

September 11, 2015

Ms. Jeannette DeBartolomeo Oil Control Program Maryland Department of the Environment 1800 Washington Blvd, Suite 620 Baltimore, Maryland 21230

RE: Site Investigation Report

MDE Case #2006-0442-HA High's Store #130 4101 Norrisville Road, Madonna, Harford County, Maryland Facility ID No. 2057

Dear Ms. DeBartolomeo,

Groundwater & Environmental Services, Inc. (GES), on behalf of High's of Baltimore, LLC. (High's), respectfully submits this *Site Investigation Report* for the recent monitoring well installations at 4101 Norrisville Rd., Madonna, Maryland (Site). This summary report is being provided per the Maryland Department of the Environment Oil Control Program (MDE-OCP) request from the *Site Investigation Work Plan Approval Letter* dated May 28, 2015.

The monitoring wells, designated MW-4, MW-4D, MW-5D, MW-6D, and MW-6D, were installed on the Site from June 29, 2015 through July 15, 2015. The six (6) monitoring wells, completed as a series of shallow and deep overburden zone cluster sets, were installed to support High's effort to evaluate the onsite water table flow regime and delineate the extent of potential petroleum hydrocarbons, particularly methyl tert butyl ether (MTBE). Currently, GES on behalf of High's, is reevaluating the conceptual model regarding historic MTBE releases at the Site as well as those releases related to former MDE OCP case #2009-0539-HA assigned to the Department of Natural Resources (DNR) Madonna Ranger Station, 3919 Madonna Road, Jarrettsville, MD. A Local Area Map, which presents the High's station in relation to the surrounding potable wells in the study area, is attached as **Figure 1**. A Site Map, noting the position of the new wells in relation to the existing monitoring wells and other structures at the High's property, is presented as **Figure 2**.

Well Installation

On June 24, 2015, a MISS Utility public utility mark out (ticket #15395431) was requested in preparation of the scheduled drilling activities. On June 29, 2015, drilling activities commenced when Allied Well Drilling (Allied), a Maryland-licensed drilling company, performed precautionary "soft digs" for the first 5 feet (ft.) below grade surface (bgs) (i.e. hand clearing with shovels) for all six monitoring well locations. The hand cleared holes were back filled on June 29, 2015 until drilling occurred for each location. Drilling began June 30, 2015 with an off-road capable hollow-stem auger (HSA) drill rig positioned over the pre-cleared MW-4D hole with 8.5-inch outer diameter augers. At each well pair location, the deep-screened wells (designated with a "D") were installed first in order to determine the water table depth and an appropriate screen interval for the corresponding shallow-screened wells.

At each deep well location, soil was screened twice during the first 5 ft. of hand clearing and then, at regular 5-foot intervals in the split spoon samples. During screening and characterization activities, peak volatile organic compound (VOC) readings were obtained with a calibrated photoionization detector

(PID). Once drilling initiated, two-foot split spoon samples were collected in the deep wells at five-foot intervals beginning at 5 ft bgs until the water table was reached and continued at ten-foot (10 ft) intervals until spoon refusal. Upon spoon refusal, drilling continued in the deep wells until bedrock was encountered. Upon HSA refusal, bedrock was confirmed and logged via completion of a 2-inch (width) by 5-foot (length) rock core sample. Pictures of the core samples are presented in **Appendix A** – Photo Log.

Within the overburden boreholes, PID values ranged from 0.0 to 6.5 parts per million (ppm) from the spoon samples collected from the three (3) deep wells. The overall lithology within the spoon samples was described as a silt saprolite with thin intervals of remnant quartzite. Depth to bedrock was confirmed through rock core collection at 96 ft bgs at MW-4D, 85 ft bgs at MW-5D and 75 ft bgs at MW-6D. The rock core lithology for MW-4D and MW-5D were identified as part of the local Lower Pelitic Schist of the Wissahickon Formation and included resistant quartzite layers, as well as more decomposed and fractured schist. MW-6D's core sample lithology was identified as the Baltimore Gabbro or as the part of the ultramafic rocks belt that trends in the Piedmont province. This core exhibited a highly weathered mafic mineral composition with comparable weathering and fracturing but was significantly more oxidized along fracture faces. Boring and Well Completion Logs, which summarize well construction, in addition to encountered lithology and PID screening levels collected from each installed wells, are attached as Appendix B. Copies of the Well Completion Reports for all recently installed monitoring wells, as finalized with the Harford County Health Department, will be forwarded under separate cover. A total of 7.46 tons of soil were created during the well installation process for this investigation. The drill cuttings were removed from the Site via roll-off container on July 16, 2015. The waste disposal manifests for these cuttings are attached as **Appendix C.**

Each of the deep wells were completed with 10 ft of 2-inch 0.020-slot PVC screen from top of bedrock and cased with 2-inch PVC to the surface. The shallow wells were built to 30 to 32 ft bgs with 20 ft of 2-inch 0.020-slot PVC screen and 10 ft of 2-inch PVC casing. Sand packs were placed from the well's depth to 2 ft above the top-of-screen with a 2 foot bentonite plug and grouted to 1 foot bgs. All six wells were finished within flush-mount manholes within approximately 1.5 ft by 1.5 ft concrete pads.

On July 15, 2015, monitoring wells MW-4, MW-4D, MW-5, MW-5D, MW-6, and MW-6D were developed by Allied. Approximately 45 gallons were surged and pumped from MW-4 and MW-6 (each) with 20 gallons developed from MW-5. Approximately 60 gallons were purged from MW-4D, MW-5D, and MW-6D. The groundwater disposal manifest is attached as **Appendix C**.

Well Survey

On July 30, 2015 total water volume in each well (MW-4, 4D, 5, 5D, 6, and 6D) was calculated and depths to water were recorded for correct purge and grab sampling methods conducted that day. Each well's top of casing were surveyed in reference to the three monitoring wells existing at the Site (MW-1, 2, and 3).

Groundwater Elevation Summary

On August 20, 2015, a follow-up round of gauging was completed at the Site and included monitoring wells MW-1, MW-2, MW-3, MW-4, MW-4D, MW-5, MW-5D, MW-6 and MW-6D. The groundwater elevation data collected this day (in addition to the analytical groundwater results collected on July 30, 2015) are presented in **Figure 3** Groundwater Monitoring Map.

Upon review of **Figure 3**, the following observations are noted:

- Groundwater elevations for August 20, 2015 vary less than 0.36 ft (0.5%) between corresponding shallow and deep wells within a particular cluster indicating a thick saturated overburden aquifer system that is well connected "top to bottom."
- Groundwater from the August 20, 2015 gauging event demonstrates a flow path toward the northwest with a relatively even gradient of 0.02 ft / ft.
- No obvious "groundwater mounding" patterns are evident in the area surrounding the eastern stormwater infiltration structure that accepts runoff from Madonna Road.

GES further evaluated the occurrence of groundwater mounding by computing vertical groundwater gradients among all new well clusters (using August 20, 2015 gauging data). The gradients were generated using the USEPA Vertical Gradient Calculator. The vertical gradient calculations are attached as **Appendix D** and are summarized below.

Well Cluster	Magnitude of Vertical Gradient (Screen mid-point value)	Flow Direction
MW-4 to MW-4D	0.00288	UP
MW-5 to MW-5D	0.00542	UP
MW-6 to MW-6D	0.007592	UP

Upon review of the vertical gradients results, it is noted that an upward (or deep to shallow zone) vertical gradient condition existed among all well clusters on August 20, 2015. Review of precipitation data collected from private weather stations in the area (www.weatherunderground.com) note that approximately 0.6 inches of rain had fallen in the area within a 36 hour period prior to gauging on August 20, 2015. However, no mounding conditions, which might be associated to percolating rainwater recharge (and a corresponding downward gradient), were noted for any of the clusters, including MW-4 / MW-4D which is adjacent to the stormwater infiltration structure.

Soil Sampling

One soil sample per deep well borehole was collected during the investigation and can be summarized as follows:

- MW-4D was collected on June 30, 2015 at an interval of 25.6 27 ft below fbg. (The peak PID value for the borehole of 0.6 ppm occurred at 4 4.5 ft bgs.)
- MW-5D was collected on July 6, 2015 at 10 12 ft bgs. (The peak PID value for the borehole of 0.4 ppm occurred at 2 2.5 ft bgs.)
- MW-6D was collected on July 10, 2015 at 40.5 42 ft bgs with a peak PID value of 6.5 ppm occurring at 40.7 fbg.

The soil samples were submitted for analysis of VOCs with fuel oxygenates and naphthalene via EPA Method 8260, total petroleum hydrocarbon – gasoline range organics (TPH-GRO) via EPA Method 8015B, and total petroleum hydrocarbon – diesel range organics (TPH-DRO) via EPA Method 8015B.

The following table summarizes the analytical results for constituents of concern obtained from the soil samples collected during this investigation. Please refer to **Table 1** for a complete summary of the soil analytical results.

Well Boring	Sample	BTEX	MTBE	TAME	TBA	TPH-GRO	TPH-DRO
	Interval (ft bgs)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)	(mg/kg)
MW-4D	25.6 - 27	ND<0.9	ND<0.5	ND<0.9	ND<18	ND<0.2	ND<4.6
MW-5D	10 - 12	ND<1.0	ND<0.6	ND<1.0	ND<24	ND<0.3	ND<4.5
MW-6D	40.5 - 42	ND<0.9	200	3 J	170	ND<0.2	ND<5.0

BTEX = Total benzene, toluene, ethylbenzene and xylene

TAME = Tert-amyl methyl ether

TBA = Tert-butyl alcohol

ND = Non-detect

 $\mu g/kg = micrograms \; per \; kilogram$

mg/kg = milligrams per kilogram

J = Qualifier: detection is between method detection and reporting limits, therefore the value is estimated

Upon review of the soil analytical results collected during the installations of the deep well series, the following observations are noted:

• The sample interval for MW-6D at 40.5 to 42.0 ft bgs demonstrates the presence of oxygenates including MTBE, which is consistent with dissolved oxygenates present in the groundwater sample collected for this borehole on July 30, 2015 (see next section).

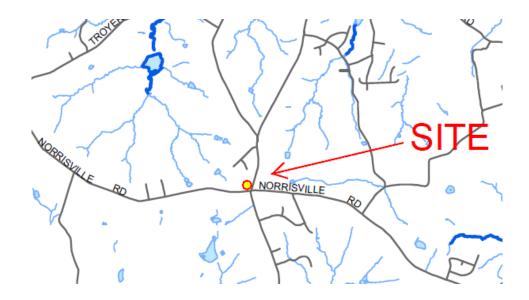
The soil analytical report and associated Chain of Custody, as received from the contracted lab, is attached as **Appendix E.**

Groundwater Sampling

Groundwater samples were collected on July 30, 2015 from MW-4, 4D, 5, 5D, 6, and 6D, via a purge and grab sampling method. This sampling occurred two weeks after development per MDE monitoring well installation requirements. The groundwater samples were submitted for VOCs with fuel oxygenates and naphthalene via EPA Method 8260, TPH-GRO via EPA Method 8015B, and TPH-DRO via EPA Method 8015B.

The following table summarizes the analytical results for constituents of concern obtained from the groundwater samples collected during this investigation. Please refer to **Table 2** for a complete summary of the historic groundwater analytical results.

Well ID	BTEX (µg/L)	MTBE (µg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)
MW-4	ND<0.4	ND<0.1	ND<20	ND<45
MW-4D	0.6 J	2.9	ND<20	49 J
MW-5	ND<0.4	ND<0.1	ND<20	ND<45
MW-5D	ND<0.4	0.7	ND<20	ND<45
MW-6	ND<0.4	19	38	ND<45
MW-6D	ND<0.4	5.4	ND<20	ND<45


ND = Non-detect

 $\mu g/L = micrograms per liter$

J = Qualifier: detection is between method detection and reporting limits, therefore the value is estimated

Upon review of the July 30, 2015 groundwater analytical results, the following observations are noted:

• Concentrations of MTBE, the identified constituent of concern for this investigation, occur in highest concentration at the MW-6 and 6-D cluster at 19 µg/L and 5.4 µg/L, respectively. Detections at this western monitoring well cluster location support GES's current conceptual model that localized flow emanating from the High's property is directed to a typographic drainage feature that trends to the northwest. An excerpt from the Harford County Hydrology / Drainage Area Map (June 2008) denotes the localized drainage patterns for the Site and adjacent community of Charbonnet.

- The concentration of MTBE at the new downgradient wells is relatively low (detectable concentrations ranging from 0.7 to 19 ug/L) in proximity of the presumed onsite tankfield source area. Thus, MTBE, as a source, appears relatively depleted in the extensive saturated overburden aquifer underlying the Site. (For comparison, historic peak MTBE occurred in 2005 at MW-1 at a concentration of 1,600 ug/L.)
- In addition to the MTBE detections noted for MW-6/MW-6D, were the detections of several other oxygenates including tert-butyl-alcohol (TBA), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). TBA is a primary metabolite of MTBE. The other detected oxygenates were blended with MTBE in historic gasoline formulations. Thus, the oxygenate signature observed in MW-6D may be related to the primary historic path of MTBE as it may have migrated away from the Site. Detections of TBA, DIPE, ETBE and TAME were not detected in groundwater samples from the MW-5/5D and MW-4/4D clusters.
- The MW-5/5D cluster is positioned central to the High's backlot and exhibits the least amount of detectable VOCs in comparison to the other recently installed downgradient clusters. This may indicate the eastern extent of High's historic overburden oxygenate plume, evidenced by the low MTBE detections and the lack of other oxygenates.

• The eastern shallow overburden monitoring well MW-4 was non-detected for all analyzed constituents. The deep overburden well MW-4D exhibited trace benzene (0.2 J ug/L), toluene (0.3 J ug/L), ethylbenzene (0.1 J ug/L), MTBE (2.9 ug/L) and TPH-DRO (49 J ug/L). The low level detections at MW-4D may be related to the stormwater runoff collected from the adjacent stormwater infiltration structure that is feed from Madonna Road drainage.

The groundwater analytical report for the June 30, 2015 sampling event and associated Chain of Custody, as received from the contracted lab, is attached as **Appendix E**.

Conclusions

As described in *Site Investigation Work Plan* dated February 24, 2015 GES, on behalf of High's, endeavored to install six (6) monitoring wells completed as a series of shallow and deep overburden zone cluster sets in the furthest downgradient area of the Site. The installation of these monitoring wells was expected to allow GES to further evaluate the onsite water table flow regime and delineate the extent of petroleum hydrocarbons, including MTBE.

GES feels that valuable data provided from these recent monitoring wells installations identifies patterns of groundwater movement and petroleum constituent signature that are consistent with GES's current conceptual model for the Site. Further data evaluation will be required during future monitoring periods to investigate High's contribution to impacts reaching downgradient homes in the Charbonnet community in comparison to historic petroleum hydrocarbon releases related the DNR Madonna Ranger Station located at 3919 Madonna Road.

We appreciate the continued guidance of the MDE-OCP on this project. If you have any questions or would like additional information, please contact the undersigned at 800-220-3606, extension 3705 or 3726, respectively, or Herb Meade at 410-261-5450.

Sincerely,

Groundwater & Environmental Services, Inc.

hoday thing

Prepared By:

Lindsay Keenay Associate Geologist Reviewed By:

Pete Reichardt

Project Hydrogeologist

Attachments:

Figure 1 – Local Area Map

Figure 2 – Site Map

Figure 3 – Groundwater Monitoring Map

Table 1 – Soil Analytical Data Summary

Table 2 – Historic Groundwater Analytical Data Summary

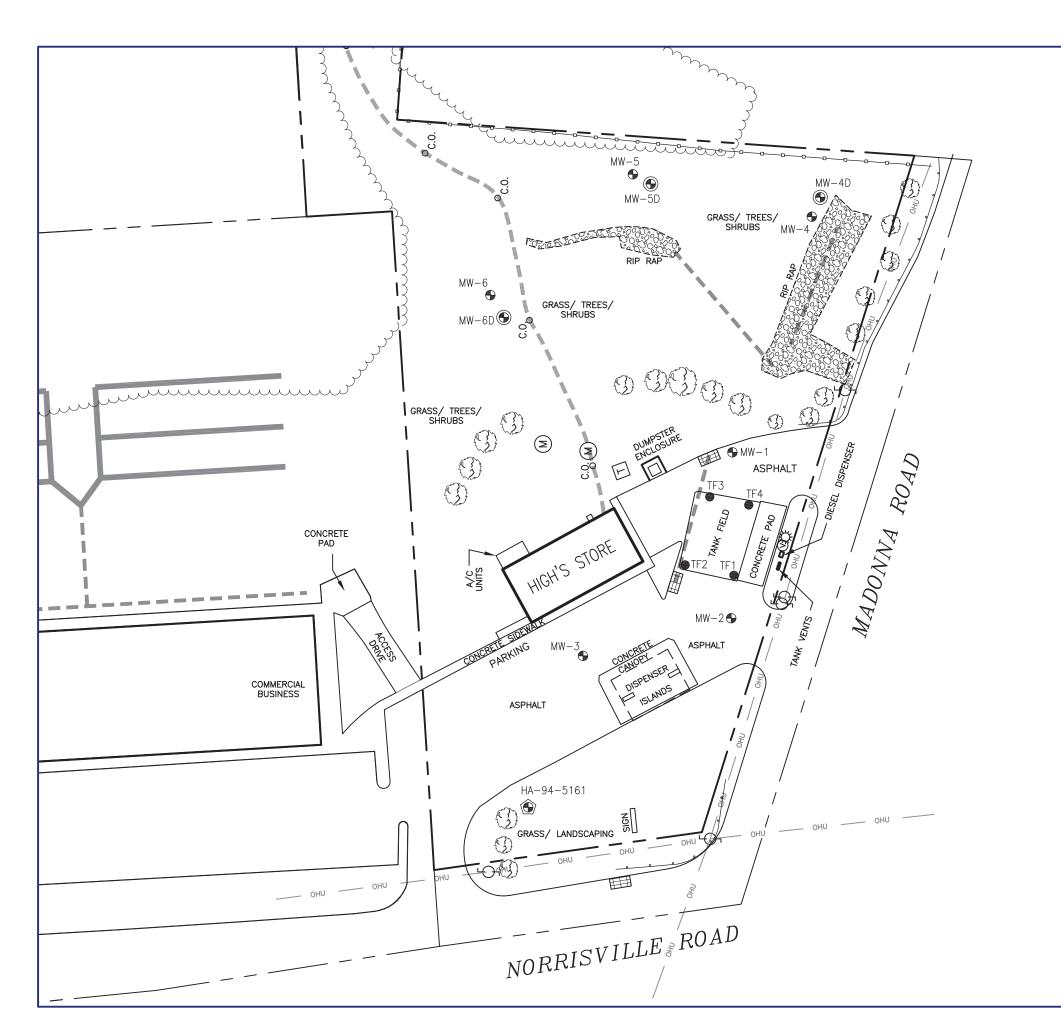
Appendix A – Photo Log

Appendix B – Boring and Well Completion Logs

Appendix C – Waste Disposal Manifests

Appendix D – Vertical Gradient Calculations

Appendix E – Groundwater and Soil Analytical Reports and Chain of Custody Documentation

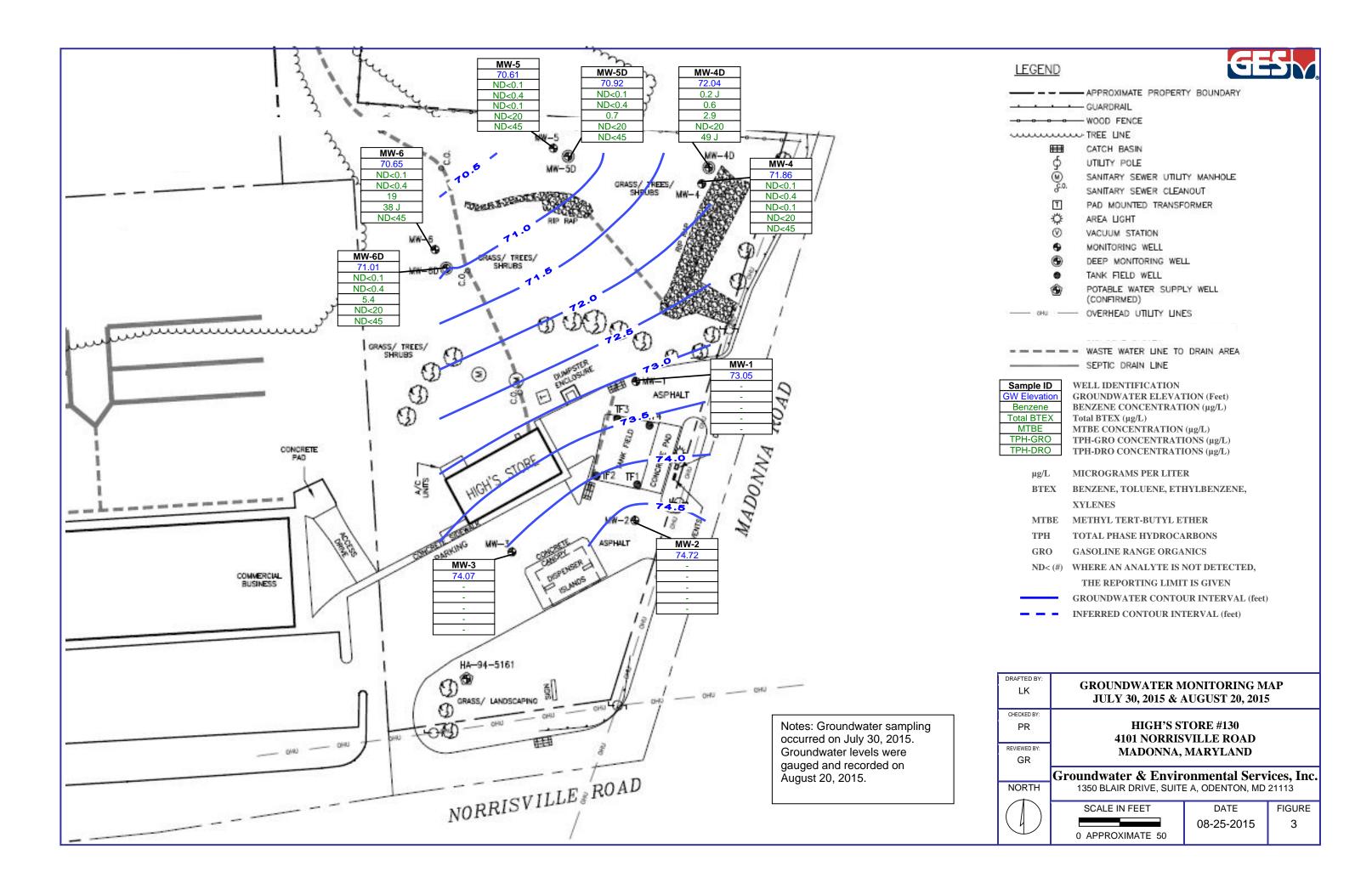

c: Jeannette DeBartolomeo – MDE (3 additional copies with labelled CDs)

Herb Meade – High's of Baltimore (electronic copy)

John Resline – Harford County Health Department

File – GES, MD (PSID# 550412)

Todd Passmore - Apex



LEGEND

- - APPROXIMATE PROPERTY BOUNDARY • GUARDRAIL ---- WOOD FENCE TREE LINE CATCH BASIN UTILITY POLE SANITARY SEWER UTILITY MANHOLE SANITARY SEWER CLEANOUT T PAD MOUNTED TRANSFORMER $\stackrel{\wedge}{\square}$ AREA LIGHT VACUUM STATION MONITORING WELL DEEP MONITORING WELL TANK FIELD WELL POTABLE WATER SUPPLY WELL (CONFIRMED) OVERHEAD UTILITY LINES - - WASTE WATER LINE TO DRAIN AREA - SEPTIC DRAIN LINE

DRAFTED BY: W.A.W. (N.J.)	SITE MAR)									
CHECKED BY: D.R.		FORE #130 SVILLE ROAD									
REVIEWED BY: P.R.	MADONNA, MARYLAND										
NORTH	Groundwater & Environ 1350 BLAIR DRIVE, SUITE										
	SCALE IN FEET	DATE	FIGURE								
	0 APPROXIMATE 50	8-20-15	2								

Table 1

SOIL ANALYTICAL DATA SUMMARY

High's Store #130 4101 Norrisville Road Madonna, MD

Monitoring Well	Date	Sample Depth (ft)	Benzene (μg/kg)	Toluene (μg/kg)	Ethylbenzene (μg/kg)	Total Xylenes (μg/kg)	MTBE (μg/kg)	Naphthalene (μg/kg)	Diisopropyl ether (μg/kg)	Ethyl tert-butyl ether (μg/kg)	Tert-amyl methyl ether (μg/kg)	Tert-Butyl Alcohol (μg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)
	-Residential for Soil (Ju	_	52,000	8,200,000	10,000,000	20,000,000	720,000	2,000	NA	NA	NA	NA	620	620
MW-4D	6/30/2015	25.6 - 27	ND<0.5	ND<0.9	ND<0.9	ND<0.9	ND<0.5	ND<0.9	ND<0.9	ND<0.9	ND<0.9	ND<18	ND<4.6	ND<0.2
MW-5D	7/6/2015	10 - 12	ND<0.6	ND<1	ND<1	ND<1	ND<0.6	ND<1	ND<1	ND<1	ND<1	ND<24	ND<4.5	ND<0.3
MW-6D	7/10/2015	40.5 - 42	ND<0.5	ND<1	ND<1	ND<1	200	ND<1	ND<1	ND<1	3 J	170	ND<5.0	ND<0.2

<# = Less than the method detection limit of #

ft = Feet

μg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram

MTBE = Methyl tertiary butyl ether

NA = Not

J = minimally detected above reporting

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Depth to Bottom (Measured Depth) (ft)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	Total BTEX (μg/L)	MTBE (μg/L)	Naphthalene (μg/L)	Diisopropyl ether (µg/L)	Ethyl tert-butyl ether (μg/L)	Tert-amyl alcohol (μg/L)	Tert-Amyl Ethyl Ether (µg/L)	Tert-amyl methyl ether (μg/L)	Tert-Butyl Alcohol (µg/L)	Tetrachloroethene (μg/L)	TPH-GRO (μg/L)	TPH-DRO (μg/L)
	GW Clean-	up Stand			•	5.00	1,000	700	10,000	NA	20	0.65	NA	NA	NA	NA	NA	NA	5	47	47
MW-1	07/13/2005	-	18.71	-	-	ND	2	ND	ND	2	1300	-	-	-	-	-	-	-	-	ND<1000	ND<1000
	12/28/2005	-	21.73	-	-	ND	15	ND	ND	15	1600	-	-	-	-	=	=	-	-	1500	ND
	06/15/2006	-	20.66	-	-	ND	ND	ND	ND	ND	1200	-	-	-	-	-	-	-	-	900	ND
	01/17/2007	-	21.02	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	140	-	-	-	-	-	-	-	-	ND	ND
	07/31/2007 01/23/2008	-	20.78 24.44	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	190	-	-	-	-	-	-	-	-	ND ND	350 ND
	01/23/2008	-	21.68	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	76 210	-	-	-	-	-	-	-	-	300	ND ND
	01/30/2009	-	25.01	-	33.66	ND ND	ND ND	ND ND	ND ND	ND ND	73	-	-	-	-	-	-	-	_	ND	260
	07/20/2009	-	23.51	-	33.66	ND ND	ND ND	ND ND	ND ND	ND ND	120	-	-	-	-	-	-	-	_	ND ND	ND
	03/01/2010	- -	18.80	_	33.00	ND ND	ND ND	ND ND	ND ND	ND ND	130	_	<u>-</u>		_	_	_	_	_	ND ND	ND ND
	07/31/2010	_	19.91	_	33.66	ND	ND ND	ND	ND ND	ND	87	_	<u>-</u>	_	_	_	_	_	_	230	ND ND
	01/31/2011	-	23.41	-	33.66	6	ND	ND	ND	6	47	_	_	_	_	_	_	_	_	ND	260
	07/26/2011	-	19.79	-	33.66	38	ND	ND	ND	38	25	-	-	-	_	-	-	-	-	580	ND
	01/30/2012	-	18.96	_	33.50	27	ND	ND	ND	27	26	-	_	-	-	-	-	-	-	200	250
	07/05/2012	96.13	21.76	74.37	33.61	20.10	ND<2	ND<2	ND<4	20.10	17.60	ND<2	12.30	ND<2	200	ND<2	ND<2	530	ND<2	ND<100	ND<300
	02/18/2013	96.13	23.18	72.95	33.53	8.41	ND<1.00	ND<1.00	ND<2.00	8.41	20.90	ND<1.00	12.10	ND<1.00	ND<5.00	ND<1.00	ND<1.00	402	ND<1.00	ND<100	ND<152
	08/20/2013	96.13	22.15	73.98	34.25	2.24	ND<1.00	ND<1.00	ND<2.00	2.24	9.94	ND<1.00	8.26	ND<1.00	ND<5.00	ND<1.00	ND<1.00	372	ND<1.00	ND<100	ND<300
	03/04/2014	96.13	21.73	74.40	35.70	ND<1.00	ND<1.00	ND<1.00	ND<2.00	ND<5.00	11.2	ND<1.00	12.40	1.18	67.6	ND<1.00	ND<1.00	153	ND<1.00	ND<100	ND<150
	08/22/2014	96.13	19.36	76.77	35.10	ND<1.00	ND<1.00	ND<1.00	ND<2.00	ND<5.00	8.08	ND<1.00	7.13	ND<1.00	37.1	ND<1.00	ND<1.00	73	ND<1.00	ND<100	ND<152
	05/26/2015	96.13	22.22	73.91	35.10	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.4	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4.0	ND<1.00	ND<20	ND<45
	08/20/2015	96.13	23.08	73.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-2	07/13/2005	-	19.64	-	_	ND	1.00	ND	ND	1	9	-	-	-	-	-	-	-	-	ND<1000	ND<1000
	12/28/2005	-	22.85	-	-	9	16	6	26	57	15	-	-	-	-	-	-	_	-	300	ND
	06/15/2006	-	21.65	-	-	ND	ND	ND	ND	ND	26	-	-	-	_	-	_	_	-	ND	300
	01/17/2007		22.03	-	-	ND	ND	ND	ND	ND	42	-	-	-	-	-	-	-	-	ND	ND
	07/31/2007	-	21.84	-	-	ND	ND	ND	ND	ND	4	-	-	-	-	-	-	-	-	ND	380
	01/23/2008	-	25.50	-	-	ND	ND	ND	ND	ND	2	-	-	-	-	-	-	-	-	ND	ND
	07/24/2008	-	22.42	-	-	ND	ND	ND	ND	ND	3	-	-	-	-	-	-	-	-	ND	ND
	01/30/2009	-	25.96	-	30.76	ND	ND	ND	ND	ND	4	-	-	-	-	-	-	-	-	ND	ND
	07/20/2009	-	24.35	-	30.76	ND	ND	ND	ND	ND	5	-	-	-	-	-	-	-	-	ND	ND
	03/01/2010	-	19.97	-	-	ND	ND	ND	ND	ND	4	-	-	-	-	-	-	-	-	ND	ND
	07/31/2010	-	20.35	-	30.76	ND	ND	ND	ND	ND	3	-	-	-	-	-	-	-	-	ND	ND
	01/31/2011	-	24.14	-	30.76	ND	ND	ND	ND	ND	6	-	-	-	-	-	_	-	-	ND	ND

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Depth to Bottom (Measured Depth) (ft)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	Naphthalene (µg/L)	Diisopropyl ether (μg/L)	Ethyl tert-butyl ether (µg/L)	Tert-amyl alcohol (μg/L)	Tert-Amyl Ethyl Ether (µg/L)	Tert-amyl methyl ether (µg/L)	Tert-Butyl Alcohol (µg/L)	Tetrachloroethene (µg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)
	GW Clean-	up Stand	ards*			5.00	1,000	700	10,000	NA	20	0.65	NA	NA	NA	NA	NA	NA	5	47	47
MW-2	07/26/2011	-	20.50	=	30.76	ND	ND	ND	ND	ND	4	-	-	=	-	-	-	-	-	ND	ND
(cont.)	01/30/2012	-	19.96	-	31.20	ND	ND	ND	ND	ND	5	-	-	-	-	-	-	-	-	ND	ND
	07/05/2012	98.39	22.56	75.83	31.22	ND<2	ND<2	ND<2	ND<4	ND<10	5.18	ND<2	ND<2	ND<2	ND<10	ND<2	ND<2	ND<10	ND<2	ND<100	ND<158
	02/18/2013	98.39	24.52	73.87	31.25	ND<1.00	ND<1.00	ND<1.00	ND<2.00	ND<5.00	5.85	ND<1.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<100	ND<152
	08/20/2013	98.39	23.01	75.38	31.11	ND<1.00	ND<1.00	ND<1.00	ND<2.00	ND<5.00	3.64	ND<1.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<100	ND<300
	03/04/2014	98.39	23.15	75.24	31.11	ND<1.00	ND<1.00	ND<1.00	ND<2.0	ND<5.0	5.28	ND<1.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<100	ND<150
	08/22/2014	98.39	19.90	78.49	31.37	ND<1.00	ND<1.00	ND<1.00	ND<2.0	ND<5.0	4.36	ND<1.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<1.00	ND<5.00	ND<1.00	ND<100	ND<153
	05/26/2015	98.39	23.02	75.37	31.37	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.4	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4.0	ND<1.00	ND<20	ND<45
	08/20/2015	98.39	23.67	74.72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-3	07/13/2005	-	19.79	-	-	ND	1	ND	ND	1	180	-	-	-	_	-	-	-	-	600	ND<1000
	12/28/2005	-	22.91	-	-	6	12	4	21	43	280	-	-	-	-	-	-	-	-	ND	720
	06/15/2006	-	21.70	-	-	ND	ND	ND	ND	ND	330	-	-	-	-	-	-	-	-	ND	ND
	01/17/2007	-	22.16	-	-	ND	ND	ND	ND	ND	140	-	-	-	-	-	-	-	-	ND	ND
	07/31/2007	-	21.98	-	-	ND	ND	ND	ND	ND	190	-	-	-	-	-	-	-	-	ND	ND
	01/23/2008	-	25.46	-	-	ND	ND	ND	ND	ND	69	-	-	-	-	-	-	-	-	ND	ND
	07/24/2008	-	22.49	-	-	ND	ND	ND	ND	ND	12	-	-	-	-	-	-	-	-	ND	ND
	01/30/2009	-	25.84	-	36.03	ND	ND	ND	ND	ND	3	-	-	-	-	-	-	-	-	ND	ND
	07/20/2009	-	24.30	-	36.03	ND	7.00	ND	ND	7	4	-	-	-	-	-	-	-	-	ND	260
	03/01/2010	-	20.03	-	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	1100
	07/31/2010	-	20.41	-	36.03	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	240
	01/31/2011	-	23.90	-	36.03	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	450
	07/26/2011	-	20.58	-	36.03	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	ND
	01/30/2012	-	20.04	-	31.00	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	ND	230
	07/05/2012	97.79	22.60	75.19	30.95	ND<2	ND<2		ND<4	ND<10	3.16	ND<2	ND<2	ND<2				ND<10		ND<100	261
	02/18/2013		24.45	73.34	31.40				ND<2.00		4.66								ND<1.00		835
	08/20/2013	97.79	23.03	74.76	35.70				ND<2.00		2.32								ND<1.00		ND<600
	03/04/2014	97.79	23.21	74.58	34.25				ND<2.00		3.80								ND<1.00		ND<153
	08/22/2014	97.79	19.98	77.81	34.93				ND<2.00		2.07				ND<5.00	ND<1.00			ND<1.00		ND<152
	05/26/2015	97.79	23.07	74.72	34.93	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.4	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4.0	ND<1.00	ND<20	ND<45
	08/20/2015	97.79	23.72	74.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	1		1	1	1						1			1		ı	1				
Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Depth to Bottom (Measured Depth) (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Total BTEX (µg/L)	MTBE (µg/L)	Naphthalene (µg/L)	Diisopropyl ether (µg/L)	l tert-butyl ether (µg/L)	Tert-amyl alcohol (μg/L)	Tert-Amyl Ethyl Ether (µg/L)	Tert-amyl methyl ether (µg/L)	Fert-Butyl Alcohol (μg/L)	Tetrachloroethene (μg/L)	TPH-GRO (μg/L)	ТРН-DRО (µg/L)
M		-			De (M									Ethyl	_			ι.			
	GW Clean-	up Stand			•	5.00	1,000	700	10,000	NA	20	0.65	NA	NA	NA	NA	NA	NA	5	47	47
TF-1	01/30/2009	-	DRY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/20/2009	-	DRY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/31/2010	-	DRY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/31/2011 07/26/2011	-	DRY	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/26/2011	-	DRY 12.06	-	12.60	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/05/2012	-	DRY	_	12.72	-	_	_	-	-	_	_	_	_	_	_	_	_	_	-	_
	02/18/2013	-	DRY	_	12.72	-	_	_	-	-	_	_	_	_	<u>-</u>	_	_	_	_	-	_
	08/20/2013	-	DRY	_	12.40	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
	03/04/2014	_	DRY	_	12.48	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	08/22/2014	_	DRY	_	12.48	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	05/26/2015	-	DRY	-	12.48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	04/00/0000		DDII																		
TF-2	01/30/2009	-	DRY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/20/2009 07/31/2010	-	DRY DRY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/31/2010	-	DRY	-	-	-	-	-	-	-	-	-	_	_	-	-	_	-	-	-	-
	07/26/2011	-	DRY		-	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
	01/30/2012	_	DRY	_	11.90	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	07/05/2012	-	DRY	_	12.10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	02/18/2013	-	DRY	_	12.07	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
	08/20/2013	-	DRY	-	12.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/04/2014	-	11.95	-	12.06	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
	08/22/2014	-	12.01	-	12.04	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
	05/26/2015	-	DRY	-	12.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TF-3	01/30/2012		12.24	<u> </u>	12.80	_	_	_	_	-	_		_	_	_	_	_	-	_	-	
	07/05/2012	-	DRY		13.00	_	_	_	_	<u>-</u>	_	_	_	_	<u>-</u>	_	_	_	_	- -	-
	02/18/2013	-	DRY	_	12.80	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	08/20/2013	_	DRY	_	12.80	-	_	_	-	_	_	-	-	_	_	-	-	_	_	-	_
	03/04/2014	_	12.75	_	12.79	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-
	08/22/2014	-	12.72	_	12.85	-	-	-		-	-	-	-	-	-	-	_	-	-	-	-
	05/26/2015	-	DRY	-	12.77	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

High's Store #130 4101 Norrisville Road Madonna, MD

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Depth to Bottom (Measured Depth) (ft)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	Naphthalene (µg/L)	Diisopropyl ether (μg/L)	Ethyl tert-butyl ether (µg/L)	Tert-amyl alcohol (μg/L)	Tert-Amyl Ethyl Ether (µg/L)	Tert-amyl methyl ether (µg/L)	Tert-Butyl Alcohol (µg/L)	Tetrachloroethene (µg/L)	TPH-GRO (µg/L)	TPH-DRO (µg/L)
	GW Clean-	up Stand				5.00	1,000	700	10,000	NA	20	0.65	NA	NA	NA	NA	NA	NA	5	47	47
TF-4	01/30/2012 07/05/2012 02/18/2013 08/20/2013 03/04/2014 08/22/2014 05/26/2015	-	12.43 DRY 12.02 12.03 13.03 13.12 12.87	-	12.60 12.89 - 13.38 13.35 13.35	-	-	-	-		-	-	-		- - - -	-	-	-		-	
MW-4	07/30/2015 08/20/2015	91.56 91.56	19.25 19.70	72.31 71.86	32.11	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4 -	-	ND<20	ND<45
MW-4D	07/30/2015 08/20/2015	91.2 91.2	18.77 19.16	72.43 72.04	89.60	0.2 J -	0.3 J -	0.1 J -	ND<0.1	-	2.9	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4 -	-	ND<20	49 J -
MW-5	07/30/2015 08/20/2015	85.69 85.69	14.55 15.08	71.14 70.61	29.68	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4	-	ND<20	ND<45
MW-5D	07/30/2015 08/20/2015	85.95 85.95	14.90 15.03	71.05 70.92	84.45	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	0.7	ND<0.1	ND<0.1	ND<0.1	-	-	ND<0.1	ND<4 -	-	ND<20	ND<45
MW-6	07/30/2015 08/20/2015	84.99 84.99	13.84 14.34	71.15 70.65	29.45	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	19	ND<0.1	5.6	0.5	-	-	0.2 J -	ND<4 -	-	38 J -	ND<45
MW-6D	07/30/2015 08/20/2015	85.4 85.4	14.19 14.39	71.21 71.01	75.30	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	5.4	ND<0.1	ND<0.1	ND<0.1	-	-	0.2 J -	ND<4 -	-	ND<20	ND<45

^{*} GW Cleanup Standards are the Maryland Department of the Environment (MDE) Groundwater Clean-up Standards for Type I and II Aquifers, except for TPH-GRO and TPH-DRO, which are Residential Clean-up Standards for Groundwater.

Please note that the top of casing for the DNR monitoring wells is not tied into the same elevations as the High's monitoring wells.

ND<# = Non-detect less than the method detection limit of #

 $\mu g/L = Micrograms/Liter$

MTBE = Methyl Tertiary Butyl Ether

TPH-DRO = Total petroleum hydrocarbons - diesel range organics

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics

BTEX = Benzene, toluene, ethylbenzene, xylenes

- = No data available

PHOTO LOG

PHOTO 1: Monitoring Well cluster MW-4 and MW-4D – facing SW July 6, 2015

PHOTO 2: Monitoring Well cluster MW-5D in progress – facing W July 6, 2015

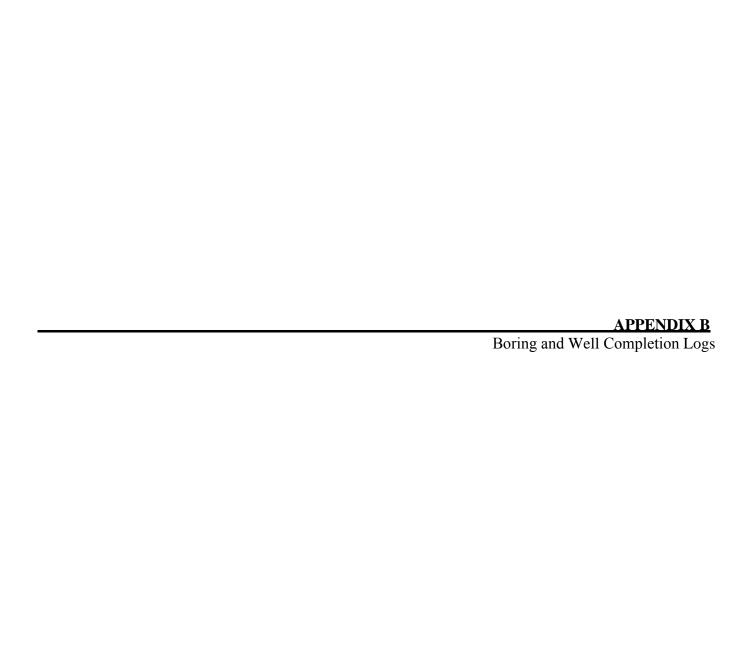

PHOTO LOG

PHOTO 3: Structured saprolite – MW-6D - July 10, 2015

PHOTO 4: Rock Cores – MW-4D (top), 5D (middle) and 6D (bottom) July 16, 2015

0

5

10

15

20

25

30

BORING AND WELL COMPLETION LOG

ID NO.MW-4

Groundwater & Environmental Services, Inc.

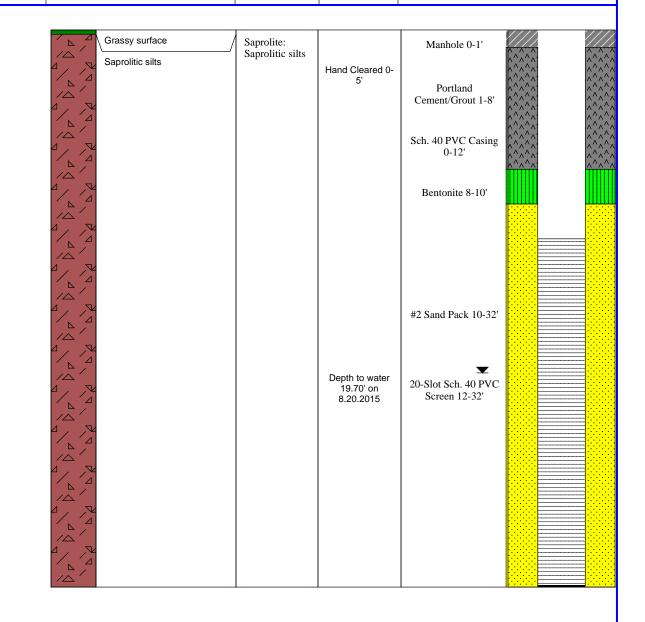
Page 1 of 1

PROJECT: High's #130 WATER DEPTH: 19.70 ft. TOTAL DEPTH: 32 ft.

ADDRESS: 4101 Norrisville Rd., Madonna, MD CASING EL.: 91.56 ft.

BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By: Lindsay Keeney Drilling Method: CME 550


Dates Drilled: 7/2/2015 Sampling Method: Split-spoon

Drilling Company: Allied Environmental Services Soil Class. System: Unified Soil Classification System

Well Permit #: HA-15-0087 Field Screening: MiniRae

Depth (feet) Sample Lithology Stratigraphy Comments Completion

Details

LEGEND Proportion Descriptions: Symbol Key: " = inches Trace = <10% Some = <50% Water Level " = feet

Little = <25% And = 50% Sample Location \boxtimes ppm = parts per million eV = electron volt

Groundwater & Environmental Services, Inc.

BORING AND WELL COMPLETION LOG

ID NO.MW-4D

Groundwater & Environmental Services, Inc.

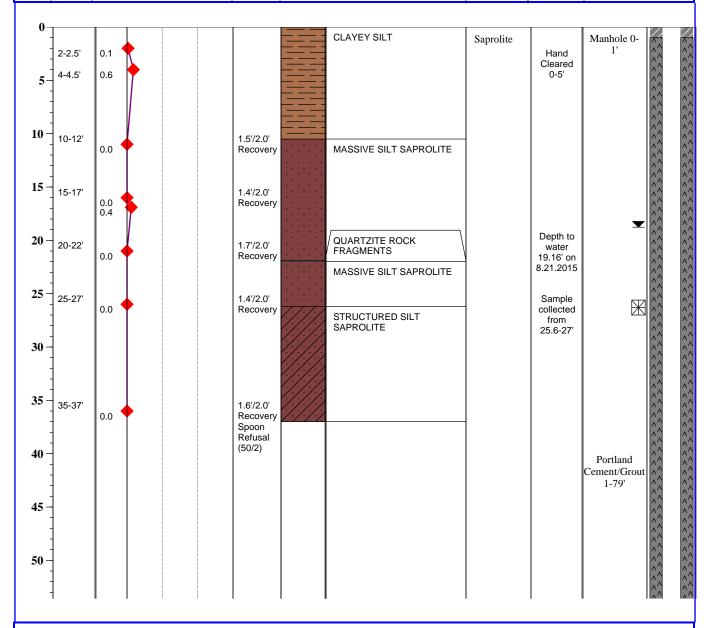
Page 1 of 2

PROJECT: High's #130 WATER DEPTH: 19.16 ft. TOTAL DEPTH: 93 ft.

ADDRESS: 4101 Norrisville Rd., Madonna, MD CASING EL.: 91.20 ft.

0402814 BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By: Lindsay Keeney Drilling Method: CME 550


Dates Drilled: 6/29 - 7/1/2015 Sampling Method: 2 ft. split spoons

Prilling Company: Allied Environmental Services Soil Class Systems 2 ft. split spoons

Drilling Company: Allied Environmental Services Soil Class. System: Unified Soil Classification System

Well Permit #: HA-15-0086 Field Screening: PID, 10.6 eV Lamp

Depth (feet)	Sample Interval (feet)	Field Screen: Total Organic Volatiles (ppm) 10	Recovery (feet)	Sample Lithology	Stratigraphy	Comments	Completion Details
-----------------	------------------------------	---	--------------------	------------------	--------------	----------	-----------------------

LEGEND Proportion Descriptions: Symbol Key: " = inches Trace = <10% Some = <50% Water Level = '= feet

Little = <25% And = 50% Sample Location \bowtie ppm = parts per million eV = electron volt

Groundwater & Environmental Services, Inc.

Depth | Sample

BORING AND WELL COMPLETION LOG

ID NO.MW-4D

Groundwater & Environmental Services, Inc.

Field Screen:

Page 2 of 2

WATER DEPTH: 19.16 ft. TOTAL DEPTH: 93 ft. PROJECT: High's #130

CASING EL.: 91.20 ft. ADDRESS: 4101 Norrisville Rd., Madonna, MD

WELL DIA.: BOREHOLE DIA.: 8.5 in. 2 in. 0402814

Logged By: Lindsay Keeney Drilling Method: **CME 550**

Dates Drilled: 6/29 - 7/1/2015 Sampling Method: 2 ft. split spoons

Drilling Company: Allied Environmental Services Soil Class. System: **Unified Soil Classification System**

Well Permit #: HA-15-0086 Field Screening: PID, 10.6 eV Lamp

Depth (feet)	Interval (feet)	0	Total Organic Volatiles (ppm) 10	Recovery (feet)	\$ Sample Lithology	Stratigraphy	Comments	Comple Detai	tion ils
55 - 60 - 65 - 70 - 75 - 80 - 90 - 95 -	96-101'				3.83'/5.0' Recovery	QUARTZITE, strong, minimal fractures, no oxidation present, RQD - poor SCHIST, highly foliated and oxidized fractures, RQD - poor	Wissahickon Formation (undivided)		Sch. 40 PVC Casing 0- 83' Bentonite 79-81' 20-Slot Sch. 40 PVC Screen 83- 93' #2 Sand Pack 81-93'	

Proportion Descriptions: Symbol Key: **LEGEND**

" = inches Some = <50%Water Level ' = feetTrace = <10%

ppm = parts per million Sample Location And = 50%Little = <25% $eV = electron \ volt$

0

5

10

15

20

25

30

BORING AND WELL COMPLETION LOG

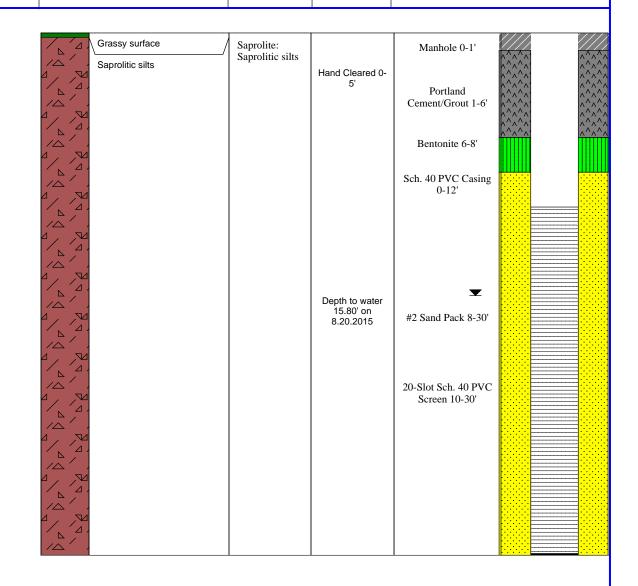
ID NO.MW-5

Groundwater & Environmental Services, Inc.

Page 1 of 1

PROJECT: High's #130 WATER DEPTH: 15.08 TOTAL DEPTH: 30 ft.

ADDRESS: 4101 Norrisville Rd., Madonna, MD CASING EL.: 85.69 ft.


BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By:Lindsay KeeneyDrilling Method:CME 550Dates Drilled:7/9/15Sampling Method:Split-spoon

Drilling Company: Allied Environmental Services Soil Class. System: Unified Soil Classification System

Well Permit #: HA-15-0085 Field Screening: MiniRae

Depth			G	Completion
(feet)	Sample Lithology	Stratigraphy	Comments	Details

LEGENDProportion Descriptions:Symbol Key:" = inchesTrace = <10%Some = <50%</td>Water Level" = feet

Little = <25% And = 50% Sample Location \boxtimes ppm = parts per million eV = electron volt

Groundwater & Environmental Services, Inc.

BORING AND WELL COMPLETION LOG

ID NO. ${f MW-5D}$

Groundwater & Environmental Services, Inc.

Page 1 of 2

PROJECT: High's #130 WATER DEPTH: 15.03 ft. TOTAL DEPTH: 85 ft

ADDRESS: 4101 Norrisville Rd., Madonna, MD CASING EL.: 85.95 ft.

0402814 BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By: Lindsay Keeney Drilling Method: CME 550

Dates Drilled: 7/6 - 7/8/2015 Sampling Method: 2 ft. split spoons

Drilling Company: Allied Environmental Services Soil Class. System: Unified Soil Classification System

Well Permit #: HA-15-0084 Field Screening: PID, 10.6 eV Lamp

Depth (feet)	Sample Interval (feet)	Field Screen: Total Organic Volatiles (ppm) 10	Recovery (feet)	Sample Lithology	Stratigraphy	Comments	Completion Details
0-	,						V A V A
	2-2.5'	0.4		SILT	Saprolite	Hand Cleared 0-5'	Manhole 0- 1'
5- - -	5-7'	0.3	1.6'/2.0' Recovery	SILTY SAND			
10 - - - -	10-12'	0.0	1.9'/2.0' Recovery			Sample collected from 10- 12'	
15 -	15-17'	0.0	1.5'/2.0' Recovery	MASSIVE SANDY SILT SAPROLITE		Depth to water 15.03' on 8.21.15	
20 -	20-22'	0.0	1.5'/2.0' Recovery				
25 -							
30 -	30-32'	0.0	1.3'/2.0' Recovery	STRUCTURED SILT SAPROLITE			Sch. 40 PVC Casing 0- 75'
35 -	-						*
40 -	40-42'	0.0	1.7'/2.0' Recovery				Portland Cement/Grout 1-71'
45 -]						

LEGEND Proportion Descriptions:

Trace = <10% Some = <50%

Little = <25% And = 50%

Symbol Key:

Water Level

" = inches

' = feet

ppm = parts per million eV = electron volt

Sample

Depth

BORING AND WELL COMPLETION LOG

ID NO.MW-5D

Groundwater & Environmental Services, Inc.

Field Screen:

Page 2 of 2

WATER DEPTH: 15.03 ft. TOTAL DEPTH: 85 ft PROJECT: High's #130

CASING EL.: 85.95 ft. ADDRESS: 4101 Norrisville Rd., Madonna, MD

WELL DIA.: BOREHOLE DIA.: 8.5 in. 2 in. 0402814

Logged By: Lindsay Keeney Drilling Method: **CME 550**

Dates Drilled: 7/6 - 7/8/2015 Sampling Method: 2 ft. split spoons

Drilling Company: Allied Environmental Services Soil Class. System: **Unified Soil Classification System**

Well Permit #: HA-15-0084 Field Screening: PID, 10.6 eV Lamp

(feet)	Interval (feet)		Organic les (ppm) 10	Recovery (feet)	5	Sample Lithology	Stratigraphy	Comments	Comple Deta	tion ils
50 -		0.0		1.9'/2.0' Recovery						******
55 - 60 -		0.0		1.4'/2.0' Recovery Spoon Refusal						*********
65 - 70 -	-			Refusal (51/2)						· · · · · · · · · · · · · · · · · · ·
75 -	- - - - - - - -								Bentonite 71-73' #2 Sand Pack 73-85'	
80 - 85 -	85-90'			3 9'/5 0'		QUARTZITE, strong, no observed fractures, RQD - poor			20-Slot Sch. 40 PVC Screen 75- 85'	
90 -				3.9'/5.0' Recovery		SCHIST, slightly to highly decomposed, oxidized fractures present in foliation & qtz. veins, RQD - poor GNEISSIC SCHIST, oxidized fractures present in migmatic folds & veins, RQD - poor	Wissahickor Formation (undivided)	1		

Proportion Descriptions: LEGEND

Symbol Key: Some = <50%Water Level Trace = <10%

ppm = parts per million Sample Location And = 50%Little = <25% $eV = electron \ volt$

" = inches

' = feet

0

5

10

15

20

25

30

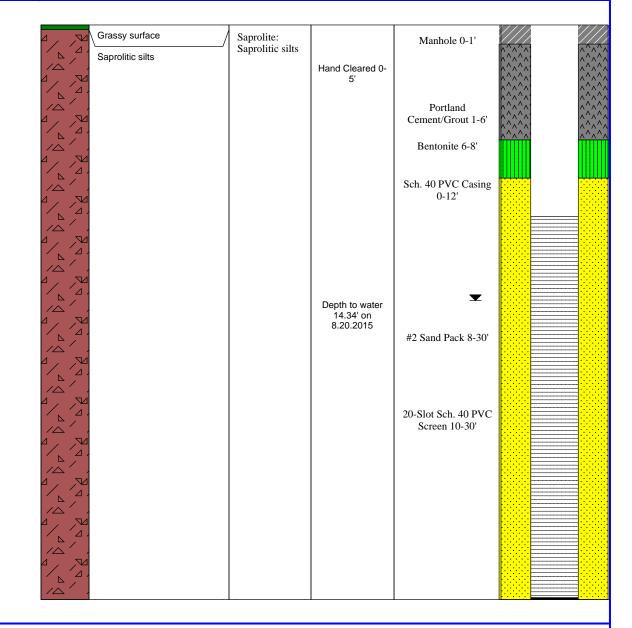
ID NO.MW-6BORING AND WELL COMPLETION LOG

Groundwater & Environmental Services, Inc.

Page 1 of 1

PROJECT: Hgh's #130 WATER DEPTH: 1434 TOTAL DEPTH: 30 ft.

CASING EL.: 84.99 ft. ADDRESS: 4101 Norrisville Rd., Madonna, MD


BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By: **Lindsay Keeney** Drilling Method: **CME 550** Dates Drilled: 7/14/15 Sampling Method:

Split-spoon Drilling Company: Allied Environmental Services Soil Class. System: **Unified Soil Classification System**

Well Permit #: HA-15-0082 Field Screening: MiniRae

Completion Depth Comments Stratigraphy Sample Lithology (feet) Details

Proportion Descriptions: Symbol Key: **LEGEND** " = inches Water Level ' = feet Trace = <10%Some = <50%

> ppm = parts per million Sample Location \mathbb{H} And = 50%Little = <25%eV = electron volt

> > **Groundwater & Environmental Services, Inc.**

BORING AND WELL COMPLETION LOG

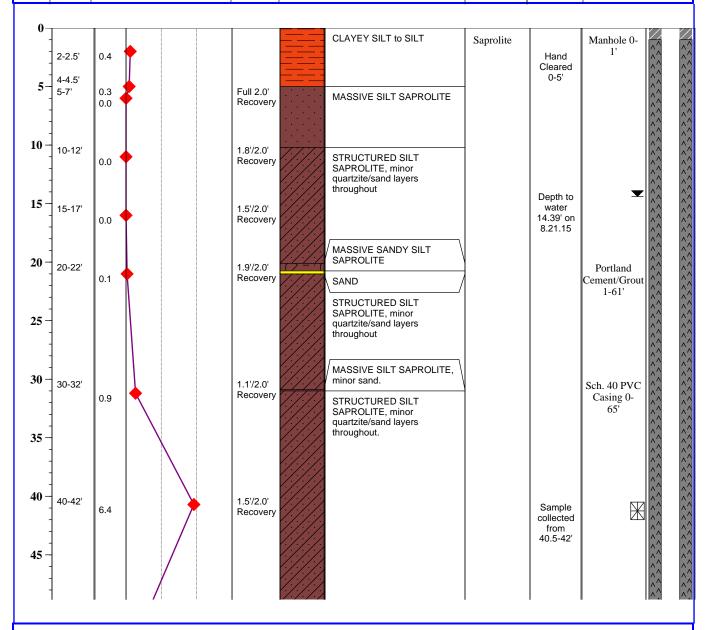
ID NO.MW-6D

oundwater & Environmental Services, Inc.

Page 1 of 2

WATER DEPTH: 14.39 ft. TOTAL DEPTH: 75 ft. PROJECT: High's #130

CASING EL.: 85.40 ft. ADDRESS: 4101 Norrisville Rd., Madonna, MD


BOREHOLE DIA.: 8.5 in. WELL DIA .: 0402814 2 in.

Logged By: Drilling Method: **Lindsay Keeney CME 550** Dates Drilled: 7/10 - 7/13/2015 Sampling Method:

2 ft. split spoons Drilling Company: **Allied Environmental Services** Soil Class. System: **Unified Soil Classification System**

Well Permit #: HA-15-0082 Field Screening: PID, 10.6 eV Lamp

Dep (feet	Interval	Field Screen: Total Organic Ovolatiles (ppm) 10	Recovery (feet)	Sample Lithology	Stratigraphy	Comments	Completion Details

Proportion Descriptions: Symbol Key: **LEGEND**

" = inches Water Level ' = feetTrace = <10%Some = <50%

ppm = parts per million Sample Location And = 50%Little = <25%eV = electron volt

BORING AND WELL COMPLETION LOG

ID NO.MW-6D

Groundwater & Environmental Services, Inc.

Page 2 of 2

PROJECT: High's #130 WATER DEPTH: 14.39 ft. TOTAL DEPTH: 75 ft.

ADDRESS: 4101 Norrisville Rd., Madonna, MD CASING EL.: 85.40 ft.

0402814 BOREHOLE DIA.: 8.5 in. WELL DIA.: 2 in.

Logged By: Lindsay Keeney Drilling Method: CME 550

Dates Drilled: 7/10 - 7/13/2015 Sampling Method: 2 ft. split spoons

Drilling Company: Allied Environmental Services Soil Class. System: Unified Soil Classification System

Well Permit #: HA-15-0082 Field Screening: PID, 10.6 eV Lamp

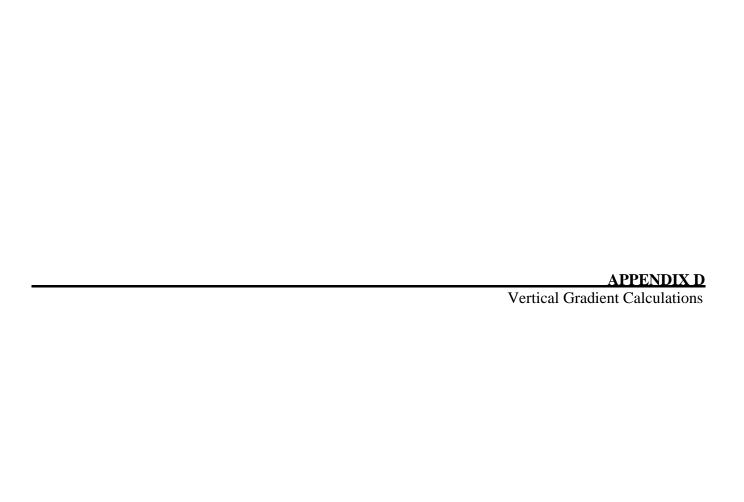
						- /		•		
Depth (feet)	Sample Interval (feet)	0_	Field Screen: Total Organic Volatiles (ppm)	Recovery (feet)	S	sample Lithology	Stratigraphy	Comments	Comple Deta	
50 - 55 - 60 - 65 -	50-52'	1.1		0.2'/2.0' Recovery Spoon Refusal (50/3)					Bentonite 61-63' 20-Slot Sch. 40 PVC Screen 65- 75'	
75 -	75-80'			3.6'/5.0' Recovery		GABBRO, highly oxidized, laminated, mostly horizontal fractures, moderately to highly decomposed, RQD - poor	Ultramafic Baltimore	-	#2 Sand Pack 63-80', filling rock core borehole	

poor

Quartzite, smoky to clear rock

Gabbro Complex

LEGEND	<u>Proportion Descriptions:</u>	Symbol Key:	" = inches
	Trace $- < 10\%$ Some $= < 50\%$	Water Level	' = feet


Little = <25% And = 50% Sample Location \boxtimes ppm = parts per million eV = electron volt

GLOBAL JOB NUMBE	CR:	FACILITY APPROVAL NU	MBER: 153190088
Please Check One:			
☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	☐ Clean Earth of New Castle 94 Pyles Lane New Castle, DE 19720 Ph: 302-427-6633	Clean Earth of Greater Washingtor 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004	☐ Clean Earth of Southeast Pennsylvania 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700	Other
6 (1) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Non-Hazar	dous Material Manifest	
(Type or Print Clearly)			
GENERATOR'S NAME & S		GROSS WEIGHT:	estation to the
HIGH'S OF BALT	IMARE, LLC	TonsYards	
Stage # 130, 410	<u>di Niorrisuille</u> Ro.	TARE WEIGHT:	*
White Hau	L, MD	☐Tons ☐Yards	20 T-12 (1921) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GENERATOR'S PHONE:	410-261-5450	NET WEIGHT:	智 /
		Tons Yards	7.46
DESCRIPTION OF MATE	RIAL/SAMPLE ID AND LO	CATION	
SOIL CUTT	TNGS FROM INS	MULATION OF MON. WE	us MW-445555
6,65		2	1/1/-/-
× 1 × 5			
GENERATOR'S CERTIFIC	CATION – Incomplete and/or	unsigned manifests will cause the load to	he delayed and/or raigated
I hereby certify that the abo is not a hazardous waste as CFR Part 172 or any applica	ve named material does not con defined by 40 CFR Part 261 or	tain free liquid as defined by 40 CFR Part any applicable state law, is not a DOT haz	260.10 or any applicable state law,
	All I Line I de la company de la company All I Line I de la company	Date and Time:	-12-45 pm
TRANSPORTER			
Company: <u>HPPACO</u>		Phone Number: 443	438.27/0
Address: 7//2 (Jan)	MERICAL AVE	Truck # and License Plate: 200	1962/59-776P
Driver: DAREN (BRANT	SW Haulers Permit #:	
(T <u>.</u>	ype or Print Clearly)		(applicable state permit #)
I he	ereby certify that the above nam	ned material was picked up at the site listed	d above.
Driver Signature:	Gas	Date and Time: 7//6.	15
<u>DESTINATION</u>			
A I hereby certify	that the above named material	was delivered without incident to the faci	lity poted chave
Driver Signature: 1		Date and Time: 7-16	inty noted above.
	100	terial has been accepted at the above refer	enced facility
Authorized Signature:	\/W_	Date and Time:	Circuitacinty,
Transcrized Digitativ.	——————————————————————————————————————	Date and Time:)
	The state of the s	GENERATOR	

Jesignateu ra	Designated Facility: R			MANIFE	ST NO.	1	
WO 247477		710 Hospital Street Richmond, VA 23219 (804) 644-2800		RECO JOB NO.		33507	
Generator:	Carroll I	ndependent Fuel Co	0.	Contact:	Lindsay k	Keeney	
Site Address:	4101 No	orrisville Rd	Emergen	y Phone:	240-626-	-7334	
	Madonn	ia, MD (white the					
		ervice station					
nazardous waste ar state and local regul	nd in all resp	eased to Reco Biotechnolo pects in proper condition for Description of articles,	ogy is fully transport b	and accurate y highway in LD.	ely described accordance v	and classifi vith all applic Labels	Gallons
No. of Packages - Type	HN	special marks and exceptions	Class	Number	Group	Required	Subject to Correction
2 DM 6 ax		Non-regulated Material (IDW - groundwater from monitoring wells)	NA.	NA	NA	NA	
		ks; RC=Rail Car horized Signature:	au	yki	alt	Date:	7-28-
			nsporter				
Comment was as	First Ca				Truck#		_
Company:							
Address:	Ashland	d, VA			Phone:		
Address:	d Name)	Krith mille	rson NS	Signature Date:		18-15	Person
Address: Driver (Printer	d Name)	Krith Int Phe (6) DRUM	rson NS			L MY.	Resson
Address: Driver (Printer Discrepancies Received by:	d Name) s: Reco B	Krith Int Phe (6) DRUM	rson		Y-2	18-15	Person
Address: Driver (Printed Discrepancies	d Name) s: Reco B	Krith Int Phe (6) DRUM	rson	_ Date:	Y-2	18-15 Hun	Zerson T

Vertical Gradient Calculations

Input Parameters								
	Surface	Depth to Well Screen		Depth to				
	Elevation	Screen	Length	Water				
Shallow Well	91.56	12	20	19.7				
Deep Well	91.2	83	10	19.16				

Results			
	Magnitude	Flow Direction	
Screen mid-point value	0.002880	up	
Range of Estimates	0.002444 to 0.003	up; up	More
			information
Flow directions	an be determined.	Shallow well	^
is a water table v	well.		~
Gradient Estimate Betwee	en Piezometers (scre	een lengths equ	ual to zero)
Piezoemeters	0.002522	up	

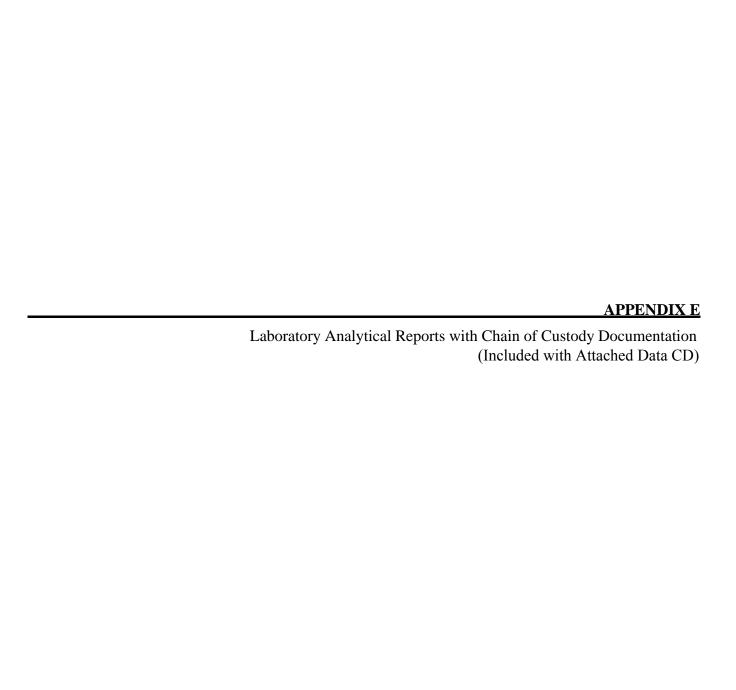
MW-4 and MW-4D vertical gradient magnitude and flow direction (EPA calculator).

Input Parameters								
	Surface	Depth to Well Screen		Depth to				
	Elevation	Screen	Length	Water				
Shallow Well	85.69	10	20	15.08				
Deep Well	85.95	75	10	15.03				

Results			
	Magnitude	Flow Direction	
Screen mid-point value	0.005420	up	
Range of Estimates	0.004450 to 0.006	up; up	More
			information
Flow directions	can be determined.	Shallow well	^
is a water table	well.		~
Gradient Estimate Betwee	en Piezometers (scre	een lengths equ	ual to zero)
Piezoemeters	0.004788	up	

MW-5 and MW-5D vertical gradient magnitude and flow direction (EPA calculator).

Vertical Gradient Calculations


Input Parameters							
	Surface	ourface Depth to Well Screen		Depth to			
	Elevation	Screen	Length	Water			
Shallow Well	84.99	10	20	14.34			
Deep Well	85.40	65	10	14.39			

Results			
	Magnitude	Flow Direction	
Screen mid-point value	0.007592	up	
Range of Estimates	0.005975 to 0.010	up; up	More
			information
Flow directions	can be determined.	Shallow well	^
is a water table	well.		~
Gradient Estimate Between Piezometers (screen lengths equal to zero)			
Piezoemeters	0.006595	up	

MW-6 and MW-6D vertical gradient magnitude and flow direction (EPA calculator).

EPA's vertical gradient calculator can be found at this site:

http://www.epa.gov/athens/learn2model/part-two/onsite/vgradient.html

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 GES, Inc. Suite A 1350 Blair Dr Odenton MD 21113

July 13, 2015

Project: Carroll Madonna

Submittal Date: 07/02/2015 Group Number: 1574153 PO Number: 0402814-02-201 Release Number: MADONNA State of Sample Origin: MD

Client Sample Description

MW-4D 25.6-27' Grab Sediment

Lancaster Labs (LL) #

7953659

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC

GES, Inc.-MD

Attn: Data Distribution

COPY TO

COPY TO

ELECTRONIC

GES Inc.

Attn: Andrea Taylorson-Collins

Respectfully Submitted,

Kaitlin N. Plasterer

Haitler N. Pasterer

Specialist

(717) 556-7323

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4D 25.6-27' Grab Sediment

Caroll Madonna

LL Sample # SW 7953659 LL Group # 1574153 Account # 08390

GES, Inc. Suite A

1350 Blair Dr Odenton MD 21113

Reported: 07/13/2015 12:38

Submitted: 07/02/2015 16:14

Project Name: Carroll Madonna

Collected: 06/30/2015 11:00 by LK

MAD4D

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/kg	ug/kg	
10237	Acrylonitrile	107-13-1	N.D.	4	0.79
10237	t-Amyl methyl ether	994-05-8	N.D.	0.9	0.79
10237	Benzene	71-43-2	N.D.	0.5	0.79
10237	Bromobenzene	108-86-1	N.D.	0.9	0.79
10237	Bromochloromethane	74-97-5	N.D.	0.9	0.79
10237	Bromodichloromethane	75-27-4	N.D.	0.9	0.79
10237	Bromoform	75-25-2	N.D.	0.9	0.79
10237	Bromomethane	74-83-9	N.D.	2	0.79
10237	t-Butyl alcohol	75-65-0	N.D.	18	0.79
10237	n-Butylbenzene	104-51-8	N.D.	0.9	0.79
10237	sec-Butylbenzene	135-98-8	N.D.	0.9	0.79
10237	tert-Butylbenzene	98-06-6	N.D.	0.9	0.79
10237	Carbon Disulfide	75-15-0	N.D.	0.9	0.79
10237	Chlorobenzene	108-90-7	N.D.	0.9	0.79
10237	Chloroethane	75-00-3	N.D.	2	0.79
10237	Chloroform	67-66-3	N.D.	0.9	0.79
10237	Chloromethane	74-87-3	N.D.	2	0.79
10237	2-Chlorotoluene	95-49-8	N.D.	0.9	0.79
10237	4-Chlorotoluene	106-43-4	N.D.	0.9	0.79
10237	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	0.79
10237	Dibromochloromethane				
		124-48-1	N.D.	0.9	0.79
10237	1,2-Dibromoethane	106-93-4	N.D.	0.9	0.79
10237	Dibromomethane	74-95-3	N.D.	0.9	0.79
10237	trans-1,4-Dichloro-2-butene	110-57-6	N.D.	9	0.79
10237	1,2-Dichlorobenzene	95-50-1	N.D.	0.9	0.79
10237	1,3-Dichlorobenzene	541-73-1	N.D.	0.9	0.79
10237	1,4-Dichlorobenzene	106-46-7	N.D.	0.9	0.79
10237	Dichlorodifluoromethane	75-71-8	N.D.	2	0.79
10237	1,1-Dichloroethane	75-34-3	N.D.	0.9	0.79
10237	1,2-Dichloroethane	107-06-2	N.D.	0.9	0.79
10237	1,1-Dichloroethene	75-35-4	N.D.	0.9	0.79
10237	cis-1,2-Dichloroethene	156-59-2	N.D.	0.9	0.79
10237	trans-1,2-Dichloroethene	156-60-5	N.D.	0.9	0.79
10237	1,2-Dichloropropane	78-87-5	N.D.	0.9	0.79
10237	1,3-Dichloropropane	142-28-9	N.D.	0.9	0.79
10237	2,2-Dichloropropane	594-20-7	N.D.	0.9	0.79
10237	1,1-Dichloropropene	563-58-6	N.D.	0.9	0.79
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.9	0.79
10237	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.9	0.79
10237	Ethyl t-butyl ether	637-92-3	N.D.	0.9	0.79
10237	Ethylbenzene	100-41-4	N.D.	0.9	0.79
10237	Hexachlorobutadiene	87-68-3	N.D.	2	0.79
10237	di-Isopropyl ether	108-20-3	N.D.	0.9	0.79
10237	Isopropylbenzene	98-82-8	N.D.	0.9	0.79
10237	p-Isopropyltoluene	99-87-6	N.D.	0.9	0.79
10237	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	0.79
10237	Methylene Chloride	75-09-2	N.D.	2	0.79
10237	Naphthalene	91-20-3	N.D.	0.9	0.79
10237	n-Propylbenzene	103-65-1	N.D.	0.9	0.79
10237	Styrene	100-42-5	N.D.	0.9	0.79
10237	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.9	0.79
	, , ,			* * *	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4D 25.6-27' Grab Sediment

Caroll Madonna

LL Sample # SW 7953659 LL Group # 1574153 Account # 08390

Project Name: Carroll Madonna

Collected: 06/30/2015 11:00 by LK

GES, Inc. Suite A

Submitted: 07/02/2015 16:14 Reported: 07/13/2015 12:38 1350 Blair Dr Odenton MD 21113

MAD4D

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/kg	ug/kg	
10237	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	0.9	0.79
10237	Tetrachloroethene		127-18-4	N.D.	0.9	0.79
10237	Toluene		108-88-3	N.D.	0.9	0.79
10237	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	0.9	0.79
10237	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	0.9	0.79
10237	1,1,1-Trichloroethan	ne	71-55-6	N.D.	0.9	0.79
10237	, ,	ne	79-00-5	N.D.	0.9	0.79
10237	Trichloroethene		79-01-6	N.D.	0.9	0.79
10237	Trichlorofluorometha	ane	75-69-4	N.D.	2	0.79
10237			96-18-4	N.D.	0.9	0.79
10237	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	0.9	0.79
10237	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	0.9	0.79
10237	Vinyl Chloride		75-01-4	N.D.	0.9	0.79
10237	Xylene (Total)		1330-20-7	N.D.	0.9	0.79
GC Vol	latiles	SW-846	8015B modified	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	N.D.	0.2	20.33
GC Mis	scellaneous	SW-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C2	8 microway	ve n.a.	N.D.	4.6	1
Wet Ch	nemistry	SM 2540	G-1997	%	%	
00111	Moisture		n.a.	14.4	0.50	1
	Moisture represents 103 - 105 degrees Coas-received basis.					

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	VOCs- Solid by 8260B	SW-846 8260B	1	X151891AA	07/08/2015 16:	15 Angela D Sneeringer	0.79
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201518338165	06/30/2015 11:	00 Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201518338165	06/30/2015 11:	00 Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201518338165	06/30/2015 11:	00 Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B modified	1	15187A16A	07/07/2015 19:	36 Marie D Beamenderfer	20.33

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4D 25.6-27' Grab Sediment

Caroll Madonna

LL Sample # SW 7953659

LL Group # 1574153 Account # 08390

Project Name: Carroll Madonna

Collected: 06/30/2015 11:00 by LK GES, Inc.

Suite A

 Submitted: 07/02/2015 16:14
 1350 Blair Dr

 Reported: 07/13/2015 12:38
 Odenton MD 21113

MAD4D

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201518338165	06/30/2015 1	1:00	Client Supplied	n.a.
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	1	151890009A	07/10/2015 1	2:25	Christine E Dolman	1
10942	Microwave Extraction-DRO soils	SW-846 3546	1	151890009A	07/08/2015 1	.8:50	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	15190820002B	07/09/2015 1	5:43	Susan A Engle	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1574153

Reported: 07/13/2015 12:38

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD <u>Max</u>
Batch number: X151891AA	Sample num	nber(s): 79	53659					
Acrylonitrile	N.D.	4.	ug/kg	74	72	58-120	3	30
t-Amyl methyl ether	N.D.	1.	ug/kg	81	81	70-120	1	30
Benzene	N.D.	0.5	ug/kg	98	97	80-120	1	30
Bromobenzene	N.D.	1.	ug/kg	95	95	78-120	0	30
Bromochloromethane	N.D.	1.	ug/kg	95	93	80-120	2	30
Bromodichloromethane	N.D.	1.	ug/kg	90	89	75-120	1	30
Bromoform	N.D.	1.	ug/kg	75	71	64-120	5	30
Bromomethane	N.D.	2.	ug/kg	87	87	41-144	1	30
t-Butyl alcohol	N.D.	20.	ug/kg	98	98	76-120	0	30
n-Butylbenzene	N.D.	1.	ug/kg	101	102	72-120	1	30
sec-Butylbenzene	N.D.	1.	ug/kg	102	100	69-120	2	30
tert-Butylbenzene	N.D.	1.	ug/kg	97	94	75-120	3	30
Carbon Disulfide	N.D.	1.	ug/kg	91	89	52-126	2	30
Chlorobenzene	N.D.	1.	ug/kg	101	100	80-120	1	30
Chloroethane	N.D.	2.	ug/kg	83	88	38-142	6	30
Chloroform	N.D.	1.	ug/kg	96	97	80-120	1	30
Chloromethane	N.D.	2.	ug/kg	75	76	56-120	1	30
2-Chlorotoluene	N.D.	1.	ug/kg	102	100	78-120	2	30
4-Chlorotoluene	N.D.	1.	ug/kg	102	99	79-120	2	30
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/kg	68	65	59-122	5	30
Dibromochloromethane	N.D.	1.	ug/kg	90	86	77-120	4	30
1,2-Dibromoethane	N.D.	1.	ug/kg	91	88	80-120	3	30
Dibromomethane	N.D.	1.	ug/kg	90	89	80-120	1	30
trans-1,4-Dichloro-2-butene	N.D.	10.	ug/kg	93	88	71-135	5	30
1,2-Dichlorobenzene	N.D.	1.	ug/kg	96	95	80-120	1	30
1,3-Dichlorobenzene	N.D.	1.	ug/kg	98	97	80-120	2	30
1,4-Dichlorobenzene	N.D.	1.	ug/kg	99	99	80-120	1	30
Dichlorodifluoromethane	N.D.	2.	ug/kg	84	83	26-137	1	30
1,1-Dichloroethane	N.D.	1.	ug/kg	94	93	77-120	0	30
1,2-Dichloroethane	N.D.	1.	ug/kg	93	94	77-130	0	30
1,1-Dichloroethene	N.D.	1.	ug/kg	98	97	73-129	1	30
cis-1,2-Dichloroethene	N.D.	1.	ug/kg	99	97	80-120	2	30
trans-1,2-Dichloroethene	N.D.	1.	ug/kg	99	98	79-122	1	30
1,2-Dichloropropane	N.D.	1.	ug/kg	95	96	76-120	1	3.0
1,3-Dichloropropane	N.D.	1.	ug/kg	94	91	80-120	2	30
2,2-Dichloropropane	N.D.	1.	ug/kg	95	95	72-123	0	30
1,1-Dichloropropene	N.D.	1.	ug/kg	95	95	80-120	í	30
cis-1,3-Dichloropropene	N.D.	1.	ug/kg	91	90	74-120	1	30
trans-1,3-Dichloropropene	N.D.	1.	ug/kg	94	92	76-120	3	30
Ethyl t-butyl ether	N.D.	1.	ug/kg	80	80	69-120	0	30
Ethylbenzene	N.D.	1.	ug/kg	101	99	80-120	2	30
Hexachlorobutadiene	N.D.	2.	ug/kg	80	79	36-127	1	30
di-Isopropyl ether	N.D.	1.	ug/kg	89	89	71-120	0	30
at toobtobly court	14.10.	Τ.	ag/ ng	5.5	0)	11 120	3	50

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1574153

Reported: 07/13/2015 12:38

, ,	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u>	Result	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	<u>Max</u>
Isopropylbenzene	N.D.	1.	ug/kg	97	97	76-120	0	30
p-Isopropyltoluene	N.D.	1.	ug/kg	98	96	69-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/kg	80	79	72-120	1	30
Methylene Chloride	N.D.	2.	ug/kg	96	96	80-124	0	30
Naphthalene	N.D.	1.	ug/kg	76	74	64-120	3	30
n-Propylbenzene	N.D.	1.	ug/kg	104	102	77-120	2	30
Styrene	N.D.	1.	ug/kg	99	97	76-120	2	30
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/kg	94	94	80-120	0	30
1,1,2,2-Tetrachloroethane	N.D.	1.	ug/kg	90	87	72-120	4	30
Tetrachloroethene	N.D.	1.	ug/kg	93	90	78-120	3	30
Toluene	N.D.	1.	ug/kg	102	101	80-120	1	30
1,2,3-Trichlorobenzene	N.D.	1.	ug/kg	79	78	52-120	2	30
1,2,4-Trichlorobenzene	N.D.	1.	ug/kg	82	80	68-120	2	30
1,1,1-Trichloroethane	N.D.	1.	ug/kg	100	100	66-126	0	30
1,1,2-Trichloroethane	N.D.	1.	ug/kg	93	93	80-120	1	30
Trichloroethene	N.D.	1.	ug/kg	99	97	80-120	2	30
Trichlorofluoromethane	N.D.	2.	ug/kg	85	83	58-133	2	30
1,2,3-Trichloropropane	N.D.	1.	ug/kg	88	84	77-120	4	30
1,2,4-Trimethylbenzene	N.D.	1.	ug/kg	102	100	79-120	1	30
1,3,5-Trimethylbenzene	N.D.	1.	ug/kg	101	100	78-120	1	30
Vinyl Chloride	N.D.	1.	ug/kg	79	78	59-120	1	30
Xylene (Total)	N.D.	1.	ug/kg	100	99	80-120	1	30
Batch number: 15187A16A	Sample numb	er(s): 79	953659					
TPH-GRO soil C6-C10	N.D.	0.2	mg/kg	76	74	61-120	2	30
Batch number: 151890009A	Sample numb	er(s): 79	953659					
TPH-DRO soil C10-C28 microwave	N.D.	4.0	mg/kg	99		81-121		
Batch number: 15190820002B	Sample numb	er(s): 79	953659					
Moisture	<u>.</u>			100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: X151891AA Acrylonitrile t-Amyl methyl ether Benzene	84 81 99	number(s)	: 7953659 48-139 50-132 55-143	UNSPK:	P9557	73			
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	92 101 91 76		43-139 60-137 53-136 50-144						
Bromomethane t-Butyl alcohol n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	89 105 92 95 92		42-168 47-153 30-146 33-157 41-152						
Carbon Disulfide	96		48-146						

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1574153

Reported: 07/13/2015 12:38

Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chlorobenzene	99	· <u> </u>	49-135	· <u></u>		·			
Chloroethane	90		39-152						
Chloroform	98		61-142						
Chloromethane	83		36-143						
2-Chlorotoluene	96		42-146						
4-Chlorotoluene	96		39-145						
1,2-Dibromo-3-chloropropane	78		34-165						
Dibromochloromethane	89		51-128						
1,2-Dibromoethane	95		54-129						
Dibromomethane	94		57-130						
trans-1,4-Dichloro-2-butene	102		31-144						
1,2-Dichlorobenzene	87		36-133						
1,3-Dichlorobenzene	91		34-134						
1,4-Dichlorobenzene	92		35-136						
Dichlorodifluoromethane	99		26-151						
1,1-Dichloroethane	95		63-142						
1,2-Dichloroethane	98		54-143						
1,1-Dichloroethene	107		61-149						
	107								
cis-1,2-Dichloroethene			67-135						
trans-1,2-Dichloroethene	104		64-144						
1,2-Dichloropropane	95		54-144						
1,3-Dichloropropane	94		51-140						
2,2-Dichloropropane	99		53-147						
1,1-Dichloropropene	100		54-145						
cis-1,3-Dichloropropene	90		45-137						
trans-1,3-Dichloropropene	94		51-134						
Ethyl t-butyl ether	78		58-124						
Ethylbenzene	98		44-141						
Hexachlorobutadiene	65		10-155						
di-Isopropyl ether	87		59-133						
Isopropylbenzene	94		38-144						
p-Isopropyltoluene	91		29-152						
Methyl Tertiary Butyl Ether	82		55-129						
Methylene Chloride	99		60-149						
Naphthalene	60		10-138						
n-Propylbenzene	99		39-157						
Styrene	92		35-134						
1,1,1,2-Tetrachloroethane	93		55-139						
1,1,2,2-Tetrachloroethane	96		29-182						
Tetrachloroethene	94		42-149						
Toluene	101		50-146						
1,2,3-Trichlorobenzene	62		10-140						
1,2,4-Trichlorobenzene	65		10-136						
1,1,1-Trichloroethane	105		52-146						
1,1,2-Trichloroethane	96		58-152						
Trichloroethene	101		53-144						
Trichlorofluoromethane	96		47-163						
1,2,3-Trichloropropane	98		36-180						
1,2,4-Trimethylbenzene	95		37-149						
1,3,5-Trimethylbenzene	95		38-150						
Vinyl Chloride	83		50-154						
Xylene (Total)	97		44-136						
11,10110 (10041)	٠,		11 150						

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1574153

Reported: 07/13/2015 12:38

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 151890009A TPH-DRO soil C10-C28 microwave	_	number(s) 105	: 7953659 35-129	UNSPK: 15	P9539 20	14			
Batch number: 15190820002B Moisture	Sample	number(s)	: 7953659	BKG:	P95211	7 17.3	17.6	2	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- Solid by 8260B

Batch number: X151891AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7953659	103	102	95	97
Blank	99	103	98	95
LCS	96	97	101	100
LCSD	96	97	101	99
MS	100	107	100	100
Limite	50-1/1	5/1-135	52-1/1	50-131

Analysis Name: TPH-GRO soil C6-C10

Batch number: 15187A16A Trifluorotoluene-F

	Hillu	ט וכ
7953659	71	
Blank	88	
LCS	95	
LCSD	92	
T 1 1 to	Ε0.	1 4

Limits: 50-142

Analysis Name: TPH-DRO soil C10-C28 microwave

Batch number: 151890009A Orthoterphenyl

	Orthoterph
7953659	84
Blank	100
LCS	95
MS	89
MSD	89

Limits: 54-145

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

^{*-} Outside of specification

Environmental Analysis Poquest/Chain of Custody

eurofins Lancaster Laboratories	LII	VIIO		_	_	O Gr						-						O.	Cus	louy
Environmental			Acct.	#	1	C Gr	oup#_	() T	1411	33									1	
Client: Groundwater & Environmental Services						Matrix	atrix Analyses Requested										For Lab Use Only			
Project Name/#: Carroll Madonna	Site ID #:	0402814								Preservation Codes						SF #:				
Project Manager: Peter Reichardt	P.O. #: 04	102814-0	2-201		١	Ground	l												SCR #:	
Sampler: Lindsay heenly	PWSID #:	PWSID #:			Sediment	Ground		s	s s										Preserva	tion Codes
Phone #: 800-220-3606	Quote #:	Quote #:			Sed			iner	e & OXys										H = HCI	T = Thiosulfate
State where sample(s) were collected: 4101 Norris	ville Rd, Ja	rrettsville	MD			ble ES		Containers	pthalen										N = HNO ₃	B = NaOH
				ite		Potable NPDES		of Co	incl. Na	Q	0								S = H ₂ SO ₄	P = H ₃ PO ₄
	Colle	ection		sod	0 7	1	<u> </u>	#	e VOCs	GR	-PR								O = Other	
Sample Identification	Date	Time	Grab	Composite	Soil	Water	Other:	Total #	Full Suite (8260)	THP-GRO	TPH-DRO								Ren	narks
MW-4D 25.6-27'	6-30-15	1100	X		X			6	×	×	X								EDD file na	ame:
																			Carroll Ma	donna-
																			lab report	-
								<u> </u>											#.21993.E	QEDD.zip
			<u> </u>							<u> </u>										
					<u> </u>		-													
					<u> </u>		-		<u> </u>											
			ļ				ļ	ļ	ļ											
			-					ļ	<u> </u>											
		-			Dolin	duighad	b. a		<u> </u>		1	Tin		Recei	اممدا				Data	I Time a
Turnaround Time Requested (TAT) (please che		dard 🗹	Rush	ı	Kelli	nduistieu 1	by.	1//	<u> </u>	100	ate -15	Tin		\wedge	_	-	1 1	,	Date	Time
(Rush TAT is subject to laboratory appro		arges.)			Relin	nquished	by/		1	1	ate	Tin		Recei			<u> </u>	2	7-215 Date	√ 800 Time
Date results are needed:					1 ()	_	. A	۸ ـ	•	L			17-1	7		0y. []]	//	7		
• • • • • • • • • • • • • • • • • • • •	Mail 🔲		ne 🛚	_	Relin	~~e€ nguished	bv:	alr	ur		15 ate	Tin	ne.	Recei	ived I	hv.	Nw		<i>D-2 - 15</i> Date	1245 Fime
E-mail Address: mdlabs@gesonline.com & ges@e Phone: 800-220-3606 x3717	quisoriine.c	ЮП		2					7	2-1		161	- 1			~ , .				······
Data Package Options (please check if required)				Relir	nquished	by:	~		+	ate	Tin	ne	Recei	ived I	by:			Date	Time
Type I (Validation/non-CLP)						ÿ						<u> </u>					-			
Type III (Reduced non-CLP)					Relir	quished	by:			10:	ate	Tin	ne	Recei	ived I	oy: _			Date	Time

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

Type VI (Raw Data Only)

EDD Required?

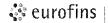
NYSDEC Category

Yes 🗹 No

TX TRRP-13

☐ A or

□ в


If yes, format: EQEDD

Temperature upon receipt

Relinquished by Commercial Carrier:

Other

FedEx

Sample Administration Receipt Documentation Log

Doc Log ID:

83761

Group Number(s): \574\53

Client: GES

Carroll Madonna

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Timestamp:

07/02/2015 16:14

Number of Packages:

1

Number of Projects:

<u>3</u>

State/Province of Origin:

MD

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

No

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

VOA Vial Headspace ≥ 6mm:

N/A

Paperwork Enclosed:

Yes

Total Trip Blank Qty:

0

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples:

No

Discrepancy in Container Qty on COC:

No

Unpacked by Jordan Woods (6698) at 17:02 on 07/02/2015

Samples Chilled Details: Carroll Madonna

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler #

Thermometer ID

Corrected Temp

Therm. Type

Ice Type

Ice Present?

Ice Container

DT146

0.2

Wet

Bagged

Elevated Temp? Ν

Sample ID Discrepancy Details: Carroll Madonna

DT

Only on jar

Sample ID on COC MW-4D 25.6-27'

Sample ID on Label MW-4 25-26.4'

Comments

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

less than <

greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight Dry weight basis

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 GES, Inc. Suite A 1350 Blair Dr Odenton MD 21113

July 21, 2015

Project: Carroll Madonna

Submittal Date: 07/09/2015 Group Number: 1575608 PO Number: 0402814-02-201 Release Number: MADONNA State of Sample Origin: MD

Client Sample Description
MW-5D 10'-12' Grab Soil

Lancaster Labs (LL) #

7960740

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC GES Attn: Greg Reichart

COPY TO

ELECTRONIC GES, Inc.-MD Attn: Data Distribution

COPY TO

ELECTRONIC GES Inc. Attn: Andrea Taylorson-Collins

COPY TO

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Kaitlin N. Plasterer Specialist

Maither M. Pasterer

(717) 556-7323

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5D 10'-12' Grab Soil

4101 Norrisville Rd - Jarrettsville, MD

Carroll Madonna

LL Sample # SW 7960740 LL Group # 1575608 Account # 08390

Project Name: Carroll Madonna

Collected: 07/06/2015 10:55 by PR GES, Inc.

Suite A

Submitted: 07/09/2015 17:25 1350 Blair Dr

Reported: 07/21/2015 20:30 Odenton MD 21113

MAD5D

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/kg	ug/kg	
10237	Acrylonitrile	107-13-1	N.D.	5	1.07
10237	t-Amyl methyl ether	994-05-8	N.D.	1	1.07
10237	Benzene	71-43-2	N.D.	0.6	1.07
10237	Bromobenzene	108-86-1	N.D.	1	1.07
10237	Bromochloromethane	74-97-5	N.D.	1	1.07
10237	Bromodichloromethane	75-27-4	N.D.	1	1.07
10237	Bromoform	75-25-2	N.D.	1	1.07
10237	Bromomethane	74-83-9	N.D.	2	1.07
10237	t-Butyl alcohol	75-65-0	N.D.	24	1.07
10237	n-Butylbenzene	104-51-8	N.D.	1	1.07
10237	sec-Butylbenzene	135-98-8	N.D.	1	1.07
10237	tert-Butylbenzene	98-06-6	N.D.	1	1.07
10237	Carbon Disulfide	75-15-0	N.D.	1	1.07
10237	Chlorobenzene	108-90-7	N.D.	1	1.07
10237	Chloroethane	75-00-3	N.D.	2	1.07
10237	Chloroform	67-66-3	N.D.	1	1.07
10237	Chloromethane	74-87-3	N.D.	2	1.07
10237	2-Chlorotoluene	95-49-8	N.D.	1	1.07
10237	4-Chlorotoluene	106-43-4	N.D.	1	1.07
10237	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1.07
10237	Dibromochloromethane	124-48-1	N.D.	1	1.07
10237	1,2-Dibromoethane	106-93-4	N.D.	1	1.07
10237	Dibromomethane	74-95-3	N.D.	1	1.07
10237	trans-1,4-Dichloro-2-butene	110-57-6	N.D.	12	1.07
10237	1,2-Dichlorobenzene	95-50-1	N.D.	1	1.07
10237	1,3-Dichlorobenzene	541-73-1	N.D.	1	1.07
10237	1,4-Dichlorobenzene	106-46-7	N.D.	1	1.07
10237	Dichlorodifluoromethane	75-71-8	N.D.	2	1.07
10237	1,1-Dichloroethane	75-34-3	N.D.	1	1.07
10237	1,2-Dichloroethane	107-06-2	N.D.	1	1.07
10237	1,1-Dichloroethene	75-35-4	N.D.	1	1.07
10237	cis-1,2-Dichloroethene	156-59-2	N.D.	1	1.07
10237	trans-1,2-Dichloroethene	156-60-5	N.D.	1	1.07
10237	1,2-Dichloropropane	78-87-5	N.D.	1	1.07
10237	1,3-Dichloropropane	142-28-9	N.D.	1	1.07
10237	2,2-Dichloropropane	594-20-7	N.D.	1	1.07
10237	1,1-Dichloropropene	563-58-6	N.D.	1	1.07
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1.07
10237	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1.07
10237	Ethyl t-butyl ether	637-92-3	N.D.	1	1.07
10237	Ethylbenzene	100-41-4	N.D.	1	1.07
10237	Hexachlorobutadiene	87-68-3	N.D.	2	1.07
10237	di-Isopropyl ether	108-20-3	N.D.	1	1.07
10237	Isopropylbenzene	98-82-8	N.D.	1	1.07
10237	p-Isopropyltoluene	99-87-6	N.D.	1	1.07
10237	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.6	1.07
10237	Methylene Chloride	75-09-2	N.D.	2	1.07
10237	Naphthalene	91-20-3	N.D.	1	1.07
10237	n-Propylbenzene	103-65-1	N.D.	1	1.07
10237	Styrene	100-42-5	N.D.	1	1.07

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5D 10'-12' Grab Soil

4101 Norrisville Rd - Jarrettsville, MD

Carroll Madonna

LL Sample # SW 7960740

LL Group # 1575608 Account # 08390

Project Name: Carroll Madonna

Collected: 07/06/2015 10:55 by PR GES, Inc.

Suite A

Submitted: 07/09/2015 17:25 Reported: 07/21/2015 20:30 1350 Blair Dr Odenton MD 21113

MAD5D

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	3260B	ug/kg	ug/kg	
10237	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.	1	1.07
10237	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	1	1.07
10237	Tetrachloroethene		127-18-4	N.D.	1	1.07
10237	Toluene		108-88-3	N.D.	1	1.07
10237	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1.07
	1,2,4-Trichlorobenze		120-82-1	N.D.	1	1.07
10237	1,1,1-Trichloroetha	ne .	71-55-6	N.D.	1	1.07
	1,1,2-Trichloroetha	ne .	79-00-5	N.D.	1	1.07
	Trichloroethene		79-01-6	N.D.	1	1.07
10237	Trichlorofluorometha	ane	75-69-4	N.D.	2	1.07
	1,2,3-Trichloropropa		96-18-4	N.D.	1	1.07
	1,2,4-Trimethylbenze		95-63-6	N.D.	1	1.07
10237	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1.07
	Vinyl Chloride		75-01-4	N.D.	1	1.07
10237	Xylene (Total)		1330-20-7	N.D.	1	1.07
GC Vol	latiles	SW-846	3015B modified	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	N.D.	0.3	27.9
GC Mis	scellaneous	SW-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C28	3 microwave	e n.a.	N.D.	4.5	1
Wet Ch	nemistry	SM 2540	G-1997	%	%	
00111	Moisture		n.a.	11.4	0.50	1
	Moisture represents 103 - 105 degrees Co as-received basis.					

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	VOCs- Solid by 8260B	SW-846 8260B	1	X152001AA	07/19/2015 13:05	Angela D Sneeringer	1.07
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201519038209	07/06/2015 10:55	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201519038209	07/06/2015 10:55	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201519038209	07/06/2015 10:55	Client Supplied	1

Analysis Report

Account

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5D 10'-12' Grab Soil

4101 Norrisville Rd - Jarrettsville, MD

Carroll Madonna

LL Sample # SW 7960740 LL Group # 1575608

08390

Project Name: Carroll Madonna

Collected: 07/06/2015 10:55 by PR GES, Inc.

Suite A

Submitted: 07/09/2015 17:25 1350 Blair Dr Reported: 07/21/2015 20:30 Odenton MD 21113

MAD5D

Laboratory Sample Analysis Record Method CAT Analysis Name Trial# Batch# Analyst Dilution No. Date and Time Factor 01637 TPH-GRO soil C6-C10 SW-846 8015B 15194A31A 07/13/2015 20:49 Marie D 27.9 Beamenderfer modified 06647 GC-5g Field Preserved SW-846 5035A 201519038209 07/06/2015 10:55 Client Supplied n.a. SW-846 8015B 151940011A Christine E Dolman 1 10941 TPH-DRO soil C10-C28 07/14/2015 13:54 microwave 10942 Microwave Extraction-DRO SW-846 3546 151940011A 07/13/2015 19:00 David V Hershey Jr 1 soils 00111 Moisture SM 2540 G-1997 15195820004A 07/14/2015 21:26 Scott W Freisher

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1575608

Reported: 07/21/2015 20:30

eurofins

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Amalanda Nama	Blank	Blank	Report	LCS	LCSD	LCS/LCSD	DDD	RPD
<u>Analysis Name</u>	<u>Result</u>	MDL	<u>Units</u>	<u>%REC</u>	%REC	<u>Limits</u>	RPD	<u>Max</u>
Batch number: X152001AA		mber(s): 79						
Acrylonitrile	N.D.	4.	ug/kg	86	83	58-120	4	30
t-Amyl methyl ether	N.D.	1.	ug/kg	88	89	70-120	1	30
Benzene	N.D.	0.5	ug/kg	98	95	80-120	3	30
Bromobenzene	N.D.	1.	ug/kg	93	91	78-120	3	30
Bromochloromethane	N.D.	1.	ug/kg	107	103	80-120	4	30
Bromodichloromethane	N.D.	1.	ug/kg	93	89	75-120	4	30
Bromoform	N.D.	1.	ug/kg	87	82	64-120	6	30
Bromomethane	N.D.	2.	ug/kg	94	94	41-144	0	30
t-Butyl alcohol	N.D.	20.	ug/kg	84	82	76-120	2	30
n-Butylbenzene	N.D.	1.	ug/kg	98	96	72-120	2	30
sec-Butylbenzene	N.D.	1.	ug/kg	101	99	69-120	2	30
tert-Butylbenzene	N.D.	1.	ug/kg	99	97	75-120	1	30
Carbon Disulfide	N.D.	1.	ug/kg	99	96	52-126	4	30
Chlorobenzene	N.D.	1.	ug/kg	97	94	80-120	3	30
Chloroethane	N.D.	2.	ug/kg	103	98	38-142	5	30
Chloroform	N.D.	1.	ug/kg	101	97	80-120	4	30
Chloromethane	N.D.	2.	ug/kg	89	87	56-120	3	30
2-Chlorotoluene	N.D.	1.	ug/kg	96	94	78-120	2	30
4-Chlorotoluene	N.D.	1.	ug/kg	94	92	79-120	2	30
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/kg	79	74	59-122	7	30
Dibromochloromethane	N.D.	1.	ug/kg	90	87	77-120	3	30
1,2-Dibromoethane	N.D.	1.	ug/kg	94	91	80-120	4	30
Dibromomethane	N.D.	1.	ug/kg	96	94	80-120	3	30
trans-1,4-Dichloro-2-butene	N.D.	10.	ug/kg	85	81	71-135	5	30
1,2-Dichlorobenzene	N.D.	1.	ug/kg	94	92	80-120	2	30
1,3-Dichlorobenzene	N.D.	1.	ug/kg	96	93	80-120	3	30
1,4-Dichlorobenzene	N.D.	1.	ug/kg	96	93	80-120	3	30
Dichlorodifluoromethane	N.D.	2.	ug/kg	98	93	26-137	5	30
1,1-Dichloroethane	N.D.	1.	ug/kg	94	92	77-120	2	30
1,2-Dichloroethane	N.D.	1.	ug/kg	99	95	77-130	4	30
1,1-Dichloroethene	N.D.	1.	ug/kg	105	102	73-129	3	30
cis-1,2-Dichloroethene	N.D.	1.	ug/kg	102	98	80-120	4	30
trans-1,2-Dichloroethene	N.D.	1.	ug/kg	107	103	79-122	4	30
1,2-Dichloropropane	N.D.	1.	ug/kg	93	93	76-120	1	30
1,3-Dichloropropane	N.D.	1.	ug/kg	88	87	80-120	1	30
2,2-Dichloropropane	N.D.	1.	ug/kg	98	95	72-123	3	30
1,1-Dichloropropene	N.D.	1.	ug/kg	95	90	80-120	5	30
cis-1,3-Dichloropropene	N.D.	1.	ug/kg	88	86	74-120	2	30
trans-1,3-Dichloropropene	N.D.	1.	uq/kq	89	87	76-120	2	30
Ethyl t-butyl ether	N.D.	1.	ug/kg	86	88	69-120	2	30
Ethylbenzene	N.D.	1.	ug/kg	97	95	80-120	2	30
Hexachlorobutadiene	N.D.	2.	ug/kg	96	93	36-127	2	30
di-Isopropyl ether	N.D.	1.	uq/kq	88	90	71-120	1	30
± ± ±			٥. ٥					

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1575608

Reported: 07/21/2015 20:30

,,	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u>	<u>Result</u>	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	<u>Max</u>
Isopropylbenzene	N.D.	1.	ug/kg	102	99	76-120	3	30
p-Isopropyltoluene	N.D.	1.	ug/kg	99	98	69-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/kg	94	93	72-120	1	30
Methylene Chloride	N.D.	2.	ug/kg	99	98	80-124	1	30
Naphthalene	N.D.	1.	ug/kg	88	84	64-120	5	30
n-Propylbenzene	N.D.	1.	ug/kg	97	96	77-120	2	30
Styrene	N.D.	1.	ug/kg	95	92	76-120	4	30
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/kg	94	92	80-120	2	30
1,1,2,2-Tetrachloroethane	N.D.	1.	ug/kg	83	81	72-120	2	30
Tetrachloroethene	N.D.	1.	ug/kg	107	102	78-120	5	30
Toluene	N.D.	1.	ug/kg	98	96	80-120	2	30
1,2,3-Trichlorobenzene	N.D.	1.	ug/kg	85	82	52-120	4	30
1,2,4-Trichlorobenzene	N.D.	1.	ug/kg	92	89	68-120	3	30
1,1,1-Trichloroethane	N.D.	1.	ug/kg	91	87	66-126	4	30
1,1,2-Trichloroethane	N.D.	1.	ug/kg	91	89	80-120	2	30
Trichloroethene	N.D.	1.	ug/kg	102	97	80-120	5	30
Trichlorofluoromethane	N.D.	2.	ug/kg	103	98	58-133	5	30
1,2,3-Trichloropropane	N.D.	1.	ug/kg	90	87	77-120	4	30
1,2,4-Trimethylbenzene	N.D.	1.	ug/kg	96	94	79-120	2	30
1,3,5-Trimethylbenzene	N.D.	1.	ug/kg	97	96	78-120	2	30
Vinyl Chloride	N.D.	1.	ug/kg	90	88	59-120	2	30
Xylene (Total)	N.D.	1.	ug/kg	97	95	80-120	2	30
Batch number: 15194A31A	Sample numb	er(s): 79	960740					
TPH-GRO soil C6-C10	N.D.	0.2	mg/kg	86	87	61-120	1	30
Batch number: 151940011A	Sample numb	er(s): 79	960740					
TPH-DRO soil C10-C28 microwave	N.D.	4.0	mg/kg	96		81-121		
Batch number: 15195820004A	Sample numb	er(s): 79	960740					
Moisture	F 12 22			100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD MAX	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 151940011A TPH-DRO soil C10-C28 microwave	Sample 92	number(s)	: 7960740 35-129	UNSPK:	79607	40 BKG: N.D.	7960740 N.D.	0 (1)	20
Batch number: 15195820004A Moisture	Sample	number(s)	: 7960740	BKG:	P95947	4 15.1	14.9	1	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1575608

Reported: 07/21/2015 20:30

Surrogate Quality Control

Analysis Name: VOCs- Solid by 8260B Batch number: X152001AA

200011 110	MEGET: HIEGEGGIIII				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
7960740	102	102	97	95	
Blank	103	102	97	93	
LCS	101	100	99	97	
LCSD	101	100	100	96	
Limits:	50-141	54-135	52-141	50-131	

Analysis Name: TPH-GRO soil C6-C10

Batch number: 15194A31A Trifluorotoluene-F

7960740 105 Blank 105 LCS 111 LCSD 112 Limits: 50-142

Analysis Name: TPH-DRO soil C10-C28 microwave Batch number: 151940011A

Orthoterphenyl 7960740 Blank 92 DUP 93 LCS MS

Limits: 54-145

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

			-			
 Ω		n	Ŧ	ı	n	C
•	u	u		ı		3

Lancaster Laboratories Environmental			Acct. #	340	Gro	oup # <u>\</u>	579	5608	3	8	Sample #	<u></u>	960	1741	0			_	
Client: Groundwater & Environmental Services, I	nc. (GES)		·Q	2	Matrix					Α	nalys	es F	Reque	este	d			For Lab Us	e Only
Project Name/#: Carroll Madonna	Site ID#:	0402814								F	Presei	rvati	on Co	odes	\$			SF #:	
Project Manager: Gregory Reichart	P.O. #: 04	02814-05	-201	_ ₌	nnd ace			O	0	Cassessa								SCR #:	
Sampler: P. Reichardt	PWSID #:			Sediment	Ground		S											Preservat	ion Codes
Phone #: 800-220-3606	Quote #:	Quote #:					iner	ohthalen	iB)	(B)								H = HCI	T = Thiosulfate
State where sample(s) were collected: 4101 Norrisvi	lle Rd, Jar	rettsville,	MD		ble		onta	and nap	3015	(8015B)								N = HNO ₃	B = NaOH
	Colle	ction	Grab		Potable er NPDES	er:	Total # of Containers	VOCs plus Oxygenates and naphthalene (8260)	TPH-GRO (8015B)	TPH-DRO (8								$S = H_2SO_4$ $O = Other$	P = H ₃ PO ₄
Sample Identification	Date	Time	Grab	Soil	Water	Other:	Tota	VOCs p (8260)	TPŀ	TPŀ								Rem	arks
MW-50 10'-12'	7/6/15	10.55	X	\times			6	X	X	X								EDD file na	ıme:
																		Carroll Mad	donna-
																		lab report	
																		#.21993.E0	QEDD.zip
																			- 900-00-0
		***************************************			ļ														
CONTROL ADMINISTRA												_							
0.000-01.000-01.000				_	ļ									_					
	April 1995			n Boli	naujahda!	h)/i				to	Tim	_	Recei\	od b				Date	Time
Turnaround Time Requested (TAT) (please check (Rush TAT is subject to laboratory approva	The same of the sa	The state of the s	Rush L		nquished	DX.	X		Da	15	19:4		- ()		16	r 1	1	7-9-15	
	and surcha	arges.)		Reli	nquished	g jee bv:	ede))	<i>(∫ 6/</i> Da	$\overline{}$	7 7: 9.		<u>بحرا</u> Recei		<u> </u>	1 001	m	Date	0930
Date results are needed:			e 🔲	┨``(`	/ "	۶۶. ۱۸۱	Λ.				133		1/		· , ·		7	1905	0 6:21
Rush results requested by (please check): E-Ma E-mail Address: mdlabs@gesonline.com & ges@eq	iil 🔲		e L	Reli	nquished	bv:	001/	y /	Da	15 Ite	100 Tim		Receiv	ved b	∕ v:		28	Date	Time
Phone: 800-220-3606 x3717	uisoriiirie.c	OIII			K				Ma		17.1	- 1	-		,				
Data Package Options (please check if required)				Reli	nquished	by:			<i>)) iii</i> Da		Tim		Receiv	/ed b	y:			Date	Time
Type I (Validation/non-CLP)	П				•	•				· The Contraction	No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street,	~							
Type III (Reduced non-CLP)	П			Reli	nquished	by:		armet are the second	Da	ite	Tim	е	Receiv	/ed b	y:			Date	Time
Type VI (Raw Data Only) TX TRRP-															>). A	2	1/9/15	1725
	or 🔲	В		Reli	nquished	by Co	mme	rcial C	Carrie	r:		<	Mark Street, St	~	~	,,,,,,	9		
EDD Required? Yes 🗸 No 🔲 If yes	, format: _ [[]	EQEDD		UPS		FedEx	x		Other_				Tempe	eratu	re up	on red	ceipt .	1,3	_ °C

22 NO

Sample Administration Receipt Documentation Log

Doc Log ID:

85379

1575608 Group Number(s):

Client: GES

Carroll Madonna

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Timestamp:

07/09/2015 17:25

Number of Packages:

1

Number of Projects:

3

State/Province of Origin:

Environmental

MD

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

VOA Vial Headspace ≥ 6mm:

N/A

Paperwork Enclosed:

Yes

Total Trip Blank Qty:

0

Samples Intact:

Yes No

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples: Discrepancy in Container Qty on COC:

No

Unpacked by Jordan Woods (6698) at 17:41 on 07/09/2015

Samples Chilled Details: Carroll Madonna

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler # Thermometer ID

Corrected Temp

1.3

Therm. Type

Ice Type

ice Present?

Ice Container

Elevated Temp?

1

DT146

DT

Wet

Υ

Bagged

Ν

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 GES, Inc. Suite A 1350 Blair Dr Odenton MD 21113

July 22, 2015

Project: Carroll Madonna

Submittal Date: 07/13/2015 Group Number: 1576296 PO Number: 0402814-02-201 Release Number: CARROLL MADONNA State of Sample Origin: MD

Client Sample Description

MW-6D 40.5'-42' Grab Sediment

Lancaster Labs (LL) #

7964272

WW-6D 40.3-42 Grab Sedifficit

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC GES Inc. Attn: Pete Reichardt

COPY TO

ELECTRONIC GES, Inc.-MD Attn: Data Distribution

COPY TO

ELECTRONIC GES Inc. Attn: Andrea Taylorson-Collins

COPY TO

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Kaitlin N. Plasterer Specialist

Maither M. Pasterer

(717) 556-7323

Analysis Report

LL Sample # SW 7964272 LL Group # 1576296 Account # 08390

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6D 40.5'-42' Grab Sediment

Carroll Madonna

Project Name: Carroll Madonna

Collected: 07/10/2015 12:15 by LK GES, Inc.

Suite A Submitted: 07/13/2015 16:50 1350 Blair Dr

Odenton MD 21113 Reported: 07/22/2015 14:29

CRRLM

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/kg	ug/kg	
10237	Acrylonitrile	107-13-1	N.D.	4	0.84
10237	t-Amyl methyl ether	994-05-8	3 J	1	0.84
10237	Benzene	71-43-2	N.D.	0.5	0.84
10237	Bromobenzene	108-86-1	N.D.	1	0.84
10237	Bromochloromethane	74-97-5	N.D.	1	0.84
10237	Bromodichloromethane	75-27-4	N.D.	1	0.84
10237	Bromoform	75-25-2	N.D.	1	0.84
10237	Bromomethane	74-83-9	N.D.	2	0.84
10237	t-Butyl alcohol	75-65-0	170	21	0.84
10237	n-Butylbenzene	104-51-8	N.D.	1	0.84
10237	sec-Butylbenzene	135-98-8	N.D.	1	0.84
10237	tert-Butylbenzene	98-06-6	N.D.	1	0.84
10237	Carbon Disulfide	75-15-0	N.D.	1	0.84
10237	Chlorobenzene	108-90-7	N.D.	1	0.84
10237	Chloroethane	75-00-3	N.D.	2	0.84
10237	Chloroform	67-66-3	N.D.	1	0.84
10237	Chloromethane	74-87-3	N.D.	2	0.84
10237	2-Chlorotoluene	95-49-8	N.D.	1	0.84
10237	4-Chlorotoluene	106-43-4	N.D.	1	0.84
10237	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	0.84
10237	Dibromochloromethane	124-48-1	N.D.	1	0.84
10237	1,2-Dibromoethane	106-93-4	N.D.	1	0.84
10237	Dibromomethane	74-95-3	N.D.	1	0.84
10237	trans-1,4-Dichloro-2-butene	110-57-6	N.D.	11	0.84
10237	1,2-Dichlorobenzene	95-50-1	N.D.	1	0.84
10237	1,3-Dichlorobenzene	541-73-1	N.D.	1	0.84
10237	1,4-Dichlorobenzene	106-46-7	N.D.	1	0.84
10237	Dichlorodifluoromethane	75-71-8	N.D.	2	0.84
10237	1,1-Dichloroethane	75-34-3	N.D.	1	0.84
10237	1,2-Dichloroethane	107-06-2	N.D.	1	0.84
10237	1,1-Dichloroethene	75-35-4	N.D.	1	0.84
10237	cis-1,2-Dichloroethene	156-59-2	N.D.	1	0.84
10237	trans-1,2-Dichloroethene	156-60-5	N.D.	1	0.84
10237	1,2-Dichloropropane	78-87-5	N.D.	1	0.84
10237	1,3-Dichloropropane	142-28-9	N.D.	1	0.84
10237	2,2-Dichloropropane	594-20-7	N.D.	1	0.84
10237	1,1-Dichloropropene	563-58-6	N.D.	1	0.84
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	0.84
10237	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	0.84
10237	Ethyl t-butyl ether	637-92-3	N.D.	1	0.84
10237	Ethylbenzene	100-41-4	N.D.	1	0.84
10237	Hexachlorobutadiene	87-68-3	N.D.	2	0.84
10237	di-Isopropyl ether	108-20-3	N.D.	1	0.84
10237	Isopropylbenzene	98-82-8	N.D.	1	0.84
10237	p-Isopropyltoluene	99-87-6	N.D.	1	0.84
10237	Methyl Tertiary Butyl Ether	1634-04-4	200	0.5	0.84
10237	Methylene Chloride	75-09-2	N.D.	2	0.84
10237	Naphthalene	91-20-3	N.D.	1	0.84
10237	n-Propylbenzene	103-65-1	N.D.	1	0.84
10237	Styrene	100-42-5	N.D.	1	0.84
10237	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	1	0.84

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6D 40.5'-42' Grab Sediment

Carroll Madonna

LL Sample # SW 7964272 LL Group # 1576296 Account # 08390

Project Name: Carroll Madonna

Collected: 07/10/2015 12:15 by LK GES, Inc.

Suite A

Submitted: 07/13/2015 16:50 Reported: 07/22/2015 14:29

1350 Blair Dr Odenton MD 21113

CRRLM

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/kg	ug/kg	
10237	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	1	0.84
10237	Tetrachloroethene		127-18-4	N.D.	1	0.84
10237	Toluene		108-88-3	N.D.	1	0.84
10237	, , .	ene	87-61-6	N.D.	1	0.84
10237	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	0.84
10237	1,1,1-Trichloroetha	ne	71-55-6	N.D.	1	0.84
10237	1,1,2-Trichloroetha	ne	79-00-5	N.D.	1	0.84
10237	Trichloroethene		79-01-6	N.D.	1	0.84
10237	Trichlorofluorometh	ane	75-69-4	N.D.	2	0.84
10237			96-18-4	N.D.	1	0.84
10237	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	0.84
10237	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	0.84
10237	Vinyl Chloride		75-01-4	N.D.	1	0.84
10237	Xylene (Total)		1330-20-7	N.D.	1	0.84
GC Vol	latiles	SW-846	8015B modified	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	N.D.	0.2	20.63
GC Mis	scellaneous	SW-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C2	8 microway	ve n.a.	N.D.	5.0	1
Wet Ch	nemistry	SM 2540	G-1997	8	%	
00111	Moisture		n.a.	20.4	0.50	1
	Moisture represents 103 - 105 degrees Coas-received basis.					

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10237	VOCs- Solid by 8260B	SW-846 8260B	1	X152021AA	07/21/2015 0	07:20	Stephanie A Selis	0.84
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201519438236	07/10/2015 1	12:15	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201519438236	07/10/2015 1	12:15	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201519438236	07/10/2015 1	12:15	Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B modified	1	15197A31A	07/17/2015 2	20:59	Marie D Beamenderfer	20.63
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201519438236	07/10/2015 1	12:15	Client Supplied	n.a.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6D 40.5'-42' Grab Sediment

Carroll Madonna

LL Sample # SW 7964272 LL Group # 1576296 Account # 08390

Project Name: Carroll Madonna

Collected: 07/10/2015 12:15 by LK GES, Inc.

Suite A

Submitted: 07/13/2015 16:50 Reported: 07/22/2015 14:29 1350 Blair Dr Odenton MD 21113

CRRLM

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	1	151960031A	07/21/2015 12:28	Christine E Dolmar	1		
10942	Microwave Extraction-DRO soils	SW-846 3546	1	151960031A	07/16/2015 09:00	Jessica M Velez	1		
00111	Moisture	SM 2540 G-1997	1	15201820003A	07/20/2015 18:58	Scott W Freisher	1		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1576296

Reported: 07/22/2015 14:29

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Amalanda Nama	Blank	Blank	Report	LCS	LCSD	LCS/LCSD	DDD	RPD
<u>Analysis Name</u>	<u>Result</u>	MDL	<u>Units</u>	<u>%REC</u>	%REC	<u>Limits</u>	RPD	<u>Max</u>
Batch number: X152021AA		mber(s): 79						
Acrylonitrile	N.D.	4.	ug/kg	71	74	58-120	5	30
t-Amyl methyl ether	N.D.	1.	ug/kg	85	89	70-120	4	30
Benzene	N.D.	0.5	ug/kg	93	95	80-120	2	30
Bromobenzene	N.D.	1.	ug/kg	91	92	78-120	1	30
Bromochloromethane	N.D.	1.	ug/kg	111	111	80-120	0	30
Bromodichloromethane	N.D.	1.	ug/kg	97	97	75-120	0	30
Bromoform	N.D.	1.	ug/kg	91	91	64-120	0	30
Bromomethane	N.D.	2.	ug/kg	92	93	41-144	1	30
t-Butyl alcohol	N.D.	20.	ug/kg	83	84	76-120	2	30
n-Butylbenzene	N.D.	1.	ug/kg	93	96	72-120	3	30
sec-Butylbenzene	N.D.	1.	ug/kg	98	100	69-120	1	30
tert-Butylbenzene	N.D.	1.	ug/kg	102	99	75-120	2	30
Carbon Disulfide	N.D.	1.	ug/kg	96	98	52-126	2	30
Chlorobenzene	N.D.	1.	ug/kg	97	97	80-120	0	30
Chloroethane	N.D.	2.	ug/kg	90	108	38-142	18	30
Chloroform	N.D.	1.	ug/kg	104	104	80-120	0	30
Chloromethane	N.D.	2.	ug/kg	70	74	56-120	5	30
2-Chlorotoluene	N.D.	1.	ug/kg	93	93	78-120	1	30
4-Chlorotoluene	N.D.	1.	ug/kg	91	92	79-120	1	30
1,2-Dibromo-3-chloropropane	N.D.	2.	ug/kg	80	78	59-122	3	30
Dibromochloromethane	N.D.	1.	ug/kg	94	92	77-120	2	30
1,2-Dibromoethane	N.D.	1.	ug/kg	93	94	80-120	1	30
Dibromomethane	N.D.	1.	ug/kg	99	100	80-120	0	30
trans-1,4-Dichloro-2-butene	N.D.	10.	ug/kg	77	78	71-135	1	30
1,2-Dichlorobenzene	N.D.	1.	ug/kg	93	93	80-120	0	30
1,3-Dichlorobenzene	N.D.	1.	ug/kg	94	95	80-120	1	30
1,4-Dichlorobenzene	N.D.	1.	ug/kg	94	95	80-120	1	30
Dichlorodifluoromethane	N.D.	2.	ug/kg	80	81	26-137	1	30
1,1-Dichloroethane	N.D.	1.	ug/kg	88	91	77-120	3	30
1,2-Dichloroethane	N.D.	1.	uq/kq	106	104	77-130	2	30
1,1-Dichloroethene	N.D.	1.	ug/kg	101	102	73-129	1	30
cis-1,2-Dichloroethene	N.D.	1.	ug/kg	101	101	80-120	0	30
trans-1,2-Dichloroethene	N.D.	1.	uq/kq	105	106	79-122	1	30
1,2-Dichloropropane	N.D.	1.	ug/kg	85	88	76-120	4	30
1,3-Dichloropropane	N.D.	1.	ug/kg	84	84	80-120	0	30
2,2-Dichloropropane	N.D.	1.	ug/kg	93	93	72-123	0	30
1,1-Dichloropropene	N.D.	1.	ug/kg	92	94	80-120	3	30
cis-1,3-Dichloropropene	N.D.	1.	ug/kg	85	85	74-120	0	30
trans-1,3-Dichloropropene	N.D.	1.	ug/kg	85	85	76-120	0	3.0
Ethyl t-butyl ether	N.D.	1.	ug/kg	80	85	69-120	6	30
Ethylbenzene	N.D.	1.	ug/kg	96	97	80-120	í	30
Hexachlorobutadiene	N.D.	2.	ug/kg	100	102	36-127	2	30
di-Isopropyl ether	N.D.	1.	ug/kg	77	81	71-120	5	30
r . r								

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1576296

Reported: 07/22/2015 14:29

eurofins

<u> </u>	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	%REC	%REC	<u>Limits</u>	RPD	<u>Max</u>
Isopropylbenzene	N.D.	1.	ug/kg	102	102	76-120	0	30
p-Isopropyltoluene	N.D.	1.	ug/kg	98	100	69-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/kg	93	96	72-120	3	30
Methylene Chloride	N.D.	2.	ug/kg	95	97	80-124	2	30
Naphthalene	N.D.	1.	ug/kg	87	90	64-120	3	30
n-Propylbenzene	N.D.	1.	ug/kg	92	93	77-120	1	30
Styrene	N.D.	1.	ug/kg	92	92	76-120	1	30
1,1,1,2-Tetrachloroethane	N.D.	1.	ug/kg	96	97	80-120	0	30
1,1,2,2-Tetrachloroethane	N.D.	1.	ug/kg	74	76	72-120	2	30
Tetrachloroethene	N.D.	1.	ug/kg	112	110	78-120	2	30
Toluene	N.D.	1.	ug/kg	94	94	80-120	1	30
1,2,3-Trichlorobenzene	N.D.	1.	ug/kg	85	86	52-120	1	30
1,2,4-Trichlorobenzene	N.D.	1.	ug/kg	92	95	68-120	3	30
1,1,1-Trichloroethane	N.D.	1.	ug/kg	103	102	66-126	1	30
1,1,2-Trichloroethane	N.D.	1.	ug/kg	88	88	80-120	0	30
Trichloroethene	N.D.	1.	ug/kg	104	103	80-120	1	30
Trichlorofluoromethane	N.D.	2.	ug/kg	102	100	58-133	2	30
1,2,3-Trichloropropane	N.D.	1.	ug/kg	88	89	77-120	1	30
1,2,4-Trimethylbenzene	N.D.	1.	ug/kg	92	94	79-120	2	30
1,3,5-Trimethylbenzene	N.D.	1.	ug/kg	95	95	78-120	1	30
Vinyl Chloride	N.D.	1.	ug/kg	75	81	59-120	8	30
Xylene (Total)	N.D.	1.	ug/kg	97	97	80-120	0	30
Batch number: 15197A31A	Sample numbe	er(s): 796	4272					
TPH-GRO soil C6-C10	N.D.	0.2	mg/kg	84	84	61-120	0	30
Batch number: 151960031A	Sample numbe	er(s): 796	4272					
TPH-DRO soil C10-C28 microwave	N.D.	4.0	mg/kg	100		81-121		
Batch number: 15201820003A	Sample numbe	er(s): 796	4272					
Moisture	-			100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 151960031A TPH-DRO soil C10-C28 microwave	Sample 3830 (2)	number(s) 5469 (2)	: 7964272 35-129	UNSPK: 18	P9663 20	06			
Batch number: 15201820003A Moisture	Sample	number(s)	: 7964272	BKG:	P92149	0 16.3	16.7	2	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1576296

Reported: 07/22/2015 14:29

Surrogate Quality Control

Analysis Name: VOCs- Solid by 8260B

Batch number: X152021AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7964272	108	106	93	95
Blank	111	105	94	92
LCS	107	102	96	98
LCSD	107	99	97	97
Limits	50-141	54-135	52-141	50-131

Analysis Name: TPH-GRO soil C6-C10

Batch number: 15197A31A

Trifluorotoluene-F

7964272	76
Blank	104
LCS	112
LCSD	111

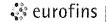
Limits: 50-142

Analysis Name: TPH-DRO soil C10-C28 microwave Batch number: 151960031A

Orthoterphenyl

7964272	90
Blank	89
LCS	94
MS	301*
MSD	346*
Timilea	E 4 1 4 E

Limits: 54-145


- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

^{*-} Outside of specification

Environmental Analysis Request/Chain of Custody

eurofins :

Lancaster Laboratories Acct. # 8390 Group # 1576296 Sample # 7964272 Environmental Client: Groundwater & Environmental Services, Inc. (GES) **Matrix Analyses Requested** For Lab Use Only Project Name/#: Carroll Madonna Site ID #: 0402814 **Preservation Codes** SF #: _____ Surface Project Manager: Peter Reichardt P.O. #: 0402814-02-201 SCR #: Sampler: Lindsau Keeney PWSID #: **Preservation Codes** of Containers Phone #: 800-220-3606 Quote #: T = Thiosulfate (8015) (8015)State where sample(s) were collected: 4101 Norrisville Rd, Jarrettsville MD Potable $N = HNO_{2}$ B = NaOH Composite TPH-GRO TPH-DRO S = H₂SO₄ $P = H_3PO_4$ Collection Total# Other: O = Other Grab Date Time Remarks Sample Identification MW-6D 40.5-42' 7-10-15 EDD file name: Carroll Madonnalab report #.21993.EQEDD.zip Relinquished by: Date Time Received by: Date Time Standard Rush Turnaround Time Requested (TAT) (please check): 1700 -10-15 (Rush TAT is subject to laboratory approval and surcharges.) () 8 OD Date Received by: Relinguished by: Time Time Date results are needed: 13/11-1211 E-Mail \square Phone \square Rush results requested by (please check): Relinauished by: Date Time Received by: Time E-mail Address: mdlabs@gesonline.com & ges@equisonline.com 6,50 Phone: 800-220-3606 x3717 Relinguished by: Date Time Received by: Date Time Data Package Options (please check if required) Type I (Validation/non-CLP) MA MCP Relinguished by: Date Time Received by Date Time Type III (Reduced non-CLP) CT RCP Type VI (Raw Data Only) TX TRRP-13 Relinquished by Commercial Carrier: NYSDEC Category ☐ A or If yes, format: EQEDD Temperature upon receipt EDD Required? ✓ No FedEx

Sample Administration Receipt Documentation Log

Doc Log ID:

86238

Group Number(s): 1576296

Client: GES

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Timestamp:

07/13/2015 16:50

Number of Packages:

1

Number of Projects:

1

State/Province of Origin:

MD

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

VOA Vial Headspace ≥ 6mm:

N/A

Paperwork Enclosed:

Yes

Total Trip Blank Qty:

0

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples:

No

Discrepancy in Container Qty on COC:

No

Unpacked by Patrick Engle (3472) at 17:17 on 07/13/2015

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#

Thermometer ID DT121

Corrected Temp

Therm. Type DT

Ice Type Wet

Ice Present?

Ice Container

Elevated Temp?

0.1

Loose

Ν

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 GES, Inc. Suite A 1350 Blair Dr Odenton MD 21113

August 12, 2015

Project: Carroll Madonna

Submittal Date: 07/31/2015 Group Number: 1581267 PO Number: 0402814-06-206 Release Number: MADONNA State of Sample Origin: MD

Client Sample DescriptionLancaster Labs (LL) #MW-4 Grab Groundwater7988444MW-4D Grab Groundwater7988445MW-5 Grab Groundwater7988446MW-5D Grab Groundwater7988447MW-6 Grab Groundwater7988448MW-6D Grab Groundwater7988449

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC GES Inc. Attn: Pete Reichardt

COPY TO

ELECTRONIC GES Attn: Greg Reichart

COPY TO

ELECTRONIC GES, Inc.-MD Attn: Data Distribution

COPY TO

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Kaitlin N. Plasterer Specialist

Maither M. Pasterer

(717) 556-7323

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988444

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 12:15 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD04

CAT No.	Analysis Name	CAS Numb	per Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	346 8260B 25ml	_ ug/l	ug/l	
,	pure				
02898	Acrylonitrile	107-13-1	N.D.	1.0	1
02898	t-Amyl methyl ether	994-05-8		0.1	1
02898	Benzene	71-43-2	N.D.	0.1	1
02898	Bromobenzene	108-86-1		0.1	1
02898	Bromochloromethane	74-97-5	N.D.	0.1	1
02898	Bromodichloromethane	75-27-4	N.D.	0.1	1
02898	Bromoform	75-25-2	N.D.	0.1	1
02898	Bromomethane	74-83-9	N.D.	0.1	1
02898	t-Butyl Alcohol	75-65-0	N.D.	4.0	1
02898	n-Butylbenzene	104-51-8	N.D.	0.1	1
02898	sec-Butylbenzene	135-98-8	N.D.	0.1	1
02898	tert-Butylbenzene	98-06-6	N.D.	0.1	1
02898	Carbon Disulfide	75-15-0	N.D.	0.4	1
02898	Chlorobenzene	108-90-7	N.D.	0.1	1
02898	Chloroethane	75-00-3	N.D.	0.1	1
02898	Chloroform	67-66-3	N.D.	0.1	1
02898	Chloromethane	74-87-3	N.D.	0.2	1
02898	2-Chlorotoluene	95-49-8	N.D.	0.1	1
02898	4-Chlorotoluene	106-43-4		0.1	1
02898	1,2-Dibromo-3-chloropropa		N.D.	0.2	1
02898	Dibromochloromethane	124-48-1		0.1	1
02898	1,2-Dibromoethane	106-93-4		0.1	1
02898	Dibromomethane	74-95-3	N.D.	0.1	1
02898	trans-1,4-Dichloro-2-but			1.0	1
02898 02898	1,2-Dichlorobenzene 1,3-Dichlorobenzene	95-50-1 541-73-1	N.D. N.D.	0.1 0.1	1 1
02898	1,4-Dichlorobenzene	106-46-5			1
02898	Dichlorodifluoromethane	75-71-8	N.D.	0.1 0.1	1
02898	1.1-Dichloroethane	75-71-6	N.D.	0.1	1
02898	1,2-Dichloroethane	107-06-2		0.1	1
02898	1,1-Dichloroethene	75-35-4	N.D.	0.1	1
02898	cis-1,2-Dichloroethene	156-59-2		0.1	1
02898	trans-1,2-Dichloroethene	156-60-5		0.1	1
02898	1,2-Dichloropropane	78-87-5	N.D.	0.1	1
02898	1,3-Dichloropropane	142-28-9		0.1	1
02898	2,2-Dichloropropane	594-20-5	N.D.	0.1	1
02898	1,1-Dichloropropene	563-58-6	N.D.	0.1	1
02898	cis-1,3-Dichloropropene	10061-01	-5 N.D.	0.1	1
02898	trans-1,3-Dichloropropen	e 10061-02	2-6 N.D.	0.1	1
02898	Ethyl t-butyl ether	637-92-3	N.D.	0.1	1
02898	Ethylbenzene	100-41-4	N.D.	0.1	1
02898	Hexachlorobutadiene	87-68-3	N.D.	0.1	1
02898	di-Isopropyl Ether	108-20-3		0.1	1
02898	Isopropylbenzene	98-82-8	N.D.	0.1	1
02898	p-Isopropyltoluene	99-87-6	N.D.	0.1	1
02898	Methyl Tertiary Butyl Et			0.1	1
02898	Methylene Chloride	75-09-2	N.D.	0.2	1
02898	Naphthalene	91-20-3	N.D.	0.1	1
02898	n-Propylbenzene	103-65-1	N.D.	0.1	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988444

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 12:15 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38

1350 Blair Dr Odenton MD 21113

MAD04

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-	846 8260B 25mL	ug/l	ug/l	
	pur	ge			
02898	Styrene	100-42-5	N.D.	0.1	1
02898	1,1,1,2-Tetrachloroethan	e 630-20-6	N.D.	0.1	1
02898	1,1,2,2-Tetrachloroethan	e 79-34-5	N.D.	0.1	1
02898	Tetrachloroethene	127-18-4	N.D.	0.1	1
02898	Toluene	108-88-3	N.D.	0.1	1
02898	1,2,3-Trichlorobenzene	87-61-6	N.D.	0.1	1
02898	1,2,4-Trichlorobenzene	120-82-1	N.D.	0.1	1
02898	1,1,1-Trichloroethane	71-55-6	N.D.	0.1	1
02898	1,1,2-Trichloroethane	79-00-5	N.D.	0.1	1
02898	Trichloroethene	79-01-6	N.D.	0.1	1
02898	Trichlorofluoromethane	75-69-4	N.D.	0.1	1
02898	1,2,3-Trichloropropane	96-18-4	N.D.	0.3	1
02898	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.1	1
02898	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.1	1
02898	Vinyl Chloride	75-01-4	N.D.	0.1	1
02898	Xylene (Total)	1330-20-7	N.D.	0.1	1
GC Vol	latiles SW-	846 8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C10	n.a.	N.D.	20	1
	croleum SW-	846 8015B	ug/l	ug/l	
12858	DRO C10-C28	n.a.	N.D.	45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratorv	Gample	Analweie	Pecord
парогатогу	Sambre	AHAIVSIS	Kecora

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015	16:31	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015	16:31	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015	02:52	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015	02:52	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015	09:02	Christine E Dolman	. 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015	09:30	Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988445

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Collected: 07/30/2015 12:25 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Reported: 08/12/2015 15:05 Odenton MD 21113

4DMAD

CAT No.	Analysis Name	CAS Number	Result	:	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	6 8260B 25mL	ug/l		ug/l	
00,	purge		_		_	
02898	Acrylonitrile	107-13-1	N.D.		1.0	1
02898	t-Amyl methyl ether	994-05-8	N.D.		0.1	1
02898	Benzene	71-43-2	0.2	J	0.1	1
02898	Bromobenzene	108-86-1	N.D.	U	0.1	1
02898	Bromochloromethane	74-97-5	N.D.		0.1	1
02898	Bromodichloromethane	75-27-4	N.D.		0.1	1
02898	Bromoform	75-25-2	N.D.		0.1	1
02898	Bromomethane	74-83-9	N.D.		0.1	1
02898	t-Butyl Alcohol	75-65-0	N.D.		4.0	1
02898	n-Butylbenzene	104-51-8	N.D.		0.1	1
02898	sec-Butylbenzene	135-98-8	N.D.		0.1	1
02898	tert-Butylbenzene	98-06-6	N.D.		0.1	1
02898	Carbon Disulfide	75-15-0	N.D.		0.4	1
02898	Chlorobenzene	108-90-7	N.D.		0.1	1
02898	Chloroethane	75-00-3	N.D.		0.1	1
02898	Chloroform	67-66-3	N.D.		0.1	1
02898	Chloromethane	74-87-3	0.3	J	0.2	1
02898	2-Chlorotoluene	95-49-8	N.D.		0.1	1
02898	4-Chlorotoluene	106-43-4	N.D.		0.1	1
02898	1,2-Dibromo-3-chloropropane		N.D.		0.2	1
02898	Dibromochloromethane	124-48-1	N.D.		0.1	1
02898	1,2-Dibromoethane	106-93-4	N.D.		0.1	1
02898	Dibromomethane	74-95-3	N.D.		0.1	1
02898	trans-1,4-Dichloro-2-butene		N.D.		1.0	1
02898	1,2-Dichlorobenzene	95-50-1	N.D.		0.1	1
02898 02898	1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1	N.D.		0.1	1 1
02898	Dichlorodifluoromethane	106-46-7 75-71-8	N.D.			1
02898	1,1-Dichloroethane	75-71-8	N.D. N.D.		0.1 0.1	1
02898	1,2-Dichloroethane	107-06-2	N.D.		0.1	1
02898	1,1-Dichloroethene	75-35-4	N.D.		0.1	1
02898	cis-1,2-Dichloroethene	156-59-2	N.D.		0.1	1
02898	trans-1,2-Dichloroethene	156-60-5	N.D.		0.1	1
02898	1,2-Dichloropropane	78-87-5	N.D.		0.1	1
02898	1,3-Dichloropropane	142-28-9	N.D.		0.1	1
02898	2,2-Dichloropropane	594-20-7	N.D.		0.1	1
02898	1,1-Dichloropropene	563-58-6	N.D.		0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	N.D.		0.1	1
02898	trans-1,3-Dichloropropene	10061-02-6	N.D.		0.1	1
02898	Ethyl t-butyl ether	637-92-3	N.D.		0.1	1
02898	Ethylbenzene	100-41-4	0.1	J	0.1	1
02898	Hexachlorobutadiene	87-68-3	N.D.		0.1	1
02898	di-Isopropyl Ether	108-20-3	N.D.		0.1	1
02898	Isopropylbenzene	98-82-8	N.D.		0.1	1
02898	p-Isopropyltoluene	99-87-6	N.D.		0.1	1
02898	Methyl Tertiary Butyl Ether		2.9		0.1	1
02898	Methylene Chloride	75-09-2	N.D.		0.2	1
02898	Naphthalene	91-20-3	N.D.		0.1	1
02898	n-Propylbenzene	103-65-1	N.D.		0.1	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988445

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Collected: 07/30/2015 12:25 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113 Reported: 08/12/2015 15:05

4DMAD

CAT No.	Analysis Name		CAS Number	Result	:	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	
		purge					
02898	Styrene		100-42-5	N.D.		0.1	1
02898	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.		0.1	1
02898	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.		0.1	1
02898	Tetrachloroethene		127-18-4	N.D.		0.1	1
02898	Toluene		108-88-3	0.3	J	0.1	1
02898	1,2,3-Trichlorobenz	ene	87-61-6	N.D.		0.1	1
02898	1,2,4-Trichlorobenz	ene	120-82-1	N.D.		0.1	1
02898	1,1,1-Trichloroetha	ne.	71-55-6	N.D.		0.1	1
02898	1,1,2-Trichloroetha	ne.	79-00-5	N.D.		0.1	1
02898	Trichloroethene		79-01-6	N.D.		0.1	1
02898	Trichlorofluorometh	ane	75-69-4	N.D.		0.1	1
02898	1,2,3-Trichloroprop	ane	96-18-4	N.D.		0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63-6	N.D.		0.1	1
02898	1,3,5-Trimethylbenz	ene	108-67-8	N.D.		0.1	1
02898	Vinyl Chloride		75-01-4	N.D.		0.1	1
02898	Xylene (Total)		1330-20-7	N.D.		0.1	1
GC Vol	latiles	SW-846	8015B	ug/l		ug/l	
01635	TPH-GRO water C6-C1	.0	n.a.	N.D.		20	1
	croleum carbons	SW-846	8015B	ug/l		ug/l	
12858	DRO C10-C28		n.a.	49	J	45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015 14	4:35	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015 14	4:35	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015 03	3:14	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015 03	3:14	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015 02	2:21	Christine E Dolman	. 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015 09	9:30	Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988446

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:00 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD05

CAT No.	Analysis Name		CAS	Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	25mL	ug/l	ug/l	
		ourge					
02898	Acrylonitrile	, u_go	107	-13-1	N.D.	1.0	1
02898	t-Amyl methyl ether			-05-8	N.D.	0.1	1
02898	Benzene			43-2	N.D.	0.1	1
02898	Bromobenzene			-86-1	N.D.	0.1	1
02898	Bromochloromethane			97-5	N.D.	0.1	1
02898	Bromodichloromethane			27-4	N.D.	0.1	1
02898	Bromoform			25-2	N.D.	0.1	1
02898	Bromomethane			83-9	N.D.	0.1	1
02898	t-Butyl Alcohol			65-0	N.D.	4.0	1
02898	n-Butylbenzene			-51-8	N.D.	0.1	1
02898	sec-Butylbenzene			-98-8	N.D.	0.1	1
02898	tert-Butylbenzene			06-6	N.D.	0.1	1
02898	Carbon Disulfide			15-0	N.D.	0.4	1
02898	Chlorobenzene			-90-7	N.D.	0.1	1
02898	Chloroethane			00-3	N.D.	0.1	1
02898	Chloroform			66-3	N.D.	0.1	1
02898	Chloromethane			87-3	N.D.	0.2	1
02898	2-Chlorotoluene			49-8	N.D.	0.1	1
02898	4-Chlorotoluene			-43-4	N.D.	0.1	1
02898	1,2-Dibromo-3-chloro	oropane		12-8	N.D.	0.2	1
02898	Dibromochloromethane			-48-1	N.D.	0.1	1
02898	1,2-Dibromoethane			-93-4	N.D.	0.1	1
02898	Dibromomethane			95-3	N.D.	0.1	1
02898	trans-1,4-Dichloro-2	-butene	110	-57-6	N.D.	1.0	1
02898	1,2-Dichlorobenzene		95-	50-1	N.D.	0.1	1
02898	1,3-Dichlorobenzene		541	-73-1	N.D.	0.1	1
02898	1,4-Dichlorobenzene		106	-46-7	N.D.	0.1	1
02898	Dichlorodifluorometha	ane	75-	71-8	N.D.	0.1	1
02898	1,1-Dichloroethane		75-	34-3	N.D.	0.1	1
02898	1,2-Dichloroethane		107	-06-2	N.D.	0.1	1
02898	1,1-Dichloroethene		75-	35-4	N.D.	0.1	1
02898	cis-1,2-Dichloroether	ne	156	-59-2	N.D.	0.1	1
02898	trans-1,2-Dichloroet	nene	156	-60-5	N.D.	0.1	1
02898	1,2-Dichloropropane		78-	87-5	N.D.	0.1	1
02898	1,3-Dichloropropane		142	-28-9	N.D.	0.1	1
02898	2,2-Dichloropropane		594	-20-7	N.D.	0.1	1
02898	1,1-Dichloropropene			-58-6	N.D.	0.1	1
02898	cis-1,3-Dichloroprope		100	61-01-5	N.D.	0.1	1
02898	trans-1,3-Dichloropro	opene		61-02-6	N.D.	0.1	1
02898	Ethyl t-butyl ether			-92-3	N.D.	0.1	1
02898	Ethylbenzene			-41-4	N.D.	0.1	1
02898	Hexachlorobutadiene			68-3	N.D.	0.1	1
02898	di-Isopropyl Ether			-20-3	N.D.	0.1	1
02898	Isopropylbenzene			82-8	N.D.	0.1	1
02898	p-Isopropyltoluene			87-6	N.D.	0.1	1
02898	Methyl Tertiary Buty	L Ether		4-04-4	N.D.	0.1	1
02898	Methylene Chloride			09-2	N.D.	0.2	1
02898	Naphthalene			20-3	N.D.	0.1	1
02898	n-Propylbenzene		103	-65-1	N.D.	0.1	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988446

LL Group # 1581267

Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:00 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD05

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l	ug/l	
		purge				
02898	Styrene		100-42-5	N.D.	0.1	1
02898	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.	0.1	1
02898	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	0.1	1
02898	Tetrachloroethene		127-18-4	N.D.	0.1	1
02898	Toluene		108-88-3	N.D.	0.1	1
02898	1,2,3-Trichlorobenz	ene	87-61-6	N.D.	0.1	1
02898	1,2,4-Trichlorobenz	ene	120-82-1	N.D.	0.1	1
02898	1,1,1-Trichloroetha	ne.	71-55-6	N.D.	0.1	1
02898	1,1,2-Trichloroetha	ne.	79-00-5	N.D.	0.1	1
02898	Trichloroethene		79-01-6	N.D.	0.1	1
02898	Trichlorofluorometh	ane	75-69-4	N.D.	0.1	1
02898	1,2,3-Trichloroprop	ane	96-18-4	N.D.	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63-6	N.D.	0.1	1
02898	1,3,5-Trimethylbenz	ene	108-67-8	N.D.	0.1	1
02898	Vinyl Chloride		75-01-4	N.D.	0.1	1
02898	Xylene (Total)		1330-20-7	N.D.	0.1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C1		n.a.	N.D.	20	1
GG D-4	1	GT7 046	00155	ua /1	ug/l	
	troleum	SW-846	ROTOR	ug/l	ug/ 1	
Hydro	carbons					
12858	DRO C10-C28		n.a.	N.D.	45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015	14:58	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015 1	14:58	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015 (03:36	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015	03:36	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015 (02:44	Christine E Dolman	. 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015	09:30	Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988447

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:10 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

5DMAD

CAT No.	Analysis Name		CAS	Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 2	25mL	ug/l	ug/l	
,		purge					
02898	Acrylonitrile	F 5 -	107-	13-1	N.D.	1.0	1
02898	t-Amyl methyl ether			05-8	N.D.	0.1	1
02898	Benzene		71-4		N.D.	0.1	1
02898	Bromobenzene			86-1	N.D.	0.1	1
02898	Bromochloromethane		74-9		N.D.	0.1	1
02898	Bromodichloromethan	e	75-2		N.D.	0.1	1
02898	Bromoform		75-2		N.D.	0.1	1
02898	Bromomethane		74-8		N.D.	0.1	1
02898	t-Butyl Alcohol		75-6		N.D.	4.0	1
02898	n-Butylbenzene		104-	51-8	N.D.	0.1	1
02898	sec-Butylbenzene		135-	98-8	N.D.	0.1	1
02898	tert-Butylbenzene		98-0	06-6	N.D.	0.1	1
02898	Carbon Disulfide		75-1	5-0	N.D.	0.4	1
02898	Chlorobenzene		108-	90-7	N.D.	0.1	1
02898	Chloroethane		75-0	00-3	N.D.	0.1	1
02898	Chloroform		67-6	6-3	N.D.	0.1	1
02898	Chloromethane		74 - 8	37-3	N.D.	0.2	1
02898	2-Chlorotoluene		95-4	9-8	N.D.	0.1	1
02898	4-Chlorotoluene		106-	43-4	N.D.	0.1	1
02898	1,2-Dibromo-3-chlore	opropane	96-1	2-8	N.D.	0.2	1
02898	Dibromochloromethan	е	124-	48-1	N.D.	0.1	1
02898	1,2-Dibromoethane		106-	93-4	N.D.	0.1	1
02898	Dibromomethane		74 - 9	95-3	N.D.	0.1	1
02898	trans-1,4-Dichloro-	2-butene	110-	57-6	N.D.	1.0	1
02898	1,2-Dichlorobenzene		95-5	0-1	N.D.	0.1	1
02898	1,3-Dichlorobenzene		541-	73-1	N.D.	0.1	1
02898	1,4-Dichlorobenzene		106-	46-7	N.D.	0.1	1
02898	Dichlorodifluoromet	hane	75-7	1-8	N.D.	0.1	1
02898	1,1-Dichloroethane		75-3	34-3	N.D.	0.1	1
02898	1,2-Dichloroethane			06-2	N.D.	0.1	1
02898	1,1-Dichloroethene		75-3		N.D.	0.1	1
02898	cis-1,2-Dichloroeth			59-2	N.D.	0.1	1
02898	trans-1,2-Dichloroe	thene		60-5	N.D.	0.1	1
02898	1,2-Dichloropropane		78-8		N.D.	0.1	1
02898	1,3-Dichloropropane			28-9	N.D.	0.1	1
02898	2,2-Dichloropropane			20-7	N.D.	0.1	1
02898	1,1-Dichloropropene			58-6	N.D.	0.1	1
02898	cis-1,3-Dichloropro			51-01-5	N.D.	0.1	1
02898	trans-1,3-Dichlorop	ropene		1-02-6	N.D.	0.1	1
02898	Ethyl t-butyl ether			92-3	N.D.	0.1	1
02898	Ethylbenzene			41-4	N.D.	0.1	1
02898	Hexachlorobutadiene		87-6		N.D.	0.1	1
02898	di-Isopropyl Ether			20-3	N.D. N.D.	0.1	1 1
02898	Isopropylbenzene		98-8			0.1	1
02898	p-Isopropyltoluene	ul D+bass	99-8		N.D.	0.1	1
02898 02898	Methyl Tertiary Buty Methylene Chloride	yı Etner	1634 75-0	-04-4	0.7 N.D.	0.1	1
02898	Naphthalene		75-0 91-2		N.D. N.D.		1
02898	n-Propylbenzene			:0-3 :65-1	N.D. N.D.	0.1	1
02030	" troblinenzene		103-	0 J - T	и.р.	U. 1	_

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988447

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Submitted: 07/31/2015 16:38

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:10 by LK GES, Inc.

Suite A

1350 Blair Dr

Odenton MD 21113

5DMAD

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l	ug/l	
		purge				
02898	Styrene		100-42-5	N.D.	0.1	1
02898	1,1,1,2-Tetrachlor	roethane	630-20-6	N.D.	0.1	1
02898	1,1,2,2-Tetrachlor	roethane	79-34-5	N.D.	0.1	1
02898	Tetrachloroethene		127-18-4	N.D.	0.1	1
02898	Toluene		108-88-3	N.D.	0.1	1
02898	1,2,3-Trichlorober	nzene	87-61-6	N.D.	0.1	1
02898	1,2,4-Trichlorober	nzene	120-82-1	N.D.	0.1	1
02898	1,1,1-Trichloroeth	nane	71-55-6	N.D.	0.1	1
02898	1,1,2-Trichloroeth	nane	79-00-5	N.D.	0.1	1
02898	Trichloroethene		79-01-6	N.D.	0.1	1
02898	Trichlorofluoromet	hane	75-69-4	N.D.	0.1	1
02898	1,2,3-Trichloropro	pane	96-18-4	N.D.	0.3	1
02898	1,2,4-Trimethylber	nzene	95-63-6	N.D.	0.1	1
02898	1,3,5-Trimethylber	nzene	108-67-8	N.D.	0.1	1
02898	Vinyl Chloride		75-01-4	N.D.	0.1	1
02898	Xylene (Total)		1330-20-7	N.D.	0.1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-0		n.a.	N.D.	20	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons					
12858	DRO C10-C28		n.a.	N.D.	45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratorv	Gample	Analweie	Pecord
парогатогу	Sambre	AHAIVSIS	Kecora

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015 15:21	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015 15:21	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015 03:58	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015 03:58	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015 03:08	Christine E Dolman	n 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015 09:30	Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988448

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:20 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD06

CAT No.	Analysis Name		CAS Numbe	er Re	sult	Method Detection Limit	Dilution Factor
GC/MS	Volatiles S	SW-846	8260B 25mL	ug	/1	ug/l	
	Ţ	urge					
02898	Acrylonitrile	-	107-13-1	N.	D.	1.0	1
02898	t-Amyl methyl ether		994-05-8	0.	2 J	0.1	1
02898	Benzene		71-43-2	N.	D.	0.1	1
02898	Bromobenzene		108-86-1	N.	D.	0.1	1
02898	Bromochloromethane		74-97-5	N.	D.	0.1	1
02898	Bromodichloromethane		75-27-4	N.	D.	0.1	1
02898	Bromoform		75-25-2	N.	D.	0.1	1
02898	Bromomethane		74-83-9	N.	D.	0.1	1
02898	t-Butyl Alcohol		75-65-0	N.	D.	4.0	1
02898	n-Butylbenzene		104-51-8	N.	D.	0.1	1
02898	sec-Butylbenzene		135-98-8	N.	D.	0.1	1
02898	tert-Butylbenzene		98-06-6	N.	D.	0.1	1
02898	Carbon Disulfide		75-15-0	N.	D.	0.4	1
02898	Chlorobenzene		108-90-7	N.	D.	0.1	1
02898	Chloroethane		75-00-3	N.	D.	0.1	1
02898	Chloroform		67-66-3	N.	D.	0.1	1
02898	Chloromethane		74-87-3	N.	D.	0.2	1
02898	2-Chlorotoluene		95-49-8	N.	D.	0.1	1
02898	4-Chlorotoluene		106-43-4	N.	D.	0.1	1
02898	1,2-Dibromo-3-chlorop	ropane	96-12-8	N.	D.	0.2	1
02898	Dibromochloromethane		124-48-1	N.		0.1	1
02898	1,2-Dibromoethane		106-93-4	N.	D.	0.1	1
02898	Dibromomethane		74-95-3		D.	0.1	1
02898	trans-1,4-Dichloro-2-	butene	110-57-6	N.		1.0	1
02898	1,2-Dichlorobenzene		95-50-1		D.	0.1	1
02898	1,3-Dichlorobenzene		541-73-1		D.	0.1	1
02898	1,4-Dichlorobenzene		106-46-7	N.		0.1	1
02898	Dichlorodifluorometha	ine	75-71-8		D.	0.1	1
02898	1,1-Dichloroethane		75-34-3		D.	0.1	1
02898	1,2-Dichloroethane		107-06-2	N.		0.1	1
02898	1,1-Dichloroethene		75-35-4		D.	0.1	1
02898	cis-1,2-Dichloroethen		156-59-2		D.	0.1	1
02898	trans-1,2-Dichloroeth	iene	156-60-5	Ν.		0.1	1
02898	1,2-Dichloropropane		78-87-5	Ν.		0.1	1
02898	1,3-Dichloropropane		142-28-9		D.	0.1	1
02898	2,2-Dichloropropane		594-20-7	Ν.		0.1	1
02898	1,1-Dichloropropene		563-58-6	N.		0.1	1
02898 02898	cis-1,3-Dichloroprope		10061-01-		D.	0.1	1 1
	trans-1,3-Dichloropro	pene	10061-02-				1
02898 02898	Ethyl t-butyl ether Ethylbenzene		637-92-3 100-41-4	0.	D.	0.1	1
02898	Hexachlorobutadiene		87-68-3	N.		0.1	1
02898	di-Isopropyl Ether		108-20-3	л. 5.		0.1	1
02898	Isopropylbenzene		98-82-8		D.	0.1	1
02898	p-Isopropyltoluene		99-82-8		D.	0.1	1
02898	Methyl Tertiary Butyl	Ether	1634-04-4			0.1	1
02898	Methylene Chloride	. nenet	75-09-2		D.	0.2	1
02898	Naphthalene		91-20-3		D.	0.1	1
02898	n-Propylbenzene		103-65-1	N.		0.1	1
02000			100 00 1	14.			-

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6 Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988448

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:20 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD06

CAT No.	Analysis Name		CAS Number	Result	:	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l		ug/l	
		purge					
02898	Styrene		100-42-5	N.D.		0.1	1
02898	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.		0.1	1
02898	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.		0.1	1
02898	Tetrachloroethene		127-18-4	N.D.		0.1	1
02898	Toluene		108-88-3	N.D.		0.1	1
02898	1,2,3-Trichlorobenz	ene	87-61-6	N.D.		0.1	1
02898	1,2,4-Trichlorobenz	ene	120-82-1	N.D.		0.1	1
02898	1,1,1-Trichloroetha	ne	71-55-6	N.D.		0.1	1
02898	1,1,2-Trichloroetha	ne	79-00-5	N.D.		0.1	1
02898	Trichloroethene		79-01-6	N.D.		0.1	1
02898	Trichlorofluorometh	ane	75-69-4	N.D.		0.1	1
02898	1,2,3-Trichloroprop	ane	96-18-4	N.D.		0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63-6	N.D.		0.1	1
02898	1,3,5-Trimethylbenz	ene	108-67-8	N.D.		0.1	1
02898	Vinyl Chloride		75-01-4	N.D.		0.1	1
02898	Xylene (Total)		1330-20-7	N.D.		0.1	1
GC Vol	latiles	SW-846	8015B	ug/l		ug/l	
01635	TPH-GRO water C6-C1	0	n.a.	38	J	20	1
	croleum carbons	SW-846	8015B	ug/l		ug/l	
12858	DRO C10-C28		n.a.	N.D.		45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015 15	5:45	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015 15	5:45	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015 04	4:20	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015 04	4:20	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015 09	9:25	Christine E Dolman	. 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015 09	9:30	Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988449

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:30 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38 1350 Blair Dr

Odenton MD 21113

MAD6D

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B 25mL	ug/l	ug/l	
·	purge				
02898	Acrylonitrile	107-13-1	N.D.	1.0	1
02898	t-Amyl methyl ether	994-05-8	0.2 J	0.1	1
02898	Benzene	71-43-2	N.D.	0.1	1
02898	Bromobenzene	108-86-1	N.D.	0.1	1
02898	Bromochloromethane	74-97-5	N.D.	0.1	1
02898	Bromodichloromethane	75-27-4	N.D.	0.1	1
02898	Bromoform	75-25-2	N.D.	0.1	1
02898	Bromomethane	74-83-9	N.D.	0.1	1
02898	t-Butyl Alcohol	75-65-0	N.D.	4.0	1
02898	n-Butylbenzene	104-51-8	N.D.	0.1	1
02898	sec-Butylbenzene	135-98-8	N.D.	0.1	1
02898	tert-Butylbenzene	98-06-6	N.D.	0.1	1
02898	Carbon Disulfide	75-15-0	N.D.	0.4	1
02898	Chlorobenzene	108-90-7	N.D.	0.1	1
02898	Chloroethane	75-00-3	N.D.	0.1	1
02898	Chloroform	67-66-3	N.D.	0.1	1
02898	Chloromethane	74-87-3	N.D.	0.2	1
02898	2-Chlorotoluene	95-49-8	N.D.	0.1	1
02898	4-Chlorotoluene	106-43-4	N.D.	0.1	1
02898	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	0.2	1
02898	Dibromochloromethane	124-48-1	N.D.	0.1	1
02898	1,2-Dibromoethane	106-93-4	N.D.	0.1	1
02898	Dibromomethane	74-95-3	N.D.	0.1	1
02898	trans-1,4-Dichloro-2-butene	110-57-6	N.D.	1.0	1
02898	1,2-Dichlorobenzene	95-50-1	N.D.	0.1	1
02898	1,3-Dichlorobenzene	541-73-1	N.D.	0.1	1
02898	1,4-Dichlorobenzene	106-46-7	N.D.	0.1	1
02898	Dichlorodifluoromethane	75-71-8	N.D.	0.1	1
02898	1,1-Dichloroethane	75-34-3	N.D.	0.1	1
02898	1,2-Dichloroethane	107-06-2	N.D.	0.1	1
02898	1,1-Dichloroethene	75-35-4	N.D.	0.1	1
02898 02898	cis-1,2-Dichloroethene	156-59-2	N.D.	0.1	1
02898	trans-1,2-Dichloroethene 1,2-Dichloropropane	156-60-5	N.D.	0.1	1 1
02898	1,3-Dichloropropane	78-87-5 142-28-9	N.D. N.D.	0.1 0.1	1
02898	2,2-Dichloropropane	594-20-7	N.D.	0.1	1
02898	1,1-Dichloropropene	563-58-6	N.D.	0.1	1
02898	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.1	1
02898	trans-1,3-Dichloropropene	10061-01-3	N.D.	0.1	1
02898	Ethyl t-butyl ether	637-92-3	N.D.	0.1	1
02898	Ethylbenzene	100-41-4	N.D.	0.1	1
02898	Hexachlorobutadiene	87-68-3	N.D.	0.1	1
02898	di-Isopropyl Ether	108-20-3	N.D.	0.1	1
02898	Isopropylbenzene	98-82-8	N.D.	0.1	1
02898	p-Isopropyltoluene	99-87-6	N.D.	0.1	1
02898	Methyl Tertiary Butyl Ether	1634-04-4	5.4	0.1	1
02898	Methylene Chloride	75-09-2	N.D.	0.2	1
02898	Naphthalene	91-20-3	N.D.	0.1	1
02898	n-Propylbenzene	103-65-1	N.D.	0.1	1
	-				

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6D Grab Groundwater

4101 Norrisville Rd, Jarrettsville, MD

Carroll Madonna

LL Sample # WW 7988449

LL Group # 1581267 Account # 08390

Project Name: Carroll Madonna

Reported: 08/12/2015 15:05

Collected: 07/30/2015 13:30 by LK GES, Inc.

Suite A

Submitted: 07/31/2015 16:38

1350 Blair Dr Odenton MD 21113

MAD6D

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B 25mL	ug/l	ug/l	
		purge				
02898	Styrene		100-42-5	N.D.	0.1	1
02898	1,1,1,2-Tetrachloro	ethane	630-20-6	N.D.	0.1	1
02898	1,1,2,2-Tetrachloro	ethane	79-34-5	N.D.	0.1	1
02898	Tetrachloroethene		127-18-4	N.D.	0.1	1
02898	Toluene		108-88-3	N.D.	0.1	1
02898	1,2,3-Trichlorobenz	ene	87-61-6	N.D.	0.1	1
02898	1,2,4-Trichlorobenz	ene	120-82-1	N.D.	0.1	1
02898	1,1,1-Trichloroetha	ne	71-55-6	N.D.	0.1	1
02898	1,1,2-Trichloroetha	ne	79-00-5	N.D.	0.1	1
02898	Trichloroethene		79-01-6	N.D.	0.1	1
02898	Trichlorofluorometh	ane	75-69-4	N.D.	0.1	1
02898	1,2,3-Trichloroprop	ane	96-18-4	N.D.	0.3	1
02898	1,2,4-Trimethylbenz	ene	95-63-6	N.D.	0.1	1
02898	1,3,5-Trimethylbenz	ene	108-67-8	N.D.	0.1	1
02898	Vinyl Chloride		75-01-4	N.D.	0.1	1
02898	Xylene (Total)		1330-20-7	N.D.	0.1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C1		n.a.	N.D.	20	1
Hydro	croleum	SW-846		ug/l	ug/l	
12858	DRO C10-C28		n.a.	N.D.	45	1

General Sample Comments

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02898	VOCs- 25ml Water by 8260B	SW-846 8260B 25mL purge	1	C152161AA	08/04/2015 16:0	Kerri E Legerlotz	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	C152161AA	08/04/2015 16:0	Kerri E Legerlotz	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	15214A20A	08/03/2015 04:4	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	15214A20A	08/03/2015 04:4	Marie D Beamenderfer	1
12858	TPH-DRO 8015B	SW-846 8015B	1	152220026A	08/12/2015 03:3	Christine E Dolman	ı 1
12059	Microextraction - DRO (waters)	SW-846 3511	1	152220026A	08/11/2015 09:3) Maria Davenport	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1581267

Reported: 08/12/2015 15:05

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u>	<u>Result</u>	<u>MDL</u>	<u>Units</u>	%REC	%REC	<u>Limits</u>	<u>RPD</u>	<u>Max</u>
Batch number: C152161AA	Sample nu	mber(s): 79	88444-7988	3449				
Acrylonitrile	N.D.	1.0	uq/l	92	94	75-133	3	30
t-Amyl methyl ether	N.D.	0.1	ug/l	91	90	80-120	1	30
Benzene	N.D.	0.1	uq/l	92	89	80-120	4	30
Bromobenzene	N.D.	0.1	ug/l	91	89	80-120	2	30
Bromochloromethane	N.D.	0.1	ug/l	94	93	80-125	2	30
Bromodichloromethane	N.D.	0.1	ug/l	90	88	80-120	3	30
Bromoform	N.D.	0.1	ug/l	76	75	64-134	2	30
Bromomethane	N.D.	0.1	ug/l	93	92	62-126	1	30
t-Butyl Alcohol	N.D.	4.0	ug/l	86	94	77-130	9	30
n-Butylbenzene	N.D.	0.1	ug/l	93	88	80-120	5	30
sec-Butylbenzene	N.D.	0.1	ug/l	93	88	80-120	6	30
tert-Butylbenzene	N.D.	0.1	ug/l	93	89	80-120	4	30
Carbon Disulfide	N.D.	0.4	ug/l	86	81	70-128	6	30
Chlorobenzene	N.D.	0.1	ug/l	92	88	80-120	4	30
Chloroethane	N.D.	0.1	ug/l	92	90	68-120	3	30
Chloroform	N.D.	0.1	ug/l	93	90	80-120	3	30
Chloromethane	N.D.	0.2	ug/l	87	84	55-125	3	30
2-Chlorotoluene	N.D.	0.1	ug/l	92	88	80-120	4	30
4-Chlorotoluene	N.D.	0.1	ug/l	91	88	80-120	4	30
1,2-Dibromo-3-chloropropane	N.D.	0.2	ug/l	80	82	72-136	2	30
Dibromochloromethane	N.D.	0.1	ug/l	86	84	80-126	3	30
1,2-Dibromoethane	N.D.	0.1	ug/l	96	93	80-120	3	30
Dibromomethane	N.D.	0.1	ug/l	96	94	80-120	2	30
trans-1,4-Dichloro-2-butene	N.D.	1.0	ug/l	63	65	14-166	3	30
1,2-Dichlorobenzene	N.D.	0.1	ug/l	92	89	80-120	3	30
1,3-Dichlorobenzene	N.D.	0.1	ug/l	91	89	80-120	2	30
1,4-Dichlorobenzene	N.D.	0.1	ug/l	89	87	80-120	2	30
Dichlorodifluoromethane	N.D.	0.1	ug/l	85	81	35-142	5	30
1,1-Dichloroethane	N.D.	0.1	ug/l	90	86	80-120	4	30
1,2-Dichloroethane	N.D.	0.1	ug/l	92	89	80-125	3	30
1,1-Dichloroethene	N.D.	0.1	ug/l	91	86	80-120	6	30
cis-1,2-Dichloroethene	N.D.	0.1	ug/l	92	90	80-120	3	30
trans-1,2-Dichloroethene	N.D.	0.1	ug/l	94	91	80-120	4	30
1,2-Dichloropropane	N.D.	0.1	ug/l	94	90	80-120	4	30
1,3-Dichloropropane	N.D.	0.1	ug/l	92	90	80-120	2	30
2,2-Dichloropropane	N.D.	0.1	ug/l	92	87	75-122	5	30
1,1-Dichloropropene	N.D.	0.1	ug/l	90	85	80-120	6	30
cis-1,3-Dichloropropene	N.D.	0.1	ug/l	88	86	80-120	3	30
trans-1,3-Dichloropropene	N.D.	0.1	ug/l	90	87	77-126	3	30
Ethyl t-butyl ether	N.D.	0.1	ug/l	89	88	76-120	1	30
Ethylbenzene	N.D.	0.1	ug/l	92	88	80-120	5	30
Hexachlorobutadiene	N.D.	0.1	ug/l	90	85	74-123	6	30
di-Isopropyl Ether	N.D.	0.1	ug/l	91	90	75-120	2	30

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GES, Inc. Group Number: 1581267

Reported: 08/12/2015 15:05

-	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u>	Result	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	<u>Max</u>
Isopropylbenzene	N.D.	0.1	ug/l	93	89	80-120	4	30
p-Isopropyltoluene	N.D.	0.1	ug/l	93	88	80-120	5	30
Methyl Tertiary Butyl Ether	N.D.	0.1	ug/l	91	89	80-120	2	30
Methylene Chloride	N.D.	0.2	ug/l	89	87	80-120	2	30
Naphthalene	N.D.	0.1	ug/l	90	87	72-120	3	30
n-Propylbenzene	N.D.	0.1	ug/l	93	89	80-120	5	30
Styrene	N.D.	0.1	ug/l	91	88	80-120	4	30
1,1,1,2-Tetrachloroethane	N.D.	0.1	ug/l	92	88	80-120	5	30
1,1,2,2-Tetrachloroethane	N.D.	0.1	ug/l	92	91	80-120	1	30
Tetrachloroethene	N.D.	0.1	ug/l	94	88	80-120	6	30
Toluene	N.D.	0.1	ug/l	91	87	80-120	5	30
1,2,3-Trichlorobenzene	N.D.	0.1	ug/l	85	81	75-120	4	30
1,2,4-Trichlorobenzene	N.D.	0.1	ug/l	87	85	80-120	3	30
1,1,1-Trichloroethane	N.D.	0.1	ug/l	94	89	80-120	6	30
1,1,2-Trichloroethane	N.D.	0.1	ug/l	92	90	80-120	2	30
Trichloroethene	N.D.	0.1	ug/l	97	92	80-120	5	30
Trichlorofluoromethane	N.D.	0.1	ug/l	101	96	64-141	5	30
1,2,3-Trichloropropane	N.D.	0.3	ug/l	96	93	80-120	2	30
1,2,4-Trimethylbenzene	N.D.	0.1	ug/l	91	87	80-120	4	30
1,3,5-Trimethylbenzene	N.D.	0.1	ug/l	92	88	80-120	4	30
Vinyl Chloride	N.D.	0.1	ug/l	94	89	59-124	5	30
Xylene (Total)	N.D.	0.1	ug/l	91	87	80-120	5	30
Batch number: 15214A20A	Sample numb	per(s): 79	88444-7988	449				
TPH-GRO water C6-C10	N.D.	20.	ug/l	101	98	80-129	3	30
Batch number: 152220026A	Sample numb	per(s): 79	88444-7988	449				
DRO C10-C28	N.D.	45.	ug/l	75	80	69-115	7	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- 25ml Water by 8260B

Batch number: C152161AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7988444	102	102	98	98
7988445	102	103	98	100
7988446	102	100	98	99
7988447	101	101	97	99
7988448	102	101	97	100
7988449	103	101	97	99
Blank	101	104	98	99
LCS	101	105	99	100
LCSD	102	100	99	99
Limite	77-114	74-113	77-110	78-110

Analysis Name: TPH-GRO water C6-C10

Batch number: 15214A20A

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

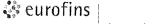
Client Name: GES, Inc. Group Number: 1581267

Reported: 08/12/2015 15:05

Surrogate Quality Control

	Trifluorotoluene-F
7988444	93
7988445	94
7988446	93
7988447	93
7988448	87
7988449	92
Blank	92
LCS	94
LCSD	98
Limits:	63-135
	Name: TPH-DRO 8015B
	mber: 152220026A Orthoterphenyl
7988444	
7988445	Orthoterphenyl 85 96
7988445 7988446	Orthoterphenyl 85 96 85
7988445 7988446 7988447	Orthoterphenyl 85 96 85 102
7988445 7988446 7988447 7988448	Orthoterphenyl 85 96 85 102 83
7988445 7988446 7988447 7988448 7988449	Orthoterphenyl 85 96 85 102 83 73
7988445 7988446 7988447 7988448 7988449 Blank	Orthoterphenyl 85 96 85 102 83 73 96
7988445 7988446 7988447 7988448 7988449 Blank LCS	Orthoterphenyl 85 96 85 102 83 73 96
7988445 7988446 7988447 7988448 7988449 Blank	Orthoterphenyl 85 96 85 102 83 73 96

^{*-} Outside of specification


⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

eurofins

Environmental			Acct.#	<u>* _ &</u>	341	<u>)</u> Gro	up#_	158	126	7	<u> </u>	Sample #	‡ <u> </u>	1488	,444	1-49	1			
Client: Groundwater & Environmental Services, Inc. (GES)						Matrix			Analyse					s Requested				For Lab Use Only		
Project Name/#: Carroll Madonna	Site ID #: 0	0402814				\square					F	rese	rvati	on Co	des			SF #:		
Project Manager: Peter Reichardt	P.O. #: 04	02814-06	3-206] =	ind			1	1+	1+							SCR #:		
Sampler: Lindsay Keeney	PWSID #:			Sediment	Ground Surface		\ _o '	gui									Preservat	tion Codes		
Phone #: 800-220-3606 ext. 3726	Quote #:				Sed		. 1	Containers	ss includi									H = HCI	T = Thiosulfate	
State where sample(s) were collected: 4101 Norrisv	ille Rd, Jar	rettsville,	MD]	ble		onta	cygenate	3015	(8015)							N = HNO ₃	B = NaOH	
	Colle		site		Potable NPDES		%	VOCs plus Oxygen ene (8260B)									S = H ₂ SO ₄	P = H ₃ PO ₄		
	Cone	Clion	ا ۾ ا	Composite		e	er:	#	ite VOCs alene (8	TPH-GRO (8015)	TPH-DRO							O = Other		
Sample Identification	Date	Time	Grab	Con	Soil	Water	Other:	Total #	Full Suite Naphthale	直	ם							Rem	narks	
MW-H	7-30-15	1215	χ			አ		7	≻	*	×							EDD file na	ame:	
MW-4D		1225	χ			×		7	ید	×	×							Carroll Mad		
MW-5		1300	X			X		7	×	×	~							lab report		
MW-5D		1310	X			X		7	κ	ا حد	~							#.21993.E0	QEDD.zip	
MW-6		1320	X			×		7	×	*	X									
MW-6D	V	1330	×			X		7	×	×	X									
		<u> </u>		<u> </u>					\square'											
								<u> </u>												
		<u> </u>	Ш	<u> </u>				<u>'</u>												
				'					\square				\perp							
Turnaround Time Requested (TAT) (please check): Standard ☑ Rush □					Relir	nguished I	by:	///	///			Tim						Date	Time	
(Rush TAT is subject to laboratory approval and surcharges.)					1/		77	//\ 	<u> </u>		730-5 1530			145 1 00-000			<u>Arin</u>		1540	
Date results are needed:					4 ^	nquished (•		0	Da		Time		Received by:			1	Date	Time	
Rush results requested by (please check): E-Mail Phone					Denise We			00el	odry 7-31-1			10:16					~ n	31-15	10:16	
E-mail Address: mdlabs@gesonline.com & ges@equisonline.com					Relin	nquished l	by:	"	,]	Date Time			Received by:				Date	Time		
Phone: 800-220-3606 x3717				1	Mi Herby				7-31-15 160											
Data Package Options (please check if required)					Relin	nquished l		Date		Tim	ę F	Received by:			Date	Time				
Type I (Validation/non-CLP)								_												
Type III (Reduced non-CLP)					Relin	Relinquished by:				Date Time		e F	Received by:			17	Date 43	Time		
Type VI (Raw Data Only) TX TRRP-13											Elios				7/31/15	1638				
NYSDEC Category A		В			Relir	nquished b	ру Со	mme	rcial C	Carrier	:			Notice to willow the		5		- ~ (d		
EDD Required? Yes ☑ No ☐ If ye	s, format: _E	<i>E</i> QEDD		,	UPS		FedEx	.х	(Other			T	emper	rature	: upon i	receipt	0.9	_ °C	

Sample Administration Receipt Documentation Log

Doc Log ID:

92482

Group Number(s): \581267

Client: GES

Delivery and Receipt Information

Delivery Method:

ELLE Courier

Arrival Timestamp:

07/31/2015 16:38

Number of Packages:

1

Number of Projects:

2

State/Province of Origin:

MD

Arrival Condition Summary

Shipping Container Sealed:

No

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

No

Sample Date/Times match COC:

Yes

Samples Chilled:

Yes

VOA Vial Headspace ≥ 6mm:

No

Paperwork Enclosed:

Yes

Total Trip Blank Qty:

0

Samples Intact:

Yes

Air Quality Samples Present:

No

Missing Samples:

No

Extra Samples:

No

Discrepancy in Container Qty on COC:

No

Unpacked by Jordan Woods (6698) at 17:36 on 07/31/2015

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler #

Page 2 of 2

Thermometer ID

Corrected Temp

Therm. Type

Ice Type

Ice Present?

Ice Container

Elevated Temp?

1

DT146

0.4

DT

Wet

Υ

Bagged

N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

less than <

greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight Dry weight basis

concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.