

FEB 25 2015

SOLID WASTE OPERATIONS DIVISION

Verso Corporation

Luke Mill 300 Pratt Street Luke, MD 21540

T 301 359 3311 **W** versoco.com

ES-15-36

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

February 23, 2015

Mr. Edward E. Dexter, Director Solid Waste Division Maryland Department of the Environment 1800 Washington Blvd., Suite 610 Baltimore, MD 21230-1719

Dear Mr. Dexter:

Luke Paper Company generated approximately 79,404 tons of Coal Combustion By-Product during 2014 at our Luke Mill facility. All of the CCB material was hauled to a mine reclamation disposal facility (Permit No. CCB-10-001). Our 2014 Coal Combustion By-Product Annual Tonnage Report is enclosed.

The Luke Paper Company is a subsidiary of NewPage Corporation, NewPage Corporation is a subsidiary of Verso Corporation, following Verso's acquisition on January 7, 2015.

If you have any questions or need any additional information regarding this matter, please contact me.

Sincerely,

Larry A. Johnson

Environmental Engineer

LAJ:plt Enclosure

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Land Management Administration • Solid Waste Program
1800 Washington Boulevard • Suite 605 • Baltimore Maryland 21230-1719
410-537-3315 • 800-633-6101 x3315 • www.mde.maryland.gov

Coal Combustion Byproducts (CCBs) Annual Generator Tonnage Report Instructions for Calendar Year 2014

The following is general information relating to the requirement for reporting quantities of coal combustion byproducts (CCBs) that were managed in the State of Maryland during calendar year 2014. Please answer the questions on the form provided, attaching additional information and any requested supplemental information to the back of the form. Note that the form for this year requires both volume and weight of the CCBs produced. If you know one of these parameters but not the others, for example, you have the tonnage produced but not the volume, you may calculate the other parameter; however, please provide the calculations and assumptions that you used in your estimate. Questions can be directed to the Solid Waste Program at (410) 537-3315 or via email at ed.dexter@maryland.gov.

I. Background. This requirement that generators of CCBs submit an annual report was instituted in the Code of Maryland Regulations COMAR 26.04.10.08, that was promulgated effective December 1, 2008. The regulation requires that any non-residential generator of CCBs submit a report to the Department by March 1 of each year describing the manner in which CCBs generated within the State were managed during the preceding calendar year. Additional information and specific instructions follow. For more detailed information, please refer to COMAR 26.04.10.08.

II. General Information and Applicability.

A. Definitions. CCBs are defined in COMAR 26.04.10.02B as:

- "(3) Coal Combustion Byproducts. (a) "Coal combustion byproducts" means the residue generated by or resulting from the burning of coal.
- (b) "Coal combustion byproducts" includes fly ash, bottom ash, boiler slag, pozzolan, and other solid residuals removed by air pollution control devices from the flue gas and combustion chambers of coal burning furnaces and boilers, including flue gas desulfurization sludge and other solid residuals recovered from flue gas by wet or dry methods."

A generator of CCBs is defined in COMAR 26.04.10.02B as:

- "(9) Generator.
- (a) "Generator" means a person whose operations, activities, processes, or actions create coal combustion byproducts.
- (b) "Generator" does not include a person who only generates coal combustion byproducts by burning coal at a private residence."

31-Jan-14 Page 1 of 6

Facility Name: Luke Paper Company CCB Tonnage Report - 2014

B. Applicability. If you or your company meets the definition of a generator of CCBs as defined above, you must provide the information as required below. For the purposes of this report, "you" shall hereinafter refer to the generator defined above. Please note that COMAR 26.04.10.08 requires generators of CCBs to submit an annual report to the Department concerning the disposition of the CCBs that they generated the previous year. THIS INCLUDES CCBS THAT WERE NOT SEPARATELY COLLECTED BUT WERE PRODUCED BY THE BURNING OF COAL AND WERE DIRECTLY CONTRIBUTED TO A PRODUCT, such as cement. Where the amount cannot be directly measured, estimates based on the amount of coal burned can be used. The method of determining the volume of CCBs produced must be described.

III. Required Information. The following information must be provided to the Department by March 1, 2015:

A. Contact inform	nation:		
Facility Name:	Luke Paper Co	mpany	
Name of Permit H	lolder: Luke Paper	Company	<u>-</u>
Facility Address:	300 Pratt St	reet	
-		Street	
Facility Address:	Luke	MD	21540
ruomey ruumbaa.	City	State	Zip
County:	Allegany		
Contact Informati	on (Person filing report or l	Environmental Manager)	
Facility Telephone	e No.: (301) 359-331	1 Facility Fax No.: _	(301) 359-2040
Contact Name:	Larry Johnson		
Contact Title:	Environmental Eng	gineer	
	300 Pratt Stree		
		Street	
Contact Address:	Luke	MD	21540
	City	State	Zip
Contact Email:	Larry.Johnson@vers	Boco.com	
Contact Telephon	e No.: (301) 359-331	Contact Fax No.:	(301) 359-2040

For questions on how to complete this form, please contact the Solid Waste Program at 410-537-3315

19-Dec-14 TTY Users: 800-735-2258 Facility Name: Luke Paper Company CCB Tonnage Report - 2014

B. A description of the process that generates the CCBs, including the type of coal or other raw material that generates the CCBs. If the space provided is insufficient, please attach additional pages:

Approximately 1,200 tons of bituminous coal is delivered to the Luke Mill daily by three (3) different coal suppliers. The coal is burned in two (2) power boilers for the purpose of generating steam power, heat and electricity to the mill. The fly ash (CCB) from the boilers is collected in our fabric filter baghouse and the bottom ash (CCB) from both boilers is sent to our ash lagoon.

C. The volume and weight of CCBs generated during calendar year 2014, including an identification of the different types of CCBs generated and the volume of each type generated. If the space provided is insufficient, please attach additional pages in a similar format. If converting from volume to weight or weight to volume, please provide your calculations and assumptions.

<u>Table I: Volume and Weight of CCBs Generated for Calendar Year 2014:</u> Please note the change to this table from previous years, to include both the volume and weight of the types of CCBs your facility produces.

Volume a	Volume and Weight of CCBs Generated for Calendar Year 2014						
Fly Ash Type of CCB 1ton ash = 28 cu ft. 59,553 x 28 cu ft./ 27 cu. ft/cu yd.	Bottom Ash Type of CCB 1ton ash = 28 cu ft./ 19,851 x 28 cu ft./ 27 cu. ft/cu yd.	Type of CCB	Type of CCB				
61,759 cu.yds. Volume of CCB, in Cubic Yards	20,586 cu.yds. Volume of CCB, in Cubic Yards	Volume of CCB, in Cubic Yards	Volume of CCB, in Cubic Yards				
59,553 tons Weight of CCB, in Tons	19,851 tons Weight of CCB, in Tons	Weight of CCB, in Tons	Weight of CCB, in Tons				

Facility Name:	Luke Paper	Company	CCB Tonnage Report – 2014
Additional notes	:		
		# 81 8 181	
	re performed by		ents, or both, conducted relating to the CCBs or apany during the reporting year. Please attach
		rts of all chemica (See Attach	I characterizations of the CCBs. Please attach ment E)
F. A description	of how you dis	posed of or used	your CCBs in calendar year 2014, identifying:
Paragraph C abo	ve) including an	y CCBs stored d	ed of or used (if different than described in uring the previous calendar year, the location of type and volume of CCBs disposed of or used
All the	CCB mater:	ial generate	ed from the Luke Paper Mill has
been haule	d away and	disposed of	in an abandoned mine reclamation
site that	is owned ar	nd permitted	by Moran Coal Company. The min
reclamatio	n site (Per	mit No. CCB	-10-001) has been approved by th
Land Manag	ement Admir	nistration,	Bureau of Mines and the site is
currently	active.		
	<u>.</u>		
	<u>.</u> .	·	
			

Page 4 of 6

Facility Name:	Luke Paper	Company	CCB Tonnage Report – 2014
and (b) The diffe	erent uses by type N/A	and volume of	CCBs:
			additional pages in a similar format.
(a) The ty intended disposa be disposed of or The futu	pes and volume of the period o	of CCBs intendent on and use sites. :	or use CCBs in the next 5 years, identifying: ed to be disposed of or used, the location of , and the type and volume of CCBs intended to B material from the Luke Paper Mill
			into the abandoned mine reclamation
			ermitted site is owned and operated
at this di		lity includ	s of CCB material disposed of
and (b) The diffe	rent intended use	s by type and ve	olume of CCBs.
N/	A		

If the space provided is insufficient, please attach additional pages in a similar format.

19-Dec-14 TTY Users: 800-735-2258 Facility Name: <u>Luke Paper Company</u> C

CCB Tonnage Report - 2014

IV. Signature and Certification. An authorized official of the generator must sign the annual report, and certify as to the accuracy and completeness of the information contained in the annual report:

Signature	Richard J. Watro Luke Mill Manager (301) 359-3311 Name, Title, & Telephone No. (Print or Type)	2/23/15 Date
	Richard.Watro@versoco.com	
	Your Email Address	

V: Attachments (please list):

Attachment E		 W
 -		
	·	
· · · · · · · · · · · · · · · · · · ·		
	<u></u>	

		 le il

19-Dec-14

TTY Users: 800-735-2258

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:*

11-06-14 1100

SAMPLE ID:

LUKE MILL #24 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

NEWPAGE 141112-1

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

EPA HAZARDOUS WASTE NUMBER	CONTAMINANT	CONCENTRATION FOUND (mg/L)	MAXIMUM CONCENTRATION (mg/L)
D004	ARSENIC	.64	5.00
D005	BARIUM	.285	100.0
D006	CADMIUM	.025	1.0
D007	CHROMIUM	.005	5.0
D008	LEAD	<.020	5.0
D009	MERCURY	<.0002	.2
D010	SELENIUM	.077	1.0
D011	SILVER	.001	5.0

% SOLIDS:

100

SLURRY pH:

10.6

EXTRACTION PERFORMED BY: SW

Final pH of Extract:

5.20

Extraction fluid used:

1

) B

^{*}Client Provided

^{**}See Attached. The following results meet or exceed requirements and standards set forth by the certifying authority except where noted.

Sturm Environmental Services ———

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1100

SAMPLE ID:

LUKE MILL #24 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/L	EPA METHOD	DETECTION LIMIT mg/L	DATE/TIME ANALYZED	ANALYST
Al	.90	200.7	.02	11-24-14 0803	TW
Mn	.849	200.7	.002	11-24-14 0803	TW
Zn	1.26	200.7	.004	11-24-14 0803	TW
Cu	.0335	3113B	.0006	12-04-14 2007	RC

*** *********************************					
-,		;			
				·	

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.

Eturm Environmental

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1100

SAMPLE ID:

LUKE MILL #24 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/kg	EPA METHOD	DETECTION LIMIT mg/kg	DATE/TIME ANALYZED	ANALYST
As	23.4	3050B/7010	.05	11-07-14 1044	RC
Cd	.95	3050B/7010	.01	11-21-14 2326	SB
Cr	22.7	3050B/7010	.05	11-24-14 1121	SB
Cu	41.7	3050B/7010	.10	11-21-14 1918	SB
Pb	41.2	3050B/7010	.05	11-17-14 2247	RC
Hg	.66	7472 Cold Vapor	.03	11-25-14 1305	DB
Ba	880.	3050B/6010B	5.0	12-15-14 0738	TW
В	378.	3050B/6010B	5.0	12-15-14 1326	TW
Se	8.77	3050B/7010	.03	12-01-14 1419	RC
Zn	158.	3050B/6010B	.10	12-15-14 1326	TW
Li	29.4	3050B/6010B	5.0	12-15-14 0738	TW
Al	19000.	3050B/6010B	1.00	12-15-14 1326	TW
МО	30.8	3050B/6010B	.50	11-17-14 1531	TW
Mn	84.5	3050B/6010B	.10	11-17-14 1531	TW
Ag	.05	3050B/7010	.01	11-21-14 2124	SB

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.

Eturm Environmental Ervices

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:*

11-06-14 1100

SAMPLE ID:

LUKE MILL #25 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

NEWPAGE 141112-2

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

EPA HAZARDOUS WASTE NUMBER	CONTAMINANT	CONCENTRATION FOUND (mg/L)	MAXIMUM CONCENTRATION (mg/L)
D004	ARSENIC	.05	5.00
D005	BARIUM	.424	100.0
D006	CADMIUM	.001	1.0
D007	CHROMIUM	.003	5.0
D008	LEAD	<.020	5.0
D009	MERCURY	<.0002	.2
D010	SELENIUM	.084	1.0
D011	SILVER	<.001	5.0

% SOLIDS:

100

SLURRY pH:

11.24

EXTRACTION PERFORMED BY: SW

Final pH of Extract:

5.19

Extraction fluid used:

1

*Client Provided

APPROVED

^{**}See Attached. The following results meet or exceed requirements and standards set forth by the certifying authority except where noted.

Eturm Environmental Services ———

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1100

SAMPLE ID:

LUKE MILL #25 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/L	EPA METHOD	DETECTION LIMIT mg/L	DATE/TIME ANALYZED	ANALYST
Al	1.97	200.7	.02	11-24-14 0803	TW
Mn	.565	200.7	.002	11-24-14 0803	TW
Zn	.035	200.7	.004	11-24-14 0803	TW
Cu	.0057	3113B	.0006	12-04-14 2007	RC

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.

turm nvironmental

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1100

SAMPLE ID:

LUKE MILL #25 FLY ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/kg	EPA METHOD	DETECTION LIMIT mg/kg	DATE/TIME ANALYZED	ANALYST
As	2.62	3050B/7010	.05	11-07-14 1044	RC
Cd	.03	3050B/7010	.01	11-21-14 2326	SB
Cr	4.94	3050B/7010	.05	11-24-14 1121	SB
Cu	12.4	3050B/7010	.10	11-21-14 1918	SB
Pb	1.17	3050B/7010	.05	11-17-14 2247	RC
Hg	.77	7472 Cold Vapor	.03	11-25-14 1305	DB
Ba	1130.	3050B/6010B	5.0	12-15-14 0738	TW
В	21.5	3050B/6010B	5.0	12-15-14 1326	TW
Se	8.14	3050B/7010	.03	12-01-14 1419	RC
Zn	11.7	3050B/6010B	.10	12-15-14 1326	TW
Li	24.7	3050B/6010B	5.0	12-15-14 0738	TW
Al	8950.	3050B/6010B	1.00	12-15-14 1326	TW
МО	5.60	3050B/6010B	.50	11-17-14 1531	TW
Mn	77.5	3050B/6010B	.10	11-17-14 1531	TW
Ag	<.01	3050B/7010	.01	11-21-14 2124	SB

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.

Sturm Environmental Services ———

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:*

11-06-14 1400

SAMPLE ID:

LUKE MILL BOTTOM ASH

DATE/TIME RECEIVED:

11-12-14 1500

.

SAMPLED BY:

LABORATORY ID:

NEWPAGE 141112-3

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

EPA HAZARDOUS WASTE NUMBER	CONTAMINANT	CONCENTRATION FOUND (mg/L)	MAXIMUM CONCENTRATION (mg/L)
D004	ARSENIC	<.02	5.00
D005	BARIUM	2.28	100.0
D006	CADMIUM	<.001	1.0
D007	CHROMIUM	<.003	5.0
D008	LEAD	<.020	5.0
D009	MERCURY	<.0002	.2
D010	SELENIUM	<.020	1.0
D011	SILVER	.001	5.0

% SOLIDS:

100

SLURRY pH:

8.82

EXTRACTION PERFORMED BY: SW

Final pH of Extract:

4.96

Extraction fluid used:

1

*Client Provided

APPROVED.

^{**}See Attached. The following results meet or exceed requirements and standards set forth by the certifying authority except where noted.

Eturm Environmental

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1400

SAMPLE ID:

LUKE MILL BOTTOM ASH

DATE/TIME RECEIVED:

11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/L	EPA METHOD	DETECTION LIMIT mg/L	DATE/TIME ANALYZED	ANALYST
Al	1.59	200.7	.02	11-24-14 0803	TW
Mn	.154	200.7	.002	11-24-14 0803	TW
Zn	.038	200.7	.004	11-24-14 0803	TW
Cu	.0083	3113B	.0006	12-04-14 2007	RC
					· - ··
	 				

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.

urm wironmental

JOHN W. STURM, PRESIDENT

COMPANY:

NEWPAGE

DATE/TIME SAMPLED:* 11-06-14 1400

SAMPLE ID:

LUKE MILL BOTTOM ASH

DATE/TIME RECEIVED: 11-12-14 1500

SAMPLED BY:

LABORATORY ID:

PARAMETER	RESULTS mg/kg	EPA METHOD	DETECTION LIMIT mg/kg	DATE/TIME ANALYZED	ANALYST
As	.825	3050B/7010	.05	11-07-14 1044	RC
Cd	.02	3050B/7010	.01	11-21-14 2326	SB
Cr	3.76	3050B/7010	.05	11-24-14 1121	SB
Cu	18.6	3050B/7010	.10	11-21-14 1918	SB
Pb	.82	3050B/7010	.05	11-17-14 2247	RC
Hg	.05	7472 Cold Vapor	.03	11-25-14 1305	DB
Ba	218.	3050B/6010B	5.0	12-15-14 0738	TW
В	10.7	3050B/6010B	5.0	12-15-14 1326	TW
Se	.80	3050B/7010	.03	12-01-14 1419	RC
Zn	6.80	3050B/6010B	.10	12-15-14 1326	TW
Li	11.0	3050B/6010B	5.0	12-15-14 0738	TW
Al	4350.	3050B/6010B	1.00	12-15-14 1326	TW
MO	1.85	3050B/6010B	.50	11-17-14 1531	TW
Mn	24.8	3050B/6010B	.10	11-17-14 1531	TW
Ag	<.01	3050B/7010	.01	11-21-14 2124	SB

^{*} Client provided

^{**}NOTE: All detection limits based upon 100% solids and 1 gms sample digested except for Hg (0.6).

^{*}Client Provided

^{**}See Attached. The following results meet requirements and standards of the certifying authority.