US Army Corps of Engineers

HMR52

Probable Maximum Storm (Eastern United States)

User's Manual

March 1984

HMR52

Probable Maximum Storm (Eastern United States)

User's Manual

March 1984

Revision: April 1987

US Army Corps of Engineers
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616-4687

(916) 756-1104

CPD-46

CONTENTS

Section Page
List of Figures v
List of Tables. vi i

1. I nt roduct ion
2. 1 Program Purpose. 1
3. 2 Computer Requi renents. 2
4. 3 Acknow edgenents 2
5. Probabl e Maxi mum St orm Anal ysi s Procedure
6. 1 Probable Maxi mum Preci pitation Definition. 3
7. 2 Probable Maxi mum Storm Definition 3
8. Probable Maxi mum Preci pitation Determination
9. 1 Al-Season PMP Esti nates 14
10. 2 Example Cal culation of PMP 15
11. Example Cal cul ation of a PMS
12. 1 Determination of PMP Versus Duration 19
13. 2 Adj ust nent for Storm Orientation 20
14. 3 Determination Basi n - Aver age Preci pitation 20
4.4 Temporal Arrangenent 20
15. 5 PMF Determination. 29
16. Computer Program HMR52 Procedures
17. 1 Digital Definition of Basin Geometry 30
5.2 Cal culation of PMP for a StormArea. 31
18. 3 Cal cul ation of PMS for Given StormArea and Ori entation. 33
19. 4 Cal cul ation of PMS for Tine Interval s Less Than Six Hours. 36
20. Optimization of Storm Area Size and Orientation
21. 1 St orm Center 39
22. 2 StormArea Si ze 39
23. 3 Storm Orientation. 39
24. 4 User Control of Optimization 39
25. Input Data Requi rements 40
26. Program Out put
27. 1 Printout 42
28. 2 Error Messages 42
29. 3 Preci pitation File for Ral nfall-Runoff Mbdel Usage 49

CONTENTS (Conti nued)

Section Page
9. Exampl e Appl i cation
9. 1 I nt roducti on 50
9. 2 HMR52 Input and Out put 50
9. 3 HEC- 1 I nput and Out put 54
9. 4 PMF Cal cul ation. 54
9.5 Concl usi ons and Recommendations. 55
10. Computer Requi renents
10. 1 Source Language. 62
10. 2 Core Storage 62
10. 3 File Structure 63
10. 4 HEC- Suppl I ed Magnetic Tape 63
10. 5 Machi ne-Speci fic Code. 63
11. Ref er ences. 65
Appendi x A: I nput Descri ption 67
Appendi x B: Error Messages. 85

LI ST OF FI GURES

No. Title Page

1. Regi ons Covered by General i zed PMP St udi es 1
2. Standard Isohyet al Pattern 3
3. Preferred Orientation for PMS 4
4. PMP Orientation Adj ustment Factors 5
5. Comparison of PMP Depth-Area Rel ation with 1, 000-mi ${ }^{2}$ PMs 6
6. Spatial Variation in PMP Intensities 7
7. Schenatic of One Temporal Sequence Alowed for 6-hr Increnents of PMP 8
8. Ratio of 1-hr to 6-hr Preci pitation for ' A ' I sohyet of a $20,000 \mathbf{m i}^{2}$ Storm. 8
9. Al I Season PMP (i nches) for 6 hours, 10 mi 2 14
10. Leon Ri ver Basi n, Texas 15
11. Depth-Area-Duration Curves for Leon River Basi n 16
12. I sohyetal Pattern Pl aced on Leon Ri ver Basi n 18
13. PMP Depth-Duration for 3, 000-ri ${ }^{\mathbf{2}}$ St orm on Leon Ri ver Basi n 19
14. Nonogramfor 1st 6-hr PMP Increnent 25
15. Nonogram for 2nd 6-hr PMP Increnent 26
16. Nonogr am for 3rd 6-hr PMP I ncrement 27
17. Nonogram for 4th through 12th 6-hr PMP Increnents 28
18. 18-hr Basi n-Average Precipitation for 3, 660-mi ${ }^{2}$ Leon Ri ver Basi n 29
19. Li near Approxi nation of Depth-Area-Duration Rel ations 32
20. Basi n Area Encompassed by an Ellipse 34
21. Representation of Precipitation Vol une Bet neen Two Isohyets with a Truncated Cone 35
22. PMS Depth versus Dur ation 36

Li st of Fi gures (Cont'd)

No. Title Page
23. I ncrement al PMS Depth Histogram 37
24. Exampl e 1-hr Di stribution of PNS 38
25. J ones Reservoi r Wtershed 50
26. St orm Pattern for Trials 1, 2, and 6. 55

LI ST OF TABLES

No. Title Page

1. Spatial Variation in PMP for Largest 6-hr I ncrenent 9
2. Spatial Variation in PMP for 2nd Largest 6-hr Increnent 103.
Spatial Variation in PMP for 3rd Largest 6-hr Increnent 11
3. Spatial Variation in PMP for 4th through 12th 6-hr Increnents 12
4. Ratios of 1-hr to 6-hr PMP 13
5. PMP Depths (by Area and Duration) for Leon Ri ver Basi n 16
Basi n-Aver age Preci pitation for Largest 6-hr Increment 21
7.8.Basi n-Average Preci pitation for 2nd Largest 6-hr Increment22
6. Basi n-Aver age Preci pitation for 3rd Largest 6-hr Increment 23
7. Basi n -Aver age Preci pitation for 4th Largest 6-hr Increnent 24
8. Sampl e I nput for HMR52 41
12.Sanple Out put for HMR5243
9. Punched Out put from HMR52 49
10. HMR52 I nput for Jones Reservoi r 51
11. Sel ection of Storm-Area Size and Orientation 53PNG for Subbasin 156
PMS for Subbasi n 2 57
12. PME for Subbasi n 3 58

LI ST OF TABLES (Cont' d)

No. Title Page
19. PNS for Subbasin 4 59
20. HEC-1 I nput for J ones Reservoi r Whtershed 60
21. HEC- Sumnary Out put for Trial 61
22. Summary of PMF Cal cul ations 61
23. Menory and Ti ne Requi rements 62
24. File Characteristics 64

Section 1

I NTRODUCTI ON

1. 1 Program Pur pose

Computer program HMRS2 computes basi n-average preci pitation for Probable Mexi mum Storns (PMS) In accordance with the criteria specified in Hydr onet eor ol ogi cal Report No. 52 (Nati onal Weather Service, 1982). That Hydronet eor ol ogi cal Report (HMR) descri bes a procedure for devel opi ng a temporal and spatial stormpattern to be associated with the Probable Maxi mum Preci pitation (PMP) esti nates provi ded in Hydroneteorol ogi cal Report No. 51, "Probable Maxi mum Preci pitation Esti mates - United States East of the 105th Meri di an." The U. S. Nati onal Weat her Servi ce (NW) has deternined the application criteria in a cooperative effort with the U. S. Army Corps of Engi neers and the U.S. Bureau of Recl amation.

Other reports, HMR Nos. 36. 43, 49 and 55 (NME, 1961. 1966, 1977, and 1983, respectivel y) describe the PMP in other regi ons of the U.S. . Fig 1, This program HMR52, is applicable onl y to the eastern U.S., and is intended for areas of 10 to $20,000 \mathrm{mi}^{2}$. (HMR No. 52 al so contai ns a $1-\mathrm{mi}^{2}$, 1-hr PMP). A tine interval as snall as 5 minutes can be used for stormdefinition. Before using the HPI R52 program one should be thoroughl y familiar with the procedures descri bed in Hydroneteor ol ogi cal Report No. 52.

Fi gure 1. Regi ons Covered by Generalized PMP Studi es (NM, 1980)

The general ized PMP maps of HMR No. 51 are stippl ed In tuo regi ons, indi cating esti mates may be deficient because of orographic influences. Maj or proj ects within the stippled area shoul d be consi dered on a case-by-case basis and expert hydronet eorolog-cal gui dance shoul d be sought.

Data requi red for application of the HMR5 programare:

- X, Y coordi nates describing the ri ver basi n and subbasi n watershed boundaries;
- PMP from HMR Nb. 51 (NMSI 1978); and
- Storm ori entation, size, centering, and timing.

The program computes the spatially averaged PMP for any of the subbasins or conbi nati ons thereof. The Probable Maxi mum FI ood (PMF) can then be computed as the runoff fromthe PME, using an appropriate preci pitation-runoff program such as HEC-I (Hydrol ogi c Engi neering Center, HEC, 1981). A typi cal appl ication of HMR52 does not produce a PMS. The PMS is defined by the Corps of Engi neers to be that storm whi ch produces the PMF. Thus, the PNE can onl y be determi ned by computing (and maximizing) runoff. That is, the runoff characteristics of a watershed must be considered in PMF (and therefore PME) devel opnent.

HMR No. 52 requi res that a critical stormarea size, orientation, centering and timing be determined which produces the naximmpreci pitation. The HMR52 computer programwill optimize the stormarea size and orientation in order to produce the naxi mumbasi n-average preci pitation. The user must provide the desi red centering al though the centroid of the basi n area is provided as a default option.

The user must specify the time di stribution for that storm Using that time di stribution infornation, the HMR5 programwill produce a data file containing the increment al basi n-average precipitation val ues for every subbasin requested. That precipitation data file will subsequently be input to a rai nf al I-runoff model, such as HEC-1, for computation of the resulting flood. The user then anal yzes the various storm variables and recomputes the floods in order to determine the storm whi ch produces the naxi mum runof f. That storm and runoff are defined as the PMS and PMF, respectivel y.

1. 2 Computer Requi rements

The HMR52 computer program requi res a computer with 45K (deci nal) words of core storage and 7 scratch tape/ di sk files. Pl ots of the basin geonetry and stormpatterns can be made on a line printer. Section 10 of this manual specifies detailed computer hardware and sof tware requi rements.

1. 3 Acknow edgenents

The computer program HMR52 was written by Paul B. Ely of the HEC. J ohn C. Peters provi ded much val uable assi stance in the design of the programs capabilities and applications nethodol ogy.

Section 2

PROBABLE MAXI MM STORM ANALYSI S PROCEDURE

2. 1 Probable Maxi mum Preci pitation Definition

Probable Naxi nam Preci pitation (PMP) Is theoretically the greatest depth of preci pitation for a gi ven duration that is physically possi ble over a gi ven size stormarea at a particul ar geographical location at a certain tine of the year. Hydronet eor ol ogi cal Report No. 51 (HMR No. 51) contai ns generalized (for any storm area) all-season estimates of PMP for the United States, east of the 105th neri di an, Fig. 1.

2. 2 Probable Maxi mum St orm Definition

Probable Maxi num St orm (PNS) is a hypot hetical storm which produces the Probable Naxi mum Fl ood from a particul ar drai nage basi n. Hydronet eorol ogi cal Report No. 52 (HMR No. 52) provi des criteria and step-by-step instructions for configuring a PMS using PMP estinates from HMR NO. 51. Key concepts upon whi ch the procedures in HMR No. 52 are based are as follous.

2. 2. 1 Spatial Di stribution

The spatial distribution of the PMP is governed by principals described under four headi ngs: i sohyetal shape, orientation, stormarea size, and spatial vari ability.
(i) Isohyetal shape. The PNS i is represented by elliptical isohyets, each of which has a ratio of naj or axis to ni nor axis of 2.5 to 1. Standard ellipses have been established contai ni ng areas from 10 to 60, $000 \mathrm{~m}^{\mathbf{2}}$
(Fi g. 2)

Fi gure 2. Standard I sohyet al Pattern (NMS, 1982)
(ii) Orientation. There is a preferred orientation for storns at a particul ar geographic location. That orientation is rel ated to the general novenent of stormsystens and the di rection of noi sture-bearing wi nds. Contours of preferred orientation are shown in Fig. 3. When devel oping a PMS, it is generally desirable to orient the stormto produce maxi mumpreci pitation vol une in the watershed. PMP will be reduced by an adj ustment factor (shown in Fig. 4) when the stormorientation differs fromthe preferred orientation by more than ± 40 degrees.
(iii) StormArea Size. The average precipitation depth over an area is PMP for one and only one area size. This is the ' ${ }^{\text {stormarea size.' The average }}$ precipitation on areas larger or smaller than the stormarea size is less than PMP for the larger or snaller areas. Fig. 5 lllustrates this concept for a stormarea of $1000 \mathrm{~mm}^{2}$. The stormarea size is chosen to yi eld the naxi mum preci pitation vol une froma gi ven drai nage basi n.

Fi gure 3. Pref erred Orientation for PMS (NMS, 1982)

Fi gure 4. PMP Orientation Adj ust nent Factors (NMS, 1982)

Fi gure 5. Compari son of PMP Depth-Area Rel ation with 1, 000 mi 2 PMS (NWS, 1982)
(iv) Spatial Variability. Spatial variation of precipitation is a maximm during the 6-hr period when the naxi mum preci pitation occurs. Spatial variation di mi ni shes for the second and thi rd largest 6-hr anounts. For the renai ning 6-hr peri ods, the within-stormpreci pitation is unif orm but there is spatial variation in the residual precipitation occurring outside the elliptical boundary that corresponds to the stormarea size. HMR No. 52 contai ns nonograns whi ch express spatial variation for each 6-hr period as a percent of PMP. Percentages for sel ected area sizes are tabul ated in Tabl es 1 through 4. For each isohyet, the percent of PMP for the stormarea is interpol ated from Tables 1-4. Those percentages are multiplied times the PMP to obtain preci pitation for each isohyet for each 6-hr interval. A graphical illustration of a typical spatial variation is shown in Fig. 6.

Fi gure 6. Spatial Variation in PMP Intensities

2.2.2 Temporal Distribution

The factors governing the temporal di stribution of the PMS are as fol I ous:

* PMP for all durations (up to 3 days) occurs in the same PMS. The PMP pattern is devel oped so that any duration of storns less than $\mathbf{7 2}$ hours is contai ned in the PMS.
* The four 6-hr periods with the greatest preci pitation may occur any time except during the first 24 hours of the storm
* The 6-hr Increnents of preci pitation are arranged such that the i ncrements decrease progressi vel y to either side of the greatest 6-hr increnent. An example of one such di stribution is shown in Fig. 7.
* The 6-hr increments may be di stributed into shorter intervals. Fig. 8 shous ratios of 1-hr to 6 -hr preci pitation for the ' A ' isohyet of a 20, $000 \mathrm{~mm}^{2}$ storm This ratio is determined for the stormeenter location and used to adj ust ratios read from Table 5 for each isohyet within the stormarea size. Maxi mum 5-, 15-, and $\mathbf{3 0 - m m i n t e r v a l} s$ are gi ven onl y for the maxi mum 1-hr increnent withln the maxi mum 6-hr i ncrement.

Fi gure 7. Schenatic of One Temporal Sequence Al owed for 6-hr Increments of PMP (NM, 1982)

Fi gure 8. Ratio of $\mathbf{1 - h r}$ to $\mathbf{6 - h r}$ Precipitation for ' A ' I sohyet of a 20, 000 mi 2 Storns (NG, 1982)

TABLE 1
Spatial Variation in PMP for Largest 6-hour Increment
PERCENT OF LARGEST 6-HOUR PMP INCREMENT ISOHYET

STORM																			
AREA	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
10	100.0	64.0	48.0	38.0	30.0	24.0	19.0	14.0	10.0	6.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	101.0	78.0	58.0	46.0	37.0	30.0	24.0	19.0	14.0	9.0	5.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	102.0	95.0	67.0	52.0	43.0	34.0	28.0	22.0	17.0	12.0	7.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	104.0	97.0	77.0	59.0	48.0	39.0	32.0	25.0	19.0	14.0	9.0	5.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
50	106.0	99.0	92.0	66.0	540.0	44.0	35.0	28.0	22.0	16.0	11.0	7.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
75	109.0	102.0	95.0	77.0	62.0	50.0	40.0	32.0	26.0	19.0	14.0	9.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0
100	112.0	105.0	98.0	90.0	68.0	55.0	44.0	35.0	28.0	21.0	16.0	11.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0
140	116.0	108.0	101.0	93.0	78.0	61.0	49.0	39.0	32.0	24.0	18.0	13.0	8.0	2.0	0.0	0.0	0.0	0.0	0.0
175	119.0	111.0	103.0	96.0	89.0	66.0	53.0	42.0	34.0	26.0	20.0	15.0	9.0	3.0	0.0	0.0	0.0	0.0	0.0
220	122.0	114.0	106.0	99.0	92.0	73.0	58.0	46.0	37.0	28.0	22.0	17.0	10.0	4.0	0.0	0.0	0.0	0.0	0.0
300	126.0	118.0	110.0	103.0	96.0	88.0	65.0	51.0	42.0	32.0	25.0	19.0	12.0	6.0	1.0	0.0	0.0	0.0	0.0
360	129.0	121.0	113.0	105.0	98.0	90.0	73.0	56.0	45.0	35.0	27.0	21.0	13.0	7.0	2.0	0.0	0.0	0.0	0.0
450	132.0	124.0	116.0	108.0	101.0	93.0	86.0	63.0	50.0	38.0	30.0	23.0	15.0	8.0	3.0	0.0	0.0	0.0	0.0
560	136.0	128.0	120.0	111.0	104.0	95.0	89.0	72.0	56.0	43.0	33.0	25.0	16.0	9.0	3.0	0.0	0.0	0.0	0.0
700	140.0	132.0	124.0	115.0	107.0	98.0	92.0	84.0	63.0	48.0	36.0	27.0	18.0	10.0	4.0	0.0	0.0	0.0	0.0
850	145.0	136.0	128.0	119.0	110.0	101.0	94.0	87.0	72.0	54.0	40.0	30.0	19.0	11.0	4.0	0.0	0.0	0.0	0.0
1000	149.0	140.0	131.0	122.0	113.0	104.0	97.0	89.0	82.0	60.0	44.0	32.0	21.0	12.0	5.0	0.0	0.0	0.0	0.0
1200	155.0	145.0	136.0	126.0	116.0	107.0	100.0	92.0	85.0	68.0	49.0	35.0	23.0	14.0	6.0	0.0	0.0	0.0	0.0
1500	162.0	152.0	142.0	132.0	122.0	112.0	105.0	96.0	88.0	80.0	56.0	41.0	26.0	16.0	7.0	0.0	0.0	0.0	0.0
1800	169.0	158.0	147.0	137.0	126.0	117.0	108.0	99.0	91.0	83.0	64.0	46.0	29.0	18.0	8.0	1.0	0.0	0.0	0.0
2150	176.0	165.0	154.0	142.0	131.0	122.0	113.0	103.0	95.0	86.0	77.0	52.0	33.0	20.0	9.0	2.0	0.0	0.0	0.0
2600	184.0	172.0	160.0	148.0	137.0	127.0	118.0	108.0	99.0	89.0	80.0	62.0	38.0	22.0	11.0	3.0	0.0	0.0	0.0
3000	191.0	179.0	166.0	154.0	142.0	132.0	122.0	112.0	102.0	92.0	83.0	74.0	44.0	25.0	13.0	4.0	0.0	0.0	0.0
3800	203.0	189.0	176.0	163.0	150.0	140.0	130.0	119.0	108.0	98.0	89.0	79.0	56.0	31.0	15.0	6.0	0.0	0.0	0.0
4500	212.0	198.0	184.0	170.0	157.0	146.0	135.0	124.0	113.0	103.0	93.0	83.0	71.0	37.0	18.0	8.0	0.0	0.0	0.0
5500	223.0	209.0	194.0	180.0	166.0	153.0	142.0	131.0	119.0	108.0	98.0	88.0	76.0	48.0	23.0	10.0	0.0	0.0	0.0
6500	233.0	218.0	203.0	187.0	174.0	160.0	148.0	137.0	125.0	113.0	103.0	93.0	81.0	70.0	29.0	13.0	1.0	0.0	0.0
8000	247.0	230.0	214.0	198.0	183.0	169.0	157.0	144.0	132.0	120.0	110.0	99.0	87.0	75.0	40.0	18.0	3.0	0.0	0.0
10000	262.0	243.0	227.0	209.0	194.0	175.0	166.0	152.0	140.0	128.0	117.0	107.0	93.0	82.0	68.0	26.0	7.0	0.0	0.0
12000	274.0	255.0	238.0	219.0	203.0	186.0	174.0	159.0	147.0	135.0	123.0	113.0	99.0	87.0	73.0	38.0	11.0	0.0	0.0
15000	290.0	271.0	253.0	232.0	214.0	196.0	183.0	168.0	156.0	143.0	131.0	120.0	106.0	94.0	80.0	65.0	18.0	2.0	0.0
18000	304.0	183.0	264.0	242.0	224.0	205.0	192.0	176.0	164.0	150.0	138.0	127.0	113.0	101.0	86.0	71.0	28.0	6.0	0.0
20000	312.0	291.0	271.0	248.0	229.0	210.0	197.0	181.0	168.0	154.0.	142.0	131.0	117.0	104.0	89.0	74.0	36.0	8.0	0.0

TABLE 2
Spatial Variation in PMP for 2nd Largest 6-hour Increment
PERCENT OF SECOND LARGEST 6-HOUR PMP INCREMENT ISOHYET

STORM																			
AREA	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
10	100.0	64.0	48.0	39.0	30.0	24.0	20.0	14.0	10.0	7.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	102.0	81.5	61.0	50.0	40.0	32.0	27.0	20.5	15.5	12.0	7.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	103.0	98.0	72.0	59.0	48.0	39.0	32.5	26.0	20.0	15.5	10.5	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	104.0	99.0	82.0	66.5	54.5	44.5	37.5	30.5	24.0	19.0	13.5	7.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0
50	105.5	100.5	96.5	76.0	62.5	51.0	43.5	36.0	29.0	23.0	17.0	11.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0
75	107.0	102.0	98.0	86.0	72.0	59.5	50.0	42.0	34.5	27.5	21.0	14.5	7.0	0.0	0.0	0.0	0.0	0.0	0.0
100	108.0	103.0	99.0	95.0	79.0	65.0	55.0	47.0	38.5	31.0	24.0	17.0	9.0	1.0	0.0	0.0	0.0	0.0	0.0
140	109.0	104.0	100.5	96.5	88.0	73.0	62.0	52.5	43.5	35.0	27.5	20.5	12.0	3.5	0.0	0.0	0.0	0.0	0.0
175	110.0	105.0	101.5	97.5	95.0	79.0	66.5	56.5	47.0	38.5	30.0	23.0	14.5	5.0	0.0	0.0	0.0	0.0	0.0
220	110.5	106.0	102.5	98.5	96.0	85.0	72.0	61.0	51.0	42.0	33.0	26.0	17.0	7.5	0.0	0.0	0.0	0.0	0.0
300	111.5	107.0	103.5	100.0	97.5	95.0	80.0	67.5	57.0	47.0	37.5	30.0	20.5	10.0	1.0	0.0	0.0	0.0	0.0
360	112.0	108.0	104.0	101.0	98.5	96.0	85.0	72.0	61.0	50.0	40.5	33.0	23.0	12.0	3.0	0.0	0.0	0.0	0.0
450	113.0	109.0	105.0	102.0	99.5	97.0	95.0	77.5	66.0	54.5	44.5	36.5	25.5	14.0	4.5	0.0	0.0	0.0	0.0
560	114.0	109.5	106.0	102.5	100.5	98.0	96.0	85.0	72.5	60.0	49.0	40.0	28.5	17.0	6.5	0.0	0.0	0.0	0.0
700	114.5	110.0	107.0	104.0	101.0	99.0	97.0	95.0	78.0	65.5	54.0	44.0	32.0	19.5	9.0	0.0	0.0	0.0	0.0
850	115.0	111.0	107.5	104.5	102.0	100.0	98.0	96.0	85.0	71.0	58.5	48.0	35.0	22.0	11.0	0.0	0.0	0.0	0.0
1000	116.0	112.0	108.5	105.0	103.0	101.0	99.0	97.0	95.0	76.0	63.0	51.0	38.0	24.0	12.5	0.0	0.0	0.0	0.0
1200	116.5	112.5	109.0	106.0	104.0	102.0	99.5	97.0	96.0	82.5	68.0	55.0	41.0	27.0	14.5	0.0	0.0	0.0	0.0
1500	117.0	113.0	110.0	107.0	105.0	103.0	100.5	99.0	97.0	95.5	75.5	60.5	45.0	31.0	17.0	0.0	0.0	0.0	0.0
1800	118.0	114.0	110.5	108.0	105.5	104.0	101.5	99.5	98.0	96.0	83.0	66.0	49.5	34.0	19.5	1.5	0.0	0.0	0.0
2150	118.5	114.5	111.0	108.5	106.5	104.5	102.0	100.0	99.0	97.0	96.0	73.0	54.0	37.5	22.0	4.0	0.0	0.0	0.0
2600	119.0	115.5	112.0	109.5	107.0	105.5	103.0	101.0	99.5	98.0	96.5	83.0	60.5	41.5	25.5	7.0	0.0	0.0	0.0
3000	119.5	116.0	112.5	110.0	108.0	106.0	104.0	102.0	100.5	99.0	97.0	96.0	67.0	45.0	28.5	9.0	0.0	0.0	0.0
3800	120.5	117.0	113.5	111.0	109.0	107.0	105.0	103.0	101.5	100.0	98.0	97.0	81.0	52.5	34.0	13.5	0.0	0.0	0.0
4500	121.0	117.0	114.0	112.0	109.5	108.0	105.5	103.5	102.0	100.5	99.0	97.5	96.0	59.0	39.0	17.0	0.0	0.0	0.0
5500	122.0	118.0	115.0	112.5	110.5	108.5	106.5	104.5	103.0	101.5	100.0	98.5	97.0	72.5	46.0	22.0	0.0	0.0	0.0
6500	122.0	119.0	115.5	113.0	111.0	109.0	107.0	105.0	104.0	102.0	100.5	99.0	97.5	95.5	52.5	27.5	1.0	0.0	0.0
8000	123.0	120.0	116.5	114.0	112.0	110.0	108.0	106.0	104.5	103.0	101.5	100.0	98.5	96.0	66.0	37.0	6.0	0.0	0.0
10000	124.0	120.5	117.0	115.0	113.0	111.0	109.0	107.0	105.5	104.0	102.5	101.0	99.0	97.0	95.0	50.0	14.0	0.0	0.0
12000	124.5	121.0	118.0	116.0	114.0	112.0	110.0	108.0	106.5	105.0	103.0	102.0	100.0	98.0	96.0	64.0	21.0	0.0	0.0
15000	125.0	122.0	119.0	117.0	115.0	113.0	111.0	109.0	107.0	106.0	104.0	102.5	101.0	99.0	97.0	96.0	34.0	0.0	0.0
18000	126.0	122.5	119.5	118.0	116.0	113.5	112.0	110.0	108.0	106.5	105.0	103.5	102.0	99.5	97.5	96.5	47.0	4.5	0.0
20000	126.0	123.0	120.0	118.0	116.0	114.0	112.0	110.0	108.5	107.0	105.0	104.0	102.0	100.0	98.0	97.0	55.0	7.0	0.0

TABLE 3
Spatial Variation in PMP for 3rd Largest 6-hour Increment
PERCENT OF THIRD LARGEST 6-HOUR PMP INCREMENT ISOHYET

STORM																			
AREA	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
10	100.0	65.0	48.0	39.0	30.0	24.0	20.0	14.0	10.0	6.5	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	100.6	83.5	63.0	51.0	40.0	33.0	28.0	21.0	16.5	12.5	7.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	101.0	99.0	74.5	60.5	48.5	40.0	34.0	27.0	21.5	17.0	11.5	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	101.3	99.4	85.5	69.0	55.5	46.5	39.5	32.5	26.5	21.0	15.0	8.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0
50	101.6	99.8	98.5	78.5	63.0	53.5	46.0	37.5	31.5	26.0	19.5	12.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0
75	102.0	100.3	99.0	90.0	73.5	61.5	53.0	44.0	37.5	31.5	24.5	16.5	5.2	0.0	0.0	0.0	0.0	0.0	0.0
100	102.3	100.7	99.3	98.6	81.5	68.0	59.0	49.0	42.0	35.5	28.0	20.0	11.2	1.0	0.0	0.0	0.0	0.0	0.0
140	102.6	101.0	99.7	99.0	92.0	76.5	66.0	55.0	47.5	40.5	32.5	24.0	15.0	4.5	0.0	0.0	0.0	0.0	0.0
175	102.8	101.3	100.0	99.2	98.8	93.0	71.0	59.5	51.0	44.0	35.0	26.5	18.0	7.0	0.0	0.0	0.0	0.0	0.0
220	103.1	101.5	100.3	99.5	99.0	89.0	77.0	64.0	55.5	47.5	38.5	29.5	20.5	10.0	0.0	0.0	0.0	0.0	0.0
300	103.4	101.9	100.7	99.8	99.3	99.0	86.0	72.0	62.0	53.0	43.0	33.5	24.5	14.0	2.0	0.0	0.0	0.0	0.0
360	103.6	102.1	100.9	100.1	99.5	99.2	92.0	76.5	66.0	56.0	46.0	36.0	27.0	16.0	4.0	0.0	0.0	0.0	0.0
450	103.8	102.4	101.2	100.3	99.8	99.5	99.2	84.0	71.0	60.0	50.0	39.5	30.0	19.0	7.0	0.0	0.0	0.0	0.0
560	104.0	102.7	101.5	100.6	100.0	99.7	99.4	91.0	77.5	64.5	54.0	43.0	33.0	22.5	10.0	0.0	0.0	0.0	0.0
700	104.2	102.9	101.7	100.8	100.2	99.9	99.6	99.2	85.0	70.5	58.5	47.0	37.0	25.5	13.0	0.0	0.0	0.0	0.0
850	104.4	103.2	102.0	101.1	100.4	100.1	99.7	99.4	92.0	76.5	62.5	50.5	40.0	28.5	15.5	0.0	0.0	0.0	0.0
1000	104.6	103.3	102.3	101.3	100.6	100.3	99.9	99.6	99.3	82.5	67.0	54.0	43.0	31.0	17.5	0.0	0.0	0.0	0.0
1200	104.7	103.5	102.5	101.5	100.8	100.4	100.0	99.7	99.5	89.5	72.5	58.5	46.5	34.0	20.5	0.0	0.0	0.0	0.0
1500	105.0	103.8	102.7	101.7	101.0	100.7	100.3	100.0	99.7	99.4	81.0	65.5	51.5	38.0	24.0	0.0	0.0	0.0	0.0
1800	105.2	104.0	102.9	102.0	101.2	100.8	100.4	100.1	99.8	99.5	89.0	72.5	56.5	42.0	27.0	2.5	0.0	0.0	0.0
2150	105.3	104.2	103.2	102.0	101.3	101.0	100.6	100.3	100.0	99.7	99.5	80.5	61.0	46.5	30.5	5.5	0.0	0.0	0.0
2600	105.5	104.4	103.4	102.4	101.5	101.2	100.7	100.4	100.1	99.8	99.5	90.5	69.0	52.0	34.0	9.0	0.0	0.0	0.0
3000	105.7	104.6	103.5	102.5	101.7	101.3	100.9	100.5	100.2	99.9	99.6	99.3	76.0	57.0	37.5	12.0	0.0	0.0	0.0
3800	105.8	104.8	103.8	102.8	101.9	101.5	101.1	100.7	100.5	100.1	99.8	99.5	88.5	67.0	43.5	16.5	0.0	0.0	0.0
4500	106.0	105.0	104.0	103.1	102.1	101.7	101.2	100.9	100.6	100.2	99.9	99.6	99.3	76.0	49.0	21.0	0.0	0.0	0.0
5500	106.2	105.3	104.3	103.2	102.3	101.8	101.4	101.1	100.8	100.4	100.0	99.7	99.4	88.0	57.0	27.5	0.0	0.0	0.0
6500	106.4	105.5	104.5	103.5	102.5	102.0	101.5	101.2	100.9	100.5	100.2	99.8	99.5	98.9	65.0	34.5	1.0	0.0	0.0
8000	106.6	105.7	104.8	103.7	102.7	102.2	101.7	101.4	101.1	100.7	100.3	100.0	99.6	99.0	49.0	44.5	8.0	0.0	0.0
10000	106.8	106.0	105.0	104.0	102.8	102.4	101.9	101.6	101.3	100.9	100.5	100.2	99.8	99.2	98.7	59.0	18.0	0.0	0.0
12000	107.0	106.2	105.3	104.2	103.0	102.6	102.1	101.8	101.5	101.0	100.7	100.3	99.9	99.3	98.8	71.5	27.5	0.0	0.0
15000	107.2	106.5	105.5	104.4	103.3	102.8	102.3	102.0	101.7	101.2	100.8	100.5	100.1	99.5	99.0	98.0	42.0	1.0	0.0
18000	107.4	106.7	105.8	104.6	103.5	103.0	102.4	102.2	101.8	101.3	101.0	100.6	100.2	99.6	99.1	98.7	54.5	7.5	0.0
20000	107.5	106.8	105.9	104.7	103.6	103.0	102.5	102.2	101.9	101.4	101.1	100.7	100.2	99.7	99.2	98.2	66.0	12.0	0.0

TABLE 4
Spatial Variation in PMP for $4^{\text {th }}$ through $12^{\text {th }} 6$-hour Increment

PERCENT OF FOURTH THROUGH TWELFTH LARGEST 6-HOUR PMP INCREMENT ISOHYET

STORM																			
AREA	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
10	100.0	65.0	48.0	39.0	30.0	24.0	20.0	14.0	10.0	6.5	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	100.0	83.5	62.5	50.5	40.0	33.0	27.5	21.0	16.0	12.0	7.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	100.0	100.0	74.5	60.5	48.5	40.0	34.0	27.0	21.5	17.0	11.5	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	100.0	100.0	86.0	68.5	55.0	46.0	39.0	31.5	26.0	21.0	15.0	8.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0
50	100.0	100.0	100.0	78.5	63.0	53.5	46.0	37.5	31.5	26.0	19.5	12.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0
75	100.0	100.0	100.0	89.5	73.0	61.5	53.0	44.0	37.0	31.0	24.0	16.0	8.5	0.0	0.0	0.0	0.0	0.0	0.0
100	100.0	100.0	100.0	100.0	81.5	68.0	59.0	49.0	42.0	35.5	28.0	20.0	11.5	1.0	0.0	0.0	0.0	0.0	0.0
140	100.0	100.0	100.0	100.0	91.0	76.5	65.5	55.0	47.5	40.0	32.0	23.5	15.0	4.0	0.0	0.0	0.0	0.0	0.0
175	100.0	100.0	100.0	100.0	100.0	83.0	71.0	58.5	51.0	44.0	35.0	26.5	18.0	7.0	0.0	0.0	0.0	0.0	0.0
220	100.0	100.0	100.0	100.0	100.0	89.0	77.0	64.0	55.0	47.0	38.5	29.0	20.5	9.5	0.0	0.0	0.0	0.0	0.0
300	100.0	100.0	100.0	100.0	100.0	100.0	86.0	72.0	62.0	53.0	43.0	33.5	24.5	14.0	2.0	0.0	0.0	0.0	0.0
360	100.0	100.0	100.0	100.0	100.0	100.0	91.5	77.0	65.5	55.5	46.0	36.0	27.0	16.0	4.0	0.0	0.0	0.0	0.0
450	100.0	100.0	100.0	100.0	100.0	100.0	100.0	84.0	71.0	60.0	50.0	39.5	30.0	19.0	7.0	0.0	0.0	0.0	0.0
560	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	77.5	64.5	53.5	43.0	33.0	22.0	8.5	0.0	0.0	0.0	0.0
700	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	85.0	70.5	58.5	4730	37.0	25.5	13.0	0.0	0.0	0.0	0.0
850	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	92.0	77.0	62.0	50.5	40.0	28.0	15.0	0.0	0.0	0.0	0.0
1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	82.5	67.0	54.0	43.0	31.0	17.5	0.0	0.0	0.0	0.0
1200	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	89.5	72.0	58.5	46.5	33.5	20.0	0.0	0.0	0.0	0.0
1500	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	81.0	65.5	51.5	38.0	24.0	0.0	0.0	0.0	0.0
1800	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	89.0	72.5	56.0	41.5	26.5	2.5	0.0	0.0	0.0
2150	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	80.5	61.0	46.5	30.5	5.5	0.0	0.0	0.0
2600	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	90.0	69.0	51.5	33.5	9.0	0.0	0.0	0.0
3000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	76.0	57.0	37.5	12.0	0.0	0.0	0.0
3800	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	88.5	67.0	43.5	17.0	0.0	0.0	0.0
4500	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	76.0	49.0	21.0	0.0	0.0	0.0
5500	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	88.0	56.5	27.0	0.0	0.0	0.0
6500	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	65.0	34.5	1.0	0.0	0.0
8000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	79.0	44.0	8.0	0.0	0.0
10000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	59.0	18.0	0.0	0.0
12000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	71.0	27.0	0.0	0.0
15000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	42.0	1.0	0.0
18000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	54.0	7.0	0.0
20000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	66.0	12.0	0.0

TABLE 5
RATIOS OF 1-HOUR TO 60HOUR PMP
(Offset by Ratio for Isohyet A for 20,000 sq. mi. Storm)

STORM ISOHY																
AREA	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
10	. 2555															
17	. 2470															
25	. 2370	. 2355														
35	. 2255	. 2240														
50	. 2115	. 2100	. 2085													
75	. 1935	. 1920	. 1905													
100	. 1800	. 1785	. 1770	. 1750												
140	. 1625	. 1610	. 1595	. 1575												
175	. 1500	. 1485	. 1470	. 1450	. 1435											
220	. 1375	. 1355	. 1340	. 1320	. 1305											
300	. 1185	. 1170	. 1155	. 1135	. 1120	. 1100										
360	. 1070	. 1055	. 1040	. 1020	. 1005	. 0985										
450	. 0935	. 0915	. 0900	. 0880	. 0860	. 0840	. 0825									
560	. 0790	. 0775	. 0760	. 0735	. 0715	. 0700	. 0690									
700	. 0640	. 0620	. 0605	. 0585	. 0570	. 0545	. 0530	. 0510								
850	. 0515	. 0490	. 0475	. 0455	. 0440	. 0420	. 0405	. 0385								
1000	. 0405	. 0380	. 0365	. 0340	. 0320	. 0305	. 0290	. 0270	. 0255							
1200	. 0280	. 0255	. 0240	. 0215	. 0195	. 0180	. 0165	. 0145	. 0125							
1500	. 0135	. 0110	. 0090	. 0075	. 0060	. 0035	. 0020	. 0000	-. 0020	-. 0070						
1800	. 0030	. 0005	-. 0010	-. 0030	-. 0045	-. 0060	-. 0075	-. 0095	-. 0115	-. 0165						
2150	-. 0055	-. 0075	-. 0090	-. 0110	-. 0125	-. 0145	-. 0160	-. 0180	-. 0195	-. 0235	-. 0280					
2600	-. 0130	-. 0150	-. 0165	-. 0180	-. 0195	-. 0215	-. 0230	-. 0250	-. 0270	-. 0305	-. 0345					
3000	-. 0175	-. 0200	-. 0215	-. 0230	-. 0245	-. 0260	-. 0275	-. 0295	-. 0315	-. 0350	-. 0385	-. 0425				
3800	-. 0245	-. 0260	-. 0275	-. 0290	-. 0305	-. 0320	-. 0335	-. 0355	-. 0370	-. 0405	-. 0440	-. 0465				
4500	-. 0275	-. 0290	-. 0305	-. 0320	-. 0335	-. 0350	-. 0365	-. 0385	-. 0400	-. 0435	-. 0465	-. 0490	-. 0540			
5500	-. 0295	-. 0310	-. 0325	-. 0340	-. 0355	-. 0370	-. 0375	-. 0405	-. 0420	-. 0455	-. 0485	-. 0505	-. 0555			
6500	-. 0300	-. 0315	-. 0330	-. 0345	-. 0360	-. 0375	-. 0390	-. 0405	-. 0420	-. 0455	-. 0485	-. 0510	-. 0555	-. 0610		
8000	-. 0295	-. 0310	-. 0325	-. 0340	-. 0355	-. 0370	-. 0385	-. 0400	-. 0415	-. 0445	-. 0475	-. 0505	-. 0550	-. 0605		
10000	-. 0275	-. 0290	-. 0300	-. 0315	-. 0325	-. 0340	-. 0355	-. 0370	-. 0385	-. 0415	-. 0450	-. 0480	-. 0525	-. 0575	-. 0640	
12000	-. 0240	-. 0255	-. 0265	-. 0280	-. 0290	-. 0305	-. 0320	-. 0340	-. 0355	-. 0385	-. 0415	-. 0445	-. 0490	-. 0535	-. 0605	
15000	-. 0155	-. 0170	-. 0180	-. 0200	-. 0215	-. 0230	-. 0245	-. 0365	-. 0280	-. 0310	-. 0350	-. 0380	-. 0425	-. 0475	-. 0550	-. 0630
18000	-. 0065	-. 0080	-. 0095	-. 0110	-. 0125	-. 0140	-. 0155	-. 0175	-. 0195	-. 0235	-. 0270	-. 0305	-. 0345	-. 0410	-. 0475	-. 0555
20000	. 0000	-. 0015	-. 0030	-. 0045	-. 0060	-. 0080	-. 0095	-. 0115	-. 0135	-. 0175	-. 0210	-. 0245	-. 0290	-. 0355	-. 0415	-. 0505
	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P

Section 3

PROBABLE MAXI MUM PREC PI TATI ON DETERM NATI ON

3. 1 Al I Season PMP Esti nates

Generally, a three-step process is followed in determining PMP in nonor ographi c regi ons: moi st ure naxi mization, transposition and envel opnent. Those processes are bri efly described bel ow, HMR No. 51 gi ves a compl ete expl anation of the PMP procedure.

Mbi st ure naxi mization consi sts of increasi ng stormpreci pitation neasured in a maj or hi storic event by a factor that reflects the naxi mum anount of noi st ure that could have exi sted in the at nosphere for the stormlocation and time of the year.

Transposition refers to the process of noving a storm(i.e., isohyet al pattern) fromthe location where it occurred to another location of interest. Transposition is carried out only within a regi on that is honogeneous with respect to terrai n and meteorol ogy.

Envel opnent i nvol ves construction of snooth curves that envel ope preci pitation naxi na for various durations and area sizes to compensate for data gaps. Al so geographic snoothing is perforned to insure regi onal consi stency.

Usi ng those princi ples, PMP's for various sized area and storm dur ations nere cal cul ated by the NB. The results are generalized and pl otted in a series of figures (18-47) in HMR No. 51. One of those pl ots, the all-season PMP for the 6-hr $10-\mathrm{mi}^{2}$ PMP. is illustrated here in Fig. 9.

Fi gure 9. All-Season PMP (i nches) for 6 hours, $10 \mathbf{m i}^{\mathbf{2}}$ ($\mathrm{N} / \mathrm{B}, 1978$)

3. 2 Exampl e Cal cul ation of PMP

It is desi red to obtai n PMP esti nates for the Leon $R i$ ver basi n above Bel ton Reservoi r, Texas, Fig. 10. The drai nage area Is 3, $660 \mathrm{mi}^{\mathbf{2}}$; the I ocation of the centroid of the basin is $31^{\circ} 45^{\prime} \mathbf{N}, 98^{\circ} 15^{\prime} \mathbf{W}$

Fromthe PMP maps in HMR No. 51, the PMP val ues for area sizes I arger and snaller than the drai nage area are determined. The all-season PMP for 6 hours and $10 \mathrm{mi}^{2}$ was shown in Fig. 9 (which is Fig. 18 in HMR No. 51). Val ues taken fromfigures 18 through 47 of HMR No, 51 are shown in Table 6.

Figure 10. Leon River Basin, Texas (NWS, 1982)

Table 6
PMP Depths (by Area and Duration) for Leon River Basin

$\begin{aligned} & \text { Area } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$	Duration (hours)				
	6	12	24	48	72
10	29.8	36.2	41.8	46.7	49.8
200	22. 3	27.4	33.0	37.5	41.4
1000	16. 2	21. 2	26. 8	31. 0	34. 5
5000	9. 3	13. 1	18. 1	22.6	25.9
10000	7. 2	10. 4	14.9	18.8	21.0
20000	5. 2	8.2	11.7	15.4	18.4

Fromthe depth-area-duration data in Table 6, pl ot PMP depth versus the logarithm of drai nage area for each duration. Draw snooth curves for each duration. The curves should be parallel or converge slightly with increasing size, as illustrated in Fig. 11.

Fi gure 11. Depth-Area-Duration Curves for Leon Ri ver Basi n (NGS, 1982)

It is hi ghly recommended to physically pl ot the initial depth-area- duration val ues taken from the various figures (figures 18-47) in HMR 51 as shown in Hg. 11 of thi s users nanual. Thi s initial pl ot ting of the basi c i nput data serves tuo functions. One, it el iminates reader errors from basic misi nterpretation of val ues read of f the figures in HMR 51. Second, initial important snoothing of the basic precipitation data is appl i ed.

Using the depth-area- duration graph of Fig. 11, deternine PMP depths for the stormarea sizes of interest. A pl ot of the area-specific PMP val ues versus duration on li near graph paper can be used to obtain PMP depth for any duration between 6 and 72 hours. The above curve fitting is done aut onatically by the HMR52 program The user need onl y provi de the dept h-area-duration data, e. g. Table 6, for the geographic location in question. Usi ng this PMP data, the PMS is cal cul ated as described in the next section.

Section 4

EXAMPLE CALCULATI ON OF A PMS

To illustrate the procedures gi ven in HMR No. 52, suppose that it is desired to derive a stormfor a stormarea size of $3,000 \mathbf{~ m}^{\mathbf{2}}$ for the Leon Ri ver basin. The stormis to be centered at $31^{\circ} 45^{\prime} \mathbf{N} \quad 98^{\circ} 15^{\prime} \mathbf{W w i t h}$ an orientation of 314ㅇ, as shown in Fig. 12.

Fi gure 12. I sohyetal Pattern Pl aced on Leon River Basin (NWS, 1982)

4. 1 Determination of PMP Intensity versus Duration

The PMP for an area of $3,000 \mathbf{m i}^{\mathbf{2}}$ (determined fromFig. 11) is shown in Fi gg. 13. The i ncrement al preci pitation anounts, cal cul at ed (incl udi ng additional snoothing) from the cuml ative anounts given in Fig. 13, are as fol I ous:

6-hr	PMP		
I ncrement	Inches	I ncrement	I nches
1	11. 40	7	1. 00
2	4.14	8	1. 00
3	2. 71	9	0. 90
4	2. 11	10	0.90
5	1. 64	11	0.80
6	1. 20	12	0. 80

Fi gure 13. PMP Depth-Duration for 3, $000 \mathbf{~ m}^{\mathbf{2}}$ Storm on Leon Ri ver Basi n

4. 2 Adjust nent for Storm Orientation

From Fig. 3, the preferred orientation for this stormlocation is $20 \mathbf{2}^{\circ}$, which differs by 106° fromthe sel ected orientation of 314°. From Fig. 4, the PMP must theref ore be multiplied by 0.85. The adjusted PMP is as follows:

6- hr I ncr enent	PMP I nches	I ncrement	I nches
1	9. 69	7	0. 85
2	3. 52	8	0. 85
3	2. 30	9	0. 77
4	1. 79	10	0. 77
5	1. 39	11	0. 68
6	1. 02	12	0. 68

4. 3 Determination of Basi n-Average Precipitation

The nonograns in Figs. 14 through 17 are requi red for determining the spatial di stribution of preci pitation. Tables 7 through 10 show computations to determi ne basi n-average preci pitation for the four I argest 6-hr i ncrements. Basi n-average preci pitation for the renai ni ng increments (5th through 12th) can be obtai ned as a proportion of the $4 t h$ largest increnent, because the same spatial di stribution is used. For example, the 3, 000 $\mathbf{m i}^{2}$ PMP for the $5 t h 1$ argest increment is 1.39 inches. Basi n - aver age precipitation for the increment is 1. 39 (1.69/1.79) =1.31 inches. Basi n-average preci pitation for the twel ve increnents is as follous:

$6-\mathrm{hr}$ I ncrenent	PMP I nches	I ncrement	I nches
1	8. 31	7	0. 80
2	3. 25	8	0. 80
3	2. 17	9	0. 73
4	1. 69	10	0. 73
5	1. 31	11	0. 64
6	0. 96	12	0. 64

4. 4 Temporal Arrangement

An accept able temporal arrangenent (Fig. 7) of the basi n aver age Precipitation is as follows:

| Day | 6- hr
 Period | Basin-Average
 Precipitation | Day | | 6- hr
 Period |
| :---: | :---: | :---: | :---: | :---: | :---: | | Basin-Average |
| :---: |
| Precipitation |

Table 7
Basin-Average Precipitation for Largest 6-hr Increment

Isohyet	Area Within sohyet sq.mi.	Area Within Isohyet and Basin (A) sq.mi.	Incremental Area) A sq.mi.	\% of 3000 sq.mi. PMP (9.69 in.)	Isohyet Precipitation in.	Average Precipitation on) A in.	Volume of Precipitation in.-sq.mi.
A	10	10	10	191	18.51	18.51	185.1
B	25	25	15	179	17.35	17.93	268.9
C	50	50	25	166	16.09	16.72	418.0
D	100	100	50	154	14.92	15.51	775.5
E	175	175	75	142	13.76	14.34	1075.5
F	300	300	125	132	12.79	13.28	1660.0
G	45 D	450	150	122	11.82	12.31	1846.5
H	700	700	25 D	112	12.85	11.34	2835.0
I	1000	971	271	102	9.88	10.37	2810.0
U	1500	1364	393	92	8.91	9.39	3690.3
K	2150	1852	488	83	8.04	8.48	4138.2
L	3000	2434	582	74	7.17	7.61	4429.0
M	4500	3171	737	44	4.26	6.01	4429.4
N	6500	3660	489	25	2.42	3.80	1858.2

Basin-Avg. Ppt. $=30419.9 \div 3660=\underline{8.31}$ in

Table 8
Basin-Average Precipitation for Second Largest 6-hr Increment

Isohyet	Area Within Isohyet sq.mi.	Area Within isohyet and Basin (A) sq.mi.	Incremental Area) A sq.mi.	\% of 3000 sq.mi. PMP $(3.52 \mathrm{in})$.	Isohyet Precipitation in.	Average Precipitation on) A in.	Volume of Precipitation in.-sq.mi.
A	10	10	10	119.5	4.21	4.21	42.1
B	25	25	15	116	4.08	4.15	62.2
C	50	50	25	112.5	3.96	4.02	100.5
D	100	100	so	110	3.87	3.92	196.0
E	175	175	75	108	3.80	3.84	288.0
F	300	300	125	106	3.73	3.77	471.3
G	450	450	150	104	3.66	3.70	555.0
H	700	700	250	102	3.59	3.63	907.5
I	1000	971	271	100.5	3.54	3.56	964.8
J	1500	1364	393	99	3.48	3.51	1379.4
K	2150	1052	488	97	3.41	3.45	1683.6
L	3000	2434	582	96	3.38	3.40	1978.8
M	4500	3171	737	67	2.36	2.97	2188.9
N	6500	3660	489	45	1.58	2.17	1061.1

Basin-Avg. Ppt. $=11879.2 \div 3660=\underline{3.25} \mathrm{in}$.

Table 9
Basin-Average Precipitation for Third Largest 6-hr Increment

Isohyet	Area Within Isohyet sq.mi.	Area Within Isohyet and Basin (A) sq.mi	Incremental Area) A sq.mi.	$\%$ of 3000 sq.mi. PMP $(2.30$ in.)	Isohyet Precipitation in.	Average Precipitation on) A in.	Volume of Precipitation in.-sq.mi
A	10	10	10	105.7	2.43	2.43	24.3
B	25	25	15	104.6	2.41	2.42	36.3
C	50	50	25	103.5	2.38	2.40	60.0
D	100	100	50	102.5	2.36	2.37	118.5
E	175	175	75	101.7	2.34	2.35	176.3
F	300	300	125	101.3	2.33	2.335	291.9
G	450	450	150	100.9	2.32	2.325	348.8
H	700	700	250	100.5	2.31	2.315	578.8
I	1000	971	271	100.2	2.30	2.305	624.7
J	1500	1364	393	99.9	2.30	2.30	903.9
K	2150	1852	488	99.6	2.29	2.295	1120.0
L	3000	2434	582	99.3	2.28	2.285	1329.9
M	4500	3171	737	76	1.75	2.07	1525.6
N	6500	3660	489	57	1.31	1.64	802.0

$\underline{\text { Basin- Avg. Ppt. }}=7941.0 \div 3660=\underline{2.17} \mathrm{in}$.

Table 10
Basin-Average Precipitation for Fourth Largest 6-hr Increment

Isohyet	Area Within Isohyet sq.mi.	Area Within Isohyet and Basin (A) sq.mi	Incremental Area) A sq.mi.	\% of 3000 sq.mi. PMP (1.79 in.)	Isohyet Precipitation in.	Average Precipitation on) A in.	Volume of Precipitation in.-sq.mi
A	10	10	10	100	1.79	1.79	
B	25	25	15	100	1.79	1.79	
C	50	50	25	100	1.79	1.79	
D	100	100	50	100	1.79	1.79	
E	175	175	75	100	1.79	1.79	
F	300	300	125	100	1.79	1.79	
G	450	450	150	100	1.79	1.79	
H	700	700	250	100	1.79	1.79	
I	1000	971	271	100	1.79	1.79	
J	1500	1364	393	100	1.79	1.79	
K	2150	1852	488	100	1.79	1.79	
L	3000	2434	582	100	1.79	1.79	
M	4500	3171	737	76	1.36	1.62	1193.9
N	6500	3660	489	57	1.02	1.28	625.9

Basin-Avg. Ppt. $=[1.79(2434)+1193.9+625.9] \div 3660=1.69 \mathrm{in}$.

Fi gure 14. Nonogramfor $\mathbf{1}^{\text {st }} \mathbf{6 - h r}$ PMP I ncrenent (NGS, 1982)

Fi gure 15. Nonogram for 2nd 6- hr PMP I ncrement (NMS, 1982)

Fi gure 17. Nonogram for $\mathbf{4}^{\text {th }} \mathbf{t}$ hrough 12th 6-hr PMP Increnent (NMS, 1982)

4. 5 PMF Determi nation

The example just shown provi des a stormfor a specific stormarea size, stormcentering and stormorientation. What would be requi red for a PMF anal ysis, however, would be the stormthat produces the naxi mum peak di scharge or runoff vol une, depending on the project purpose, for the 3, 660 m^{2} drai nage basin. It is therefore necessary to try various conbi nations of st orm-area size, centering, ori ent ation and temporal di stribution until naxi mization of peak di scharge or runof f vol une is achi eved. Fig. 18 illustrates how basi n average preci pitation varies with stormarea size for the Leon Ri ver basin. For the particular centering and orientation used in the exampl e, a stormarea size of $2,150 \mathbf{m i}^{2}$ produces the naxi mum basi n average precipitation. As nay be deduced fromthe example probl em vol umi nous computations are requi red to determine the PMS. The HMR52 computer program has been devel oped to facilitate that task.

Fi gure 18. 18-hr Basi n- Aver age Preci pitation For 3, 660 mi 2 Leon Ri ver Basi n

Section 5

COMPUTER PROGRAM HMR52 PROCEDURES

5. 1 Digital Definition of Basin Geonetry

The HMR52 computer programuses a di gital definition of the watershed boundaries for computing basi n - average preci pitation from watershed area and super posed isohyetal patterns. The boundary of a drai nage basin is defined by I ine segnents j oining a sequence of coordi nate points. The sequence of boundary poi nts should be counter-clockwi se around the basin or subbasin. If the di rection is clockwi se the programwill reverse the order to be counter-clockw, se for later cal cul ations.

5.1.1 Geonetric Properties

The following geonetric properties of the watershed are cal cul ated using the n boundary poi nts having coordi nates ($x, y, y_{\text {, : }}$

Area (A) :

$$
\begin{equation*}
A=-(1 / 2) \sum_{i=1}^{n}\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{1}\right) . \tag{1}
\end{equation*}
$$

Centroid coordi nates (x_{c}, y_{c}) :

$$
\begin{align*}
& x_{c}=-[1 /(6 A)] \sum_{1=}^{n},\left(x_{1+1}-x_{1}\right)\left(y_{i+1}^{2}+y_{1+1} y_{1}+y_{1}^{2}\right) . \tag{2}\\
& y_{c}=-[(1 / 6 A)] \sum_{1=1}^{n}\left(x_{1+1}-x_{1}\right)\left[y_{1+1}\left(2 x_{1+1}+x_{1}\right)\right. \\
&\left.\quad+y,\left(x_{1+1}+2 x_{1}\right)\right] . . . \tag{3}
\end{align*}
$$

Monent of Inertia about x and y axes ($\left.I_{x}, I_{y}\right)$:

$$
\begin{align*}
& I_{x}=-(1 / 12) \sum_{i=1}^{n}\left(x_{i+1}-x_{1}\right)\left(y_{i+1}^{2}+y_{1}^{2}\right)\left(y_{i+1}+y_{i}\right) \tag{4}\\
& I_{y}=-(1 / 12) \sum_{i=1}^{n}\left(x_{i+1}-x_{1}\right)\left[x_{1+1}^{2}\left(3 y_{i+1}+y_{1}\right)\right. \\
& \left.\quad+2 x_{1+1} x_{1}\left(y_{1+1}+y_{1}\right)+x_{1}{ }^{2}\left(y_{1+1}+3 y_{1}\right)\right] . \tag{5}
\end{align*}
$$

Product of Inertia about the origin ($P_{x y}$):

$$
\begin{align*}
P_{x y}=-(1 / 24) & \sum_{i=1}^{n}\left(x_{1+1}-x_{1}\right)\left[y_{i+1}^{2}\left(3 x_{1+1}+x_{1}\right)\right. \\
& \left.+2 y_{1+1} y_{1}\left(x_{i+1}+x_{1}\right)+y_{1}^{2}\left(x_{1+1}+3 x_{1}\right)\right] . \tag{6}
\end{align*}
$$

Angle to rotate coordi nate axes to produce mi num noment of inertia about the x-axi s. $\left(\theta_{m}\right)$

$$
\begin{array}{ll}
\left(\theta_{m}\right)=(1 / 2) \arctan \left[-2 P_{x y} /\left(I_{x}-I_{y}\right)\right] & \text { for } I,<I_{y} . . \\
(\text { en })=(1 / 2) \arctan \left\{\left[-2 P_{x y} /\left(I_{x}-I_{y}\right)\right]-\pi / 2\right\} & \text { for } I,>I_{y} . . \tag{7b}
\end{array}
$$

5. 1. 2 Coordi nate Systens

The basi \mathbf{n} is described in an \mathbf{x}, \mathbf{y} coordi nate systemwith x -axis directed east ward and y-axi s di rected northward. Pl acenent of the coordi nate system origin and the coordinate units are arbitrary.

The isohyetal pattern of the PMS is descri bed in a u, v coordi nate system whi ch has its origin at the stormcenter and axes parallel tothe maj or and minor axes of the elliptical pattern. The coordinate units are in miles.

The transf or natl on fromthe x, y axes to the u, v axes is given by:

$$
\begin{align*}
& u=\left(x-x_{s}\right) \cos \theta+\left(y-y_{s}\right) \sin \theta F_{s} . \tag{8a}\\
& v=\left(y-y_{s}\right) \cos \theta-\left(x-x_{s}\right) \sin \theta f_{s} . \tag{8b}
\end{align*}
$$

where $\left(x_{s}, y_{s}\right)$ is the position of the storm center, θ is the angle of rotation fromthe x-axls to the u-axis, and F_{s} is a scale factor in miles per x, y coordi nate unit.

5. 2 Cal culation of PMP for a Storm Area

Thi s cal cul ation is made for a given st orm area and depth-area-duration data from HMR No. 51. The procedure used is as follows:

5. 2. 1 Interpol ati on of PMP Depth-Area-Duration Curves

The user supplies PMP dept hs from HMR No. 51 for standard areas and durations that bracket the stormarea of interest. Straight line Interpol ation is used in the program to cal cul ate PMP for the stormarea for durations of 6, 12, 24, 48, and 72 hours (e.g. Fig. 19).

Bet ween 10 and 200 mi 2, the error from usi ng straight line interpol ation versus curve fitting is significant. To reduce this error, an additional poi nt is cal cul ated midway bet ween $I \operatorname{og}_{10} \mathbf{1 0}$ and $\log _{10} \mathbf{2 0 0}$ $\mathbf{m i}^{\mathbf{2}}$. This area is approxi mately $44.7 \mathbf{m i}^{\mathbf{2}}$, Fig. 19. The difference in PMP from 10 to $200 \mathbf{m i}^{\mathbf{2}}$ for this curve was 8.5 Inches. To estinate PMP at 44. 7 $\mathbf{m}^{\mathbf{2}} \mathbf{f}$ or other locations an adjust ment of $1 / 8.5$ ti mes the difference in PMP from 10 to $\mathbf{2 0 0} \mathbf{m i}^{\mathbf{2}}$ is added to the PMP resulting fromstraight line interpol ation.

Fi gure 19. Li near Approxi nation of Depth-Area-Duration Rel ations

5. 2. 2 PMP Depth-DuratI on Curve Fitting

A logarithmic curve is fit through the depth versus \mathbf{l} og duration data using a least-squared-er ror fit.

The equation of the curve Is

$$
\begin{equation*}
P=a+b \ln (D+S) \tag{9}
\end{equation*}
$$

where P Is PMP In Inches; 0 is duration in 6-hr periods; S is a shift adj ust nent rangi ng from-1 to 2.56 - hr periods; and a and b are derived constants. The shift adjust ment is determined by trial and error to minimize the sum of squared errors to reproduce a curve such as was shown in Fig. 13.

5.2.3 Increment al PMP Cal culation

PMP is computed fromequation (9) for durations from 6 to 72 hours. I ncrenental 6-hr PMP Is then computed as the difference between the val ues of PMP for successive durations. The PMP for the $\mathfrak{i}^{\text {th }} 6$ - hr period, $\mathrm{P}_{\mathfrak{i}}$, is

$$
\begin{equation*}
P_{1}=a t b \ln (1 t s)-P_{1}-1 \tag{10}
\end{equation*}
$$

5. 3 Cal culation of PMS for G ven Storm Area and Orientation

5. 3. 1 Ori ent at i on Adj ust ment

PMP is cal cul ated for the stormarea size as described in Section 3. This PMP is multiplied by the orientation factor, F_{0}, which Is computed from

$$
\begin{equation*}
F_{0}=1-0.15 C_{1} \mathrm{c} 2 \tag{11}
\end{equation*}
$$

where $\mathrm{Cl}=\left\{\begin{array}{cl}0 & \text { for }\left|0_{s}-0_{p}\right| \leq 40 \\ \frac{0,-0_{p}-40}{25} & \text { for } 40 \leq\left|0_{s}-0_{p}\right| \leq 65 \\ 1 & \text { for }\left|0_{s}-0_{p}\right| \geq 65\end{array}\right.$
and $C 2=\left\{\begin{array}{cl}0 & \text { for } A \leq 300 \\ \frac{A,-300}{2700} & \text { for } 300 \leq A_{S} \leq 3000 \\ 1 & \text { for } A \geq 3000\end{array}\right.$
where 0 , Is the stormorientation, 0_{p} Is the preferred orientation and A_{s}, the stormarea.

The adj usted PHP, $P_{\mathfrak{q}}{ }^{\prime}$, for the $\boldsymbol{i}^{\text {th }} \mathbf{6 - h r}$ period is cal cul ated as

$$
\begin{equation*}
P_{1}{ }^{\prime}=P_{1} * F_{0} \tag{12}
\end{equation*}
$$

5.3.2 I sohyet val ues

The percent of PHP for each Isohyet Is Interpol ated fromthe data In Tabl es 1 through 4 using straight line interpol ation of percent versus nat ural log of area. Mltipl ying PMP by the percentages gi ves the preci pitation anount for each i sohyet for each 6-hr period for a given storm area size. Thus, the PHP for the $f^{\text {th }}$ Isohyet and $\boldsymbol{f}^{\text {th }} \mathbf{6}$ - hr period is

$$
\begin{equation*}
P_{1, j}=P_{1}{ }^{\prime} * P C T_{j} . \tag{13}
\end{equation*}
$$

where PCT_{j} Is the percentage of the PHP In the $\mathrm{j}^{\text {th }}$ I sohyet.

5. 3. 3 Cal culation of area encl osed by an el lipse and the basi n boundary

Coordi nates of the boundary poi nts are transformed to the PHS coordi nate system using equatlons (8a) and (8b). The intersections of the ellipse with the basin boundary are located. Each arc of the ellipse bet ween intersections Is approxi nated by 20 poi nts Iocated at equi angul ar Increnents. The area of the basi n encompassed by the ellipse (see Fig. 20) Is cal cul at ed from equation (1).

Fi gure 20. Basin Area Encompassed by El I i pse

5. 3. 4 Basi n-average precipitation

The preci pitation vol une, V, between Isohyets Is coomputed as the vol une of a truncated cone (see Fig. 21). The vol une for the $\boldsymbol{f}^{\text {th }} \mathbf{6}$-hr period Is

$$
\begin{equation*}
V_{i}=\frac{P_{1, j}-P_{1, j+1}}{3}\left(A_{j}+A_{j} A_{j+1}+A_{j+1}\right) \tag{14}
\end{equation*}
$$

where subscript \mathbf{j} identifies the Isohyet and Ais the drai nage basin area encompassed by the el lipse correspondi ng to the Isohyet. Basin average preci pitation is the sum of vol unes between I sohyets di vided by the drai nage basi n area.

Fi gure 21. Represent ation of Preci pitation Vol ure Bet ween Two Isohyets with a Truncated Cone

5. 4 Cal cul ation of PMS for Ti ne Intervals Less Than 6 Hours

After the stormarea size and orlentatlon have been determined, the program cal cul at es the temporal di stribution. The required data for this cal culation are: the desired tine Interval, Δt, In minutes; and the ratio of 1 - hr to 6 - hr precl pltatlon for the $20,000 \mathrm{mi}^{2}$ ' A^{\prime} Isohyet, referred to as R16A20, fromFig 8. The procedure used In the HMR52 programis as follous.

The N/S has devel oped a set of curves describing the 1-hr/6-hr ratio for each isohyet and various st orm area sizes (figure 40, NX, 1982). Those curves have been tabul ated by HEC into a set of di screte val ues as shown In Table 5. Those Table 5 val ues are aut onatically specified in the HMR52 program(see Computer Requi renents section and Table 24). The val ue of that ratio for the j th I sohyet, R1GTAB $_{j}$, for a specific stormarea size, Is Interpol ated from Table 5 data using strai ght line interpol ation of logarlthns of the area. Those generalized val ues are adj usted by the requi red I nput val ue, R16A20, to obtainthe required ratio for the \mathbf{j} th isohyet, $R 1 \sigma_{j}$.

$$
\begin{equation*}
R 16_{j}=R 16 T A B_{j}+R 16 A 20 . \tag{15}
\end{equation*}
$$

The 1-hr ral nf all for the $\mathrm{f}^{\text {th }}$ Isohyet Is computed as

$$
\begin{equation*}
\mathbf{P l} \mathbf{j}=\mathbf{R 1 6 3} * \mathrm{P}_{1, j} \ldots \tag{16}
\end{equation*}
$$

where P_{1} jls the maxi mum 6-hr precpitation for isohyet j cal culated in equation' (13).

Aleast square quadratic equation is fit through the $\mathbf{0 -}, \mathbf{I -}$, 6 -, $\mathbf{1 2 - ,}$ 18-, and 24 -hr preci pitation anounts for each isohyet. For resi dual precipitation (outside the stormarea) the $1-\mathrm{hr}$ amount is onitted. Preci pitation is interpol ated for 5-, 10-, 15-, 30-min 2-, and 3-hr durations for each isohyet. The average preci pitation over the basin is computed for each of these durations, Fig. 22.

Fi gure 22. PMS Depth versus

I ncrement al precipitation is cal culated for the total number of)t intervals fromthe basi n-averaged depth versus duration data. This results in a sequence of intervals with decreasing precipitation intensity, Fig. 23. Incremental precipitation is assuned to be uniformwithin each 6-hr period beyond 24-hrs duration. These intervals are rearranged to formthe PMS as fol I ous:

The position of the largest 6-hr increment may occur any time after the first 24 hours of the stormas shown in Fig. 24. The seventh position (hours 37-42) is chosen by default.

The Iargest)t increment of precipitation is placed in the middle of the largest 6-hr precipitation interval. The renai ning)t increments for that 6 - hr period are arranged alternately before and after the largest increment.

The remai ning 6-hr intervals, with decreasi ng preci pitation magnitude, are arranged alternatel y bef ore and after the I argest 6-hr-preci pitation interval, except the second, thi rd, and fourth I argest 6-hr Increnents cannot be placed in the first 24 hours of the storm These increnents are placed after the largest increment, if their nornal position would fall in the first 24 hours of the PME. The) tincrements within the second, third and fourth largest 6-hr increnent are arranged to increase towards the stornds peak precipitation. This results in a triangul ar-ike hyetograph of PMS preci pitation.

Time (hours)

Fi gure 23. I ncrenental PMS Depth Histogran

Fi gure 24. Example 1-hr Distribution of PMS

OPTI M ZATI ON OF STORM AREA SI ZF AND ORI ENTATI ON

The anount of precipitation on a basin is affected by the storm pl acenent, stormarea size and stormorientation. HMR52 uses a procedure to estimate stormarea size and orientation which will produce naxi mum preci pitation on the basin. This procedure will determine the optinal stormarea size and orientation for nost basins. However, because of the interaction of stormplacenent and orientation, several trials should be nade to verify that the optimal val ues have been found.

6. 1 Storm Center

When the stormplacenent is not given, the stormcenter is placed at the basi n centroid.

6. 2 Storm Area Si ze

If the stormorientation is not given, a trial orientation al ong the axis for whi ch the basin has a mi nimmoment of inertia is used. This orientation is sel ected as an anal ytically determinable orientation which is nost likely to produce maxi mumprecipitation on the basin without regard to the ori entation adj ustment factor. Using the trial orientation the average precipitation on the basin is cal culated for several stormarea sizes (see example is Section 9). The stormarea size which produces maximmpreci pitation is sel ected as the critical stormarea size. The critical stormarea size nay need to be recomputed if other orientations or placenents are used.

6. 3 Storm Orientation

Because of interaction between basin shape and the ori entation adj ust ment factor, the trial orientation used to sel ect stormarea size nay not produce maxi mum preci pitation on the basin. Usi ng the critical size sel ected above, the stormprecipitation is cal cul ated for orientations at 10-degree i ncrenents bet ween 135 degrees and 315 degrees. Stormprecipitation is then cal culated for orientations at pl us or minus 5 degrees fromthe previ ous best orientation. The orientation which yi el ds naxi mum preci pitation on the basin is chosen as the critical orientation.

If the critical orientation is not the sane as was used to sel ect the critical stormarea size, the stormarea size may have to be recomputed using the critical orientation. This is the user's responsibility. It is not done aut onatically.

6. 4 User Control of Optimization

Preci pitation on the basinfor the purposes of sel ecting stormarea size and orientation is the cumal ative preci pitation for the 3 largest 6-hr Periods. The number of periods may be changed by the user.

Stormplacenent, stormarea size, or ori entation may be fixed by the user. In addition the trial orientation used to sel ect critical stormarea si ze nay be specified by the user.

Section 1

I NPUT DATA REQU REMENTS

I nput data are described in detail in the Appendix. Table 11 shows the sections of an input data file requi red to cal cul ate a PMG.

Drai nage- Basin-Geonetry data Incl udes coordinates of points on the basi \mathbf{n} boundary and a scale factor.

Requi red Hydroneteorol ogi cal data are the preferred stormorientation from Fig. 3 and PMP estimates fromfigures 18-47 in HMR No. 51.

The Storm-Specification data define the stormarea size, orientation, and Iocation of the storm center. Cal cul ation of a temporal storm di stribution requi res the desi red time Interval and ratio of $\mathbf{1 - h r}$ to $\mathbf{6 - h r}$ preci pitation from Hg. 8.

Three example input data sets are gi ven In this docunent:
Leon River--Table 11
J ones Reservoi r--Table 14
Ouachita Ri ver--Appendi x A Example
The Leon Ri ver application is for computation of the PMS over a single basi \mathbf{n} for gi ven stormarea size, orientation, centering, and time pattern.

The Jones Reservoir application $i s$ for alti-subbasin river basin in which the stormarea size and orientation are optimized by the programfor the river basin as a whole. The storm centering was not specified so the def ault centering of the basin centroidis used. The time pattern is gi ven. After computation of the PMS for the entire river basin, the PMS is cal cul ated for each subbasi n.

The Ouachl ta River exampleis similar to the Jones Reservoir application except that gi ven stormarea size, ori entation and centering data are provi ded after the optimization is compl eted. That given PMS is then cal cul at ed and subbasin preci pitation is computed for the gi ven PMS data, not the optimized val ues.

Table 11
Sample Input for HMR52

Job Description (Identification)
ID PROBABLE MAXIMUM STORM CALCULATION FOR EXAMPLE I. IN HMR NO. 52 ID LEON RIVER AT BELTON RESERVOIR

Drainage Basin Geometry

$\begin{aligned} & \text { BN LEON } \\ & \text { BSI } .0062 \end{aligned}$									
BX 46.4	53.4	52.2	52.5	46.1	42.8	34.3	30.0	24.7	2.2
BX 18.7	16.6	14.2	12.5	2.1	-1.2	-1. 5	-3.9	-7.3	-7.7
BX -12.4	-19.3	-20.7	-25.8	-28.1	-30.5	-31.3	-38.6	-42.4	-44.8
BX -51.6	-53.5	-55.1	-51.6	-45.6	-36.9	-36.7	-29.5	-29.1	-25.6
BX -25.8	-22.6	-18.6	-9.7	-4.7	-2.5	3.5	5.5	3.2	3.6
BX 5.8	9.6	13.1	15.5	19.8	23.7	26.6	29.4	35.4	38.9
BX 44.0									
BY -45.9	-38.4	-32.8	-29.7	-27.7	-19.7	-15.5	-10.7	-8.0	-2.6
BY -1.2	3.4	5.5	8.5	9.5	15.9	19.5	22.3	33.5	37.7
BY 42.0	41.8	44.9	48.7	55.4	56.4	50.1	49.8	47.5	43.9
BY 42.1	33.6	31.4	28.8	28.2	14.6	10.0	10.5	7.6	4.6
BY -1.6	-2.9	-9.5	-7.8	-9.4	-14.0	-14.5	-17.2	-20.7	-22.5
BY -23.5	-34.0	-36.7	-41.0	-43.4	-46.7	-45.6	-41.6	-41.0	-42.0

Hydrometeorological Data from HMR No. 51 and 52

HO	208					
HP	100	29.8	36.2	41.8	46.7	49.8
HP	200	22.3	27.4	33.0	37.5	41.4
HP	1000	16.2	21.2	26.8	3.2 .0	34.5
HP	5000	9.3	13.1	18.1	22.6	25.9
HP	10000	7.2	10.4	14.9	18.8	21.0
HP	20000	5.2	8.2	11.7	15.4	18.4

Storm Specification

SA	3000	134
SC	-2.2	2.4
ST	120	.306

End-of-Job

PROGRAM OUIPUT

8. 1 Printout

HMR52 printed output begins with alist of the input data, Table 12(a). If data were entered using the free-fornat option, this list shows the data val ues in their proper fields.

Table 12(b) shows input PMP from HMR No. 51 and PMP increments for each 6-hr interval and standard stormarea size as interpol ated fromthe HMR No. 51 depth-area- -dur ation dat a.

Table 12(c) shous coordi nates of subbasi n boundary points and subbasi n area and centroid location cal cul ated fromthese coordi nates.

Table 12(d) shows the basi n area within each isohyet and the preci pitation anount assigned to the isohyets for each 6-hr interval. This table al so shows the basi n-average depths cal cul ated fromthese areas and i sohyet val ues.

When a temporal distribution is requested for an interval less than 6 hours, HMR52 computes a depth versus duration rel ation for each isohyet. These rel ati ons are shown in Table 12(e). They are used to cal cul ate an average depth versus duration rel ation which is used to cal cul ate increnental precipitation for the temporal di stribution in Table 12(f).

8. 2 Error Messages

The HMR52 program recogni zes sone input and computational errors and prints error messages accordi ngly. These error messages have an Identification Number and Title; Appendi x B contains an explanation of each error nessage.

When an error is detected by HMR52, the programwill read through the remai ni ng data and check for Input errors. No cal cul ations will be made using the remai ni ng data.

The computer operating system nay al so print error nessages. When an error occurs, the user should first ascertain if it is generated by HMR52 or by the system If it is generated by HMR52 (i.e., in the fornat gi ven in Appendi x B) refer to that appendi x and take the indicated actions. If the error is system generated, computer systens personnel should be contacted to ascertain the neaning of the error. If these systemerrors cannot be resol ved in-house or if there is an error in the HMR52 program the HEC should be cont acted.

Table 12
Sample Output from HMR52

Sample Output from HMR52
HEC PROBABLE MAXIMUM STORM INPUT DATA

$\begin{aligned} & \text { ID } \\ & \text { ID } \end{aligned}$	PROBABLE MAXIMOM STORM CALCULATION FOR LEON RIVER AT BELTON RESERVOIR					EXAMPLE	IN H1	No. 52		
ENS	LEOS									
8S	1.0062									
8X	46.4	53.4	52.2	52.5	46.1	42.8	34.3	30.0	24.7	22.2
BX	18.7	16.6	14.2	12.6	2.1	-1.2	-1.5	-3.9	-7.3	-7.7
8X	-12.4	-19.3	-20.7	-25.8	-28.1	-30.5	-31.3	-38.6	-42.4	-44.8
BX	-51.5	-53.6	-55.1	-51.6	-45.6	-36.9	-36.7	-29.5	-29.1	-25.6
BX	-25.8	-22.6	-18.6	-9.7	-4.7	-2.5	3.6	5.5	3.2	3.6
BX	5.8	9.6	13.1	15.5	19.8	23.7	26.6	29.4	35.4	38.9
BX	44.0									
BY	-45.9	-38.4	-32.8	-29.7	-27.7	-19.7	-15.5	-10.7	-8.0	-2.6
BY	-1.2	3.4	5.5	8.5	9.5	25.9	19.5	22.3	33.5	37.7
BY	42.0	41.8	44.9	48.7	55.4	56.4	50.1	49.8	47.5	43.9
BY	42.1	33.5	31.4	28.8	28.2	14.6	10.0	10.6	7.6	4.6
$8 \mathbf{8 Y}$	-1.6	-2.9	-9.6	-7.8	-9.4	-14.0	-14.5	-17.2	-20.7	-22.5
$8 Y$	-23.5	-34.0	-36.7	-41.0	-43.4	-46.7	-45.6	-41.6	-41.0	-42.0
BY	-46.9									
H0	208									
HP	10	29.8	36.2	41.8	46.7	49.8				
HP	200	22.3	27.4	33.0	37.5	41.4				
HP	1000	16.2	21.2	26.8	31.0	34.5				
FP	5000	9.3	13.1	18.1	22.6	25.9				
HP	10000	7.2	10.4	14.9	18.8	21.0				
HP	20000	5.2	8.2	11.7	15.4	18.4				
5A	3000	134								
SC	-2.2	2.4								
$S T$	120	. 306								

PROBABLE MAXIMUM STORM CALCULATION FOR EXAMPLE 1 IN HMR NO. 52 LEON RIVER AT BELTON RESERVOIR PROGRAM IS GIVEN THE STORM AREA AND ORIENTATION

PMP DEPTHS FROM HMR 51

AREA		DURATION			
(SQ.MI.)	$6-H R$	$12-H R$	$24-H R$	$48-H R$	$72-H R$
10.	29.80	36.20	41.80	46.70	49.80
200.	22.30	27.40	33.00	37.50	41.40
1000.	16.20	21.20	26.80	31.00	34.50
5000.	9.30	13.10	18.10	22.60	25.90
10000.	7.20	10.40	14.90	18.80	21.00
20000.	5.20	8.20	11.70	15.40	18.40

STORM AREA	PMP DEPTHS FOR 6-HOUR INCREMENTS											
10.	29.71	6.47	3.29	2.22	1.68	1.35	1.13	. 97	. 85	. 76	. 68	. 62
25.	27.96	6.17	3.25	2.22	1.69	1.36	1.14	. 98	. 86	. 77	. 69	. 63
50.	26.51	5.91	3.21	2.21	1.69	1.37	1.15	. 99	. 87	. 78	. 70	. 64
100.	24.37	5.54	3.14	2.21	1.70	1.38	1.17	1.01	. 89	. 79	. 72	. 65
175.	22.65	5.25	3.09	2.20	1.71	1.40	1.18	1.02	. 90	. 81	. 73	. 67
300.	20.70	5.18	3.05	2.17	1.69	1.38	1.17	1.01	. 89	. 80	. 72	. 66
450.	19.14	5.21	3.03	2.14	1.66	1.36	1.15	. 99	. 87	. 78	. 71	. 65
700.	17.46	5.21	3.00	2.12	1.64	1.33	1.13	. 97	. 86	. 77	. 69	. 63
1000.	16.10	5.23	2.98	2.09	1.62	1.32	1.11	. 96	. 85	. 76	. 68	. 62
1500.	14.37	4.91	2.90	2.07	1.61	1.31	1.11	. 96	. 85	. 76	. 69	. 63
2150.	12.83	4.64	2.83	2.04	1.59	1.31	1.11	. 97	. 85	. 77	. 69	. 63
3000.	11.40	4.39	2.75	2.01	1.59	1.31	1.11	. 97	. 86	. 77	. 70	. 64
4500.	9.67	4.09	2.66	1.98	1.57	1.31	1.12	. 98	. 87	. 78	. 71	. 65
6500.	8.39	3.88	2.50	1.85	1.47	1.22	1.04	. 91	. 81	. 72	. 66	. 60
10000.	7.06	3.64	2.27	1.65	1.30	1.07	. 91	. 80	. 70	. 63	. 57	. 52
15000.	5.98	3.18	2.12	1.60	1.28	1.07	. 92	. 80	. 71	. 64	. 58	. 54
20000.	5.23	2.84	2.00	1.55	1.26	1.07	. 92	. 81	. 73	. 66	. 60	. 55

BOUNDARY COORDINATES FOR LEON

$\begin{array}{rrrrrrrrrr}\mathrm{X} & 46.4 & 53.4 & 52.2 & 52.5 & 45.7 & 42.8 & 34.3 & 30.0 & 24.7 \\ \mathrm{Y} & -45.9 & -38.4 & -32.8 & -29.7 & -27.7 & -19.7 & -15.5 & -10.7 & -8.0 \\ \mathrm{X}\end{array}$ | X | 18.7 | 16.5 | 14.2 | 12.6 | 2.1 | -1.2 | -1.5 | -3.9 | -7.3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Y | -1.7 | 3.4 | 5.5 | 8.5 | 9.5 | 15.9 | 19.5 | 22.3 | 33.5 |

```
X -12.4
X -51.5 -53.5 [r-55.1 
X -25.8
X rrrrr.8
X 4-44.0
SCALE = 1.0062 MILES PER COORDINATE UNIT
BASIN AREA = 3660.5 SQ. MI.
BASIN CENTROID COORDINATES, }X=-2.2, Y= 2.
```


$\begin{aligned} & \text { TIME } \\ & 1-H R \end{aligned}$																			
DEPIM VS. DITRATTON																			
ISOFYET	5MIN	LOMIN	15MIN	30MIN	l-HR	2-मR	3-FR	6-HR	12-HR	18-FR	24-HR	30-HR	36-HR	42-HR	48-HR	54-HR	60-HR	66-HR	72-HR
A	0.53	1.05	1.57	3.02	5.32	8.76	11.94	18.51	22.97	25.44	27.1.5	28.50	29.51	30.56	31.39	32.12	32.77	33.37	33.91
B	0.49	0.98	1.46	2.81	4.96	8.18	11. 16	17.34	21.58	24.12	25.83	27.28	28.79	29.24	30.07	30.80	31.45	32.05	32.59
C	0.45	0.90	1.34	2.59	4.58	7.56	10.32	16.09	20.29	22.71	24.42	25.77	26.88	27.83	28.65	29.38	30.04	30.63	31.17
7	0.42	0.83	1.24	2.39	4.22	6.99	9.54	14.92	19.03	21.43	23.24	24.49	25.60	26.55	27.37	28.10	28.76	29.35	29.89
E	0.38	0.76	1.13	2.1 .9	3.87	6.42	8.76	13.76	17.79	20.17	21.88	23.23	24.34	25.29	26.11	26.84	27.50	28.09	28.64
F	0.35	0.70	1.05	2.02	3.58	5.94	8.11	12.79	16.75	19.12	20.83	22.18	23.29	24.24	25.06	25.79	26.45	27.04	27.58
G	0.33	0.65	0.96	1.86	3.29	5.47	7.46	11.82	15.70	18.07	19.78	21.12	22.24	23.18	24.01	24.74	25.39	25.99	26.53
H	0.30	0.59	0.88	1.69	3.00	4.99	6.82	10.85	14.66	17.01	18.72	20.07	21.18	22.13	22.96	23.69	24.34	24.94	25.48
I	0.27	0.53	0.79	1.53	2.71	4.52	6.17	9.88	13.64	15.98	17.69	19.04	20.15	21.10	21.92	22.55	23.31	23.90	24.45
J	0.24	0.47	0.70	1.36	2.42	4.04	5.52	8.91	12.61	14.95	16.66	18.01	19.12	20.07	20.89	21.62	22.28	22.87	23.41
K	0.21	0.42	0.62	1.20	2.15	3.61	4.94	8.04	11. 56	14.00	15.71	17.05	18.17	19.11	19.94	20.67	21.32	21.92	22.46
L	0.18	0.37	0.55	1.05	1.89	3.18	4.36	7.17	10.75	13.08	14.79	16.14	17.25	18.20	19.02	19.75	20.41	21.00	21.54
M	0.07	0.14	0.21	0.41	0.82	1.61	2.36	4.26	6.77	8.54	9.84	10.87	11.71	12.43	13.06	13.61	14.11	14.56	14.98
N	0.04	0.08	0.11	0.23	0.45	0.89	1.31	2.42	4.10	5.44	6.41	7.18	7.81	8.35	8.82	9.24	9.61	9.95	10.26
0	0.02	0.04	0.06	0.11	0.22	0.44	0.65	1.26	2.32	3.20	3.84	4.35	4.77	5.12	5.43	5.70	5.93	6.17	6.38
P	0.01	0.01	0.02	0.03	0.07	0.13	0.20	0.39	0.72	1.00	1. 21	1.37	1.50	1.62	1.72	1.81	1.88	1.96	2.02
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
R	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\mathbf{S}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

8. 3 Precipitation File for Rai nfall-Runoff Mbdel Usage

Hyetographs may be written to a file for use in a rainfall-runoff nodel such as HEC-1.

8. 2. 1 Punch File

The option of writing hyetographs to a punch or card-i mage file is available. Each hyet ograph is preceded by a line gi ving the subbasin name and tine interval (see Table 13.) The punch data must be nerged with input data for the rai nfall-runoff nodel.

8. 2. 2 DSS File

For computer systens where the HEC Dat a Storage System (HECDSS) is available, hyetographs may be transferred to HEC-1 through a DSS file. See Section 9 for an example.

Table 13
"PUNCH' Out put file from HMR52

	LEON	I NTERVAL			$=120 M N$					
$P I$	0.169	0.169	0.169	0.204	0.204	0.204	0.257	0.257	0.257	0.347
$P I$	0.347	0.347	0.486	0.528	0.584	0.950		1.343	2.571	3.685
$P I$	1.980	0.826	0.720	0.644	0.420	0.420	0.420	0.295	0.29 s	0.295
$P I$	0.228	0.228	0.228	0.185	0.185	0.185				

Sectlon 9

EXAMPLE APPLI CATI ON

9. 1 Introduction

Fi g. 25 shous the natershed above J ones Reservoir. HMR52 is used to devel op PMS hyetographs for the four subbasi ns. HEC- 1 is used to cal cul ate and route the PMF through J ones Reservoi r. The hyetographs are transferred from HMR52 to HEC- 1 usi ng the HEC Data Storage System (DSS). The HMR52 i nput data for this example are shown in Table 14.

9. 2 HMR52 I nput and Output

9.2.1 PMG for Total Basin

Data for total basi n are shown on lines 2-32 of Table 14. The boundary of the total watershed was digitized and entered on BX and BY cards. Depth- area- duration data from HMR No. 51 have been put on $\mathbf{H P}$ cards. The preferred storm orlentatlon is on an HO card.

St ormarea size and ori entation are shown as zeroes on the SA card, so HMR5 will sel ect the stormarea size and orl entatl on which produce naxi mum preci pitation on the watershed. Tables $15(\mathrm{a})$ and $15(\mathrm{~b})$ show average 6 - hr Incremental depths for various stormarea sizes and orientations used In the sel ection process. By default, HMR52 will maxi mize the basi n- average preci pi tation for the three I argest 6-hr Increments.

25. J ones Reservoi r Vat ershed

In Table 15(a), stormprecipitation is cal cul ated for various stormarea sizes. Stormorlentatlon was chosen for this table by mi mizi ng the noment of I nertla about the maj or axis of the elliptical stormpattern. In Table 15(b) the stormarea size is fixed at the size which produced maxl mumpreci pitation on the watershed in Table 15(a), and orientation is varled from 140 to 310 by ten- degree increments. The I ast tuo storns in Table 15(b) have orientations which are flve degrees to elther si de of the best prevl ous orlentatlon. By coi nci dence, the best orlentatlon is 285, so the last two lines are repeats of storns cal cul ated prevl ousl y.

9. 2. 2 Subbasin Hyet ographs

Data for the four subbasins follows the data for the total watershed in the HMR52 i nput, Table 14. HMR52 uses the same stormspecifications as were devel oped for the total basin to cal culate portions of the storm occurring over each subbasin. These storns are shown in Tabl es 16 through 19.

A ZW card is incl uded with data for each subbasin to indi cate that the storm hyetographs are to be written to a DSS file.

NOTE - HECDSS has been devel oped for Corps of Engi neers use at sel ected computer sites. DSS subroutl nes are not general ly avallabe to non-Corps users. Users without access to DSS should use the punch (tape) file option of the program see section 8.2.1.

9. 3 HEC- 1 I nput and Output

The rai nfall-runoff nodel HEC- 1 was used to cal cul ate the runoff from the storm hyetographs. Table 20 shous HEC- 1 input data for this application, and Table 21 shows HEC-1 summary out put for the storm generated by HMR52.

9. 4 PMF Cal cul ation

The objective of cal cul ating a PMF is to obtain the I argest flood whi ch may reasonabl y occur over the watershed. Because of hydrol ogi c characteristics of a watershed, the largest flood may not result fromthe storm whi ch produces the nost preci pitation.

Several trials were nade to cal cul ate the PMF for Jones Reservoir. Results fromthese trlals are tabul ated in Table 22.

Trial 1: used stormarea size and ori entation sel ected by HMR52; default val ue for position of peak 6-hr interval; basin centroid for stormcenter location, see Fig. 26.

Trial 2: same as trial 1, except peak 6-hr interval is shifted to the 10th position (hours 54-60). This ral sed the peak flowsightly so the 10th posltion was used for subsequent trials, except trlal 6.

Trial 3: same as trial 2, except the isohyetal pattern was centered on the watershed by vi sual adj ust nent of the storm center.

Trial 4: same as trial 3, except a snaller stormarea si ze uas used.

Tri al 5: Si nce subbasi ns 1, 2, and 3 produce nost of the runof f, the storm was centered over these subbasi ns.

Trial 6: same as trial 1, except the order of the 6-hr increnents is as shown in Fig. 7.
9. 5 Concl usi ons and Recommendations

The adopted PMF for this watershed nould be the flood cal cul ated in trial 2. The results fromtrial 1, using program defaults, could easily be adopted for the PMF, si nce the difference is less than 0.4 percent for peak inflow and less than 0.7 percent for peak outflow

In nost cases default val ues in HM52 will suffice to determine the PMF. Exceptions will occur where the basi n has an irregul ar shape or unusual hydrol ogic characteristics. Consideration of the following characteristics nay be usef ul in sel ecting parameters for alternative trials:
rel ative timing of runoff fromsubbasl ns
di rection of maj or stream
proximity of storm center to a maj or stream
rel ationshi p bet ween st ormarea I sohyet and basin boundary

Fi gure 26. Storm Pattern for Trials 1, 2, and 6

TABLE 16
Prohable Maximum Storm for Subbasin 1

TABLE 17
Probable Maximum Storm for Subhasin 2

TABLE 18
Prohable Maximum Storm for Subbasin 3

DAY 1	TIME	PRECIPITATIONINCR TOTAL		TIME	PRECIPITATIONINCR TOTAL		TIME	PRECIPITATIONINCR TOTAL		TIME	PRECI PITATIONINCR TOTAL	
	0200	0.11	0.11	0800	0.13	0.45	1400	0.16	0.87	2000	0.23	1.43
	0400	0.21	0.21	1000	$0: 13$	0.58	1600	0.16	1.03	2200	0.23	1.66
	0600	0.12	0.32	1200	0.13	0.70	1800	0.16	1.20	2.400	0.23	1.89
6-HR TOTAL		0.32		0.39			0.49			0.69		
DAY 2		$\underset{\text { PRBCI PITATION }}{\text { INCR }}$		TIME	PRECIPITATION		TIME	PRECIPITATIONINCR TOTAL		TIME	PRPCIPITATIONINCR TOTAL	
	TIME											
	0200	0.34	2.22	0800	0.80	3.81	1400	3.93	10.10	2000	0.65	21.77
	0400	0.37	2.59	1000	1.02	4.83	1600	8.44	18.54	2200	0.54	22.30
	0600	0.42	3.01	1200	1.34	6.17	1800	2.57	21. 11	2400	0.47	22.77
6-HR	TOTAL	1.12		3.16			24.94			1.55		
DAY 3		PRECIPITATIONINCR TOTAL			PRECIPITATIONINCR TOTAL			PRECIPITATIONINCR TOTAL		TIME	PRECI PITATIONINCR TOTAL	
	TIME			TIME			TIME					
	0200	0.28	23.05	0800	0.19	23.81	1400	0.14	24.34	2000	0.12	24.75
	0400	0.28	23.34	1000	0.19	24.00	1600	0.14	24.48	2200	0.12	24.96
	0600	0.28	23.62	1200	0.19	24.20	1800	0.14	24.63	2400	0.12	24.98
6-fiR	TOTAL	0.85		0.57			0.43			0.35		

TABLE 19
Prohable Maximum Storm for Subbasin 4

Table 21
HEC-1 Summary Output for Trial 1

Table 22
Summary of PMF Calculations

Trial	Position of Peak 6-hr Interval	Storm Area $\mathrm{m}^{2}{ }^{2}$	Orientation degrees	$\begin{aligned} & \frac{\text { Storm }}{x} \\ & \text { miles } \end{aligned}$	Center y miles 	Total Rainfall inches	Peak Inflow cfs	Peak Outflow cfs
1	7	300	285	32.2	83.8	25.50	127,500	94,650
2	10	300	285	32.2	83.8	25.50	128,000	95,300
3	10	300	285	31.0	83.6	25.44	127,650	95,250
4	10	175	290	31.0	83.6	24.86	125,200	91.650
5	10	300	296	32.7	84.0	25.41	127,200	93,900
6	9*	300	285	32.2	83.8	25.50	125,100	94,300

[^0]
Section 10

COMPUTER REQU REFENTS

10. 1 Source Lanquage

HMR52 source code is written in FORTRAN 77. It must be copmiled with a Fortran 77 compiler or a Fortran compiler which can Interpret IF-THEN ELSEEND F st at ements.

10. 2 Core Storage

Program HMR52 uses 22DK bytes on a Harris 500 computer or 45K nords (deci nal) on a CDC 7600. Table 23 gi ves storage requirenents and compile and execution times. Data for other computers will be added to the table as it is supplied by users.

Table 23
Menory and Ti me Requi rements

Computer	Harris 500	CDC Cyber 175
Menory	$220 K$ bytes	$45 K$ uords
Compile ti ne (CPU sec)	93	6.57
Executi on ti me* (CPU sec)	43	16.3

tine is for example data in Sectlon 9, Table 14.

10. 3 File Structure

HMR52 uses 6 di sk files:
I nput, card or card i mage;
out put, fornatted for 132 col um printer;
punch;
two scratch files; and
a table file.
File characteristics are listed in Table 24.
The table file (unit INP52) contains data listed in Tables I-5. Data on this file are read into the programs working storage at the begi nning of each execution.

10. 4 HEC-Suppl I ed Maqneti c Tape

HEC prograns are di stributed on half inch by 2400 foot magnetic tapes. Files on the tape for HM52 are the source code, a file containing data from Tabl es I-4 and 10, sample input data, and the current Input description for HMR52.

The source code on the tape conf orns to ANSI standards for Fortran 77. The code is not intended for a particular computer, al though minor changes may be necessary to use the program on different machi nes.

The sample input data are the same as used in Section 9. This data may be used to verify that the programis norking correctly.

10. 5 Machi ne-Specific Code

The only code in the HMR2 source code which is specific to a particular computer is the use of subrouti nes DATE and TIME in subrouti ne BANNER. These subrouti nes return the current date and tine. This infornatlon is printed on the banner output page to identify when a run is made. Sone code nodi ficati ons nay be requi red si nce subrouti nes DATE and TI ME are not standard on all machi nes. These subroutine calls can be renoved without affecting the programs performance.

Table 24
File Characteristics

Fortran Uni t No.	Variable Name	Description	Maxi mum Record Length
5	I NP	I nput data	80 characters
6	I PRT	Printer output	132 characters
7	I PNCH	File out put*	80 characters
19	SCRTCH	scratch; used to convert tinefrom 411 to A4 fornat	5 characters
20	IC	working datafile; contai ns ref ormatted input data with I i ne number and next card i s appended to begi ning of each card	89 char acters
52	I NP52	contai ns data tables from HMR No. 52	80 characters

[^1]
REFERENCES

Hydrol ogi c Engi neering Center, 1981, HEC-1 FI ood Hydrograph Package Users Manual, U.S. Army Corps of Engi neers, Davis, California.

National Weat her Servi ce, 1961. Hydronet eor ol ogi cal Report No. 36, Interim Report - Probable Maxi mum Preci pitation in Californianational Oceanic and At nospheric Administration Whshi ngton, D. C.

National Weat her Servi ce 1966. Hydroneteorol ogi cal Report No. 43, Probable Maxi mum Preci pitation Northwest States, Nati onal Oceanic and At nospheri c Admini stration, Wishi ngton, D. C.

National Weather Service, 1977. Hydroneteor ol ogi cal Report No. 49, Probable Maxi mum Preci pitation Esti mates, Col orado Ri ver and Great Basi n Drai nages, Natlonal Oceanic and At mospheric Admi ni stration Whshi ngt on, D. C.

Nati onal Weat her Servi ce. 1978. Hydroneteor ol ogi cal Report Nb 51, Probable Maxi mum Preci pitation Esti mates, United States East of the 105th Meridian, National Oceanic and At nospheric Admi ni stration, Whshi ngt on D. C.

National Weat her Servi ce, 1980. NOAA Techni cal Report NB 25, Comparison of Probable Maxi mumPrecipitation with Greatest Observed Rai nfalls, Nati onal Oceanic and At nospheric Admini stration, Sil ver Spring, Maryl and

Nati onal Weat her Servi ce, 1982. Hydr onet eor ol ogi cal Report No. 52, Application of Probable Maxi mum Preci pitation Esti nates - United States East of the 105th Meridian National Oceanic and At nospheric Admini stration Silver Spring, Maryl and

Nati onal Weat her Servi ce, 1983. Hydr onet eor ol ogi cal Report No. 55, PMP Esti nates, United St ates Bet ween the Conti nent al Di vide and the 103rd Meridian (draft), Nati onal Oceanic and At nospheric Admini stration Silver Spring, Maryl and.

Ri edel, J ohn T., 1977. The PMF Concept, from "The Eval uation of Dam Saf ety, " pp. 415-436, Aneri can Soci ety of

Engi neers, New York, N Y.

APPENDI X A

HMR52 I NPUT DESCRI PTI ON
 TABLE OF CONTENTS

Page
I nput Fornat 68
Card Sequence 69
Data Repetition 69
BA CARD - Basi n Area 70
BN CARD - Basi n Name 70
BS CARD - Scal e 71
BX CARD - Boundary Coor dl nates 71
BY CARD - Boundary Coor dl nat es 72
GO CARD - Compute Stormwith Current Data. 72
HO CARD - Pref erred Orientation 73
HP CARD - Depth- Area- Dur ation Data 73
I D CARD - J ob I dentification 74
PL CARD - Pl ot Control 75
PU CARD - Punch PMs 76
SA CARD - Storm Area and Orientation 77
SC CARD - Storm Center Coordl nates 78
SD CARD - Arrangenent of 6-hr Increnents in in PM 78
Temporal Distribution
SI CARD - Stormlsohyet Areas (two cards). 79
ST CARD - Temporal Ditribution 80
ZWCARD - Wite PRS to DSS 81
Z CARD • End of Dat a 82
Example 83

I NPUT FORMAT

I nput data is read from cards or card images. Each card is di vided into a tho- col umm card identification field (col ums 1 and 2) and ten data fields. The first data field has six col ums (col umns 3-8). The renaining ni ne flel ds each have ei ght col ums.

Fi eld $\mathbf{0}$ (zero) is the card identification field(col ums 1 and 2). Field 1 is the first data field (beginning in col um 3).

Under the val ue heading a pl us (+) is used to indi cate where numeric val ues should be entered. A bl ank numeric val ue is interpreted as a zero. (AN) i ndi cates that al phanumeric characters may be entered.

Data nay be entered on the cards in either FREE FORMAT or FI XED FORMAT (default). The FORMAT (fixed or free) is controlled by a switch which can be changed at anytine by inseting a ${ }^{*}$ FIX or a ${ }^{*}$ FREE card In the data deck.

For FREE FORMAT each itemis separated by one or nore blanks or a comma. A blank fieldis desi gnated by tuo successi ve commas. There nay be nore or less than ten coordi nates on a BX or BY card. The FREE FORMAT reader will treat these cards as If they were on continuous cards.

For FIXED FORMAT each number which does not contain a deci nal point must be right justified in its field.

A *FIX card indicates that the following data cards use FIXED FORMAT, and a *FREE i ndi cates FREE FORMAT. The fornat nay be changed as often as desi red and at any location In the data deck.

Comments may be pl aced anywhere in the input deck on cards with double asterisks (**) in the card identification field.

CARD SEQUENCE

Cards are grouped by drai nage basi n. A BN card is used to indi cate the begi nni ng of dat a for a basin. The next cards are the BS, BX, and BY cards which describe the basi n boundary. Next cone the HO and HP cards whi ch have met erol ogi cal dat a from HMR No. 52 and HMR No. 51, then the SA, SC, SD, and ST cards contai ni ng data for a particular storm

The cards for a drai nage basi n nay be followed by another group, begi nning with a BN card for a different drai nage basin, or a GO card followed by different stormdata for the current basin, or a $Z \mathbf{C a r d}$ indicating the end of data for this job.

Within a card group (begi nni ng with BN or GO card) the cards may be placed in any order. However, it is hel pf ul to use a consistent order such as al phabetl cal order.

DATA REPETI TI ON

Once data has been read by the programit is retai ned in menory until a new card of the sane type is read. For example, the HO or $\mathbf{H P}$ cards need onl y occur in the data for the first dral nage basi n and not repeated for each subsequent basi n. Similarly, once the stormarea and orientation have been established, they will be used for all subsequent cal cul ations until a new SA card Is read.

The onl y cards whi ch must be Incl uded for each new drai nage basi \mathbf{n} are the BN, BX, and BY cards. Al other cards may be omitted for a new basin and the stormulll be cal cul ated using data fromthe previ ous basin.

This card is an optional card which is placed after the BN card. A BA card is required when a storm is cal cul ated using isohyet areas on SI cards and boundary coordi nates are not gi ven. The area on a BA card is not used If boundary coordi nates are gi ven.
FI ELD VARI ABLE VALUE DESCRI PII ON
0 ID BA Cardidentification.

1 BAREA $+\quad$ Subbasi n area in square miles.

BN CARD - BASI N NAME
The BN card is placed at the begi nni ng of data for each drai nage basi n and identifies the basin.

FIELD	VARI ABLE	Value	DESCRI PTI ON
0	ID	BN	Card identi fi cation.
1	NAME	AN	Al phanumeric name for drai nage basin described by data on following cards. (Maxi mum 8 characters for FREE FORMAT, 6 characters for FI XED FORMAT.)

BX CARD - BOUNDARY COORDI NATES

$B X$ and BY cards contain X and Y coordi nates for points on the basi n boundary. The points may be entered in either clockui se or counter-cl ockwi se di rection. The begi nni ng point should not be repeated since the program aut onati cally cl oses the boundary.

The program counts the number of boundary points by finding the last non-zero val ue on a series of BX or BY cards.

If both BA and SI cards are used, BX and BY card may be onitted.

FI ELD VARI ABLE VALUE DESCRI PTI ON

HMR52 I NPUT DESCRI PTI ON

BY CARD - BOUNDARY COORD NATES

FI ELD	VARI ABLE	VALUE	DESCRI PTI ON		
0	I D	BY	Card identification		
I-10	YB	+	Y - coordi nates of drai nage correspondi ng to x-coordi nates (Maxi mum - 100 val ues.)	basi n on	boundary BX card.

GO CARD - COMPUTE STORM WTHCURRENT DATA

The GO card is used to indi cate the end of data for a PMS cal culation. The computer will cal cul ate the PMS using the current data bef ore readi ng the next card. A GO card is not required if the next card is a BN card or a \mathbf{Z} card.

FI ELD VARI ABLE VALUE DESCRI PII ON
0 ID GO Card

HO CARD - PREFERRED ORI ENTATI ON			
FIELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	H0	Card identification.
1	PORNT	+	Preferred probable naxi mum storm orientation from HMR No. 52.
HP CARD - DEPTH AREA DURATI ON DATA			
Use one HP card for each storm area (10, 200, 1000, 5000, 10000, and 20000 square miles). Six HP cards are required, one for each area.			
FIELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	HP	Card identification.
1	AREA51	+	Storm area fromHMR No. 51 for PMP in fi el ds 2-6.
2	H1DAD (1, j)	+	Probable naxi mum precipitation for 6 hour duration for storm area in Field 1, from HMR Nb. 51.
3-6	Ю1DAD (, J)	+	Similar to Field 2 for durations of 12, 24, 48 and 72 hours.

I D CARD - J OB I DENTI FI CATI ON

The contents of t his card are read and printed imediatel y after being read. There is no limit on the number of ID cards. IDcards are usually placed at the beginning of a data set to provide title infornation. They may be placed within a data set to descri be indi vidual basins or stormcal culations.

FIELD	VARI ABLE	VALLE	DESCRI PTI ON
0	ID	ID	Card identification.
1-10	TI TLE	AN	A phanuneric job title or description.

The PL card is used to control printer pl ots of the drai nage basin boundary and PMS I sohyets.

FI ELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	PL	Cardidentification
1	PLTYP	0	No plots.
		1	PI ot dral nage basi n boundary.
		2	Pl ot drai nage basi \mathbf{n} boundary with PMS i sohyets.
		3	Make two plots, a pl ot of drai nage basin boundary and a pl ot of the boundary with PMS isohyets.
2	C-RPI N	+	Characters per inch for printer plot. Default is 10.)
3	LI NPI N	+	Lines per inch for printer pl ot. (Default is 6.)

PU CARD - SAVE PMS ON FILE
The PU Card is used to control writing the PMG to a file. The default fornat is (2HP1, F6. 2, 9F8. 2).

FI ELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	PU	Card identifi cation.
1	PUNCH	ON	Wite PMS precipitation to save file
		OFF	Do not write PHS to save file (def aul t).
2-10	PUNFM	AN	Fornat to be used in writing to save file. If Fields 2-10 are bl ank the prevl ously defined format will be used.

NOTE: For programfiles nai ntai ned by HEC on HARRIS the save file is VB by default, and nay be changed at the execution tine by:

HMR52, PUNCH=save file.
On CDC computers the save file is TAPE7 by def ault and may be changed at execution tine by:

HMR5, INfile, OTfile, SAVEfile.

On ME- DOS compatibe mi croconputers (PC's), the save file Is UN T8 by def aul t and may be changed at execution time by:

HMR52, INfile, OTfile, SAVEfile.

			SA
SA CARD - STORM AREA AND ORI ENTATI ON			
FI ELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	SA	Card identification.
1	PMSA	+	Probable maxi mumstorm area size in square miles.
			If PMSA is zero, the program will compute PMS for several area sizes and sel ect the area size which produces naxi mum precipitai on on the dral nage basi \mathbf{n} for the specified number of $\mathbf{6}$ - hour periods.
2	ORNT	+	Probable naximum storm orientation in degrees, cl ockwi se fromnorth. (Range is 135-315 degrees.)
			If ORNT is less than or equal to zero, the program will compute PMS for several orientations and select the orientation which produces naxi mum precipitation on the dral nage basin for the specified number of 6 - hour peri ods.
		0	If ORNT is zero, the orientation whi ch mi mizes nonent-of-inertia for the drai nage basin about the maj or axis will be used to estimate PHSA when Field 1 is zero.
			If ORNT is negative, the absol ute val ue of ORNT will be used to estimate PMSA when Field 1 is zero.
3	N NCS	+	Number of 6-hour periods to use for computing maxi mum precipitaiton on the drai nage (def ault is 3).

HMR52 I NPUT DESCRI PTI ON
SC
SD SC CARD - STORM CENTER COORD NATES
The storm center will be located at the drai nage basin centroid if an SC card is not used.

FIELD	VARI ABLE	VALUE	DESCRI PTI ON
0	10	SC	Card identification.
1	XCEN	+	X -coordi nate of storm center.
2	YCEN	+	\mathbf{Y}-coordi nate of storm center.

SD CARD - ARRANGEMENT OF 6- HR I NCREMENTS I NPME TEMPORAL DI STRI BUTI ON
This card gi ves the arrangenent of 6 - hr increnents of preci pitation in the PMS. The default arrangenent (if no SD card is given) is: 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11 where the numbers indicate the largest (1) to snallest (12) 6- hr I ncrement.

If SO cards are included in a data set, all twel ve increnents must be listed on two cards.

FIELD	_VARI ABLE	VALUE	DESCRI PTI ON
0	10	SO	Card identification.
1	RELMAG(I)	+	Rel ati ve nagni tude
2-10		+	Rel ati ve nagnitude of

Continue with el eventh period in Field 1 of second SO card.

SI CARD - STORM ISOHET AREAS

This card is optional. If SI cards are used the programwill not cal cul ate the basi n area within each isohyet, but it will use the areas given on SI cards. Storm area and orientation must be gi ven when SI cards are used.

If both SI and BA cards are used, then BX and BY cards may be omitted.
If SI cards are used, then there must be two SI cards.
FI ELD VARI ABLE VALUE
DESCR PTI ON

0 ID SI Card identification.
1 AREA B(I) + Area within both basin boundary and isohyet A In squaremiles.

2-10 AREA B(2-10) $+\quad$ Area within basin boundary and isohyet in square miles for isohyets B through J.

SECOND SI CARD

FI ELD	VARI ABLE	VALUE

ST CARD - TEMPORAL DI STRI BUTI ON

This card gives data for the temporal distribution of the PMG for Intervals less than 6 hours.

FI ELD	VARI ABLE	VALUE	DESCRI PTI ON
0	ID	ST	Card identification
1	TIM NT	+	Tine interval in mintes to be used for temporal di stribution of PN (Range of 5 min to $\mathbf{3 6 0 \mathrm { min }}$).
2	R16A20	+	Ratio of \mathbf{l} hr to $6 \mathbf{h r}$ precipitation for isohyet A of 20, 000 sq mi storm from Figure 39 of HNR No. 52. (Range 0. 27 to 0.35).
3	POSMAX	+	Position of naxi mum 6-hr Increnent In PMS temporal distribution. Remai ning 6-hr Increments In descending order will be pl aced alternatel y, bef ore and after maxi mum increment. This arrangement will repl ace any di stributions from previ ous SD or ST cards. (Range 5 to 12, def aul $t=7$).
		0	Use previ ously established arrangenent of 6-hr I ncrenents of PMS.
4	RATI 0	+	PNS precipitation will be multiplied by this ratio. (Default = 1.0.)

ZWCARD - WR TE PMG TO DSS

The ZWcard is incl uded with data for each basi n for whi ch the hyet ograph is to be saved on DSS.

Each data record (hyet ograph) is identified by a 6-part pathnane, each part bei ng desi gnated by letters Athrough F.

Part A is project identification or description 16 characters maxi mum Def aul \mathbf{t} is bl ank.

Past B is hyet ograph location, 8 characters naxi mum Default is basi nane from BN card, Field 1 .

Part C is paraneter nane, 12 characters naxi mam Def ault is PRECP-INC.
Part D Is start date of hyet ograph. Def ault is $\mathbf{C J}$ AN1999. Hyet ographs are stored in blocks of 1 month or 1 day dependl ng on time interval. The hyet ograph will start at 0000 hours on the date gi ven on the ZWcard, but the date In the pathname will be the begi nning date of the block.

Part Eis time interval. This will be derived by the program
Part F is al ternative or description of hyetograph, 24 characters naxi mum Default is blank.

The format of the ZWcard is
ZW A=Part A, B=Part B, C=Part C, D=Part D, F=Part F
One or nore of the pathname parts may be onitted fromthe ZWcard. Once parts A, C, D, or F have been set they will retain their val ues until reset on a ZW card.

For exampl e:
ZW $\quad A=\quad F=P H S$ - 1
will set part Ato blank, and part Fto PME-1.

Z2
HMR2 I NPUT DESCRI PTI ON

Z CARD - END OF DATA

FI ELD VARI ABLE VALUE DESCRI PTI ON

0 ID zz Card

```
ID PROBABLE MAXIMUM STORM CALCULATI ON FOR EXAMPLE 2 IN HMR NO}5
ID DUACH TA RI VER BASI N
*FREE
BN OACH TA
** CALCULATE STORM OVER ENTI RE BASI N
BS . }7936
BX 108 108 107 97 98 97 95 93 88 83 77 71 67 66 64 62
BX 59 54 48 40 38 39 37 26 18 12 8 6 4 6 8 9 15 25 27
BX 30 33 35 38 41 47 53 56 67 70 76 80 82 85 90 100 105
BY 17 21 24 32 34 36 37 44 48 48 46 46 50 54 55 54 50 47
BY 47 43 41 38 37 42 39 40 40 42 41 37 34 28 23 19 20
BY 20 19 23 21 21 24 22 23 16 15 10 10 14 11 12 10 12
HP 10 30.0 35.9 40.6 44.647.1
HP 200 22.2 27.0 31. 2 34.7 37.7
HP 1000 16. }3\mathrm{ 21. 0 25. 3 29.0 31. }
HP 5000 9.5 13.5 17.7 21.6 24.2
HP 10000 7.3 10.7 14.0 18.0 20.8
HP 20000 5.3 8.5 11.6 14.9 17.2
HD 235
**
** FI ND STORM AREA AND ORI ENTATI ON FOR PMG CENTERED AT BASI N CENIROI D
SA O O
GO
**
** CALCULATE STORM CENTERED BETMEEN RENNEL DAM AND BLAKELY HT. DAM
** USI NG G VEN STORM AREA AND ORI ENTATI ON
SC 87.9 20.1
SA 2150 280
GO
**
** CALCULATE STORM FOR EACH SUBBASI N USI NG LAST SET OF PARAMETERS
BN PI NERI DG
BX 26 18 12 B 6 4 6 8 9 15 25 27 30 33 35 33 35 33 35
BY 42 39 40 40 42 41 37 34 28 23 19 20 20 19 23 27 31 35 38
BN MASH TA
BX 35 38 40 40 44 47 57 63 58 55 54 51 53 48 40 38
BX 35 33
BY 23 21 21 23 25 30 31 35 42 42 44 44 47 47 43 41 38 37 38 35
BY 31 27
BN BLAKELY
BX 53 51 54 55 58 63 57 47 44 40 40 41 47 53 56 59 64 72 79 84 85
BX 96 95 93 88 83 77 71 67 66 64 62 59 54
BY 47 44 44 42 42 35 31 30 25 23 21 21 24 22 23 21 23 22 28 28 30
BY 36 37 44 48 48 46 46 50 54 55 54 50 47
BN RENEL
BX 108 108 107 97 98 97 96 85 84 79 72 64 59 67 70 76 80 82 85 90 100 105
```



```
zz
```


APPENDI X B

ERROR MESSAGES

Error
 Error Message
 Nunber
 and Descrtptlon
 1 STORM AREA AND ORI ENTATI ON MST BE G VEN WFEN I SHOYET AREAS ARE G VEN ON SI CARDS

St ormarea is requi red to identify the di visi on bet ween within-stormand resi dual rai nfall. St ormorientation is requi red to cal cul ate ori entation adj ust ment of PMP.

2 BOTH BA AND SI CARDS MUST BE USED WFEN BOUNDARY COORD NATES ARE NOT G VEN

The program cannot cal cul ate basi n area or areas encl osed by i sohyets and basi n boundary without boundary coordi nates. These val ues must be gi ven on BA and SI cards If boundary coordi nates are not gi ven.

3 AREA WTH N BASI N DOES NOT I NCREASE WITH
ISOHET SIZE. $\mathbf{A}=\mathbf{x x x x}$. xx, A2 = xxxx. xx
This error occurs when the programis computing basi n-average preci pitation and the area within the basin and an isohyet is smaller than the basin area insi de the next smaller i sohyet.

This error may be caused by an incorrect entry for the basi n area inside the stormarea I sohyet on an Sl card.

Thi s error may al so be caused by incorrect boundary coordi nates. If the basi n boundary crosses itsel f the program nay compute a wrong basi n area inside an i sohyet.

4 BX CARD NO nnn

BX CARDS HAVE ALREADY BEEN READ FOR TH S BASI N A BN CARD MAY BE MSSI NG OR A CARD MAY BE OUT OF ORDER.

BX cards for a single basi n nay not be intermingled with other card types. A BN card is used to identify the begi nni $n g$ of data for a basi n.

5 BY CARD NO nnn
BY CARDS HAVE ALREADY BEEN READ FOR TH S BASI N
A BN CARD MAY BE MSSING OR A CARD MAY BE OUT OF ORDER,

BY cards for a single basi n nay not be intermingled with other card types. A BN card is used to identify the begi nni ng of data for a basin.

6 BA CARD NO nnn
BASI NAREA ON BA CARD IS NOT GREATER THAN ZERO.
AREA $=x x x x . x x x$
Basin area must be greater than zero. If programis to cal cul ate area fromboundary coordi nates BA card shoul d not be used.

7 HP CARD NO nnn DEPTH DOES NOT I NCREASE WTHDURATI ON FOR AREA = xxxxx.

PMP dept hs on the HP card for area xxxxx should increase fromfield 2 to 6.

8 I NALI D AREA ON HP CARD NO. nnn, PMP AREA = xxxxx.
PMP area, field 1 of HP card, must be 10, 200, 1000, 5000, 10000, or 20000 square miles.

9 SD CARD NO nnn
MAGN TUDE (m) IS NOT INRANGE 1 TO 12.
Val ues on the SD card are Integers from 1 to 12 whi ch indi cate the rel ati ve nagni tude of 6 - hour preci pi tationincrements. "1" i ndi cates the I argest i ncrenent and "12" indi cates the snal lest increment.

10 SD CARD NO nnn
A RELATI VE MAGN TUDE WAS REPEATED
The val ues on the SD card are uni que I ntegers from 1 to 12 . No val ue nay be repeated on a set of SD cards.

11 SO CARD NO nnn
TVD SD CARDS ARE REQU RED.
Thel ve val ues are read from SD cards. Thi s requires two SD cards in sequence.

SI CARD NO nnn AREA FOR ISOHET il (nl) IS LESS THAN AREA FOR ISOHET iI

Areas encl osed by i sohyets and the basi n boundary cannot decrease as i sohyet area increases.

ST CARD NO. nnn
TI ME I NTERVAL CANNOT BE LESS THAN 5 M NTES
The programwill not cal cul ate a temporal di stribution for a time interval snaller than 5 minutes.

ST CARD NO nnn
TI ME I NTERVAL MST DI V DE 60 M NTES I NTO EQUAL PARTS WTH NO REMA NDER

The time interval for temporal distribution must be 5, 6, 10, 12, 15, 20, or 30 minutes.

ST CARD NO. nnn
TI ME INTERVAL MAY NOT BE GREATER THAN 6 HOURS (360 M NUTES)
The programwill not cal cul ate a temporal distribution for a time interval greater than 6 hours.

ST CARD NO nnn
TI ME I NTERVAL MST DI V DE 6 HOURS I NTO EQUAL PARTS WTH NO REMA NDER

The tine Interval for temporal di stribution must be 1, 2, 3, or 6 hours.

ST CARD NO nnn
I-HR TO 6-HR RATI O FOR ISOHET A OF 20000 SQ. MI. STORM MST BE IN THE RANGE 0. 27 TO 0.35

The range of the I-hour to 6-hour ratio from figure 39 of Hydroneteor ol ogi cal Report Nb. 52 is 0.270 to 0.300 . A val ue outsi de this range is consl dered to be a mistake.

ST CARD NO nnn POSI TI ON OF MAXI MM 6-HR I NCREMENT MUST BE IN RANGE 5 TO 12

The naxi mum 6-hour preci pi tation increnent nay not occur in the first 24 hours 1 to 4) of a storm

The program attempted to read more data than al l owed from an xx card. The naxi mum number of val ues that can be read from xx cards is kkk.
n ERRORS DETECTED I N I NPUT DATA FOR BASI N aaaaaaaa. REMA N NG DATA WIL BE CHECKED FOR ERRORS.
n ERRORS DETECTED I N CALCULATI ONS FOR BASI N aaaaaaaa. REMA N NG DATA WLL BE CHECKED FOR ERRORS.

When an error is detected by HMR52, the program will read through the renai ni ng data and check for input errors. No calculations will be made usi $n g$ the remai ni ng data.
Computer requi renents:
Ti ne and menory, 62
File characteristics, 64
Error messages, 85
Fl ood (see Probable flaxl mum Fl ood)
Hydronet eor ol ogi cal Report No. 52 (HMR Nb. 52)
Nonograns for PMP Increnents, 25
I nput data:
Descri ption, 67
Overvi ew 40
Out put from HMR52 program
General , 42
Preci pitation file, 49
Preci pitation (see Probable naxi mum Preci pitation or Storm)
Probable Maxi mumflood (PM :
Det ermination, 29
Exampl e cal cul ation, 54
Parameter sensitivity, 55
Probabl e maxi mum Preci pitation, (PMP):
Definition, 3
Det erminati on, 14
Exampl e cal cul ation, 15
Regi onal gui dance, 1
Probable Mexi mum St orm (PM :
Basi n - aver age preci pitation, 35
Definition, 3
Exampl es:
Hand cal cul ati on, 18
Computer cal cul ation, 50
Optimize stormarea and orientation 39
Orientation, 4, 33, 34
Shape, 3
Si ze, 4, 13, 31
Spatlal variability, 6, 9
Temporal 7, 36
Uatershed and storm geonetry, 30
Ref er ences, 65
Runoff (see Probable Maxi mum FI ood)
Uhtershed geonetry, 30, 34

[^0]: *Temporal distribution based on Fig. 7.

[^1]: * This file naybe punched or saved on disk/tape for use as input to a rai nf al l-runoff nodel.

