

February 19, 2021

Ms. Susan Bull Oil Control Program Maryland Department of the Environment 1800 Washington Blvd, Suite 620 Baltimore, Maryland 21230

RE: INTERIM MONITORING REPORT FOR EVENT COMPLETED DECEMBER 22, 2020 High's Store No. 86 3711 Federal Hill Road, Jarrettsville, Harford County, Maryland MDE Case No. 2021-0221-HA

Dear Ms. Bull:

Groundwater & Environmental Services, Inc. (GES) was contracted by High's of Baltimore, LLC (High's) to review the historical monitoring record and complete an interim groundwater monitoring event for the High's Store No. 86, located at 3711 Federal Hill Road, Jarrettsville, MD (Site.) This correspondence will summarize GES's findings while also providing recommendations with respect to the MDE's most recent directive to High's regarding the Site dated January 27, 2021.

Background

A monitoring event, conducted by GES on December 22, 2020, was performed to support analytical results obtained by High's environmental consultant Advanced Environmental Concepts Inc. (AEC) who completed a series of monitoring events at the Site on October 9, November 19 and November 20, 2020. AEC completed the initial October 9, 2020 event to fulfil annual High-Risk Groundwater Use Area (HRGUA) requirements. Analytical results obtained from monitoring well MW-4, during AEC's October 9, 2020 event, demonstrated groundwater concentrations of benzene and methyl tert-butyl ether (MTBE) at 139 and 452 micrograms per liter (μ g/L), respectively. These concentrations exceeded the MDE Groundwater Cleanup Standard for benzene at 5.0 μ g/L and the MDE Action Level for MTBE at 20 μ g/L. Based on the October 9, 2020 detections, MDE opened new case 2021-0221-HA for the Site.

On November 19 and November 20, 2020, AEC conducted follow-up monitoring events at the Site using two variations of the purge and grab sample technique, specifically, samples were collected during recharge and after recharge had completed. Analytical results for the two events demonstrated significant reductions to benzene and MTBE concentrations in MW-4 in comparison to results obtained during the October 9, 2020 event. On December 2, 2020, the MDE issued an Informational Notification Letter to property owners within a 0.5 mile of the Site.

On December 22, 2020, GES conducted monitoring at the Site which included the sampling of wells MW-1, MW-3 and MW-4 using low-flow sampling procedures. No potable wells, including the onsite supply well, were sampled by GES during the December 22, 2020 event.

A Site Location Map, which includes 0.5-mile and 1.0-mile radii surrounding the Site, is provided as **Figure 1**. A Local Area Map depicting the surrounding residential, commercial and agricultural

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021 Page 2 of 4

properties within a 0.25-mile radius is attached as **Figure 2**. A Site Map, depicting pertinent onsite features, is attached as **Figure 3**.

Historical Trends of Benzene and MTBE for Onsite Monitoring Wells

GES has prepared and attached (**Appendix A**) concentration hydrographs for MW-1, MW-3 and MW-4 from the Site's historical dataset noting that benzene and MTBE are plotted separately for MW-4 to provide better clarity. Review of the hydrographs from MW-1 and MW-3 indicates a sustained history of non-detects since 2011 for both benzene and MTBE at these two wells.

For the MW-4 hydrographs, historical benzene and MTBE detections appear to demonstrate an inverse relationship with depth-to-water (DTW) measurements. In addition, well MW-4 demonstrates a particular sensitivity to water level height at the time of sampling. Specifically, review of the benzene and MTBE hydrographs for MW-4 indicates that a depth-to-water "threshold" exists at approximately 16.2 feet (ft) below top-of-casing (TOC) when water levels <u>fall below</u> this depth, concentrations of MTBE and benzene increase dramatically in the well. Conversely, when water levels <u>rise above</u> this threshold depth, concentrations diminish to near non-detect. This phenomenon may be related to a simple concentration effect caused by a localized "hotspot" of residual petreloum impact in proximity and/or in direct communication to monitoring well MW-4 (which is also in close proximity to the underground storage tank (UST) pit.)

Interim Monitoring Event – December 2020

GES elected to collect groundwater samples during the interim December 22, 2020 event from monitoring wells MW-1, MW-3 and MW-4 using low-flow sampling techniques. This method differs from the purge and grab sample technique performed during previous monitoring events at the Site. The low-flow sampling method was selected to minimize the reduction of well water levels during sampling. The GES Standard Operating Procedure (SOP) for low-flow sampling is included as **Appendix B**. The low-flow field logs generated during the December 22, 2020 event are included as **Appendix C**. The gauging data from the December 22, 2020 monitoring event was incorporated with the historical gauging database for the Site and included as **Table 1**. A groundwater monitoring map with constituent concentration boxes and groundwater elevation contouring for the December 22, 2020 event is attached as **Figure 4**.

A summary of gauging and well specification data obtained during the December 22, 2020 event is presented below.

Well	Casing Diameter (inches)	Measured DTB (ft below TOC)	Static DTW (ft below TOC)	DTW at Stabilization/ Sampling (ft below TOC)	Drawdown at time of Sample Collection (ft)	Volume of Water within Casing at time of Sample Collection * (gals)
MW-1	4	28.60	12.63	12.85	0.22	10.3
MW-3	4	29.04	14.73	14.88	0.15	9.2
MW-4	2	24.30	15.54	15.87	0.33	1.4

Table A – Gauging Summary – December 22, 2020

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021 Page 3 of 4

* Calculated well volumes do not account for filter pack but it is assumed a 2-inch well will have proportionately less filter pack volume than a 4-inch well.
2-inch well = 1 Ft of water is 0.163 gals
4-inch well = 1 Ft of water is 0.653 gals
ft = feet
TOC = below top-of-casing
DTB = depth-to-bottom
DTW = depth-to-water
gals = gallons

Review of **Table A** demonstrates that minimal drawdown was achieved during low-flow sampling of the three monitoring wells during the December 22, 2020 event. In addition, both the static and the stabilization DTW measurements for MW-4 remained above the approximate 16.2 ft below TOC water level "threshold" that GES has identified for this well, below which, benzene and MTBE concentrations can become sharply elevated.

Review of **Table A** also highlights the greatly reduced volume of water available to sample from well MW-4, a 2-inch well, in comparison to wells MW-1 and MW-3, both of which are 4-inch wells and installed several feet deeper than MW-4. Thus, well MW-4 has significantly less volume of water to buffer constituent concentrations in groundwater from a nearby, residual source, such as those that may be emanating from the adjacent UST pit. This is particularly apparent in the historical record when MW-4 is sampled during periods of low water.

For the December 2020 monitoring event, GES submitted the monitoring well samples for an analysis of full suite Volatile Organic Compounds (VOCs) with naphthalene and oxygenates, including MTBE, via USEPA Method 8260. The laboratory selected for the analysis was Eurofins Lancaster of Lancaster, Pennsylvania. A copy of the Lancaster analytical report is included as **Appendix D**. The analytical results from the December 22, 2020 event were tabulated with the historical analytical database and included as **Table 1** to this correspondence. GES has also prepared and included a report outline for the December 22, 2020 monitoring event that is similar in format to the routine monitoring reports submitted for the project.

A summary of benzene and MTBE concentration results from the December 22, 2020 monitoring event is presented below.

Well	Benzene (µg/L)	MTBE (µg/L)
MW-1	ND (0.05)	ND (0.05)
MW-3	ND (0.05)	ND (0.05)
MW-4	ND (0.05)	1.6

Table B – Analytical Summary – December 22, 2020

ND (0.05) = Non-Detect to Method Detection Limit (0.05 μ g/L)

Review of **Table B** indicates that analytical results for benzene and MTBE obtained from well MW-4, during the December 2020 event, correspond to low-level detections for these constituents obtained during previous sampling events when samples were collected during periods (or instances) of higher groundwater levels at the Site. Results for wells MW-1 and MW-3, at non-detect for benzene and MTBE, also correlate to the historical record.

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021 Page 4 of 4

Recommendations

Per the MDE directive dated January 27, 2021, High's is now required to sample wells MW-1, 3 and 4 on a quarterly basis. Therefore, GES, on behalf of High's, proposes the following:

- Monitoring well sampling should be conducted using low-flow sampling techniques, as opposed to purge and grab techniques.
- A replacement monitoring well (MW-4R) should be installed in proximity to existing well MW-4. This replacement well would be constructed with similar specifications to existing wells MW-1 and MW-3, i.e. the replacement well should be constructed with a 4-inch casing, to a depth of approximately 30 ft below grade surface.
- Both historical well MW-4 and replacement well MW-4R should be sampled for several successive quarters (for those constituents specified in the January 27, 2021 directive) in order to establish gauging and analytical data for future comparison.
- After several quarters of sampling, an evaluation should be performed to determine if well MW-4R has demonstrated sufficient monitoring performance to serve as a replacement for historical well MW-4. If a successful demonstration is made, then historical well MW-4 would be abandoned, and replacement well MW-4R would serve to represent water quality conditions at the western site boundary for the Site's HRGUA monitoring network.

Please note that GES is also assisting High's with the completion of the additional directive requirements including the 0.5-mile sensitive receptor survey and the quarterly sampling of the onsite supply well. GES will respond to the MDE, regarding all directive requirements for the case, by the imposed deadline of March 9, 2021.

If you have any questions or would like additional information, please contact the undersigned at (800) 220-3606, extension 3726 or Herb Meade at (410) 261-5450.

Sincerely,

Pete Reichardt Project Manager

Enclosures

cc: Susan Bull – MDE (2 additional hardcopies w/ CD, e-copy) Lindley Campbell – MDE (e-copy) Herb Meade – High's of Baltimore (e-copy) Greg Beal – AEC (e-copy) John Resline – Harford County Health Dept. (Hardcopy & CD) File – GES, MD (PSID 862818) Interim Monitoring Report –December 22 2020 High's Store No.86 3711 Federal Hill Rd, Jarrettsville, MD MDE Case #2021-0221-HA February 19, 2021

Consultant Contact:	Pete Reichardt, Groundwater & Environmental Services, Inc. Greg Beal, Advanced Environmental Concepts, Inc.
Client Contact:	Herb Meade, High's of Baltimore
Site Use:	Active commercial store and service station that operates two 12,000-gallon compartmentalized gasoline/diesel USTs.
Surrounding Area:	Residential commercial and agricultural
Sensitive Receptors:	<u>Potable Wells</u> : This site is served by one onsite supply well. The surrounding commercial and residential properties are all served by potable wells.
	<u>Schools/Daycare/Hospitals</u> : Jarrettsville Elementary (0.5 mile to SW), Salem Lutheran Child Care (0.55 mile to WSW)
	Surface Water/Wetlands: East Branch (615 ft to N)
Date of Most Recent Regulatory Correspondence:	January 27, 2021 -Directive to begin quarterly groundwater monitoring with onsite supply well sampling and a 0.5-mile sensitive receptor survey

REGULATORY INTERACTION

Agency:	Maryland Department of the Environment – Oil Control Program
Agency Contact:	Susan Bull, Lindley Campbell
MDE Case #:	2021-0221-HA

SCHEDULE OF ROUTINE ACTIVITIES

Groundwater Sampling:	Three monitoring wells: MW-1, MW-3, MW-4 and two tank field observation pipes
Sampling Frequency:	Annual (revised to quarterly per 1/27/21 directive)
Sampling Methodology:	Low-Flow Sampling Procedures
Laboratory Analyses:	Full-suite volatile organic compounds (VOCs), including oxygenates and naphthalene via EPA Method 8260C (revised per 1/27/21 directive to include Total Petroleum Hydrocarbons (TPH) – Gasoline Range Organics (GRO) and TPH –Diesel Range Organics (DRO) via EPA Method 8015B)

Interim Monitoring Report –December 22 2020 High's Store No.86 3711 Federal Hill Rd, Jarrettsville, MD MDE Case #2021-0221-HA February 19, 2021

GROUNDWATER DATA SUMMARY

Groundwater Sampling Date: Groundwater Elevation Range (ft): Maximum Benzene: Maximum BTEX: Maximum MTBE:

December 22, 2020 # of Wells / # Sampled (including TF wells): 5/3 (TF wells not sampled due to insufficient water) 629.40 feet (MW-3) to 629.63 feet (MW-1) Non-Detect (MDL of 0.05 µg/L) Non-Detect (MDL of 0.33 µg/L) 1.6 µg/L (MW-4)

"µg/L" = micrograms per liter MDL = Method Detection Limit

FUTURE ACTIVITIES – First Quarter 2021

- GES to conduct a First Quarter 2021 groundwater monitoring event with onsite potable supply sampling
- GES to complete a 0.5-mile sensitive receptor survey

ATTACHMENTS

FIGURES

- Figure 1 Site Location Map
- Figure 2 Local Area Map
- Figure 3 Site Map
- Figure 4 Groundwater Monitoring Map, December 22, 2020

TABLES

Table 1Historical Gauging and Analytical Summary

APPENDIX

- Appendix A Concentration Hydrographs
- Appendix B Low-Flow Sampling SOP
- Appendix C Low-Flow Sampling Field Logs
- Appendix D Laboratory Report and Chain-of-Custody Documentation

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

ad) SM.dwg, B-30, EVega ≣ 37 (3711 F

 \bigcirc

•

PROPERTY BOUNDARY (APPROXIMATE) MONITORING WELL TANK FIELD WELL POTABLE SUPPLY WELL

<u>LEGEND</u>

PROPERTY BOUNDARY (APPROXIMATE) ____ \odot MONITORING WELL TANK FIELD WELL W POTABLE SUPPLY WELL MW-1 WELL IDENTIFICATION SAMPLING DATE 2/22/202 22/2020SAMPLING DATEi29.63GROUNDWATER ELEVATION (feet)ND<0.05</td>BENZENE CONCENTRATION (ug/L)ND<0.07</td>TOLUENE CONCENTRATION (ug/L)ND<0.06</td>ETHYLBENZENE CONCENTRATION (ug/L)ND<0.15</td>XYLENES CONCENTRATION (ug/L)ND<0.05</td>MTBE CONCENTRATION (ug/L) 629.63 B ND<0.0 F Х MTBE ND<0.0 ug/L MICROGRAMS PER LITER MTBE METHYL *tert*-BUTYL ETHER WHERE AN ANALYTE IS NOT DETECTED, A METHOD DETECTION LIMIT IS GIVEN <# GROUNDWATER CONTOUR (feet)

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

Tables

Table 1

HISTORICAL GAUGING AND ANALYTICAL SUMMARY

High's Store No. 86 3711 Federal Hill Road Jarrettsville, MD

Monitoring V Date Top of Casing Bepth to Wa (ft) (ft) Depth to Bott (ft) Depth to Bott (ft) (ft) Depth to Bott (ft) (ft) (ft) (ft) (ft) (ft) (ft) (f	1,3,5-Trimethylb (μg/L)	Chloromethane (µ	ter-Amyl Alcohc (µg/L)	tert-Amyl Ethyl Eh (μg/L)
GW Clean-up Standards* 5.0 1,000 700 10,000 NL 20 0.17 NL NL	6	19	NL	NL
MW-1 7/13/2005 642.26 11.35 630.91 - ND ND ND ND ND 130	-	-	-	-
12/16/2005 642.26 12.41 629.85 - ND ND ND ND ND 43	-	-	-	-
6/15/2006 642.26 12.83 629.43 - ND ND ND ND ND 62	-	-	-	-
1/15/2007 642.26 11.19 631.07 - ND ND ND ND ND 15	-	-	-	-
5/17/2007 642.26 11.22 631.04 - ND ND 2 ND 2 2.0	-	-	-	-
9/26/2007 642.26 13.11 629.15 - ND ND ND ND ND ND	-	-	-	-
12/13/2007 642.26 14.81 627.45 - ND ND ND ND ND ND	-	-	-	-
3/31/2008 642.26 12.68 629.58 - ND ND ND ND ND ND	-	-	-	-
6/30/2008 642.26 12.74 629.52 - ND ND ND ND ND ND	-	-	-	-
9/24/2008 642.26 14.68 627.58 - ND ND ND ND ND ND	-	-	-	-
12/30/2008 642.26 14.36 627.90 - ND ND ND ND ND ND	-	-	-	-
3/12/2009 642.26 15.79 626.47 - ND ND ND ND ND ND	-	-	-	-
5/6/2009 642.26 12.69 629.57 - ND ND ND ND ND ND	-	-	-	-
9/14/2009 642.26 12.69 629.57 - ND ND ND ND ND 1.0	-	-	-	-
12/14/2009 642.26 10.01 632.25 - ND ND ND ND ND ND	-	-	-	-
3/26/2010 642.26 8.90 633.36 - ND ND ND ND ND	-	-	-	-
6/29/2010 642.26 11.92 630.34 - ND ND ND ND ND ND	-	-	-	-
10/16/2010 642.26 11.55 630.71 - ND ND ND ND 2.0	-	-	-	-
1/31/2011 642.26 14.39 627.87 - ND ND ND ND ND 3.0	-	-	-	-
4/17/2011 642.26 11.33 630.93 - ND ND ND ND ND	-	-	-	-
3/19/2012 642.26 12.21 630.05 - ND ND ND ND ND ND	-	-	-	-
6/4/2012 642.26 11.97 630.29 - ND ND ND ND ND ND	-	-	-	-
9/28/2012 642.26 14.44 627.82 - ND ND ND ND ND ND	-	-	-	-
12/14/2012 642.26 14.82 627.44 - ND ND ND ND ND ND	-	-	-	-
3/18/2013 642.26 12.14 630.12 - ND ND ND ND ND ND	-	-	-	-
7/5/2013 642.26 12.93 629.33 - ND ND ND ND ND ND	-	-	-	-
9/27/2013 642.26 14.85 627.41 - ND ND ND ND ND ND	-	-	-	-
1/8/2014 642.26 13.08 629.18 - ND ND ND ND ND ND	-	-	-	-
3/12/2014 642.26	-	-	-	-
9/4/2014 642.26 11.45 630.81 - ND ND ND ND ND ND	-	-	-	-
12/16/2014 642.26 15.82 626.44 - ND ND ND ND ND ND	-	-	-	-
12/9/2015 642.26 11.83 630.43 - ND ND ND ND ND ND	-	-	-	-
10/3/2016 642.26 13.65 628.61 - ND ND ND ND ND ND	-	-	-	-
10/6/2017 642.26 13.94 628.32 - ND ND ND ND ND ND	-	-	-	-
10/2/2018 642.26 8.85 633.41 - ND ND ND ND ND ND	-	-	-	-
10/25/2019 642.26 14.80 627.46 - ND ND ND ND ND ND	-	-	-	-
10/9/2020 642.26 12.83 629.43 - ND	ND	ND	ND	ND
12/22/2020 642.26 12.63 629.63 28.60 ND (0.05) ND (0.07) ND (0.06 ND (0.15) ND (0.33) ND (0.05) ND (0.05) ND (0.20) ND (1.1)	ND (0.06)	0.20 J	-	-
MW-3 07/12/2005 644.13 13.88 630.25 - ND ND ND ND ND 14.0	-	-	-	-
12/16/2005 644.13 14.69 629.44 - ND ND ND ND 3.0	-	-	-	-
06/15/2006 644.13 14.50 629.63 - ND ND ND ND 2.0	-	-	-	-
01/15/2007 644.13 13.17 630.96 - ND ND ND ND ND ND	-	-	-	-
05/17/2007 644.13 13.22 630.91 - ND ND ND ND ND ND	-	-	-	-
09/26/2007 644.13 15.22 628.91 - ND ND ND ND ND 4.6	-	-	-	-

Table 1

HISTORICAL GAUGING AND ANALYTICAL SUMMARY

High's Store No. 86 3711 Federal Hill Road Jarrettsville, MD

mitoring Well	Date	of Casing (ft)	pth to Water (ft)	W Elevation (ft)	pth to Bottom asured Depth) (ft)	Benzene (µg/L)	Toluene (µg/L)	thylbenzene (μg/L)	otal Xylenes (μg/L)	fotal BTEX (μg/L)	[TBE (μg/L)	hthalene (μg/L)	sopropyl ether (µg/L)	myl methyl ether (μg/L)	-Butyl alcohol (μg/L)	Trimethylbenzene (μg/L)	omethane (µg/L)	.Amyl Alcohol (µg/L)	.myl Ethyl Ehter (µg/L)
Mo		Top	De	5	De			E	T	-	N	Napl	Dii	rt-A	tert	3,5-1	hlor	ter-	ert-A
	CW Clos	n un Sta	ndorde*			5.0	1.000	700	10.000	NI	20	0.17	NI	5 E	NI	1,	U 10	NI	- 2 NI
MW 3	12/13/2007	644 13	16.61	627 52	<u> </u>	S.U ND	1,000 ND	ND	10,000 ND	ND	20	0.17	NL	NL.	NL	0	19	NL	NL
(cont)	03/31/2008	644.13	14.47	629.66	-	ND	ND	ND	ND	ND	2.0 ND	-	-	-	-	-	-	-	-
(cont.)	06/30/2008	644.13	14.19	629.94	_	ND	ND	ND	ND	ND	ND	_	_		_	_	_		_
	09/24/2008	644.13	16.13	628.00	-	ND	ND	ND	ND	ND	4.0	-	-	-	-	-	-	-	_
	12/30/2008	644.13	16.94	627.19	-	ND	ND	ND	ND	ND	2.0	-	-	-	-	-	-	-	_
	03/12/2009	644.13	16.26	627.87	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	05/06/2009	644.13	15.35	628.78	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	09/14/2009	644.13	15.82	628.31	-	ND	ND	ND	ND	ND	2.0	-	-	-	-	-	-	-	-
	12/14/2009	644.13	12.96	631.17	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	03/26/2010	644.13	10.64	633.49	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	06/29/2010	644.13	13.89	630.24	-	ND	ND	ND	ND	ND	4.0	-	-	-	-	-	-	-	-
	10/16/2010	644.13	19.55	624.58	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	01/31/2011	644.13	15.77	628.36	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	04/17/2011	644.13	13.20	630.93	-	ND	1.0	ND	ND	1.0	ND	-	-	-	-	-	-	-	-
	03/19/2012	644.13	14.72	629.41	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	06/04/2012	644.13	19.47	624.66	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	09/28/2012	644.13	16.83	627.30	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	12/14/2012	644.13	15.64	628.49	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	03/18/2013	644.13	14.18	629.95	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	07/05/2013	644.13	14.89	629.24	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	09/27/2013	644.13	16.26	627.87	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	01/08/2014	644.13	14.59	629.54	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	03/12/2014	644.13	13.32	630.81	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	06/30/2014	644.13	12.39	631.74	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	09/04/2014	644.13	14.29	629.84	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	12/16/2014	644.13	15.60	628.53	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	12/09/2015	644.13	14.77	629.36	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/03/2016	644.13	16.16	627.97	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/06/2017	644.13	15.18	628.95	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/02/2018	644.13	10.62	633.51	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/25/2019	644.13	16.10	628.03	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/09/2020	644.13	16.52	620.40	-	ND (0.05)			ND (0.15)	ND (0.22)			ND (0.05)				ND 0.12 I	ND	ND
	12/22/2020	044.15	14.75	029.40	29.04	ND (0.05)	ND(0.07)	ND (0.00)	ND (0.13)	ND (0.55)	ND (0.05)	ND (0.03)	ND (0.05)	ND (0.20)	ND (1.1)	ND (0.00)	0.12 J	-	-
MW-4	09/26/2007	645.00	15.67	629.33	-	ND	ND	ND	ND	ND	320.000	-	-	-	-	-	-	-	-
	12/13/2007	645.00	17.53	627.47	-	ND	ND	ND	ND	ND	57,000	-	-	-	-	-	-	-	-
	03/31/2008	645.00	15.34	629.66	-	ND	ND	ND	ND	ND	12,000	-	-	-	-	-	-	-	-
	06/30/2008	645.00	15.28	629.72	-	ND	ND	ND	ND	ND	55,000	-	-	-	-	-	-	-	-
	09/24/2008	645.00	17.35	627.65	-	ND	ND	ND	ND	ND	310,000	-	-	-	-	-	-	-	-
	12/30/2008	645.00	16.94	628.06	-	ND	ND	ND	ND	ND	49,000	-	-	-	-	-	-	-	-
	03/12/2009	645.00	17.11	627.89	-	ND	ND	ND	ND	ND	13,000	-	-	-	-	-	-	-	-
	05/06/2009	645.00	16.09	628.91	-	ND	ND	ND	ND	ND	19,000	-	-	-	-	-	-	-	-
	09/14/2009	645.00	16.30	628.70	-	ND	ND	ND	ND	ND	84,000	-	-	-	-	-	-	-	-
	12/14/2009	645.00	13.68	631.32	-	ND	ND	ND	ND	ND	520	-	-	-	-	-	-	-	-
	03/26/2010	645.00	-	-	-	ND	ND	ND	ND	ND	4,400	-	-	-	-	-	-	-	-

Table 1

HISTORICAL GAUGING AND ANALYTICAL SUMMARY

High's Store No. 86 3711 Federal Hill Road Jarrettsville, MD

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Depth to Bottom (Measured Depth) (ft)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Total BTEX (µg/L)	MTBE (µg/L)	Naphthalene (µg/L)	Diisopropyl ether (µg/L)	tert-Amyl methyl ether (µg/L)	tert-Butyl alcohol (µg/L)	1,3,5-Trimethylbenzene (μg/L)	Chloromethane (µg/L)	ter-Amyl Alcohol (µg/L)	tert-Amyl Ethyl Ehter (µg/L)
	GW Clea	n-up Sta	ndards*			5.0	1,000	700	10,000	NL	20	0.17	NL	NL	NL	6	19	NL	NL
MW-4	06/29/2010	645.00	-	-	-	ND	ND	ND	ND	ND	160,000	-	-	-	-	-	-	-	-
(cont.)	06/10/2010	645.00	16.48	628.52	-	ND	ND	ND	ND	ND	19,000	-	-	-	-	-	-	-	-
	01/31/2011	645.00	16.82	628.18	-	ND	ND	ND	ND	ND	58,000	-	-	-	-	-	-	-	-
	04/17/2011	645.00	14.30	630.70	-	ND	ND	ND	ND	ND	46,000	-	-	-	-	-	-	-	-
	03/19/2012	645.00	15.72	629.28	-	88.1	24.8	ND	53.5	166.4	19,920	-	-	-	-	-	-	-	-
	06/04/2012	645.00	15.96	629.04	-	94.1	20.5	30.1	23.6	168.3	43,560	-	-	-	-	-	-	-	-
	09/28/2012	645.00	17.87	627.13	-	111	17.8	7.08	69.2	198.0	33,680	-	-	-	-	-	-	-	-
	12/14/2012	645.00	16.58	628.42	-	ND	ND	ND	ND	ND	8,140	-	-	-	-	-	-	-	-
	03/18/2013	645.00	15.08	629.92	-	ND	ND	ND	ND	ND	1,920	-	-	-	-	-	-	-	-
	07/05/2013	645.00	15.99	629.01	-	32.8	14.2	ND	ND	47.0	5,800	-	-	-	-	-	-	-	-
	09/27/2013	645.00	17.36	627.64	-	70.5	5.28	ND	38.20	113.98	46,100	-	-	-	-	-	-	-	-
	01/08/2014	645.00	15.38	629.62	-	ND	ND	ND	ND	ND	63	-	-	-	-	-	-	-	-
	03/12/2014	645.00	14.13	630.87	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	06/30/2014	645.00	13.60	631.40	-	ND	ND	ND	ND	ND	416	-	-	-	-	-	-	-	-
	09/04/2014	645.00	15.54	629.46	-	86.0	ND	10.0	10.0	106	5,600	-	-	-	-	-	-	-	-
	12/16/2014	645.00	16.49	628.51	-	ND	ND	ND	ND	ND	83	-	-	-	-	-	-	-	-
	12/09/2015	645.00	15.55	629.45	-	ND	ND	ND	ND	ND	1,700	-	-	-	-	-	-	-	-
	10/03/2016	645.00	17.22	627.78	-	90.4	ND	ND	ND	90.4	3,610	-	-	-	-	-	-	-	-
	10/06/2017	645.00	16.20	628.80	-	ND	ND	ND	ND	ND	164	-	-	-	-	-	-	-	-
	10/02/2018	645.00	12.66	632.34	-	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-
	10/25/2019	645.00	17.10	627.90	-	235	ND	ND	ND	ND	507	-	-	-	-	-	-	-	-
	10/9/2020 ^A	645.00	16.57	628.43	-	139	ND	ND	ND	ND	452	ND	128	ND	7,140	7.41	ND	5,720	73.1
	11/19/2020 ^B	645.00	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/20/2020 ^A	645.00	-	-	-	ND	ND	ND	ND	ND	34.5	ND	ND	ND	169	ND	ND	ND	ND
	11/20/2020 ^B	645.00	-	-	-	ND	ND	ND	ND	ND	6.95	ND	ND	ND	41.4	ND	ND	ND	ND
	12/22/2020	645.00	15.54	629.46	24.30	ND (0.05)	ND (0.07)	ND (0.06)	ND (0.15)	ND (0.33)	1.6	ND (0.05)	0.19 J	ND (0.20)	2.6 J	ND (0.06)	0.13 J	-	-
TF-1	12/22/2020	-	DRY	-	13.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TF-2	12/22/2020	-	DRY	-	9.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

* GW Cleanup Standards are the Maryland Department of the Environment (MDE) Groundwater Clean-up Standards for Type I and II Aquifers (2018)

Analytical and gauging data prior to December 2020 was obtained by Advanced Environmental Concepts, Inc.

 $11/19/20^{A}$ = sample collected during recharge

 $11/19/20^{B}$ = sample collected after recharge

ND (#) = Not detected, concetration below Method Detection Limit (#)

µg/L = micrograms per liter

MTBE = Methyl Tertiary Butyl Ether

BTEX = Benzene, toluene, ethylbenzene, xylenes

ft = feet

- = No data available

J = Detected between the Method Detection Limit (MDL) and Reporting Limit (RL); therefore the result is an estimated value.

NL =No Limit established

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

Appendix A – Concentration Hydrographs

CONCENTRATION HYDROGRAPH FOR BENZENE & MTBE - MW-1

1 of 1

Concentration (µg/L)

Groundwater & Environmental Services, Inc.

CONCENTRATION HYDROGRAPH FOR BENZENE & MTBE - MW-3

Groundwater & Environmental Services, Inc.

CONCENTRATION HYDROGRAPH FOR BENZENE - MW-4

High's Store No. 86 3711 Federal Hill Rd. Jarrettsville, MD

CONCENTRATION HYDROGRAPH FOR MTBE - MW-4

Groundwater & Environmental Services, Inc.

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

Appendix B – GES Low-Flow Sampling SOP

1. Purpose/Scope

This SOP describes procedures for sampling groundwater using low-flow purging and sampling techniques. The objective is to pump in a manner that minimizes stress (drawdown) to the system to the extent practical, taking into account established site sampling objectives. This method involves sampling intake-zone water without disturbing any stagnant water above the intake by pumping the well at low flow rates while maintaining minimal drawdown of the water column within the well. Improper sampling and transport procedures may cause compounds of interest to be removed from or added to the sample prior to analysis.

The importance of proper and consistent field sampling methods, as well as proper documentation, cannot be over-emphasized.

This SOP shall be used in conjunction with an approved Health and Safety Plan (HASP). Also, consult the HASP for information on the selection and use of PPE.

2. References

ASTM D4448 – 01(2019): Standard Guide for Sampling Groundwater Wells

ASTM D4750: Standard Guide for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Withdrawn in 2010 with no replacement, per ASTM.org)

ASTM D5903- 96(2017)e1: Standard Guide for Planning and Preparing for a Groundwater Sampling Event

ASTM D6089-19: Standard Guide for Documenting a Ground-Water Sampling Event

ASTM D6452-18: Standard Guide for Purging Methods for Wells Used for Groundwater Quality Investigations

ASTM D6564: Standard Guide for Field Filtration of Ground-Water Samples

ASTM D6634: Standard Guide for the Selection of Purging and Sampling Devices for Groundwater Monitoring Wells

EPA, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, (ORD/ OSWER, Washington D.C., 1996) (EPA-540/S-95/504).

	5

 Section:
 FM-8.5

 Revision #:
 003

 Date:
 05/26/2020

EPA Region I, Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. (Quality Assurance Unit, EQASOP-GW 001, July 30, 1996, Revised January 19, 2010).

3. Equipment/Materials

A basic checklist of suggested equipment and supplies needed to implement this SOP include, but is not limited to:

- Personnel protective equipment as outlined in the site-specific HASP
- Project-specific quality assurance and/or sampling plan
- Project-specific waste management plan
- Well construction log details and historical groundwater gauging data
- Location maps(s)
- Adjustable rate, submersible pump (e.g., centrifugal, bladder) capable of pumping at a low flow rate. A pump constructed with stainless steel or Teflon is preferred. The pump selected should be appropriate for use both in purging and sampling the analytes of interest.
- Electronic, audible (or visual identification) water-level measurement equipment with ± 0.01-foot accuracy (i.e., oil/water interface probe or water level indicator)
- Tubing of the appropriate diameter (based on pump selection) and of the appropriate material for sampling the analytes of interest.
 - Teflon or Teflon-lined polyethylene tubing are preferred when sampling is to include VOCs, SVOCs, pesticides, PCBs, and inorganics.
 - PVC, polypropylene, or polyethylene tubing may be used when collecting samples for metal and other inorganic analyses.
 - Tubing constructed of other materials may be used if adequate information can be provided to show that the materials do not leach contaminants or cause interferences to the analytical procedures to be used.
- Flow measurement supplies (e.g., graduated cylinder, graduated bucket, stop watch).
- Proper power source based on pump selection (battery, generator, nitrogen tank, etc.)
- In-line flow-through cell with water quality meter capable of measuring pH, specific conductance, temperature, oxidation-reduction potential (ORP), turbidity, and dissolved oxygen (DO).
- Decontamination supplies

Standard Operating Procedure	Section:	FM-8.5
1 0	Revision #:	003
	Date:	05/26/2020
 Distilled water or deionized water (dependent on project red Cloth/paper towels/garbage bags 	quirements)	

- Transportable, purged water storage container
- Secondary containment for the flow-through cell
- Photoionization detector (PID) (dependent on project requirements)
- Record keeping supplies, including logbook(s) or field book, well purging forms, chainof-custody forms, field instrument calibration forms, etc.
- Sample bottles, preservation supplies, and labels. •

Note: Any gas powered equipment at sampling sites require special care to ensure that personnel handling these units do not contaminate down-hole equipment. Frequent disposable glove changes are required, as well as strict separation of sampling crew tasks (e.g., those handling pumps and hoses do not conduct fueling activities).

4. Preparation

The scope of the sampling and analysis program must be evaluated prior to mobilization for sampling event, including reviewing the project-specific quality assurance and/or sampling plan, project-specific waste management plan, site HASP, and sampling protocol. These documents will provide information on the following:

- Required sampling procedures
- Wells to be sampled
- Data to be collected in the field •
- Depth range within the well the samples will be collected
- The handling of purged water and decontamination water •
- Field quality control procedures and documentation to be utilized •
- Available well construction details and historical well performance •
- Accessibility of the wells and special equipment needed •
- Estimated time to complete the sample collection and associated field work
- Laboratory analytical information including the analyses to be performed on each well, sample volume, required bottleware and preservatives, sample hold times, required laboratory documentation (project identifiers, sample identifiers, and forms), and sample shipping and handling requirements.

with equipment vendor recommendations, and the calibration must be recorded. Purging
and sampling activities should occur according to the project-specific quality assurance
and/or sampling plan. At the end of each day, a calibration check should be performed and
recorded to verify that instruments remained in calibration throughout the day. This check is

performed while the instruments are in measurement mode, not calibration mode.

5.1 Well Set-Up Activities

5. Procedure

The following steps are required to properly set up for sampling:

- 1. Properly identify and inspect each well.
- 2. Wear appropriate PPE as specified in the Job Loss Analysis (JLA) forms(s) during setup activities.

Prior to low-flow purging and sampling activities, all measuring devices (with the exclusion of oil/water interface probes or water-level indicators) must be calibrated daily in accordance

- 3. Remove the well cap slowly (positive pressure inside may blow cap off).
- 4. If a project specific requirement, measure the VOC concentration at the top of the casing and in the breathing zone using a PID and record the readings.
- 5. Measure and record the initial depth to water from the established reference point (i.e., a notch or indelible mark on the well casing).
- 6. To minimize turbidity in the well, use total well depth and screened interval information obtained from the well construction logs to determine pump intake depth.
- 7. Attach and secure tubing to low-flow sampling pump. A secondary method should also be used to secure the pump. All non-dedicated equipment should be properly decontaminated prior to use.
- 8. Lower the pump slowly and gently into the monitor well to minimize aquifer agitation and mixing of the stagnant well casing water. Place the intake of the submersible pump in the middle, or slightly above the middle, of the saturated screen interval or 2 feet above the well bottom/sediment level. The intake of the pump should be placed at an elevation above dense non-aqueous phase liquid (DNAPL), if applicable. Record the pump intake depth.
- 9. Plumb the in-line flow-through cell to the discharge tubing from the well.
- 10. Plumb a discharge line from the effluent of the flow-through cell to a transportable, purged water storage container.

 Section:
 FM-8.5

 Revision #:
 003

 Date:
 05/26/2020

Standard Operating Procedure

Once you have completed the well set up activities above, follow these steps to purge and sample using low-flow techniques:

- 1. Put on new nitrile gloves. Change nitrile gloves at a minimum between each well sampled and any time the integrity of the glove is compromised during the purging and sampling activities (i.e., torn, dirty, product stained).
- 2. Before starting the pump, measure and record the depth to water from the established reference point (i.e., a notch or indelible mark on the well casing).

Note: After the low-flow sampling equipment is set up, alternate equipment may be needed to collect depth to water measurements (i.e., water level indicator instead of oil/water interface probe). If the equipment set up prohibits the collection of depth to water measurements (e.g., insufficient space for water level equipment, pump interference), the reason must be recorded.

- 3. Activate the low-flow submersible pump and begin extracting groundwater. Start the pump at low speed and slowly increase the speed until discharge occurs. Typically, flow rates on the order of 100 to 500 mL/min are used; however, this is dependent on site-specific hydrogeology. The pump speed should be adjusted until there is little or no water level drawdown. A stable drawdown of 0.3 feet or less is recommended. Record the initial flow.
- 4. Measure and record the water level approximately every minute and adjust extraction rate to obtain minimal drawdown in the well (i.e., no more than 0.3 feet is recommended). Measure and record the flow rate for each time interval.
- 5. Once drawdown is stabilized and the volume of the sampling equipment (pump, tubing, and flow through cell) has been purged, begin monitoring and recording water quality indicators (pH, specific conductance, temperature, ORP, DO, and turbidity as required) using the in-line flow-through cell.

Note: While purging, the pumping rate and groundwater level are measured and recorded every 5 minutes (or as appropriate).

- 6. Monitor the water level and extraction rate, in addition to monitoring water quality indicators, and make periodic adjustments to flow rates to ensure steady flow and minimal drawdown. Measure and record the flow rate immediately following each adjustment.
- 7. Water quality readings will be monitored and recorded every five minutes (or as appropriate) until stabilization criteria are achieved.
- 8. Stabilization is achieved when three consecutive readings for each parameter are within the following criteria:

Standard Operating Procedure

 Section:
 FM-8.5

 Revision #:
 003

 Date:
 05/26/2020

Water Quality Indicator Parameter	Stabilization Criteria (EPA Region I, 2010)
рН	±0.1 s.u.
Specific Conductance	±3%
Temperature	±3%
Oxidation-Reduction Potential (ORP)	± 10 mV
	±10% for values greater than 0.5 mg/L;
Dissolved Oxygen	if three values are < 0.5 mg/L, consider the values stabilized
	±10% for values greater than 5 NTU;
Turbidity (if required)	if three values are < 5 NTU, consider the values stabilized

Achievement of turbidity levels of less than 5 NTU and stable drawdowns of less than 0.3 feet, while ideal, are not required. If stabilization of these or other field parameters are not met within a reasonable timeframe (EPA recommends 2 hours, otherwise refer to project-specific quality assurance and/or sampling plan), pumping may be discontinued and samples either collected or not collected based on the project data quality objectives and discussion with project stakeholders (e.g., project manager, client or regulator).

- 9. Collect the necessary samples once purging activities are complete and the groundwater stabilization/clarity is acceptable according to applicable protocol described above. Record the water quality readings prior to sampling. During purging and sampling, the pump tubing must remain filled with water to avoid aeration of the groundwater.
- If the pump tubing is not completely filled to the sampling point, the sampling procedure
 may need to be adjusted to collect non-VOC/dissolved gases samples first, then slightly
 increase the flow rate until water completely fills the tubing, collect the VOC/dissolved
 gases samples, and record new drawdown depth and flow rate. Changes in the sampling
 procedure must be recorded.
- For bladder pumps that will be used to collect VOC/dissolved gas samples, it is recommended that the pump be set to deliver long pulses of water so that one pulse will fill a 40 mL VOC vial.
- 10. Disconnect or bypass the flow-through cell prior to sampling.

Standard Operating Procedure	Section:	FM-8.5
1 0	Revision #:	003
	Date:	05/26/2020

11. Collect samples directly from the pump into the appropriate sample container under typical circumstances. Fill all sampling containers for each well in a manner that minimizes aeration and turbulence. Flow rate may need to be adjusted (slowed) while collecting volatile organic compound (VOC) samples to reduce volatilization. This change in flow rate must be recorded. Take care to avoid handling the interior of the bottle or cap. Do not place the bottle cap on the ground or in a pocket to avoid contamination. Please refer to the project-specific quality assurance and/or sampling plan for sampling order of various analyses (i.e., collect VOC first, SVOC second, metals third).

Note: All field quality control samples must be prepared the same as regular investigation samples.

- 12. Label each sample as collected. Place samples immediately on ice to maintain temperatures at or below laboratory requirements.
- 13. Filtered water samples should be collected using the same low-flow procedures. Initiate and gradually increase the flow of water through the filter to reach the appropriate rate and pressure, not to exceed the maximum recommended by the filtration equipment manufacturer. The use of an in-line filter is required and the filter size should be based on the sampling objective, as detailed in the project-specific quality assurance and/or sampling plan. The filter should be pre-rinsed with groundwater prior to sample collection. Make sure the filter is free of air bubbles before samples are collected. Filtration should be completed in as short a time as possible while minimizing sample aeration, agitation, pressure changes, temperature changes, and prolonged contact with ambient air. Preserve the filtered water sample immediately.
- 14. Obtain final water level and flow rate measurements and record the measurements.

5.3 Decontamination Procedures

Clean all equipment that will enter the well or come into contact with groundwater prior to use in the first well and then following the sampling of each well with the appropriate decontaminating solutions. The use of dedicated equipment will reduce the amount of time spent on decontamination of the equipment. Decontamination fluids and material will be disposed of in accordance with the project-specific waste management plan.

5.4 Documentation

Document all the events, equipment used, and measurements collected during the sampling activities in the field book and/or on the well purging forms. Make all entries in indelible ink and strike out any corrections with a single line. Initial and date corrections.

Standard Operating Procedure	Section:	
1 0	Revision #:	
	Date:	

Record all manually-measured data and procedural descriptions in the field book and/or on the well purging forms. Maintain detailed notes regarding field calibration events, purging or PID anomalies, and volumes of extracted groundwater. An example well purging form is included in **Attachment A**. Well purging forms for low-flow groundwater sampling events will be provided in the project-specific quality assurance and/or sampling plan.

For each well sampled, the following information should be documented in the field book and/or on the well purging forms:

- Name of collector(s)
- Date of field event
- Facility or site name
- Climatic conditions including air temperature
- Purge/sampling equipment used
- Equipment calibration
- Equipment configuration for purging and sampling
- Well ID

(

- Any changes in the physical conditions of the well
- Well depth and screened interval (based on well log)
- Initial static water level
- Presence of immiscible layers and detection/collection method
- Pump intake depth
- Static water level prior to pumping
- Pumping rate
- Flow rates and drawdown measurements
- Times for all measurements
- Measured field parameters
- Sample name, number, date, and time
- Sample appearance
- Sample odors (if respiratory protection is not required)
- Field observations on sampling event
- Equipment decontamination

FM-8.5 003 05/26/2020

Standard Operating Procedure	Section:	FM-8.5	
	Revision #:	003	
	Date:	05/26/2020	

- Problems encountered and any deviations made from the established sampling protocol
- Sample preparation, shipping/handling, and laboratory submittal details

5.5 Waste Management

Refer to and follow any State specific guidance on treatment of purged groundwater. Determination of treatment (i.e., carbon treatment discharged to ground surface or containerization), should be included in the project-specific quality assurance and/or sampling plan. Porous materials (PPE, rags, etc.) contaminated with groundwater and non-porous materials that cannot be decontaminated will also be managed according to the project-specific waste management plan.

6. Records

The field book and well purging forms must document all the events, equipment used, and measurements collected during the sampling activities. The recorded notes and readings must be legible and concise so that the entire sample event can be reconstructed later for future reference. The field book and well purging forms will become part of the permanent project file.

Record field notes in a standard bound survey-type field book issued for general note taking/field records and available from all GES equipment administrators. Make all field book entries in indelible ink and make any changes/corrections with a single strikethrough line. Initial and date to indicate who made the change/ correction and when it was made.

7. Follow-Up Activities

Perform the following once field activities are complete.

- Review the project-specific quality assurance and/or sampling plan to ensure all samples have been collected and confirm this with the project manager.
- Clean and return equipment to the equipment administrator and sign and date the appropriate forms.
- Complete purge water and cleaning fluid disposal requirements per the project-specific waste management plan.
- Notify the laboratory as to when to expect the samples. Enclose the chain of custody documentation.
- Compile the field deliverable package and copy to the project file.
- Return site/well keys.

Standard Operating Procedure	Section:	FM-8.5	
	Revision #:	003	_
	Date:	05/26/2020	_
Attachments			

Attachment A – Example (Minimum Requirements) Well Purging-Field Water Quality Measurements Form

Example (Minimum Requirements) Well Purging – Field Water Quality Measurements Form

Date	Depth to top of screen (ft)
Client/Site Location	Depth to bottom of screen (ft)
Company Name	Pump Intake Depth (ft below MP)
Field Personnel	Purging Device (pump type)
Weather Conditions	Total Volume Purged (gallons)

	Cumulative Water Quality Indicator Parameters										
Time	Pump Dial	Depth to Water	Purge Rate	Volume Purged	Temp.	Specific Conductance	рН	ORP	DO	Turbidity	Comments (appearance, color, odor,
	Setting*	ft below MP	mL/min	gallons	°C	μS/cm	s.u.	mV	Mg/L	NTU	etc.)
			Stabiliz	ation Criteria	± 3%	± 3%	± 0.1 s.u.	± 10 mV	± 10% **	± 10% ***	
NOTES:											
	C = DEGREES CENTIGRADE µS/C					CM = MICROSIEMENS PER CENTIMETER NTU = NEPHLOMETRIC TUR					DITY UNITS
	DO = DIS	SOLVED OXYGE	N	MG	G/L = MI	CROGRAMS PER LI	TER	ORF	P = OXIDATIO	I POTENTIAL	
	FT = FE	ΞT		ML	/MN = MI	LLILITERS PER MINU	JTE	S.U.	= STANDAF	RD UNITS	
	MP = ME	ASURING POINT		ΜV	′ = MI	LLIVOLTS					

* = PUMP DIAL SETTING (FOR EXAMPLE: HETZ, CYCLES/MIN, ETC.)

** = ±10% FOR VALUES GREATER THAN 0.5 MG/L; IF THREE VALUES ARE <0.5 MG/L, CONSIDER THE VALUES STABILIZED

*** = ±10% FOR VALUES GREATER THAN 5 NTU; IF THREE VALUES ARE <5 NTU, CONSIDER THE VALUES STABILIZED

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

Appendix C – Low-Flow Field Logs

Groundwater Sampling Data Collection Sheet

Well ID:		MU	VI		Site ID:	Cass	Carroll-Highs#36 Sample Date 2-22-2					
nitial DTW	Address: 3711 Federol Hill Rel.											
/ell Diame	eter:	421	Sample Meth	nod (cicle one)		Jarrettsville md.						
otal Well	Depth:	2360	Low	Flow	Sampling Tec	h(s): J. Yaummer						
ater Colu	mn Length:	0-1	Purge	/sample	Weather Cond	Veather Conditions: Sur						
imp Intak	e depth:	25	Grab/N	No Pruge	Air Temp =		40					
ata con	lection: Lov	T	n an	n general de la composition de la compo T	7	So Voji politijski			-			
		Temp	Conductivity	D.O.	pH	ORP	1225	0	Appearance			
Time	DTW	Unit	msicmunit	millunit	NA	Unit	Flow Rate	Purge Volume	of Purge	Commer		
1.1		± 0.3 °C	± 3%	± 10%	± 0.1	± 10		1	Water			
040	1263	Just prior to le	wering any equi	pnient into we	ll.		all and the second second	and the state of the	10000000000000000000000000000000000000	an a		
- w		NRW W		- 10. The second	1	1000			100 C	1		
250	12.51	After low cring	equipment into	the well & hel	fore turning on t	ue bruib						
50	Purge Start 1	15.2.7	1,100	250	E 1.9	Ting 2	0.1	1		2		
100	12 91	1555	1.180	0.30	5.01	175.1	Zoomi	min -	clear			
105	17.89	15.54	1.186	8.35	550	171.4	1					
110	12.87	15.55	1.190	8.35	5.65	1745			NI	-		
115	12.85	15.53	1-191	8.16	565	174-9		14490	UDNIC	1		
		1.1.1.1.1.1.1						10	2 100	L		
				1	1.			1.200				
					1. Server 1	6	1-1-1-1					
						122						
			-			12	0					
-	1											
120	Sample Coller	tion Time					the second strange of the					
	Purge Stop Fit	ne			172-172-172 1.5. 1935 111							
ta Coll	ection: Purg	ge and Samp	ale / Grab Sa	mpling			1. 19 19 19 19 19 19 19 19 19 19 19 19 19					
				If Applicable								
		Temp	Conductivity	D.O.	pH	ORP	5-27	1.000	Appearance	Method Of		
Time	DTW	Unit	Unit	Unit	NA	Unit	Flow Rate	Cumulative Purge Volume	of Purge			
		± 0.3 °C	± 3%	± 10%	± 0.1	± 10	1.1.1.1	ange volume	Water	Samping		
		Just priet to to	wering any equi	oment into wel		1 21 m	100			1000		
							10.000		1			
	Council Press	ener Timin		Note T nless c	therwise stated	field parameter	s collected duri	ng purge and say	mple or grab sar	nping were		
	sample cones	titen a nuce		contested from	the well with a	sonde bejore pu	nduction sample	明慶				
eneral Cor	nment & Typ	e of Equipmen	t Used (pumps/	VSI meter/ect	./caibration inf	io):	adding or sample	<u>mg</u>				
			1			64211	-					
							-					
						4.0		· Man Ara	- 10	-		

 \pm 3% for specific conductivity, \pm 10 for reduction-oxidation potential

4-inch diameter well:

4-inch diameter well: 0.65 gal./ft x _____ (linear feet of water) = gallons of water

L:\Projects'Carroll Fuel\Active'MD_Monrovia_BP\Project Management\Field Work Orders\2014\Monrovia Groundwater Sampling Form.xls

Groundwater Sampling Data Collection Sheet

Well ID:		nu	1-3		Site ID:	Can	1011-Hiz	15:#26	Sample Date:	12-22-2
Initial DTW	//Time:	14.73			Address:	3711 Federal Hall Rd.				
Well Diame	eter:	41	Sample Meth	od (cicle one)		Jarr	ettsu	id.		
Total Well I	Depth:	29.04	Low	Flow	Sampling Tec	h(s): Jeff	= Plum	mer		
Water Colum	mn Length:	1	Purge/	sample	Weather Cond	litions:	Part 4	Cloud	Y	
Pump Intak	e depth:	52.	Grab/N	o Pruge	Air Temp =	1	.	40°	/	_
Data Coll	lection: Lo	w Flow								
	1	Temp	Conductivity	D.O.	pH	ORP		Convolution	Appearance	1.00
Time	DTW	Unit	msicm Unit	my/Junit	NA	Unit	Flow Rate	Purge Volume	of Purge Water	Comment
28:1 2		± 0.3 °C	± 3%	± 10%	± 0.1	±10	1		 International (1999) 	
0945	14.73	Just prior to lo	owering any equi	pment into we	11	-	T		W	
0957	1411	AGuluut				1		La contraction de la contracti		
2903	11/16	After lowering	g equipment into	the well & be	tore turning on I	he pump				
000	Purge Start	ime	1 - 511	911	1/1	1000	12	4	1.20	-
0-150	17.00	1556	0.540	1.66	6.31	120-1	ZOOM /	NIW	clear	
1000	17.80	16.45	0.529	9.13	5.99	131-0	11		A	
1000	1482	16-56	0.510	8.56	5.80	148,4	0.1			
1013	1484	16.50	0.903	8.76	5.73	156.5	1			
1018	19.20	16.56	0.499	9.03	5.70	160.9		11		
1023	4.98	16.68	0.493	9.03	5.68	163.8	V	11/2900	av Jr	
					12.10		1.7.5	1	A.	
							-			
						-	1			
1025	Sample Colle	ection Time								
10-1	Purge StopT:	ime								
Data Coll	lection: Pur	rge and Sam	ple / Grab Sa	mpling						
				If Applicable						
		Temp	Conductivity	D.O.	pH	ORP		Cumulative	Appearance	Method Of
Time	DTW	Unit	Unit	Unit	NA	Unit	Flow Rate	Purge Volume	of Purge	Sampling
	-	± 0.3 °C	± 3%	±10%	± 0.1	± 10		(222)	water	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Just prior to lo	wering any equi	oment into wel	1		-			
	,	1		Note: Unless	otherwise stated	field paramete	as collected dur	ing purge and sa	mple or orah sau	nnling were
	Sample Colle	ection Time		collected from	the well with a	sonde before p	urging or sampl	ing.	mpre or Erno ou	nping were
General Co	mment & Ty -3=P (pe of Equipment Dhead	nt Used (pumps. SPace	YSI meter/ec	t./caibration in OppM	fo):				
THI	- 2	20	12 12	A	0.000		1. com			
TET	- al	10	9.35	0	2 ppn		-			
112	ear	10	1.55	0.0	s ffin					
tabilization i	ic achieved whe	n three successive	readings are with			Duran Walansa				

 \pm 0.3 °C for temperature,

- ± 0.1 for pH,
- \pm 3% for specific conductivity,

 \pm 10 for reduction-oxidation potential

2-inch diameter well:

0.16 gal./ft x ____ _(linear feet of water) = gallons of water 4-inch diameter well:

0.65 gal./ft x _____ (linear feet of water) = gallons of water

Groundwater Sampling Data Collection Sheet

Vell ID:	-	mw.	-4		Site ID:	eID: Cassali-Hath togi Sample Datail 7 2						
nitial DTW	/ Time:	1.0	1		Address:	3711 Federal Hill Rd						
Vell Diame	eter:	2"	Sample Meth	od (cicle one)		Frettsulle md.						
otal Well	Depth:	2430	Low	Flow	Sampling Te	ch(s): TPI	ch(s): T.Phimmer					
ater Colu	mn Length:		Purge/	/sample	Weather Con	ditions: Par	Hy CI	oudy -	windy			
ump Intak	e depth:	20'	Grab/N	lo Pruge	Air Temp =	1001	4	2 '	1			
ata Col	lection: Lo	w Flow	All Andrews				equility of the second se		hayr.	A Maria		
	1000	Temp	Conductivity	D.O.	pH	ORP		Cumulative	Appearance			
Time	DTW	Unit	mstamonit	mgl-Conit	NA	Unit	Flow Rate	Purge Volume	of Purge Water	Commen		
	1	± 0.3 °C	± 3%	±10%	± 0.1	± 10	· · · · ·					
1135	15.54	Just prior to lo	wering any equi	pment into we	11	1				a la companya		
1.10	1.001	all and a second second	the starting	(har-	1			1.000				
1145	1559	After lowering	equipment into	the well & bel	fore turning on	the pump				y .		
1145	Purge Stari T	Hane Jack		- And Sugar				11	7	-12-22		
150	15.89	17.19	0.240	8.26	5.23	185.0	200m	1/min-	clear	-		
1153	15.89	14.61	0-220	7-96	5.10	200.7	1		1	1.*		
200	15.91	14-84	0-221	7.41	5.02	Z12.5		1	1.1.1			
1205	15.90	14.58	0.226	7.38	4.96	221-1	-	· · · · · · · · · · · · · · · · · · ·	- di			
1210	1588	17.70	0.230	7-16	4.93	225.8			¥			
215	15.8T	19-87	0.234	7.03	4.95	226-1	V	1429a)	lons			
20	Sample Coffe	ction Fine										
	Purge StepTi	nic			- R.				1			
ta Coll	ection: Pur	ge and Samp	le / Grab Sa	mpling						*****		
		1		If Applicable								
	0.44	Temp	Conductivity	D.O.	pH	ORP	5.57	Consulation	Appearance	N.4.10		
Time	DTW	Unit	Unit	Unit	NA	Unit	Flow Rate	Purge Volume	of Purge	Sampling		
		± 0.3 °C	±3%	±10%	± 0.1	± 10			Water			
		fust prior to les	vering any equip	iment into wel	1			10				
	2.2.20							100000				
	and the state			Note Unless o	otherwise stated	ticld parameters	eoffected duri	ng purge and sa	mple or grab sar	upling were		
	Sample Colle	enon une	A	collected from	the well with a	sonde hetore pu	rging or sampli	ung.				
neral Con	mment & Typ	e of Equipmen	t Used (pumps/	YSI meter/ect	t./caibration in	fo):						
	1	12 he	gdspa	ce. =	0.0	pon						
-		110	5			d deres						

 $\pm\,0.3$ °C for temperature,

 $\pm \ 0.1$ for pH,

 \pm 3% for specific conductivity,

 \pm 10 for reduction-oxidation potential

2-inch diameter well:

0.16 gal./ft x _____ (linear feet of water) = gallons of water

4-inch diameter well:

0.65 gal./ft x _____ (linear feet of water) = gallons of water

Interim Monitoring Report –Dec. 22, 2020 High's Store No.86 3711 Federal Hill Rd., Jarrettsville, MD February 19, 2021

Appendix D – Lab Analytical Report and COC Documentation

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-24912-1

Client Project/Site: Carroll - High's #86, Jarrettsville MD

For:

Groundwater & Environmental Services Inc 1350 Blair Drive Suite A Odenton, Maryland 21113

Attn: Peter Reichardt

Amete Carto

Authorized for release by: 1/5/2021 7:22:30 AM

Amek Carter, Project Manager (717)556-7252 Loran.Carter@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Have a Question? Ask The Expert

LINKS

Review your project results through

Total Access

Visit us at: www.eurofinsus.com/Env Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

• QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.

• Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.

• Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ameter Carton

Amek Carter Project Manager 1/5/2021 7:22:30 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
1C	Result is from the primary column on a dual-column method.	
2C	Result is from the confirmation column on a dual-column method.	0
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 410-24912-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-24912-1

Receipt

The samples were received on 12/23/2020 6:39 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C

Receipt Exceptions

A trip blank was not submitted for analysis with the sample shipment and was not listed on the Chain of Custody (COC).

GC/MS VOA

Method 8260C_LL: The preservative used in the sample containers provided is not compatible with one of the Method 8260 analytes requested. The following samples were received preserved with hydrochloric acid: MW-3 (410-24912-1), MW-1 (410-24912-2) and MW-4 (410-24912-3). The requested target analyte list includes Acrylonitrile, an acid-labile compound that degrades in an acidic medium.

Method 8260C_LL: The continuing calibration verification (CCV) associated with batch 410-81468 recovered outside acceptance criteria, low biased, for t-Butyl alcohol and trans-1,4-Dichloro-2-butene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Non-detections are reported. Any detection is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Methyl tertiary butyl ether

Chloromethane

t-Butyl alcohol

di-Isopropyl ether

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 410-24912-1

8260C LL

8260C LL

8260C LL

8260C LL

1

1

1

1

Client Sample ID: MW-3						La	b Sample ID	: 410-24912-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
Chloromethane	0.12	J	0.50	0.060	ug/L	1	8260C LL	Total/NA
Client Sample ID: MW-1						La	b Sample ID	: 410-24912-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
Chloromethane	0.20	J	0.50	0.060	ug/L	1	8260C LL	Total/NA
Client Sample ID: MW-4						La	b Sample ID	: 410-24912-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type

0.50

0.50

0.50

10

0.050 ug/L

0.060 ug/L

0.050 ug/L

1.1 ug/L

1.6

0.13 J

0.19 J

2.6 J

8	3
	9
	3

5

This Detection Summary does not include radiochemical test results.

5

6

Lab Sample ID: 410-24912-1

Matrix: Water

Client Sample ID: MW-3 Date Collected: 12/22/20 10:25 Date Received: 12/23/20 18:39

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/L		01/01/21 01:13	1
cis-1,3-Dichloropropene	ND		0.50	0.050	ug/L		01/01/21 01:13	1
trans-1,3-Dichloropropene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
Ethylbenzene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
Styrene	ND		0.50	0.050	ug/L		01/01/21 01:13	1
1,4-Dichlorobenzene	ND		0.50	0.070	ug/L		01/01/21 01:13	1
1,2-Dibromoethane	ND		0.50	0.060	ug/L		01/01/21 01:13	1
1,1-Dichloropropene	ND		0.50	0.050	ug/L		01/01/21 01:13	1
1,2-Dichloroethane	ND		0.50	0.050	ug/L		01/01/21 01:13	1
1,2,3-Trichlorobenzene	ND		0.50	0.050	ug/L		01/01/21 01:13	1
1,2,3-Trichloropropane	ND		1.0	0.10	ug/L		01/01/21 01:13	1
Toluene	ND		0.50	0.070	ug/L		01/01/21 01:13	1
Chlorobenzene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
1,2,4-Trimethylbenzene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
1,2,4-Trichlorobenzene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
Dibromochloromethane	ND		0.50	0.070	ug/L		01/01/21 01:13	1
Xylenes, Total	ND		1.0	0.15	ug/L		01/01/21 01:13	1
Tetrachloroethene	ND		0.50	0.060	ug/L		01/01/21 01:13	1
cis-1.2-Dichloroethene	ND		0.50	0.050	ua/L		01/01/21 01:13	
trans-1.2-Dichloroethene	ND		0.50	0.060	ua/L		01/01/21 01:13	1
Methyl tertiary butyl ether	ND		0.50	0.050	ua/L		01/01/21 01:13	1
1.3.5-Trimethylbenzene	ND		0.50	0.060	ua/L		01/01/21 01:13	1
1.3-Dichlorobenzene	ND		0.50	0.060	ua/L		01/01/21 01:13	1
1.3-Dichloropropane	ND		0.50	0.070	ua/l		01/01/21 01:13	1
Chloroform	ND		0.50	0.090	ua/L		01/01/21 01:13	1
Benzene	ND		0.50	0.050	ua/l		01/01/21 01:13	1
1.1.1-Trichloroethane	ND		0.50	0.060	ua/L		01/01/21 01:13	1
Bromomethane	ND		0.50	0 070	ua/l		01/01/21 01.13	
Chloromethane	0.12	л	0.50	0.060	ua/l		01/01/21 01:13	1
Chloroethane	ND	°	0.50	0.070	ua/l		01/01/21 01:13	1
2 2-Dichloropropage	ND		0.50	0.050	ug/l		01/01/21 01:13	
Vinvl chloride	ND		0.50	0.10	ua/l		01/01/21 01:13	1
Methylene Chloride	ND		0.50	0.070	ug/l		01/01/21 01:13	1
Carbon disulfide	ND		1.0	0.060	ug/L		01/01/21 01:13	
Bromoform	ND		1.0	0.30	ug/L		01/01/21 01:13	1
Bromodichloromethane	ND		0.50	0.050	ug/L		01/01/21 01:13	1
1 1-Dichloroethane	ND		0.50	0.000	ug/L		01/01/21 01:13	
2-Chlorotoluene			0.50	0.070	ug/L		01/01/21 01:13	1
1 1-Dichloroethene			0.50	0.070	ug/L		01/01/21 01:13	1
Trichlorofluoromethane			0.50	0.000	ug/L		01/01/21 01:13	
4 Chlorotoluono			0.50	0.030	ug/L		01/01/21 01:13	1
			0.50	0.070	ug/L		01/01/21 01.13	1
			0.50	0.000	ug/L		01/01/21 01:13	
			0.50	0.000	ug/L		01/01/21 01.13	1
			0.50	0.000	ug/L		01/01/21 01.13	1
			D.U	0.40	ug/L		01/01/21 01.13	ا د
	ND		0.50	0.000	ug/L		01/01/21 01:13	1
	ND		0.50	0.070	ug/L		01/01/21 01.13	1
	ND		0.50	0.060	ug/L		01/01/21 01:13	1
LZ-DIDROMO-3-CHIORODRODANE	NI)		0.50	0.10	ud/L		01/01/21 01 13	1

Lab Sample ID: 410-24912-1

Lab Sample ID: 410-24912-2

Matrix: Water

Matrix: Water

5

6

Client Sample ID: MW-3 Date Collected: 12/22/20 10:25 Date Received: 12/23/20 18:39

Method: 8260C LL - Volatile C	Organic Compoun	ds by GC/M	S (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromobenzene	ND		0.50	0.060	ug/L			01/01/21 01:13	1
Bromochloromethane	ND		0.50	0.050	ug/L			01/01/21 01:13	1
Isopropylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:13	1
Dibromomethane	ND		0.50	0.060	ug/L			01/01/21 01:13	1
di-Isopropyl ether	ND		0.50	0.050	ug/L			01/01/21 01:13	1
Ethyl t-butyl ether	ND		0.50	0.050	ug/L			01/01/21 01:13	1
Hexachlorobutadiene	ND		0.50	0.070	ug/L			01/01/21 01:13	1
Naphthalene	ND		0.50	0.050	ug/L			01/01/21 01:13	1
n-Butylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:13	1
N-Propylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:13	1
p-Isopropyltoluene	ND		0.50	0.050	ug/L			01/01/21 01:13	1
sec-Butylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:13	1
t-Amyl methyl ether	ND		0.50	0.20	ug/L			01/01/21 01:13	1
t-Butyl alcohol	ND		10	1.1	ug/L			01/01/21 01:13	1
tert-Butylbenzene	ND		0.50	0.070	ug/L			01/01/21 01:13	1
trans-1,4-Dichloro-2-butene	ND		5.0	2.0	ug/L			01/01/21 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
						-			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120		01/01/21 01:13	1
Dibromofluoromethane (Surr)	97		80 - 120		01/01/21 01:13	1
4-Bromofluorobenzene (Surr)	98		80 - 120		01/01/21 01:13	1
Toluene-d8 (Surr)	100		80 - 120		01/01/21 01:13	1

Client Sample ID: MW-1

Date Collected: 12/22/20 11:20

Date Received: 12/23/20 18:39

Method: 8260C LL - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
cis-1,3-Dichloropropene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
trans-1,3-Dichloropropene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Ethylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Styrene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,4-Dichlorobenzene	ND		0.50	0.070	ug/L			01/01/21 01:35	1
1,2-Dibromoethane	ND		0.50	0.060	ug/L			01/01/21 01:35	1
1,1-Dichloropropene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,2-Dichloroethane	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,2,3-Trichlorobenzene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,2,3-Trichloropropane	ND		1.0	0.10	ug/L			01/01/21 01:35	1
Toluene	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Chlorobenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
1,2,4-Trimethylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
1,2,4-Trichlorobenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Dibromochloromethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Xylenes, Total	ND		1.0	0.15	ug/L			01/01/21 01:35	1
Tetrachloroethene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
cis-1,2-Dichloroethene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
trans-1,2-Dichloroethene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Methyl tertiary butyl ether	ND		0.50	0.050	ug/L			01/01/21 01:35	1

Lab Sample ID: 410-24912-2

Matrix: Water

5

6

Date Collected: 12/22/20 11:20 Date Received: 12/23/20 18:39

Client Sample ID: MW-1

Method: 8260C LL - Volatile Or	ganic Compound	ds by GC/M	S (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
1,3-Dichlorobenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
1,3-Dichloropropane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Chloroform	ND		0.50	0.090	ug/L			01/01/21 01:35	1
Benzene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,1,1-Trichloroethane	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Bromomethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Chloromethane	0.20	J	0.50	0.060	ug/L			01/01/21 01:35	1
Chloroethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
2,2-Dichloropropane	ND		0.50	0.050	ug/L			01/01/21 01:35	1
Vinyl chloride	ND		0.50	0.10	ug/L			01/01/21 01:35	1
Methylene Chloride	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Carbon disulfide	ND		1.0	0.060	ug/L			01/01/21 01:35	1
Bromoform	ND		1.0	0.30	ug/L			01/01/21 01:35	1
Bromodichloromethane	ND		0.50	0.050	ug/L			01/01/21 01:35	1
1,1-Dichloroethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
2-Chlorotoluene	ND		0.50	0.070	ug/L			01/01/21 01:35	1
1.1-Dichloroethene	ND		0.50	0.060	ua/L			01/01/21 01:35	1
Trichlorofluoromethane	ND		0.50	0.050	ua/L			01/01/21 01:35	1
4-Chlorotoluene	ND		0.50	0 070	ug/l			01/01/21 01:35	1
Dichlorodifluoromethane	ND		0.50	0.050	ug/l			01/01/21 01:35	. 1
1 2-Dichloronronane	ND		0.50	0.060	ug/L			01/01/21 01:35	
			0.50	0.000	ug/L			01/01/21 01:35	1
			5.0	0.000	ug/L			01/01/21 01:35	1
Trichloroothono			0.50	0.40	ug/L			01/01/21 01:35	
			0.50	0.000	ug/L			01/01/21 01:35	1
1,1,2,2- letrachioroethane	ND		0.50	0.070	ug/L			01/01/21 01:35	1
	ND		0.50	0.060	ug/L			01/01/21 01:35	
1,2-Dibromo-3-Chioropropane	ND		0.50	0.10	ug/L			01/01/21 01:35	1
Bromobenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
Bromochloromethane	ND		0.50	0.050	ug/L			01/01/21 01:35	1
Isopropylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
Dibromomethane	ND		0.50	0.060	ug/L			01/01/21 01:35	1
di-Isopropyl ether	ND		0.50	0.050	ug/L			01/01/21 01:35	1
Ethyl t-butyl ether	ND		0.50	0.050	ug/L			01/01/21 01:35	1
Hexachlorobutadiene	ND		0.50	0.070	ug/L			01/01/21 01:35	1
Naphthalene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
n-Butylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
N-Propylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
p-Isopropyltoluene	ND		0.50	0.050	ug/L			01/01/21 01:35	1
sec-Butylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:35	1
t-Amyl methyl ether	ND		0.50	0.20	ug/L			01/01/21 01:35	1
t-Butyl alcohol	ND		10	1.1	ug/L			01/01/21 01:35	1
tert-Butylbenzene	ND		0.50	0.070	ug/L			01/01/21 01:35	1
trans-1,4-Dichloro-2-butene	ND		5.0	2.0	ug/L			01/01/21 01:35	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					01/01/21 01:35	1
Dibromofluoromethane (Surr)	98		80 - 120					01/01/21 01:35	1
4-Bromofluorobenzene (Surr)	98		80 - 120					01/01/21 01:35	1
Toluene-d8 (Surr)	100		80 - 120					01/01/21 01:35	1

Lab Sample ID: 410-24912-3

Matrix: Water

5

6

Date	Collected:	12/22/20	12:20
Date	Received:	12/23/20	18:3 9

Client Sample ID: MW-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/L			01/01/21 01:57	1
cis-1,3-Dichloropropene	ND		0.50	0.050	ug/L			01/01/21 01:57	1
trans-1,3-Dichloropropene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
Ethylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
Styrene	ND		0.50	0.050	ug/L			01/01/21 01:57	1
1,4-Dichlorobenzene	ND		0.50	0.070	ug/L			01/01/21 01:57	1
1,2-Dibromoethane	ND		0.50	0.060	ug/L			01/01/21 01:57	1
1,1-Dichloropropene	ND		0.50	0.050	ug/L			01/01/21 01:57	1
1,2-Dichloroethane	ND		0.50	0.050	ug/L			01/01/21 01:57	1
1,2,3-Trichlorobenzene	ND		0.50	0.050	ug/L			01/01/21 01:57	1
1,2,3-Trichloropropane	ND		1.0	0.10	ug/L			01/01/21 01:57	1
Toluene	ND		0.50	0.070	ug/L			01/01/21 01:57	1
Chlorobenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
1.2.4-Trimethylbenzene	ND		0.50	0.060	ua/L			01/01/21 01:57	1
1.2.4-Trichlorobenzene	ND		0.50	0.060	ua/L			01/01/21 01:57	1
Dibromochloromethane	ND		0.50	0.070	ua/L			01/01/21 01:57	1
Xvlenes Total	ND		1.0	0.15	ua/l			01/01/21 01:57	1
Tetrachloroethene	ND		0.50	0.060	ua/l			01/01/21 01:57	1
cis-1 2-Dichloroethene	ND		0.50	0.050	ug/l			01/01/21 01:57	
trans_1 2-Dichloroethene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
Mothyl tortiony butyl other	1.6		0.50	0.000	ug/L			01/01/21 01:57	1
1.3.5-Trimethylbenzene			0.50	0.000	ug/L			01/01/21 01:57	
1.3 Dichlorobonzono			0.50	0.000	ug/L			01/01/21 01:57	1
			0.50	0.000	ug/L			01/01/21 01:57	1
Chloroform			0.50	0.070	ug/L			01/01/21 01:57	· · · · · · · · · · · · · · · · · · ·
Benzone			0.50	0.050	ug/L			01/01/21 01:57	1
			0.50	0.050	ug/L			01/01/21 01:57	1
Promomothana			0.50	0.000	ug/L			01/01/21 01:57	
Chlanemathana			0.50	0.070	ug/L			01/01/21 01:57	1
Chloroothana	0.13	J	0.50	0.000	ug/L			01/01/21 01:57	1
			0.50	0.070	ug/L			01/01/21 01.57	
Z,Z-Dichloropropane			0.50	0.050	ug/L			01/01/21 01:57	1
Mathulana Chlarida			0.50	0.10	ug/L			01/01/21 01.57	1
	ND		0.50	0.070	ug/L			01/01/21 01.57	
Dramaform	ND		1.0	0.060	ug/L			01/01/21 01.57	1
Bromotorini			0.50	0.50	ug/L			01/01/21 01.57	1
1 1 Disblorgethene	ND		0.50	0.050	ug/L			01/01/21 01.57	
	ND		0.50	0.070	ug/L			01/01/21 01.57	1
	ND		0.50	0.070	ug/L			01/01/21 01:57	1
	ND		0.50	0.060	ug/L			01/01/21 01:57	۱ ۸
	ND		0.50	0.050	ug/L			01/01/21 01:57	1
4-Chiorotoluene	ND		0.50	0.070	ug/L			01/01/21 01:57	1
	ND		0.50	0.050	ug/L			01/01/21 01:57	
	ND		0.50	0.060	ug/L			01/01/21 01:57	1
1,1,2- I richloroethane	ND		0.50	0.060	ug/L			01/01/21 01:57	1
Acrylonitrile	ND		5.0	0.40	ug/L			01/01/21 01:57	1
Trichloroethene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.070	ug/L			01/01/21 01:57	1
1,2-Dichlorobenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1
1,2-Dibromo-3-Chloropropane	ND		0.50	0.10	ug/L			01/01/21 01:57	1

Client Sample ID: MW-4

Date Collected: 12/22/20 12:20

Date Received: 12/23/20 18:39

Lab Sample ID: 410-24912-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Bromobenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1	
Bromochloromethane	ND		0.50	0.050	ug/L			01/01/21 01:57	1	6
Isopropylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:57	1	
Dibromomethane	ND		0.50	0.060	ug/L			01/01/21 01:57	1	
di-Isopropyl ether	0.19	J	0.50	0.050	ug/L			01/01/21 01:57	1	
Ethyl t-butyl ether	ND		0.50	0.050	ug/L			01/01/21 01:57	1	8
Hexachlorobutadiene	ND		0.50	0.070	ug/L			01/01/21 01:57	1	
Naphthalene	ND		0.50	0.050	ug/L			01/01/21 01:57	1	0
n-Butylbenzene	ND		0.50	0.050	ug/L			01/01/21 01:57	1	3
N-Propylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1	
p-Isopropyltoluene	ND		0.50	0.050	ug/L			01/01/21 01:57	1	
sec-Butylbenzene	ND		0.50	0.060	ug/L			01/01/21 01:57	1	
t-Amyl methyl ether	ND		0.50	0.20	ug/L			01/01/21 01:57	1	
t-Butyl alcohol	2.6	J	10	1.1	ug/L			01/01/21 01:57	1	
tert-Butylbenzene	ND		0.50	0.070	ug/L			01/01/21 01:57	1	
trans-1,4-Dichloro-2-butene	ND		5.0	2.0	ug/L			01/01/21 01:57	1	
										13
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					01/01/21 01:57	1	
Dibromofluoromethane (Surr)	98		80 - 120					01/01/21 01:57	1	
4-Bromofluorobenzene (Surr)	97		80 - 120					01/01/21 01:57	1	
Toluene-d8 (Surr)	100		80 - 120					01/01/21 01:57	1	

Method: 8260C LL - Volatile Organic Compounds by GC/MS

Matrix: Water Percent Surrogate Recovery (Acceptance Limits) DCA DBFM BFB TOL Lab Sample ID **Client Sample ID** (80-120) (80-120) (80-120) (80-120) 410-24912-1 MW-3 99 97 98 100 410-24912-2 MW-1 99 98 98 100 410-24912-3 MW-4 98 98 97 100 LCS 410-81468/6 97 Lab Control Sample 99 99 101 MB 410-81468/9 Method Blank 95 97 98 100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Prep Type: Total/NA

5

8

Method: 8260C LL - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 410-81468/9

Matrix: Water Analysis Batch: 81468

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
cis-1,3-Dichloropropene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
trans-1,3-Dichloropropene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Ethylbenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Styrene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,4-Dichlorobenzene	ND		0.50	0.070	ug/L			12/31/20 18:59	1
1,2-Dibromoethane	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,1-Dichloropropene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,2-Dichloroethane	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,2,3-Trichlorobenzene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,2,3-Trichloropropane	ND		1.0	0.10	ug/L			12/31/20 18:59	1
Toluene	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Chlorobenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,2,4-Trimethylbenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,2,4-Trichlorobenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Dibromochloromethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Xylenes, Total	ND		1.0	0.15	ug/L			12/31/20 18:59	1
Tetrachloroethene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
cis-1,2-Dichloroethene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
trans-1,2-Dichloroethene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Methyl tertiary butyl ether	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,3,5-Trimethylbenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,3-Dichlorobenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,3-Dichloropropane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Chloroform	ND		0.50	0.090	ug/L			12/31/20 18:59	1
Benzene	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,1,1-Trichloroethane	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Bromomethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Chloromethane	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Chloroethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
2,2-Dichloropropane	ND		0.50	0.050	ug/L			12/31/20 18:59	1
Vinyl chloride	ND		0.50	0.10	ug/L			12/31/20 18:59	1
Methylene Chloride	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Carbon disulfide	ND		1.0	0.060	ug/L			12/31/20 18:59	1
Bromoform	ND		1.0	0.30	ug/L			12/31/20 18:59	1
Bromodichloromethane	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,1-Dichloroethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
2-Chlorotoluene	ND		0.50	0.070	ug/L			12/31/20 18:59	1
1,1-Dichloroethene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Trichlorofluoromethane	ND		0.50	0.050	ug/L			12/31/20 18:59	1
4-Chlorotoluene	ND		0.50	0.070	ug/L			12/31/20 18:59	1
Dichlorodifluoromethane	ND		0.50	0.050	ug/L			12/31/20 18:59	1
1,2-Dichloropropane	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,1,2-Trichloroethane	ND		0.50	0.060	ug/L			12/31/20 18:59	1
Acrylonitrile	ND		5.0	0.40	ug/L			12/31/20 18:59	1
Trichloroethene	ND		0.50	0.060	ug/L			12/31/20 18:59	1
1,1,2,2-Tetrachloroethane	ND		0.50	0.070	ug/L			12/31/20 18:59	1
1,2-Dichlorobenzene	ND		0.50	0.060	ug/L			12/31/20 18:59	1

Method: 8260C LL - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 410-81468/9 Matrix: Water

Analysis Batch: 81468

1,2-Dibromo-3-Chloropropane

Analyte

Bromobenzene

Isopropylbenzene

Dibromomethane

di-Isopropyl ether

Ethyl t-butyl ether

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

t-Amyl methyl ether

tert-Butylbenzene

trans-1,4-Dichloro-2-butene

t-Butyl alcohol

Hexachlorobutadiene

Bromochloromethane

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 0.50 0.10 ug/L 12/31/20 18:59 1 ND 0.50 0.060 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.060 ug/L 12/31/20 18:59 1 8 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.070 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.060 ug/L 12/31/20 18:59 1 ND 0.50 0.050 ug/L 12/31/20 18:59 1 ND 0.50 0.060 ug/L 12/31/20 18:59 1 ND 0.50 0.20 ug/L 12/31/20 18:59 1 ND 10 12/31/20 18:59 1.1 ug/L 1 ND 0.50 0.070 ug/L 12/31/20 18:59 1 ND 5.0 12/31/20 18:59 1 2.0 ug/L MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 120		12/31/20 18:59	1
Dibromofluoromethane (Surr)	97		80 - 120		12/31/20 18:59	1
4-Bromofluorobenzene (Surr)	98		80 - 120		12/31/20 18:59	1
Toluene-d8 (Surr)	100		80 - 120		12/31/20 18:59	1

Lab Sample ID: LCS 410-81468/6 Matrix: Water Analysis Batch: 81468

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	5.00	4.73		ug/L		95	71 - 134	
cis-1,3-Dichloropropene	5.00	4.47		ug/L		89	67 - 121	
trans-1,3-Dichloropropene	5.00	4.48		ug/L		90	61 _ 129	
Ethylbenzene	5.00	4.57		ug/L		91	80 _ 120	
Styrene	5.00	4.70		ug/L		94	80 - 120	
1,4-Dichlorobenzene	5.00	4.66		ug/L		93	80 - 120	
1,2-Dibromoethane	5.00	4.62		ug/L		92	80 - 120	
1,1-Dichloropropene	5.00	4.61		ug/L		92	74 ₋ 120	
1,2-Dichloroethane	5.00	4.36		ug/L		87	69 ₋ 122	
1,2,3-Trichlorobenzene	5.00	4.50		ug/L		90	68 ₋ 125	
1,2,3-Trichloropropane	5.00	4.73		ug/L		95	80 _ 125	
Toluene	5.00	4.59		ug/L		92	80 - 120	
Chlorobenzene	5.00	4.70		ug/L		94	80 - 120	
1,2,4-Trimethylbenzene	5.00	4.57		ug/L		91	80 - 120	
1,2,4-Trichlorobenzene	5.00	4.57		ug/L		91	68 - 122	
Dibromochloromethane	5.00	4.78		ug/L		96	64 - 138	
Xylenes, Total	15.0	14.2		ug/L		94	80 - 120	
Tetrachloroethene	5.00	4.79		ug/L		96	80 - 120	
cis-1,2-Dichloroethene	5.00	4.79		ug/L		96	80 - 122	

Prep Type: Total/NA

5

8

Client Sample ID: Lab Control Sample

Method: 8260C LL - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 410-81468/6

Matrix: Water Analysis Batch: 81468

AnalysAddedMesultQualterUnitD%RecLinterMenty teners5.004.43ugl.8.68.12013.5 Timetry bary teners5.004.61ugl.8.68.12013.5 Lintersty bary teners5.004.61ugl.8.28.1201.3.5 Lintersty bary teners5.004.63ugl.8.28.1201.3.5 Lintersty bary teners5.004.53ugl.8.08.01.201.3.5 Lintersty bary teners5.004.33ugl.8.09.01.20Bernsen5.004.33ugl.8.09.01.201.20Bronorefinine5.004.14ugl.8.01.201.20Chicorestrane5.004.14ugl.8.01.201.20Chicorestrane5.004.40ugl.8.01.201.20Chicorestrane5.004.40ugl.8.01.201.20Chicorestrane5.004.41ugl.8.01.201.20Chicorestrane5.004.42ugl.8.01.20Chicorestrane5.004.43ugl.8.01.20Chicorestrane5.004.43ugl.8.01.20Chicorestrane5.004.44ugl.8.01.20Chicorestrane5.004.47ugl.8.01.20Linterstrane5.004.49ugl.8.01.20Linterstrane5.0		Spike	LCS	LCS			%Rec.	
trans.1.2.Dehilocothene 500 4.45 upl, 69 60.122 1.3.5-Tronshybonzone 500 4.61 upl, 62 80.120 1.3.5-Tronshybonzone 500 4.61 upl, 62 80.120 1.3.5-Tronshybonzone 500 4.52 upl, 91 80.120 1.3.5-Tronshybonzone 500 4.52 upl, 91 80.120 Chioroform 500 4.50 upl, 90 80.120 Thi.1.5-Trichoroshane 500 4.50 upl, 88 61.141 Smomenthane 500 4.14 upl, 86 63.120 Chioroshane 500 4.14 upl, 80 63.120 Chioroshane 500 4.40 upl, 80 61.141 Viry Ichinda 6.00 4.40 upl, 80 61.141 Viry Ichinda 6.00 4.40 upl, 80 61.141 Viry Ichinda 6.00 4.40 upl,	Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Methy totary bulk defer5.004.29upL806.101.3-Dinchrophenzene5.004.61upL9280.1201.3-Dichkropenzene5.004.51upL9280.1201.3-Dichkropenzene5.004.52upL9180.120Banzane5.004.53upL9180.120Banzane5.004.34upL8860.136Chkornethane5.004.21upL8861.120Chkornethane5.004.24upL8861.121Chkornethane5.004.24upL8861.141Chkornethane5.004.24upL8861.141Chkornethane5.004.64upL9380.1202.2-Dichkornethane5.004.64upL9380.1202.4-Dichkornethane5.004.64upL9274.1202.5-Dichkornethane5.004.52upL9270.1241.5-Dichkornethane5.004.52upL9270.1242.4-Dichkornethane5.004.64upL9280.1202.5-Dichkornethane5.004.62upL9280.1202.6-Dickornethane5.004.64upL9280.1202.6-Dickornethane5.004.64upL9280.1202.6-Dickornethane5.004.64upL9280.1202.6-Dickornethane5.004.64upL9280.120	trans-1,2-Dichloroethene	5.00	4.45	ug/L		89	80 - 122	
1.3.6.Trinettybenzene5.004.61ugl.9.280.1201.3.Dichloropropane5.004.52ugl.9080.1201.3.Dichloropropane5.004.52ugl.9180.1201.1.1.Trichloropropane5.004.52ugl.9070.126Bornomethane5.004.50ugl.8060.136Chloropropane5.004.14ugl.8360.136Chloromethane5.004.60ugl.8361.141Chloromethane5.004.60ugl.8361.141Viny Ichiofie5.004.60ugl.8380.136Chloromethane5.004.60ugl.8380.130Cathorofic5.004.60ugl.8380.120Cathorofic5.004.50ugl.9273.124Cathorofic5.004.61ugl.9273.124Cathorofic5.004.61ugl.9273.1241.1.Oktorothane5.004.61ugl.9273.1241.1.Oktorothane5.004.61ugl.9273.1241.1.Oktorothane5.004.61ugl.9280.1301.1.Dichorothane5.004.61ugl.9280.1301.1.Dichorothane5.004.61ugl.9280.1301.1.Dichorothane5.004.61ugl.9280.1301.1.Dichorothane5.004.61ugl.9280.	Methyl tertiary butyl ether	5.00	4.29	ug/L		86	69 - 120	
1.3-Dehtopropane5.004.61upL928.01:20Chloroform5.004.52upL0080.120Chloroform5.004.53upL0180.120Benzene5.004.53upL0880.120Bromomethane5.004.39upL8860.136Chloromethane5.004.40upL8861.141Chloromethane5.004.40upL8861.141Chloromethane5.004.40upL8061.141Chloromethane5.004.64upL8061.141Chloromethane5.004.64upL8061.141Chloromethane5.004.64upL8061.141Chloromethane5.004.64upL8061.141Bernodichoromethane5.004.64upL8061.141Chloromethane5.004.64upL8081.1411.1-Dehtoroethane5.004.61upL8081.1411.1-Dehtoroethane5.004.62upL8081.1411.1-Dehtoroethane5.004.62upL8081.1211.1-Dehtoroethane5.004.61upL8081.1231.1-Dehtoroethane5.004.61upL8081.1231.1-Dehtoroethane5.004.61upL8081.1231.1-Dehtoroethane5.004.61upL8081.1231.1-Dehtor	1,3,5-Trimethylbenzene	5.00	4.61	ug/L		92	80 - 120	
1.3-Dicknorphogene5.004.50up1.92801.20Chiorotorm5.004.53up1.801.201.1, 1-trickrosethane5.004.53up1.8860.136Emonomethane5.004.21up1.8860.136Chioromethane5.004.21up1.8861.141Chioromethane5.004.40up1.8861.1412.2.Dichloropropane5.004.40up1.8861.141Viny Ichnide5.004.64up1.8062.Bromomethane5.004.64up1.8063.Storomethane5.004.59up1.807.130Bromofer5.004.59up1.807.130Bromofer5.004.59up1.807.130Bromofer5.004.59up1.80801.1.Dichloromethane5.004.61up1.80801.1.Dichloromethane5.004.57up1.804.1201.1.Dichloromethane5.004.57up1.804.1201.1.Dichloromethane5.004.50up1.801.201.1.Dichloromethane5.004.61up1.801.201.1.Dichloromethane5.004.50up1.801.201.1.Dichloromethane5.004.57up1.801.201.1.Dichloromethane5.004.61up1.801.20 <td>1,3-Dichlorobenzene</td> <td>5.00</td> <td>4.61</td> <td>ug/L</td> <td></td> <td>92</td> <td>80 - 120</td> <td></td>	1,3-Dichlorobenzene	5.00	4.61	ug/L		92	80 - 120	
Chlorofom 5.00 4.53 upl. 90 90 120 Benzene 5.00 4.53 upl. 90 78 128 Bromomethane 5.00 4.50 upl. 80 78 128 Bromomethane 5.00 4.21 upl. 88 60.136 Chlorodehane 5.00 4.14 upl. 88 63.120 2.2-Dichloropropane 5.00 4.60 upl. 92 60.125 Methylenc Chloride 5.00 4.60 upl. 92 60.125 Chlorodehane 5.00 4.61 upl. 93 80.120 Cathorid sulfide 5.00 4.61 upl. 92 60.125 Methylenc Chloride 5.00 4.59 upl. 92 60.125 Bromoform 5.00 4.59 upl. 92 74.120 Bromoform 5.00 4.59 upl. 92 74.120 Chlorodhloromethane 5.00 4.62 upl. 92 80.120 Chlorodhloromethane 5.00 4.59 upl. 93 83.123 Chlorodhloromethane 5.00 4.59 upl. 94 90.120	1,3-Dichloropropane	5.00	4.59	ug/L		92	80 - 120	
Benzene5.004.50up1.9180.10.1.1.1-Trichloroethane5.004.39up1.8860.136Chloromethane5.004.21up1.8363.124Chloropropane5.004.40up1.8863.1242.2.Dichloropropane5.004.40up1.8063.1242.3.Dichloropropane5.004.60up1.8063.124Viny choride5.004.60up1.8063.124Carbon disulfide5.004.64up1.8063.124Bromoder5.004.50up1.8063.124Bromoder5.004.50up1.8063.124Bromoder5.004.50up1.8063.124Bromoder5.004.61up1.8063.124Chloroethane5.004.62up1.8063.134Thebloroethane5.004.62up1.8063.134Chloroethane5.004.59up1.8063.134Chloroethane5.004.59up1.8063.134Chloroethane5.004.59up1.8063.134Chloroethane5.004.59up1.8063.134Chloroethane5.004.59up1.8063.134Chloroethane5.004.60up1.8063.124Chloroethane5.004.60up1.8063.124Chloroethane <td>Chloroform</td> <td>5.00</td> <td>4.52</td> <td>ug/L</td> <td></td> <td>90</td> <td>80 - 120</td> <td></td>	Chloroform	5.00	4.52	ug/L		90	80 - 120	
1,1,1-Tichloroethane5.004.30upl8071.28Bromomethane5.004.39upl8465.124Chloroethane5.004.14upl8861.134Chloroethane5.004.40upl8861.141Viny chorde5.004.60upl8260.125Methyene Chloride5.004.60upl8260.125Methyene Chloride5.004.64upl8061.141Carbon disulfe5.004.64upl8061.141Bromodichloroethane5.004.61upl8274.120Bromodichloroethane5.004.61upl8274.120Bromodichloroethane5.004.62upl9274.1201.1-Dichloroethane5.004.62upl9280.1201.1-Dichloroethane5.004.69upl8063.131Trichlorothoromethane5.004.69upl8063.1321.1-Dichloroethane5.004.69upl8063.1321.1-Dichloroethane5.004.69upl8063.1321.1-Dichloroethane5.004.69upl<	Benzene	5.00	4.53	ug/L		91	80 - 120	
Bornmorehane5.004.21ug/L8460.136Chloromehane5.004.14ug/L8365.1242.2.Dichhorophane5.004.04ug/L8861.1412.2.Dichhorophane5.004.60ug/L800.125Mathylene Chloride5.004.64ug/L8380.120Carton disulfde5.004.64ug/L8084Bromoform5.004.79ug/L8273.124Bromoform5.004.59ug/L9274.120Schlorotehane5.004.59ug/L9280.131Tichlorotehane5.004.59ug/L9280.131Tichlorotehane5.004.59ug/L9280.131Tichlorotehane5.004.59ug/L8483.122Lichlorotehane5.004.41ug/L8843.123Lichlorotehane5.004.57ug/L8483.123Lichlorotehane5.004.59ug/L8680.120Lichlorotehane5.004.62ug/L8843.123Lichlorotehane5.004.62ug/L8843.123Lichlorotehane5.004.69ug/L8830.120Lichlorotehane5.004.69ug/L8830.120Lichlorotehane5.004.60ug/L8080.120Lichlorotehane5.004.60ug/L8080.120Li	1,1,1-Trichloroethane	5.00	4.50	ug/L		90	78 - 126	
Chiconethane 5.00 4.21 upL 8.4 6.1-24 Chinorethane 5.00 4.40 upL 8.8 63.120 Chinorethane 5.00 4.60 upL 8.8 61.141 Viry choride 5.00 4.60 upL 8.0 60.125 Carbon disulfide 5.00 4.61 upL 9.2 67.130 Bromodichiormethane 5.00 4.59 upL 9.2 7.124 1.1-Dichioromethane 5.00 4.61 upL 9.2 7.124 1.1-Dichioromethane 5.00 4.61 upL 9.2 80.120 1.1-Dichioromethane 5.00 4.61 upL 9.2 80.120 1.1-Dichioromethane 5.00 4.59 upL 9.2 80.120 1.1-Dichioromethane 5.00 4.59 upL 9.2 80.120 1.1-Dichioromethane 5.00 4.60 upL 9.2 80.120 1.1-Dichioromethane 5.00 4.60<	Bromomethane	5.00	4.39	ug/L		88	60 - 136	
Chickongropane5.004.14ug/L8.363.1202.2-Dichioropropane5.004.60ug/L9.260.125Methylen Chiorie5.004.64ug/L9.380.120Carbon disulfide5.004.79ug/L9.480.120Bromodorm5.004.79ug/L9.27.130Bromodorm5.004.79ug/L9.27.124Bromodorm5.004.61ug/L9.280.1201.1-Dichiorobrehane5.004.62ug/L9.280.1202.Chorotoluene5.004.61ug/L9.08.131.1-Dichiorobrehane5.004.59ug/L9.280.1201.1-Dichiorobrehane5.004.57ug/L9.08.131.1-Dichiorobrehane5.004.57ug/L9.08.1201.1-Dichiorobrehane5.004.57ug/L9.08.1201.1-Dichiorobrehane5.004.57ug/L9.08.1201.1-Dichiorobrehane5.004.60ug/L9.28.1301.1-Dichiorobrehane5.004.60ug/L9.08.1201.1-Dichiorobrehane5.004.60ug/L9.08.1301.1-Dichiorobrehane5.004.60ug/L9.08.1301.1-Dichiorobrehane5.004.60ug/L9.08.1301.1-Dichiorobrehane5.004.60ug/L9.08.1301.1-Dichiorobrehane5.0	Chloromethane	5.00	4.21	ug/L		84	56 - 124	
2.2-Dickloropropane 5.00 4.40 ug/L 88 61.141 Viny chloride 5.00 4.60 ug/L 93 80.120 Carton disulfide 5.00 4.35 ug/L 87 67.130 Bromodichromethane 5.00 4.79 ug/L 92 74.120 Stomodichromethane 5.00 4.61 ug/L 92 73.124 1.1-Dichloroethane 5.00 4.62 ug/L 92 80.120 2-Chicotoluene 5.00 4.69 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.69 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 98 80.120 Dichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Tichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Tichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Dichloroethane 5.00 4.64 ug/L 93 61.131 <td>Chloroethane</td> <td>5.00</td> <td>4.14</td> <td>ug/L</td> <td></td> <td>83</td> <td>63 - 120</td> <td></td>	Chloroethane	5.00	4.14	ug/L		83	63 - 120	
Vinyl choride 5.00 4.60 ug/L 92 60.125 Methylene Chioride 5.00 4.64 ug/L 93 80.120 Carbon disulfide 5.00 4.79 ug/L 96 49.144 Bromodorm 5.00 4.59 ug/L 92 74.120 1.1-Dichloredhane 5.00 4.62 ug/L 92 80.120 1.1-Dichloredhane 5.00 4.59 ug/L 92 80.120 1.1-Dichloredhane 5.00 4.59 ug/L 92 80.120 1.1-Dichloredhane 5.00 4.57 ug/L 88 43.123 1.1-Dichloredhane 5.00 4.41 ug/L 88 43.123 1.2-Dichloropopane 5.00 4.60 ug/L 89 60.120 1.1.2-Trichloredhane 5.00 4.60 ug/L 89 80.120 1.1.2-Trichlorophane 5.00 4.60 ug/L 89 80.120 1.2-Dichorophane 5.00 4.60	2,2-Dichloropropane	5.00	4.40	ug/L		88	61 - 141	
Methylene Chloride 5.00 4.64 ug/L 93 80. 120 Carbon disulfide 5.00 4.35 ug/L 67 67.130 Bromodichloromethane 5.00 4.59 ug/L 62 74.120 L1-Dichloroethane 5.00 4.61 ug/L 92 74.120 2-Chlorotoluromethane 5.00 4.63 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 92 80.120 1.1-Dichloroethane 5.00 4.59 ug/L 80 82.123 1.2-Dichloroethane 5.00 4.59 ug/L 80 83.123 1.2-Dichloroethane 5.00 4.59 ug/L 80 80.120 1.2-Dichloroethane 5.00 4.59 ug/L 80 80.120 1.2-Dichloroethane 5.00 4.60 ug/L 80 80.120 1.2-Dichloroethane	Vinyl chloride	5.00	4.60	ug/L		92	60 _ 125	
Carbon disulfide 5.00 4.35 ug/L 87 67.130 Bromothm 5.00 4.79 ug/L 96 49.144 Bromothoromethane 5.00 4.61 ug/L 92 73.124 1.1-Dichloromethane 5.00 4.62 ug/L 92 80.120 1.1-Dichloromethane 5.00 4.52 ug/L 92 80.131 Trichlorofuoromethane 5.00 4.57 ug/L 91 80.120 Lobichoroditucromethane 5.00 4.57 ug/L 92 80.120 Dichloroditucromethane 5.00 4.57 ug/L 92 80.120 Lobichoroditucromethane 5.00 4.59 ug/L 92 80.120 Lobichoroditucromethane 5.00 4.59 ug/L 92 80.120 Lobichoroditucromethane 5.00 4.60 ug/L 92 80.120 Lobichoroditucromethane 5.00 4.60 ug/L 93 81.120 Lobichoroditucromethan	Methylene Chloride	5.00	4.64	ug/L		93	80 - 120	
Bromodorm5004.79ug/L9649.144Bromodicioromethane5004.59ug/L9273.1241.1-Dichicorethane5004.62ug/L9280.1201.1-Dichicorethene5004.62ug/L9280.131Trichlorofutoromethane5004.49ug/L9280.120Dichorodifuoromethane5004.49ug/L8280.120Dichorodifuoromethane5004.49ug/L8280.120Dichorodifuoromethane5004.59ug/L9280.1201.2-Dichorodifuoromethane5004.60ug/L9280.1201.2-Dichorodifuoromethane5004.60ug/L9280.1201.2-Dichorodifuoromethane5004.60ug/L9280.1201.2-Dichorodifueromethane5004.60ug/L9280.1201.2-Dichorodifueromethane5004.60ug/L9280.1201.2-Dichorodifueromethane5004.60ug/L9480.1201.2-Dichorodifueromethane5004.60ug/L9480.1201.2-Dichoromethane5004.61ug/L9480.1201.2-Dichoromethane5004.63ug/L9480.1201.2-Dichoromethane5004.64ug/L9480.1201.2-Dichoromethane5004.64ug/L9572.1231.2-Dichoromethane5004.56ug/L97	Carbon disulfide	5.00	4.35	ug/L		87	67 _ 130	
Bromodichloromethane 5.00 4.50 ug/L 92 73.124 1.1-Dichloromethane 5.00 4.61 ug/L 92 74.120 2-Chlorotoluene 5.00 4.62 ug/L 92 80.120 1.1-Dichloromethane 5.00 4.59 ug/L 92 80.131 Trichlorofuoromethane 5.00 4.49 ug/L 90 62.136 Dichlorofiluoromethane 5.00 4.57 ug/L 80 43.123 1.2-Dichlorofuoromethane 5.00 4.59 ug/L 92 80.120 1.1.2-Trichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Trichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Dichrobroethane 5.00 4.60 ug/L 92 80.120 1.2-Dichrobroethane 5.00 4.61 ug/L 92 80.120 1.2-Dichrobroethane 5.00 4.62 ug/L 94 80.120 1.2-Dichrobroethan	Bromoform	5.00	4.79	ug/L		96	49 _ 144	
1,1-Dichloroethane 5.00 4.61 ug/L 92 74.120 2-Chorotoluene 5.00 4.62 ug/L 92 80.120 1,1-Dichloroethane 5.00 4.59 ug/L 92 80.131 Tichlorotoluene 5.00 4.49 ug/L 90 62.138 4-Chorotoluene 5.00 4.57 ug/L 91 80.120 Dichlorodifluoromethane 5.00 4.59 ug/L 92 80.120 1.2-Dichloropopane 5.00 4.59 ug/L 92 80.120 1.1.2-Trichloroethane 5.00 4.60 ug/L 92 80.120 1.1.2-Trichloroethane 5.00 4.60 ug/L 93 80.120 1.1.2.2-Techtoroethane 5.00 4.60 ug/L 93 80.120 1.2-Dichoromethane 5.00 4.61 ug/L 93 80.120 1.2-Dichoromethane 5.00 4.62 ug/L 93 80.120 1.2-Dichoromethane 5.00 4.61 ug/L 80 80.120 Bromochoromethane	Bromodichloromethane	5.00	4.59	ug/L		92	73 - 124	
2-Chorotoluene5.004.62ug/L9.280.1201.1-Dichorothene5.004.59ug/L9.280.131Trichlorofluoromethane5.004.49ug/L9.062.1364-Chorotoluene5.004.41ug/L8.843.1231.2-Dichloropropane5.004.59ug/L9.680.1201.1.2-Trichloroethane5.004.59ug/L9.680.1201.1.2-Trichloroethane5.004.60ug/L9.280.1201.1.2-Trichloroethane5.004.60ug/L9.280.1201.1.2-Dichloropopane5.004.60ug/L9.280.1201.2-Dichloropopane5.004.60ug/L9.280.1201.2-Dichlorobenzene5.004.60ug/L9.280.1201.2-Dichlorobenzene5.004.60ug/L9.880.1201.2-Dichlorobenzene5.004.61ug/L9.880.1201.2-Dichlorobenzene5.004.62ug/L9.880.1201.2-Dichlorobenzene5.004.62ug/L8.980.1201.2-Dichlorobenzene5.004.62ug/L8.980.1201.2-Dichlorobenzene5.004.62ug/L8.971.1221.2-Dichlorobenzene5.004.75ug/L8.971.1221.2-Dichlorobenzene5.004.75ug/L8.971.1221.2-Dichlorobenzene5.004.75ug/L8.9 <t< td=""><td>1,1-Dichloroethane</td><td>5.00</td><td>4.61</td><td>ug/L</td><td></td><td>92</td><td>74 - 120</td><td></td></t<>	1,1-Dichloroethane	5.00	4.61	ug/L		92	74 - 120	
1,1-Dichlorodethene5.004.59ug/L9280.131Trichloroduromethane5.004.49ug/L9062.1364-Chioroduluene5.004.57ug/L8843.1231.2-Dichlorodiropropane5.004.59ug/L9280.1201.1.2-Tichloroethane5.004.59ug/L9280.120Acrylonitrile5.004.60ug/L9280.1201.1.2-Tetrachloroethane5.004.60ug/L9280.1201.1.2-Tetrachloroethane5.004.60ug/L9275.1231.2-Dichloropropane5.004.60ug/L9275.1231.2-Dichlorobenzene5.004.64ug/L9380.1201.2-Dichlorobenzene5.004.64ug/L9380.1201.2-Dichlorobenzene5.004.64ug/L9480.120Bromobelroene5.004.64ug/L9480.120Dibromonethane5.004.64ug/L8980.120Isopropylenzene5.004.64ug/L8980.120Dibromonethane5.004.77ug/L8980.120Isopropylenzene5.004.77ug/L8971.22Hexachlorobutadiene5.004.75ug/L8971.22n-Butylbenzene5.004.77ug/L8971.22n-Butylbenzene5.004.57ug/L8971.22n-Butylbenzene5	2-Chlorotoluene	5.00	4.62	ug/L		92	80 - 120	
Trichlorofluoromethane 5.00 4.49 ug/L 90 62.136 4-Chloroptoluene 5.00 4.57 ug/L 91 80.120 Dichlorodifluoromethane 5.00 4.41 ug/L 88 43.123 1.2-Dichloropropane 5.00 4.59 ug/L 92 80.120 1.12-Trichloroethane 5.00 4.60 ug/L 92 80.120 Acrylonitrile 25.0 23.2 ug/L 93 64.139 Trichloroethane 5.00 4.60 ug/L 92 80.120 1.2-Dichrorobenzene 5.00 4.60 ug/L 93 80.120 1.2-Dichromo-3-Chloropropane 5.00 4.64 ug/L 94 80.120 1.2-Dichromo-3-Chloropropane 5.00 4.64 ug/L 94 80.120 Isopropylenzene 5.00 4.64 ug/L 89 80.120 Isopropylenzene 5.00 4.70 ug/L 89 80.120 Isopropylenzene	1,1-Dichloroethene	5.00	4.59	ug/L		92	80 - 131	
4-Chlorotoluene 5.00 4.57 ug/L 91 80.120 Dichlorotordifuoromethane 5.00 4.41 ug/L 88 43.123 1.2-Dichloropropane 5.00 4.79 ug/L 92 80.120 Acrylonitrile 25.0 23.2 ug/L 93 64.139 Trichloroethane 5.00 4.60 ug/L 92 80.120 1.12-Zichloroberane 5.00 4.60 ug/L 92 80.120 1.2-Dichloroberane 5.00 4.60 ug/L 92 56.148 Bromobenzene 5.00 4.64 ug/L 93 80.120 1.2-Dichloroberane 5.00 4.68 ug/L 94 80.120 Bromobenzene 5.00 4.68 ug/L 94 80.120 Dichoromethane 5.00 4.77 ug/L 89 80.120 Dibromomethane 5.00 4.77 ug/L 89 80.120 Dibromomethane 5.00 4.75 ug/L 87 58.131 Ethyl bulyl ether 5.00 <td< td=""><td>Trichlorofluoromethane</td><td>5.00</td><td>4.49</td><td>ug/L</td><td></td><td>90</td><td>62 - 136</td><td></td></td<>	Trichlorofluoromethane	5.00	4.49	ug/L		90	62 - 136	
Dichlorodifluoromethane 5.00 4.41 ug/L 88 43.123 1.2-Dichloropropane 5.00 4.59 ug/L 92 80.120 1.1.2-Tichloroethane 5.00 4.79 ug/L 93 64.139 Acrylonitrile 25.0 23.2 ug/L 92 80.120 1.1.2.2-Tetrachloroethane 5.00 4.60 ug/L 92 80.120 1.2.2-Dichlorobenzene 5.00 4.60 ug/L 93 80.120 1.2.2-Dichlorobenzene 5.00 4.64 ug/L 93 80.120 1.2-Dichlorobenzene 5.00 4.64 ug/L 94 80.120 Bromochloromethane 5.00 4.64 ug/L 94 80.120 Isopropylebnzene 5.00 4.47 ug/L 89 80.120 Dibromomethane 5.00 4.47 ug/L 89 75.123 Isopropylether 5.00 4.56 ug/L 89 75.122 Hybutylether 5.00 </td <td>4-Chlorotoluene</td> <td>5.00</td> <td>4.57</td> <td>ug/L</td> <td></td> <td>91</td> <td>80 - 120</td> <td></td>	4-Chlorotoluene	5.00	4.57	ug/L		91	80 - 120	
1.2-Dichloropropane 5.00 4.59 ug/L 92 80.120 1.1,2-Trichloroethane 5.00 4.79 ug/L 93 64.139 Trichloroethane 5.00 4.60 ug/L 92 80.120 1.1,2.2-Tetrachloroethane 5.00 4.60 ug/L 92 80.120 1.1,2.2-Tetrachloroethane 5.00 4.60 ug/L 92 80.120 1.2-Dichlorobenzene 5.00 4.64 ug/L 93 80.120 1.2-Dichlorobenzene 5.00 4.64 ug/L 93 80.120 1.2-Dichlorobenzene 5.00 4.68 ug/L 94 80.120 Isopropylbenzene 5.00 4.70 ug/L 89 80.120 Dibromoethane 5.00 4.70 ug/L 80 80.120 Dibromoethane 5.00 4.70 ug/L 89 80.120 Dibromoethane 5.00 4.75 ug/L 89 57.126 Hexachlorobutadiene 5.00 4.75 ug/L 89 72.132 Naphthalene <	Dichlorodifluoromethane	5.00	4.41	ug/L		88	43 - 123	
1,1,2-Trichloroethane 5.00 4.79 ug/L 96 80.120 Acrylonitrile 25.0 23.2 ug/L 93 64.139 Trichloroethane 5.00 4.60 ug/L 92 80.120 1,1,2,2-Tetrachloroethane 5.00 4.60 ug/L 93 80.120 1,2-Dichlorobenzene 5.00 4.64 ug/L 93 80.120 1,2-Dichlorobenzene 5.00 4.60 ug/L 94 80.120 1,2-Dichlorobenzene 5.00 4.61 ug/L 89 80.120 1,2-Dichlorobenzene 5.00 4.62 ug/L 89 80.120 Bromochloromethane 5.00 4.70 ug/L 89 80.120 Isopropylenzene 5.00 4.70 ug/L 89 80.120 Dibromomethane 5.00 4.56 ug/L 87 58.131 Ethyl Hotyl ether 5.00 4.75 ug/L 87 64.122 n-Butylbenzene 5.00 4.75 ug/L 87 64.122 n-Butylbenzene 5.	1,2-Dichloropropane	5.00	4.59	ug/L		92	80 - 120	
Acrylonitrile25.023.2ug/L9364.139Trichloroethene5.004.60ug/L9280.1201,1,2,2-Tetrachloroethane5.004.60ug/L9275.1231,2-Dibtorobenzene5.004.60ug/L9256.148Bromobenzene5.004.60ug/L9256.148Bromobenzene5.004.60ug/L9480.120Bromochoromethane5.004.67ug/L9480.120Isopropylbenzene5.004.70ug/L9480.120Ibtoromothane5.004.56ug/L9180.120Dibromothane5.004.56ug/L9180.120Dibromothane5.004.35ug/L8957.126Hexachlorobutadiene5.004.44ug/L8957.126Hexachlorobutadiene5.004.57ug/L9572.132n-Butylbenzene5.004.57ug/L8974.123N-Propylbenzene5.004.68ug/L9480.120sec-Butylbenzene5.004.68ug/L9480.120sec-Butylbenzene5.004.47ug/L8974.123N-Propylbenzene5.004.68ug/L9480.120sec-Butylbenzene5.004.68ug/L9480.120t-Amyl methyl ether5.004.68ug/L9480.120t-Amyl methyl ether5.004.68ug	1,1,2-Trichloroethane	5.00	4.79	ug/L		96	80 - 120	
Trichloroethane 5.00 4.60 ug/L 92 80 - 120 1,1,2,2-Tetrachloroethane 5.00 4.60 ug/L 92 75 - 123 1,2-Dichlorobenzene 5.00 4.64 ug/L 92 56 - 148 Bromobenzene 5.00 4.68 ug/L 94 80 - 120 I,2-Dichlorobenzene 5.00 4.68 ug/L 94 80 - 120 Bromochloromethane 5.00 4.70 ug/L 94 80 - 120 Isopropylenzene 5.00 4.70 ug/L 94 80 - 120 Dibromomethane 5.00 4.70 ug/L 94 80 - 120 Dibromomethane 5.00 4.70 ug/L 94 80 - 120 Dibromomethane 5.00 4.70 ug/L 89 87 - 126 Hexachlorobutadiene 5.00 4.35 ug/L 89 57 - 126 Hexachlorobutadiene 5.00 4.75 ug/L 89 74 - 123 N-Propylbenzene 5.00 4.68 ug/L 97 4.122 p-Isopropyltoluene<	Acrylonitrile	25.0	23.2	ug/L		93	64 - 139	
1,1,2,2-Tetrachloroethane5.004.60ug/L9275.1231,2-Dichlorobenzene5.004.64ug/L9380.1201,2-Dibromo-3-Chloropropane5.004.60ug/L9480.120Bromobenzene5.004.68ug/L9480.120Bromochloromethane5.004.47ug/L9480.120Isopropylbenzene5.004.70ug/L9480.120Dibromomethane5.004.70ug/L9480.120Lisopropylethare5.004.75ug/L8758.131Ethyl t-buly lethar5.004.44ug/L8957.126Hexachlorobutadiene5.004.75ug/L8957.126Naphthalene5.004.45ug/L8974.123N-Propylbenzene5.004.45ug/L8974.123N-Propylbenzene5.004.68ug/L9480.120Sec-Bulybenzene5.004.68ug/L9480.120-Hamyl ether5.004.68ug/L9480.120-Hamyl ether5.004.68ug/L9480.120-Lamyl ether5.004.68ug/L9480.120-Lamyl ethyl ether5.004.68ug/L9480.120-Lamyl ethyl ether5.004.68ug/L9480.120-Lamyl ethyl ether5.004.68ug/L9480.120-Lamyl ethyl ether5.00 <td< td=""><td>Trichloroethene</td><td>5.00</td><td>4.60</td><td>ug/L</td><td></td><td>92</td><td>80 - 120</td><td></td></td<>	Trichloroethene	5.00	4.60	ug/L		92	80 - 120	
1,2-Dichlorobenzene5.004.64ug/L9380 - 1201,2-Dibromo-3-Chloropropane5.004.60ug/L9480 - 120Bromobenzene5.004.47ug/L8980 - 120Bromochloromethane5.004.70ug/L9480 - 120Isopropylbenzene5.004.56ug/L9180 - 122Dibromomethane5.004.56ug/L8758 - 131Ethyl t-butyl ether5.004.44ug/L8957 - 126Hexachlorobutadiene5.004.75ug/L8764 - 122Naphtalene5.004.37ug/L8974 - 123N-Propylbenzene5.004.68ug/L9480 - 120Sono4.65ug/L8974 - 123126Hexachlorobutadiene5.004.67ug/L8974 - 123N-Propylbenzene5.004.68ug/L9480 - 120-N-Propylbenzene5.004.68ug/L9480 - 120-N-Propylbenzene5.004.68ug/L9480 - 120-Lonopylbenzene5.004.68ug/L9480 - 120-Lonopylbenzene5.004.68ug/L9480 - 120-Lonopylbenzene5.004.68ug/L9480 - 120-Lonopylbenzene5.004.68ug/L9480 - 120-Lonopylbenzene5.004.68ug/L8965 - 125-Lonopylbenzene </td <td>1,1,2,2-Tetrachloroethane</td> <td>5.00</td> <td>4.60</td> <td>ug/L</td> <td></td> <td>92</td> <td>75 - 123</td> <td></td>	1,1,2,2-Tetrachloroethane	5.00	4.60	ug/L		92	75 - 123	
1,2-Dibromo-3-Chloropropane 5.00 4.60 ug/L 92 56 - 148 Bromobenzene 5.00 4.68 ug/L 94 80 - 120 Bromochloromethane 5.00 4.47 ug/L 89 80 - 120 Isopropylbenzene 5.00 4.70 ug/L 94 80 - 120 Dibromomethane 5.00 4.56 ug/L 91 80 - 122 di-Isopropyl ether 5.00 4.35 ug/L 87 58 - 131 Ethyl t-butyl ether 5.00 4.44 ug/L 89 57 - 126 Hexachlorobutadiene 5.00 4.75 ug/L 87 58 - 131 Naphtalene 5.00 4.75 ug/L 89 57 - 126 Naphtalene 5.00 4.75 ug/L 89 74 - 122 n-Butylbenzene 5.00 4.68 ug/L 89 74 - 123 N-Propylbenzene 5.00 4.68 ug/L 94 80 - 120 sec-Butylbenzene 5.00 4.68 ug/L 94 80 - 120 t-Amyl methyl ether	1,2-Dichlorobenzene	5.00	4.64	ug/L		93	80 - 120	
Bromobenzene 5.00 4.68 ug/L 94 80.120 Bromochloromethane 5.00 4.47 ug/L 89 80.120 Isopropylbenzene 5.00 4.70 ug/L 94 80.120 Dibromomethane 5.00 4.56 ug/L 91 80.122 di-lsopropyl ether 5.00 4.35 ug/L 89 57.126 Ethyl t-butyl ether 5.00 4.44 ug/L 89 57.126 Naphthalene 5.00 4.75 ug/L 89 72.132 N-Propylbenzene 5.00 4.37 ug/L 89 74.123 p-Isopropyltoluene 5.00 4.68 ug/L 94 80.120 sec-Butylbenzene 5.00 4.68 ug/L 94 80.120 t-Amyl methyl ether 5.00 4.68 ug/L 94 80.120 t-Ebutyl alcohol 5.00 4.68 ug/L 94 80.120 t-t-Butylbenzene 5.00 4.68	1,2-Dibromo-3-Chloropropane	5.00	4.60	ug/L		92	56 _ 148	
Bromochloromethane 5.00 4.47 ug/L 89 80 - 120 Isopropylbenzene 5.00 4.70 ug/L 94 80 - 120 Dibromomethane 5.00 4.56 ug/L 91 80 - 122 di-lsopropyl ether 5.00 4.35 ug/L 87 58 - 131 Ethyl t-butyl ether 5.00 4.44 ug/L 89 57 - 126 Hexachlorobutadiene 5.00 4.75 ug/L 87 64 - 122 Naphthalene 5.00 4.37 ug/L 89 74 - 123 N-Propylbenzene 5.00 4.57 ug/L 91 74 - 122 p-Isopropyltoluene 5.00 4.68 ug/L 94 80 - 120 sec-Butylbenzene 5.00 4.68 ug/L 94 80 - 120 t-Amyl methyl ether 5.00 4.68 ug/L 94 80 - 120 t-Butyl alcohol 50.0 38.4 ug/L 77 62 - 138 tert-Butylbenzene 5.	Bromobenzene	5.00	4.68	ug/L		94	80 - 120	
Isopropylbenzene5.004.70ug/L9480.120Dibromomethane5.004.56ug/L9180.122di-Isopropyl ether5.004.35ug/L8758.131Ethyl t-butyl ether5.004.44ug/L8957.126Hexachlorobutadiene5.004.75ug/L9572.132Naphthalene5.004.45ug/L8974.123n-Butylbenzene5.004.57ug/L8974.123N-Propylbenzene5.004.68ug/L9480.120sec-Butylbenzene5.004.68ug/L9480.120t-Amyl methyl ether5.004.47ug/L8965.125t-Butyl lechol5.003.8.4ug/L7762.138tert-Butylbenzene5.004.47ug/L8979.120tars.1,4-Dichloro-2-butene5.004.47ug/L7910.172	Bromochloromethane	5.00	4.47	ug/L		89	80 - 120	
Dibromomethane5.004.56ug/L9180 - 122di-lsopropyl ether5.004.35ug/L8758 - 131Ethyl t-butyl ether5.004.44ug/L8957 - 126Hexachlorobutadiene5.004.75ug/L8764 - 122Naphthalene5.004.37ug/L8974 - 123n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.47ug/L8965 - 125t-Amyl methyl ether5.0088.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120tert-Butylbenzene5.004.47ug/L8979 - 120tert-Butylbenzene5.004.47ug/L8979 - 120tert-Butylbenzene5.0019.9ug/L7910 - 172	Isopropylbenzene	5.00	4.70	ug/L		94	80 - 120	
di-lsopropyl ether5.004.35ug/L8758 - 131Ethyl +butyl ether5.004.44ug/L8957 - 126Hexachlorobutadiene5.004.75ug/L9572 - 132Naphthalene5.004.37ug/L8764 - 122n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.57ug/L9174 - 122p-lsopropyltoluene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol50.038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene5.0019.9ug/L7910 - 172	Dibromomethane	5.00	4.56	ug/L		91	80 - 122	
Ethyl t-butyl ether5.004.44ug/L8957 - 126Hexachlorobutadiene5.004.75ug/L9572 - 132Naphthalene5.004.37ug/L8764 - 122n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.57ug/L9174 - 122p-lsopropyltoluene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol5.0038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene25.019.9ug/L7910 - 172	di-Isopropyl ether	5.00	4.35	ug/L		87	58 _ 131	
Hexachlorobutadiene5.004.75ug/L9572 - 132Naphthalene5.004.37ug/L8764 - 122n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.57ug/L9174 - 122p-lsopropyltoluene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol50.038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene5.0019.9ug/L7910 - 172	Ethyl t-butyl ether	5.00	4.44	ug/L		89	57 _ 126	
Naphthalene5.004.37ug/L8764 - 122n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.57ug/L9174 - 122p-lsopropyltoluene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol50.038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene25.019.9ug/L7910 - 172	Hexachlorobutadiene	5.00	4.75	ug/L		95	72 - 132	
n-Butylbenzene5.004.45ug/L8974 - 123N-Propylbenzene5.004.57ug/L9174 - 122p-Isopropyltoluene5.004.68ug/L9480 - 120sec-Butylbenzene5.004.68ug/L9480 - 120t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol5.0038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene25.019.9ug/L7910 - 172	Naphthalene	5.00	4.37	ug/L		87	64 - 122	
N-Propylbenzene 5.00 4.57 ug/L 91 74 - 122 p-lsopropyltoluene 5.00 4.68 ug/L 94 80 - 120 sec-Butylbenzene 5.00 4.68 ug/L 94 80 - 120 t-Amyl methyl ether 5.00 4.47 ug/L 89 65 - 125 t-Butyl alcohol 50.0 38.4 ug/L 77 62 - 138 tert-Butylbenzene 5.00 4.47 ug/L 89 79 - 120 trans-1,4-Dichloro-2-butene 5.00 19.9 ug/L 79 10 - 172	n-Butylbenzene	5.00	4.45	ug/L		89	74 - 123	
p-lsopropyltoluene 5.00 4.68 ug/L 94 80 - 120 sec-Butylbenzene 5.00 4.68 ug/L 94 80 - 120 t-Amyl methyl ether 5.00 4.47 ug/L 89 65 - 125 t-Butyl alcohol 50.0 38.4 ug/L 77 62 - 138 tert-Butylbenzene 5.00 4.47 ug/L 89 79 - 120 trans-1,4-Dichloro-2-butene 25.0 19.9 ug/L 79 10 - 172	N-Propylbenzene	5.00	4.57	ug/L		91	74 - 122	
sec-Butylbenzene 5.00 4.68 ug/L 94 80 - 120 t-Amyl methyl ether 5.00 4.47 ug/L 89 65 - 125 t-Butyl alcohol 50.0 38.4 ug/L 77 62 - 138 tert-Butylbenzene 5.00 4.47 ug/L 89 79 - 120 trans-1,4-Dichloro-2-butene 25.0 19.9 ug/L 79 10 - 172	p-IsopropyItoluene	5.00	4.68	ug/L		94	80 - 120	
t-Amyl methyl ether5.004.47ug/L8965 - 125t-Butyl alcohol50.038.4ug/L7762 - 138tert-Butylbenzene5.004.47ug/L8979 - 120trans-1,4-Dichloro-2-butene25.019.9ug/L7910 - 172	sec-Butylbenzene	5.00	4.68	ug/L		94	80 - 120	
t-Butyl alcohol 50.0 38.4 ug/L 77 62 - 138 tert-Butylbenzene 5.00 4.47 ug/L 89 79 - 120 trans-1,4-Dichloro-2-butene 25.0 19.9 ug/L 79 10 - 172	t-Amyl methyl ether	5.00	4.47	ug/L		89	65 _ 125	
tert-Butylbenzene 5.00 4.47 ug/L 89 79 - 120 trans-1,4-Dichloro-2-butene 25.0 19.9 ug/L 79 10 - 172	t-Butyl alcohol	50.0	38.4	ug/L		77	62 - 138	
trans-1,4-Dichloro-2-butene 25.0 19.9 ug/L 79 10 - 172	tert-Butylbenzene	5.00	4.47	ug/L		89	79 - 120	
	trans-1,4-Dichloro-2-butene	25.0	19.9	ug/L		79	10 _ 172	

Method: 8260C LL - Volatile Organic Compounds by GC/MS (Continued)

ab Sample ID: LCS 410-81468 latrix: Water nalysis Batch: 81468	/6			Client Sample ID: Lab Contro Prep Type
	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	97		80 - 120	
Dibromofluoromethane (Surr)	99		80 - 120	
4-Bromofluorobenzene (Surr)	99		80 - 120	
Toluene-d8 (Surr)	101		80 - 120	

Job ID: 410-24912-1

1 2 3 4 5 6 7 8 9 10 11 12 12

Analysis Batch: 81468

GC/MS VOA

Lab Sample ID 410-24912-1	Client Sample ID MW-3	Prep Type Total/NA	Matrix Water	Method Prep Batch 8260C LL
410-24912-2	MW-1	Total/NA	Water	8260C LL
410-24912-3	MW-4	Total/NA	Water	8260C LL
MB 410-81468/9	Method Blank	Total/NA	Water	8260C LL
LCS 410-81468/6	Lab Control Sample	Total/NA	Water	8260C LL

Matrix: Water

Lab Sample ID: 410-24912-1

Client Sample ID: MW-3 Date Collected: 12/22/20 10:25

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C LL		1	81468	01/01/21 01:13	K4WN	ELLE	
Client Samp	le ID: MW-1						La	ab Sample	ID: 410-24912-2
Date Collected	: 12/22/20 11:20)							Matrix: Water
Date Received	: 12/23/20 18:39)							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C LL		1	81468	01/01/21 01:35	K4WN	ELLE	
Client Samp	le ID: MW-4						La	ab Sample	ID: 410-24912-3
Date Collected	: 12/22/20 12:2	0							Matrix: Water
Date Received	: 12/23/20 18:39)							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	82600.11			81/68	01/01/21 01:57		FLLE	

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Accreditation/Certification Summary

Job ID: 410-24912-1

ss otherwise noted, all a	ns Lancaster Labo	e covered under each acc	reditation/certification below.							
thority	Pro	gram	Identification Number	Expiration Date						
ryland	Sta	te	100 06-30-21							
The following analytes :	are included in this report, but	the laboratory is not certif	ied by the governing authority. This list ma	w include analytes for which						
the agency does not off	fer certification.		ice by the governing dutionty. This ist had	y molde analytes for which						
Analysis Method	Prep Method	Matrix	Analyte							
8260C LL		Water	1,1,1,2-Tetrachloroethane							
8260C LL		Water	1,1,1-Trichloroethane							
8260C LL		Water	1,1,2,2-Tetrachloroethane							
8260C LL		Water	1,1,2-Trichloroethane							
8260C LL		Water	1,1-Dichloroethane							
8260C LL		Water	1,1-Dichloroethene							
8260C LL		Water	1,1-Dichloropropene							
8260C LL		Water	1,2,3-Trichlorobenzene							
8260C LL		Water	1,2,3-Trichloropropane							
8260C LL		Water	1,2,4-Trichlorobenzene							
8260C LL		Water	1,2,4-Trimethylbenzene							
8260C LL		Water	1,2-Dibromo-3-Chloropropane							
8260C LL		Water	1,2-Dibromoethane							
8260C LL		Water	1,2-Dichlorobenzene							
8260C LL		Water	1,2-Dichloroethane							
8260C LL		Water	1,2-Dichloropropane							
8260C LL		Water	1,3,5-Trimethylbenzene							
8260C LL		Water	1,3-Dichlorobenzene							
8260C LL		Water	1,3-Dichloropropane							
8260C LL		Water	1,4-Dichlorobenzene							
8260C LL		Water	2,2-Dichloropropane							
8260C LL		Water	2-Chlorotoluene							
8260C LL		Water	4-Chlorotoluene							
8260C LL		Water	Acrylonitrile							
8260C LL		Water	Benzene							
8260C LL		Water	Bromobenzene							
8260C LL		Water	Bromochloromethane							
8260C LL		Water	Bromodichloromethane							
8260C LL		Water	Bromoform							
8260C LL		Water	Bromomethane							
8260C LL		Water	Carbon disulfide							
8260C LL		Water	Chlorobenzene							
8260C LL		Water	Chloroethane							
8260C LL		Water	Chloroform							
8260C LL		Water	Chloromethane							
8260C LL		Water	cis-1,2-Dichloroethene							
8260C LL		Water	cis-1,3-Dichloropropene							
8260C LL		Water	Dibromochloromethane							
8260C LL		Water	Dibromomethane							
8260C LL		Water	Dichlorodifluoromethane							
8260C LL		Water	di-Isopropyl ether							
8260C LL		Water	Ethyl t-butyl ether							
8260C LL		Water	Ethylbenzene							
8260C LL		Water	Hexachlorobutadiene							
8260C L L		Water	Isopropylhenzene							

Accreditation/Certification Summary

Client: Groundwater & Environmental Services Inc Project/Site: Carroll - High's #86, Jarrettsville MD Job ID: 410-24912-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date		
Maryland	State	100	06-30-21		
8260C LL	Water	Methyl tertiary butyl ether			
8260C LL	Water	Methylene Chloride			
8260C LL	Water	Naphthalene			
8260C LL	Water	n-Butylbenzene			
8260C LL	Water	N-Propylbenzene			
8260C LL	Water	p-Isopropyltoluene			
8260C LL	Water	sec-Butylbenzene			
8260C LL	Water	Styrene			
8260C LL	Water	t-Amyl methyl ether			
8260C LL	Water	t-Butyl alcohol			
8260C LL	Water	tert-Butylbenzene			
8260C LL	Water	Tetrachloroethene			
8260C LL	Water	Toluene			
8260C LL	Water	trans-1,2-Dichloroethene			
8260C LL	Water	trans-1,3-Dichloropropene			
8260C LL	Water	trans-1,4-Dichloro-2-butene			
8260C LL	Water	Trichloroethene			
8260C LL	Water	Trichlorofluoromethane			
8260C LL	Water	Vinyl chloride			
8260C LL	Water	Xylenes, Total			

Method	Method Description	Protocol	Laboratory
8260C LL	Volatile Organic Compounds by GC/MS	SW846	ELLE
5030C	Purge and Trap	SW846	ELLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Sample Summary

Client: Groundwater & Environmental Services Inc Project/Site: Carroll - High's #86, Jarrettsville MD

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
410-24912-1	MW-3	Water	12/22/20 10:25	12/23/20 18:39	
410-24912-2	MW-1	Water	12/22/20 11:20	12/23/20 18:39	
410-24912-3	MW-4	Water	12/22/20 12:20	12/23/20 18:39	

5 13 14

و نړون د

ysis Request/Chain of Custody

Sample #_

Page l of 1

🏟 eurofins

Lancaster Laboratories Environmental

Client: Groundwater & Env Services, Inc						Matrix]	Analyses Requested				For Lab Us	e Only					
Project Name/#: High's Store #86 - Jarrettsville	Site ID #:										Prese	rvation Codes						SF #:	
Project Manager Peter Reichardt	P.O #:	040331	4/08/2	06	¥	ace			H									SCR #:	
Sampler Jeff Plummer	PWSID #:				lime	Groi Surf		s.	lene									Preservati	on Codes
Phone #: 800-220-3606 x 3726	Quote #:				Sec			aine	apthe									н нсі	T Thicsulfate
State where sample(s) were collected 3711 Feder	al Hill Rol J	arretsville	MD			ble DES		onta	a p S p									N HNO3	B NaOH
	Colle	ction		nposite		er Pot	er.	al # of C	Suite VO enates al 0)									S H ₂ SO ₄ O Other	P H₃PO₄
Sample Identification	Date	Time	Gra	ы С	Soil	Wat	1 E	Tota	Full (oxyg (826)									Rem	arks
MW-3	22220	1025	$\left \mathbf{X} \right $			\times		3	\checkmark										
mw-1	12-22-20	1120	\times			Х		3	\succ										
mw-4	12-22-20	1220	$\left \right\rangle$			\prec		3	\times										
																	\vdash		
						ļ		<u> </u>							<u> </u>		<u> </u>		
							<u> </u>	\vdash		_							ļ		
	<u> </u>		1				ļ								<u> </u>		<u> </u>		
								—		_		$\left \right $				<u> </u>			
							<u> </u>			_		$\left \right $							
			- Durah		Reli	nouished	bv:_			Date	Time	Receive	ed bv:		!		<u> </u>	Date	Time
(Rush TAT is subject to laboratory appro	val and surc	harges.)	Rush		\subset	þll	P	'n	ina a	27.7	0800	R	ź	(ม)	ood			12 23 20	0900
Date results are needed					Refi	nquished	by:			Date	Time	Receive	ed by:		• • • • •	J. J.	·	Date	Time
Rush results requested by (please check): E-M	ail 🗹	Pho	ne 🗌		2	Inio	11)	ood	-دا ہمبر	23-20	12.17	A	\sim	~			10/	13h0,	1617
E-mail Address midatlantic@gesonline.com &	<u>qes@equis</u>	online.com	1	1	Reli	nquished	by.		2	Date	Time	Receive	ed by:		_	/	\sim	Date	Time
Phone:			-		/	hn	\sim		14/2	sho	1830								
Data Package Options (please check if require	d)				Reli	nquished	by.	<u> </u>		Date	Time	Receive	ed by	/				Date	Time
Type I (Validation/non-CLP)								\angle						<u> </u>					ļ
Type III (Reduced non-CLP)					Reli	nquished	by.	/		Date	Time	Receiv	éď byf.		/			ADate,	Nº Za
Type VI (Raw Data Only) 🔲 TX TRRP-13 🗍						,	/					\mathcal{I}	rla_	/	/			12 phop	621
NYSDEC Category A or B					Reli	nquished	by C	omme	ercial Carrie	•		0							
EDD Required? Yes 🗌 No 🔲 If ye	s, format:	<u>GES EQE</u>	DD							V		_				7),'	7	•••	
					UPS		Fedf	<u>=x</u>	Other	$- \wedge$		l empe	rature	upon re	eceipt_				
Eurofins Lancas	ster Laborato	ries Enviror	imental	I, LLC ·	• 242	5 New Ho	iland F	чke, La	ancaster PA	17601 • 71	7-656-2300					\wedge	ン IN	ר	7045 061
																Y	<u></u>	1	An
																١			T۱۲

Login Sample Receipt Checklist

Client: Groundwater & Environmental Services Inc

Login Number: 24912 List Number: 1

Creator: Colon Martinez, Jessenia C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

Job Number: 410-24912-1

List Source: Eurofins Lancaster Laboratories Env