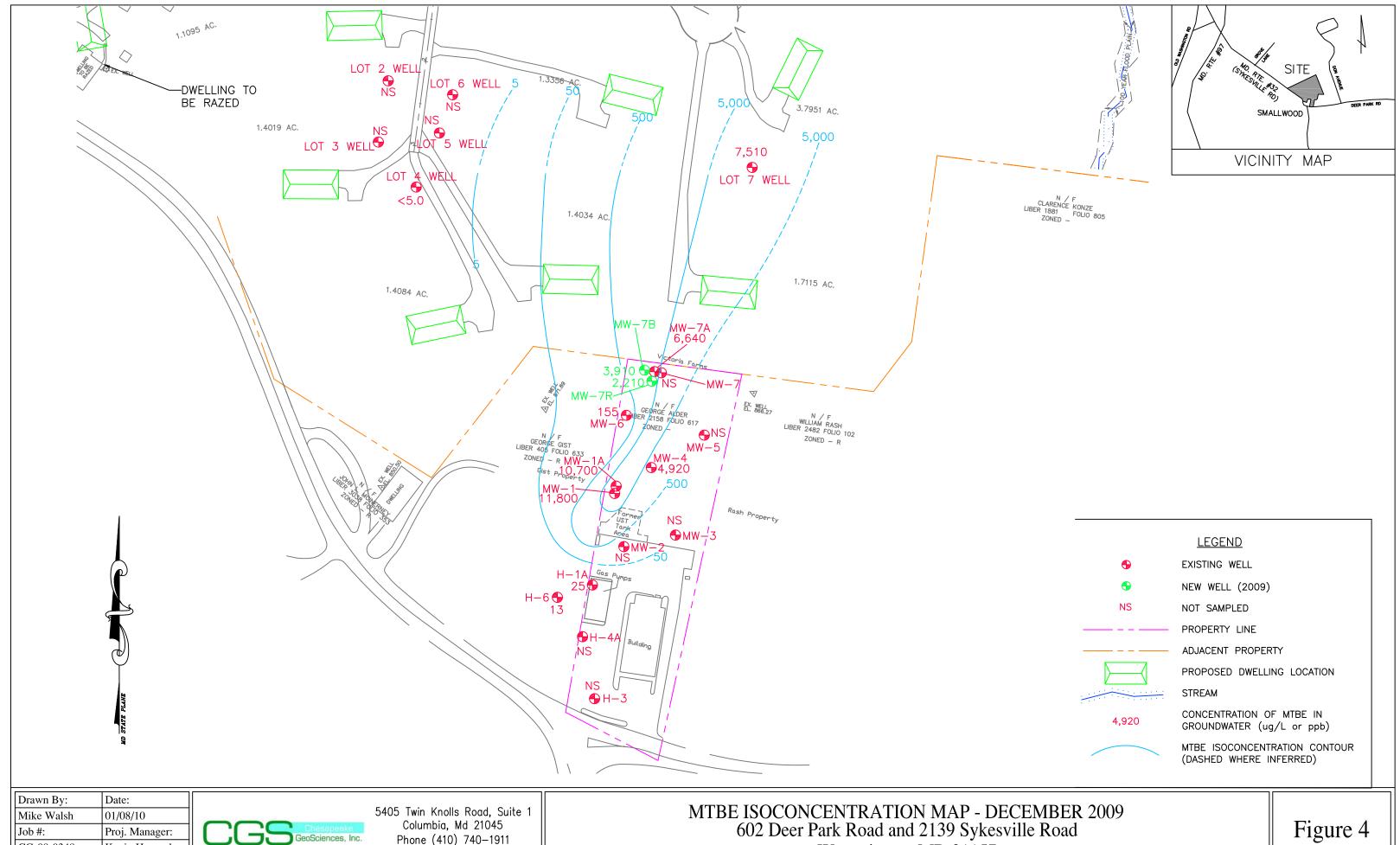
ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

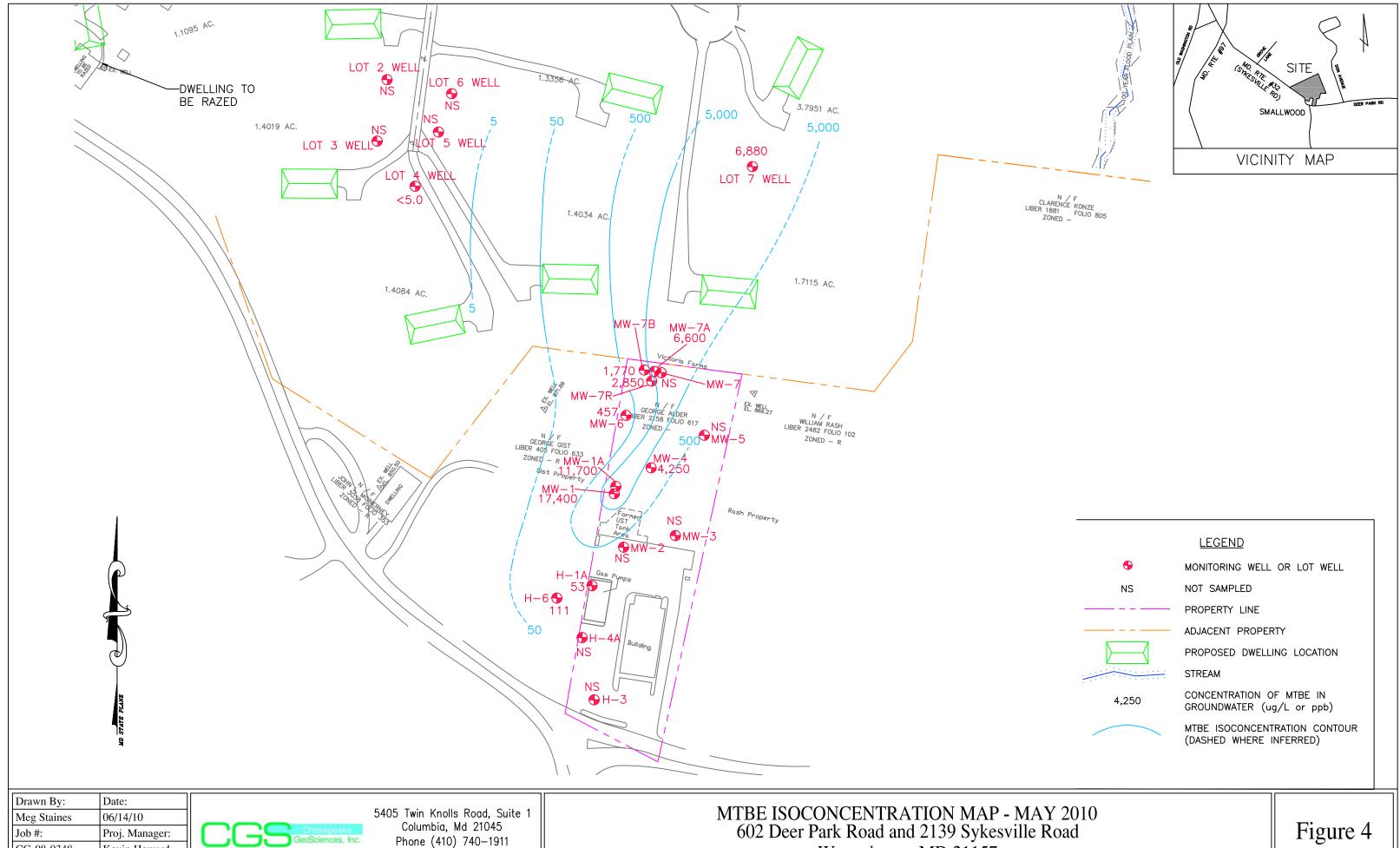

%-Solids Percent Solids is a supportive test and as such does not require accreditation


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

Company Name: Chesapeake GeoSciences, li		ject M in Hov	lanager ward						•	/	Anal	ysis	Requ	este	d				CHAI	N-OF-(CUSTODY	RECORD	
Project Name: George's Deli & Gas Case No. 2007-0096-CL Sampler(s):	CG-	ject ID -08-03	348					90	4.2	80101									150	O Caton Baltim 247–760	pectral Servion Center Drive ore, MD 212 O o Fax 410- Omdspectral.	, Suite G 227 -247–7602	
Meg Staines & Devin Glance	ey CG	08034	I8MS				Containers	EPA 8260	EPA 524.	ako E									ix Codes: N potable wa		otable water)	
Field Sample ID	Da	nte /	Time	Water	Soil	Other	No. of Cor	VOCs via B	VOCs via E	DITE.								1 + 1 r	eservative: HCL, H ₂ SC Jethanol, ₁₂ O ₃ , NaHC	0 ₄ , Ch Red	pH, Residual lorine, QC quest, Trip , Field Blank	MSS Lab ID	
GDG-GW-T	B 5/2	/21	(memorable)	X			2	X										1+	THCL	GW/	TrioBlank	106080	8.01
Mus-1A	6/8/	2110	0:05	X			3	X										[i	IHCO		T Divides	0)	0
CO-FF			0130	X			6	X		X								1-4	1400		· · · · · · · · · · · · · · · · · · ·	- p 3	1
of 7 Woll			1:30	X			3	文											1 HOV			- 04	
GDG-DUPE			2:00				3	X										1.4	THOU			- 05	_
				*														<u> </u>	I V C				
																							-
										1													\dashv
Relinguished by: (Signature)	> 06/	ate/Time	e R	eceiv	ed by	: (Sigi	l nature)	l	I		<u>. </u>	Relin	quishe	ed by:	(Sign	ature)	,	J	Date/1	ime	Received by: /5	Signature)	-
(frigred) Laines) 13	:50	5 7	Printe	ed)	***************************************						(Prin	ited)								(Printed)		
Relinquished by: (Signature)	Da I)	ate/Time	e R	eceiv	ed by	Lab:	(Signa	ture)				Turr	n Arc	und	Tim	e:			Lab Use:		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		-
(Printed)	13 G-	· · 8	21	Printe		<u>_</u>	; ¥	<u></u> ٥ -	_ _ 	k	r	0	5 day 4 day	· /	ˈday	/)				ed same	day		
□ Courier	ecial Instruction of the second secon	ons/Q0 > Qc u khowa iel oxy result	C Requard@cg ard@cg genate ts. J	irem	ents (65) con nap	& C Lir n and htha	omm Artov Intov Ilene	ents /e@c in V	ر ا ار کی OCs ار از	1,1 us.co 826 S 1	<u>om</u> . 30. 10.		Next Othe	n (2 d Day		Date	:		Sample Dis				
Other:																						Page 19 of	19

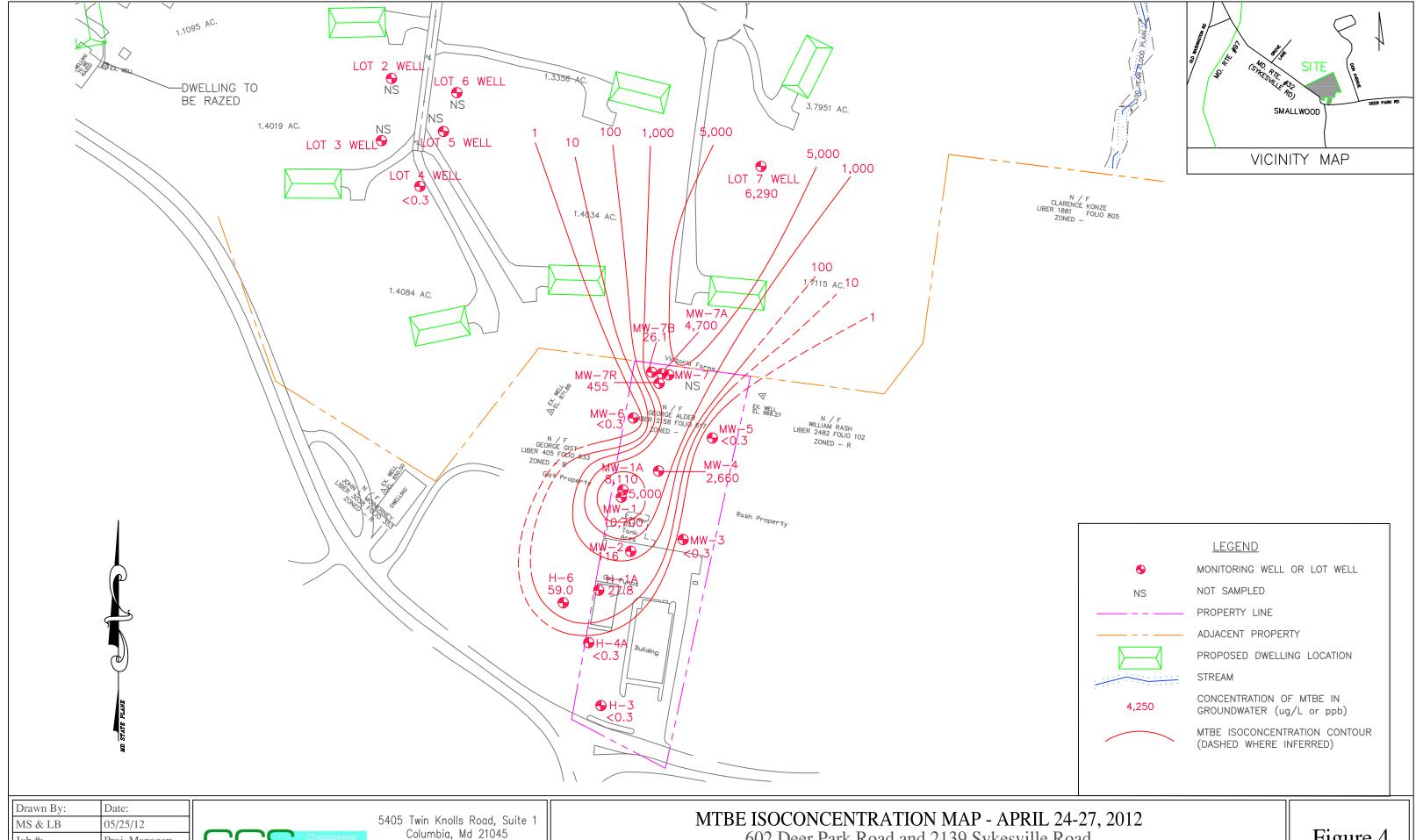
ATTACHMENT C PRIOR MTBE ISOCONCENTRATION MAPS



CG-08-0348 Kevin Howard Scale: 1" = 100'

Phone (410) 740-1911 Fax (410) 740-3299

Westminster, MD 21157



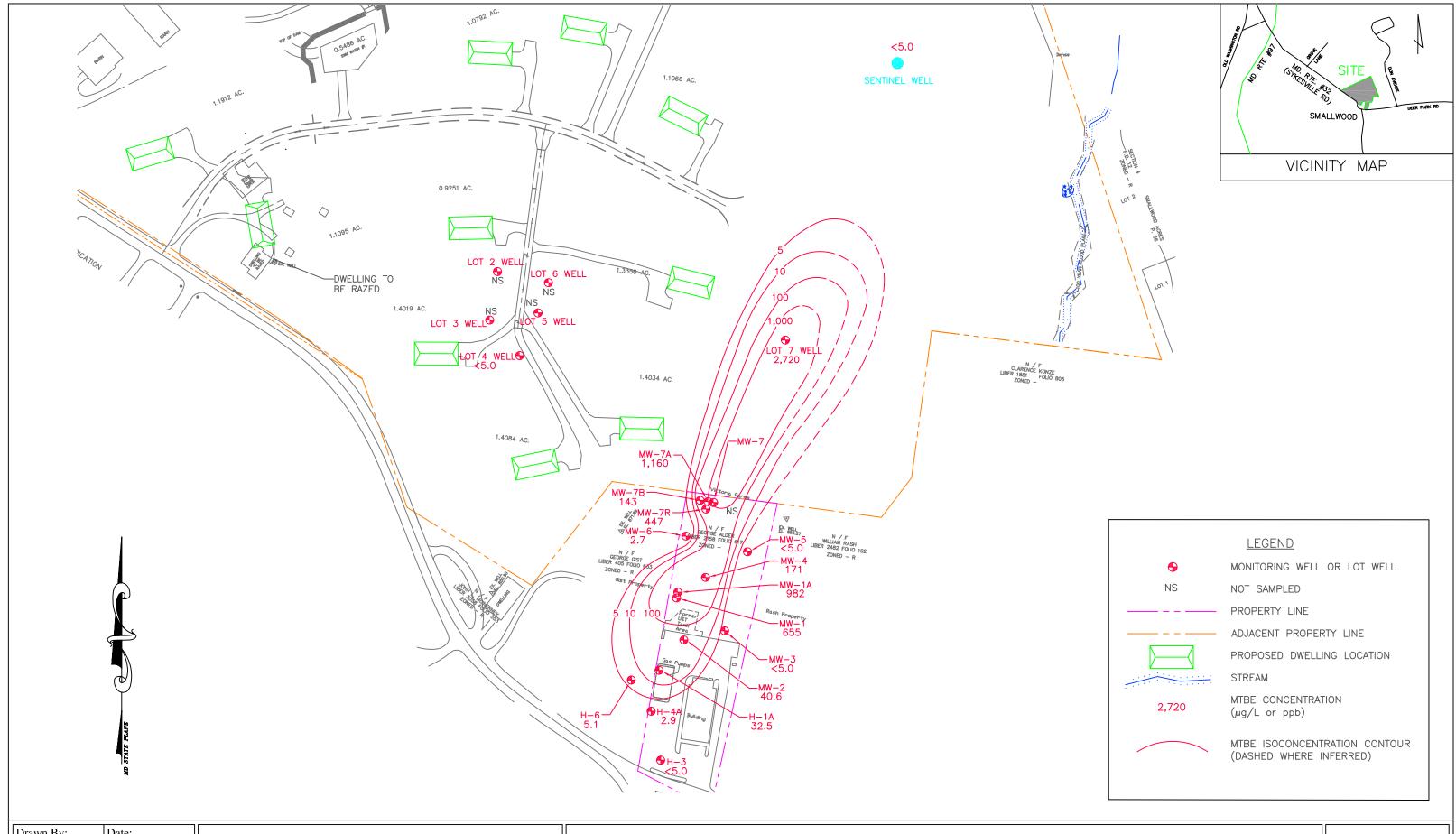
CG-08-0348 Kevin Howard Scale: 1" = 100'

Fax (410) 740-3299

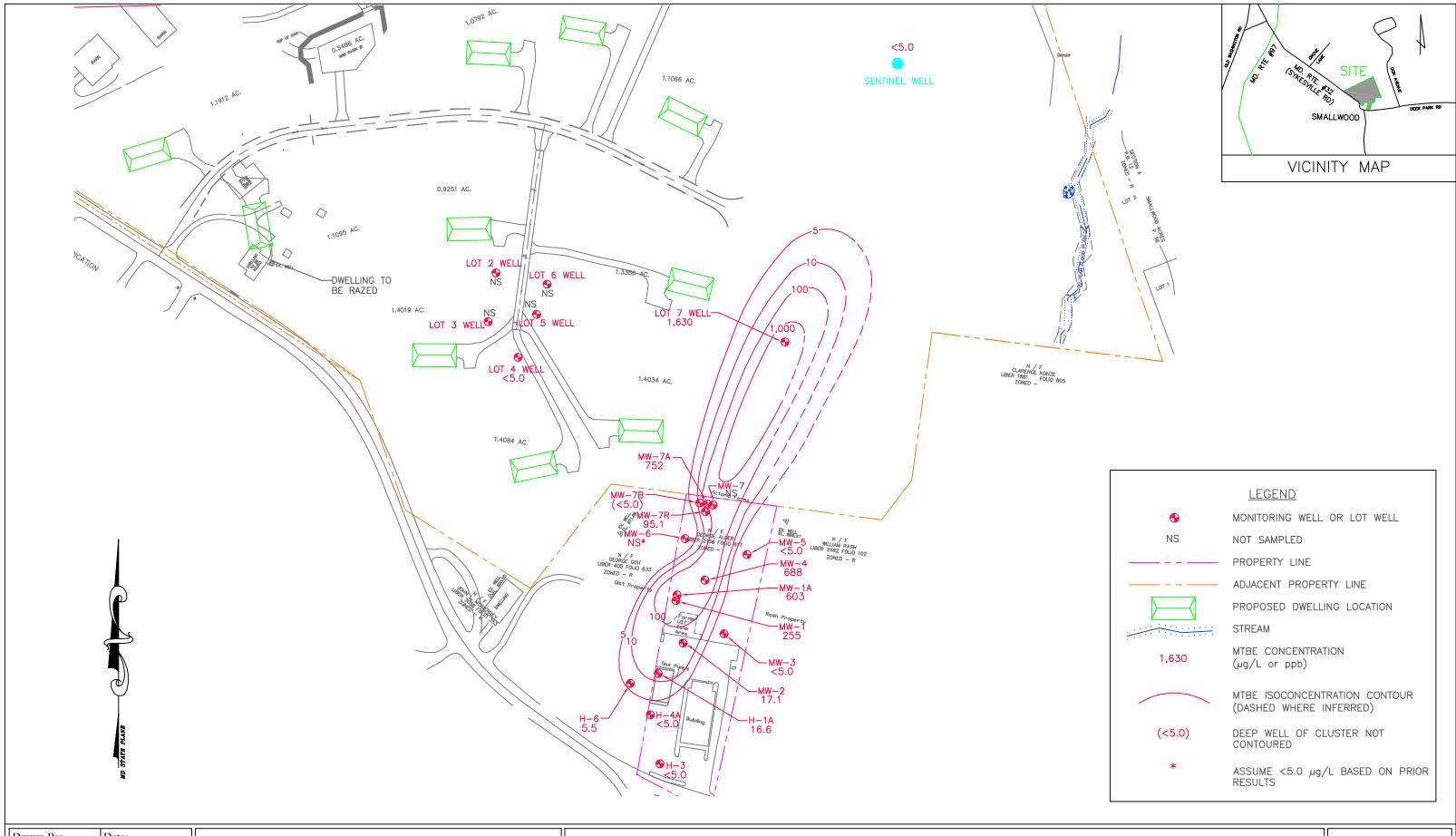

Westminster, MD 21157

Job#: Proj. Manager: CG-08-0348 Kevin Howard Scale: 1'' = 100'

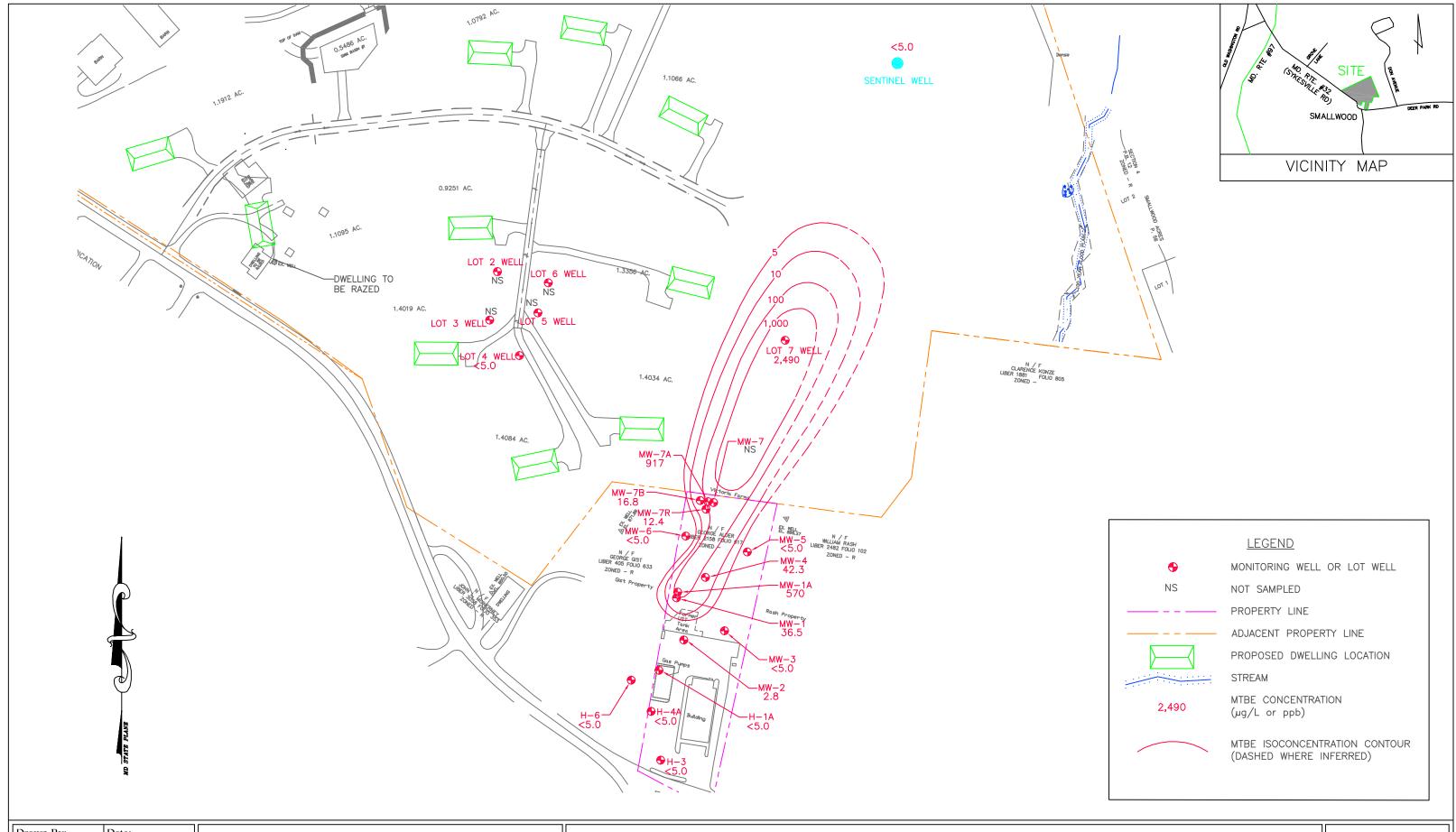
Columbia, Md 21045 Phone (410) 740-1911 Fax (410) 740-3299


602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

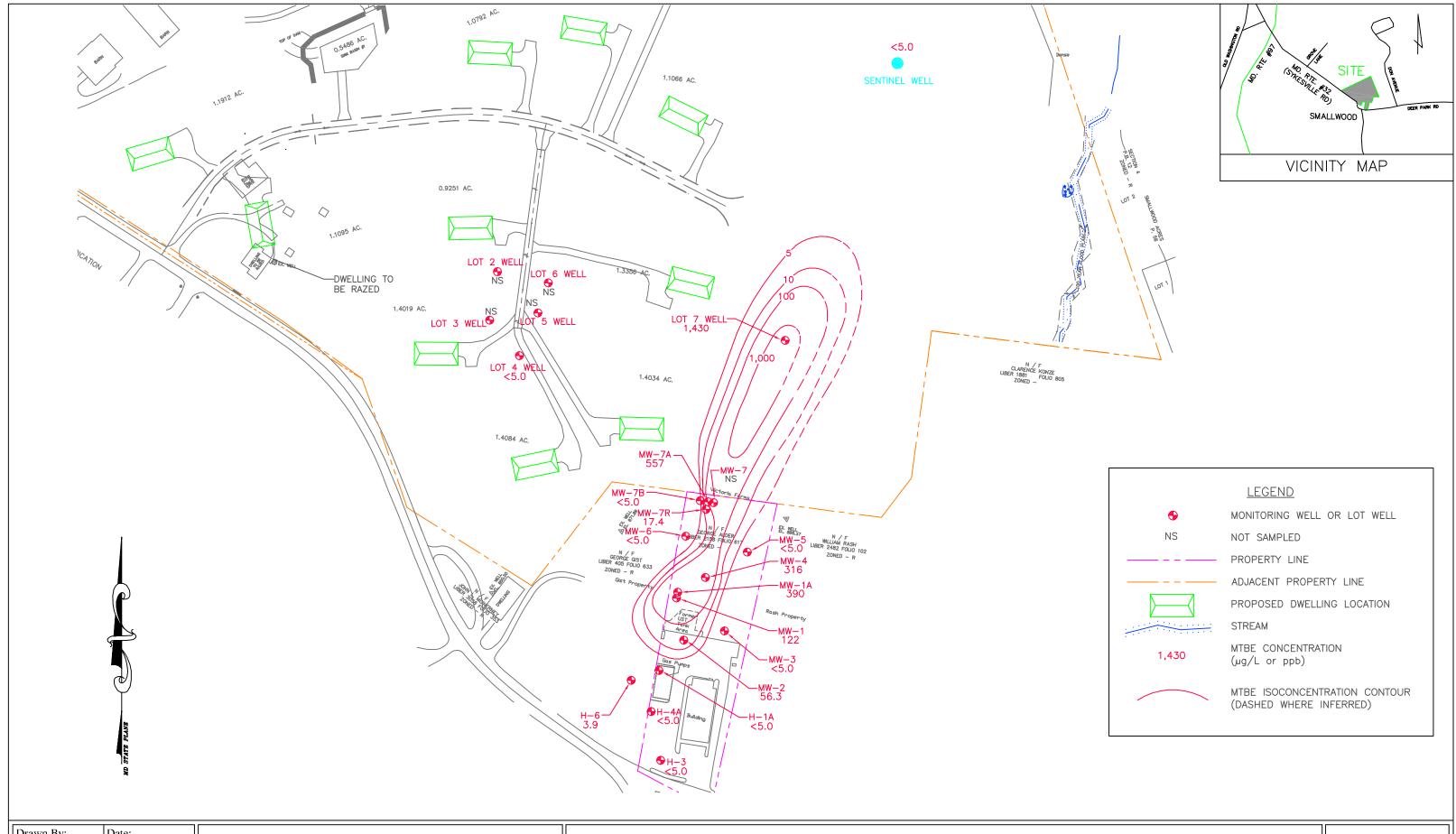
Drawn By:	Date:
MS & LB	07/15/13
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	,


MTBE ISOCONCENTRATION MAP - JUNE 2013 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

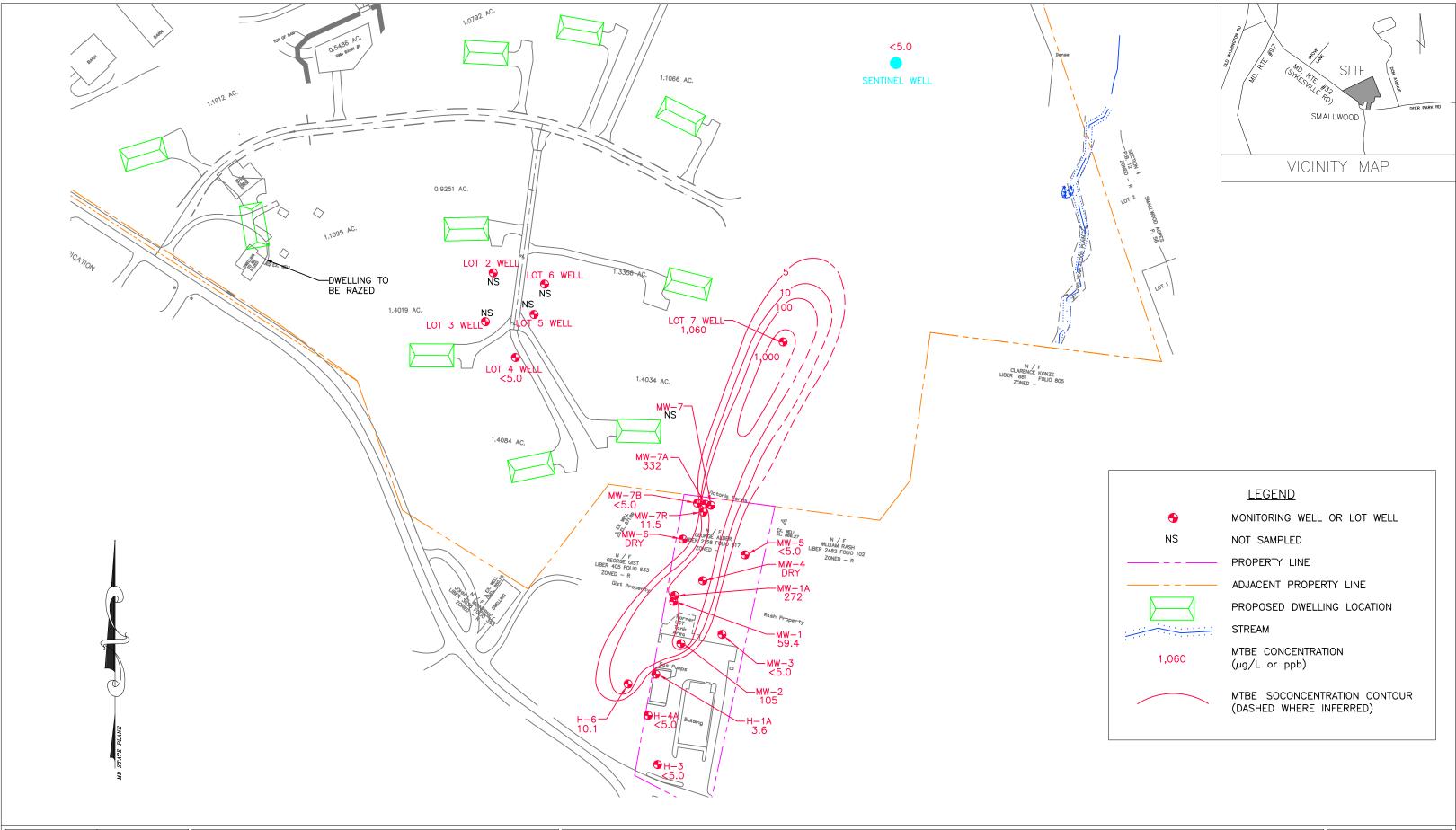
Drawn By:	Date:
MRW	09/14/15
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" - 130'	


MTBE ISOCONCENTRATION MAP - AUGUST 2015 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

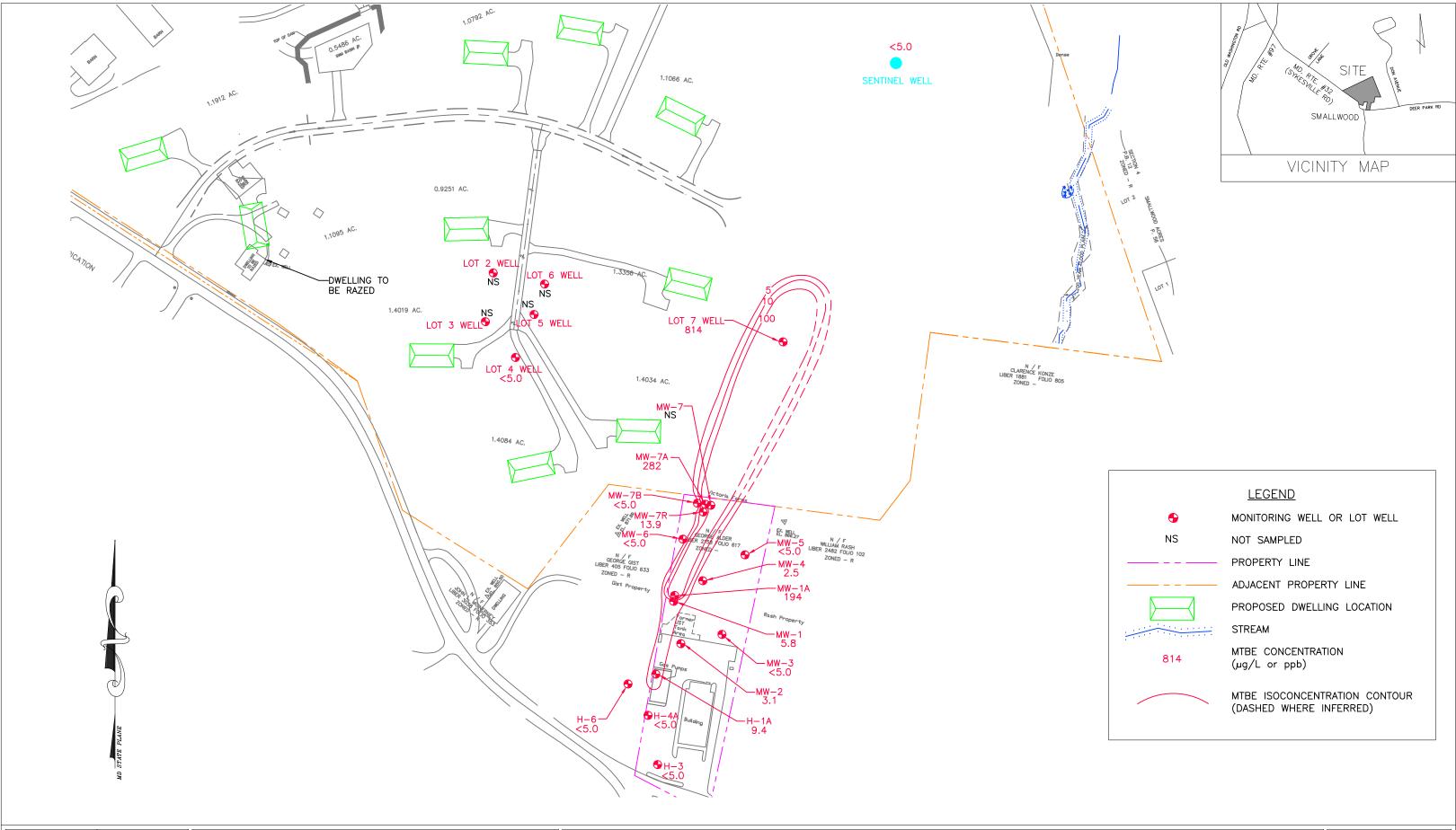
Drawn By:	Date:
MRW	01/13/16
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - NOVEMBER 2015 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

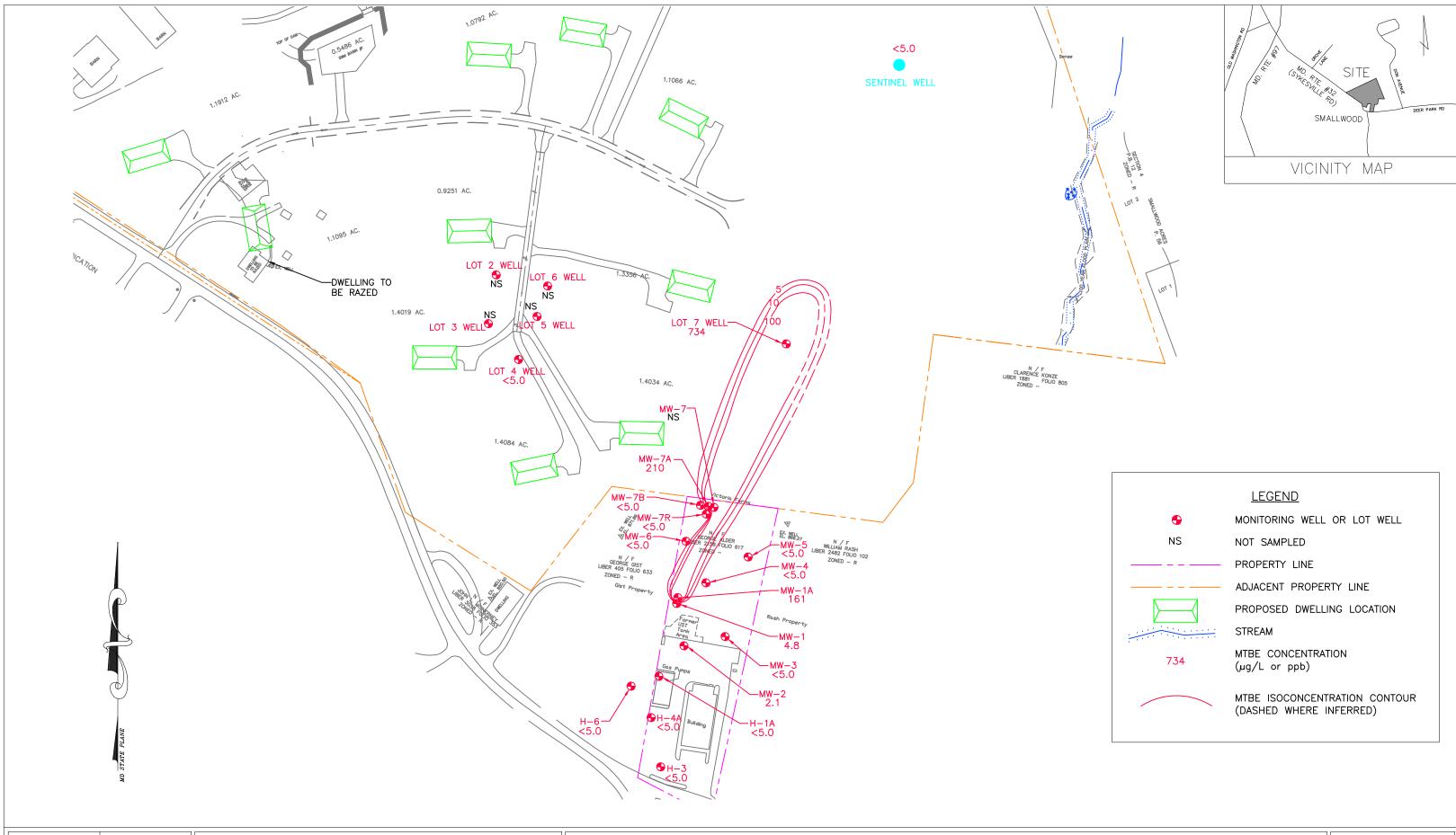
Drawn By	/:	Date:
MRW		04/13/2016
Job #:		Proj. Manager:
CG-08-03	348	Kevin Howard
Scale: 1"	= 130'	


MTBE ISOCONCENTRATION MAP - FEBRUARY 2016 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

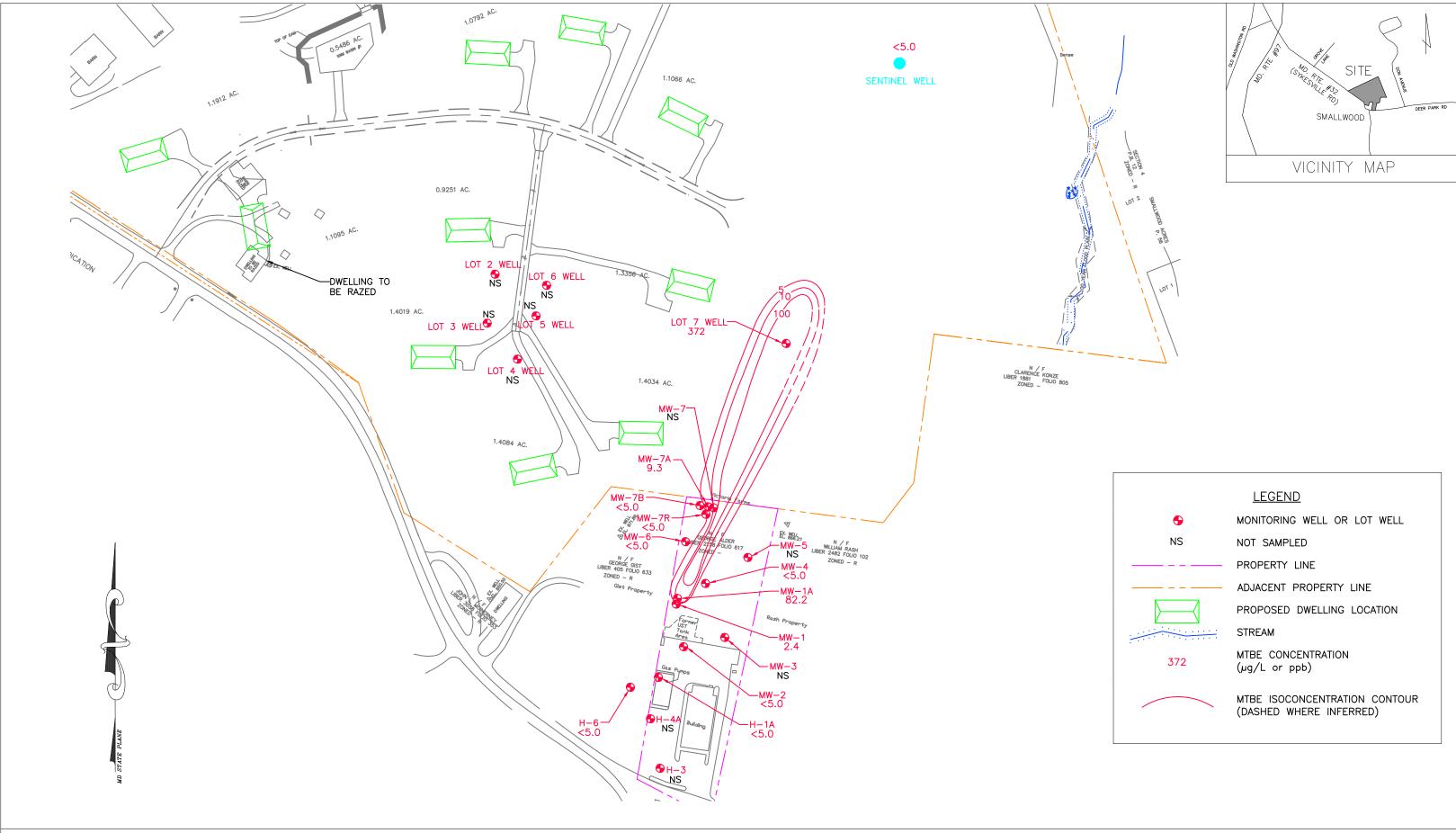
Drawn By:	Date:
MRW	07/15/2016
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - JUNE 2016 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

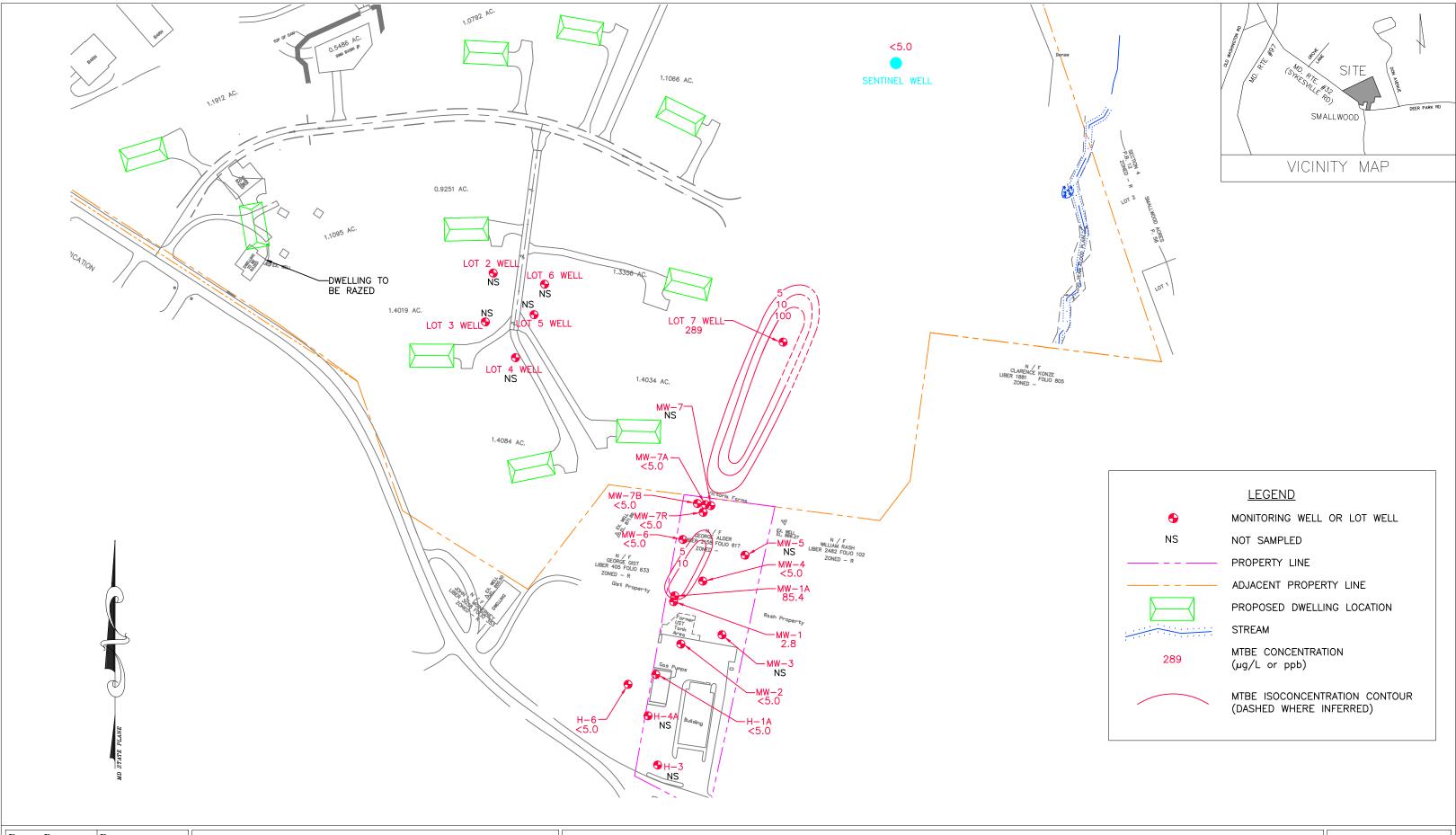
Drawn By:	Date:
MRW	12/20/2017
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - NOVEMBER 2017 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

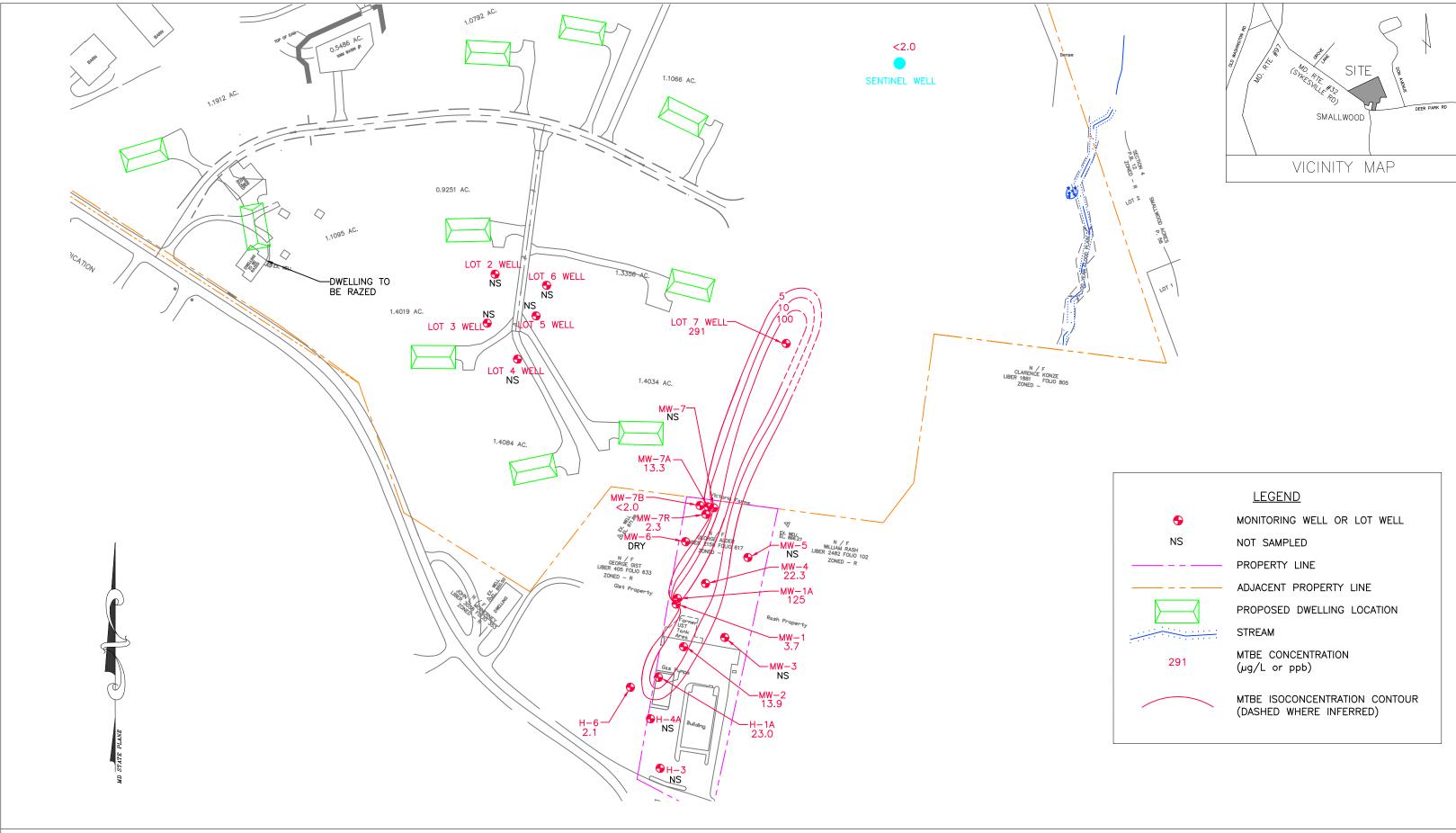
Drawn By:	Date:
MRW	04/20/2018
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - MARCH 2018 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

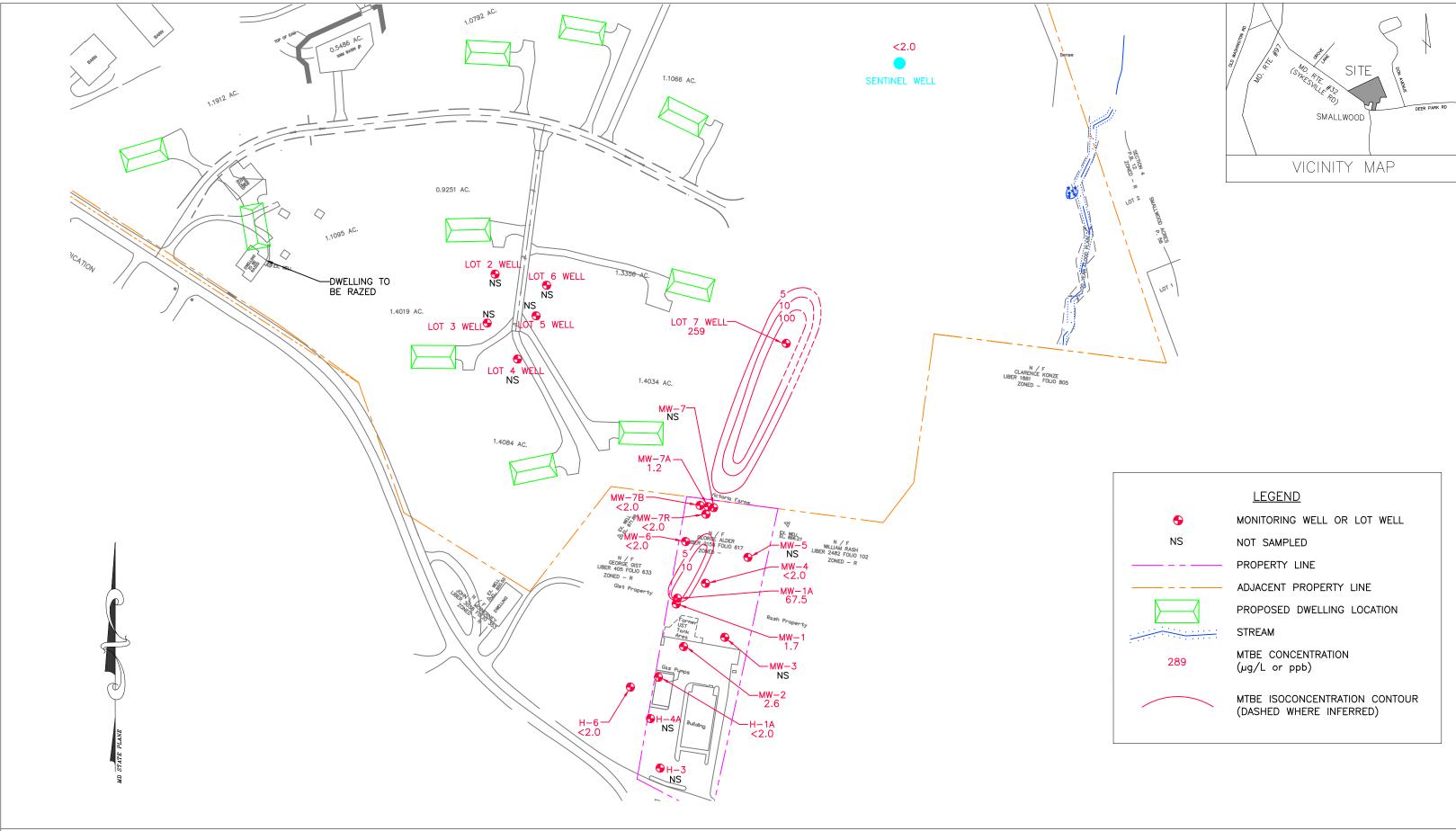
Drawn By:	Date:
MRW	07/30/2018
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - JUNE 2018 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

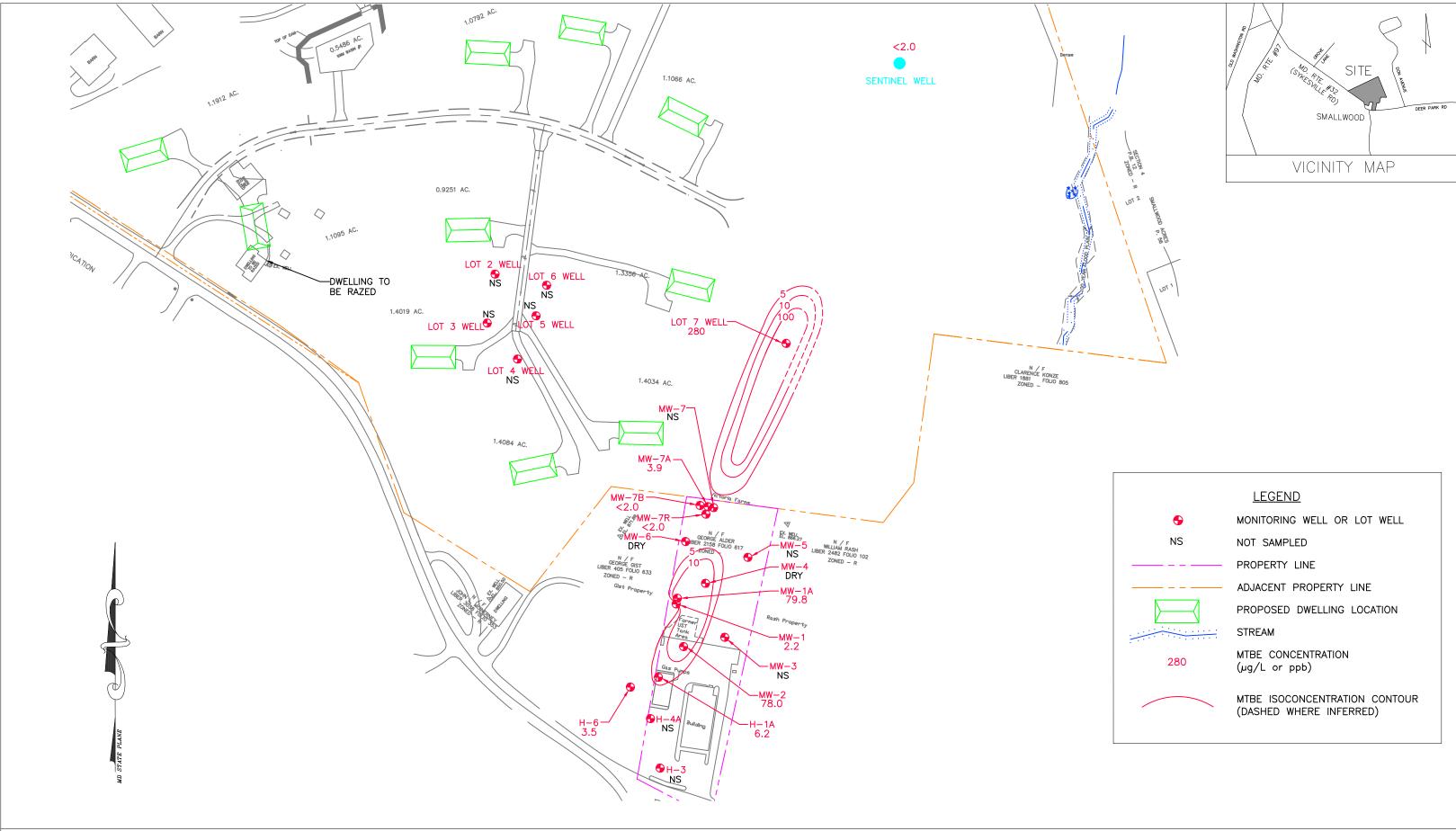
Drawn By:	Date:
MRW	12/18/2018
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	•


MTBE ISOCONCENTRATION MAP - DECEMBER 2018 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Drawn By:	Date:
MRW	06/26/2019
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	


MTBE ISOCONCENTRATION MAP - JUNE 2019 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Drawn By:	Date:
MRW	12/19/2019
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	•


MTBE ISOCONCENTRATION MAP - NOVEMBER 2019 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Drawn By:	Date:
MRW	06/04/2020
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	

MTBE ISOCONCENTRATION MAP - MAY 2020 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157

Drawn By:	Date:
MRW	12/08/2020
Job #:	Proj. Manager:
CG-08-0348	Kevin Howard
Scale: 1" = 130'	

MTBE ISOCONCENTRATION MAP - NOVEMBER 2020 602 Deer Park Road and 2139 Sykesville Road Westminster, MD 21157