

CHESAPEAKE BAY FOUNDATION Saving a National Treasure

OFFICERS

SIMON SIDAMON-ERISTOFF CHAIR JANE P. BATTEN VICE CHAIR ALAN R. GRIFFITH VICE CHAIR MILLIAM C. BAKER PRESIDENT FAY R. NANCE TREASURER MARY TOD WINCHESTER SECORETARY

TRUSTEES

S. DECKER ANSTROM JOANNE S. BERKLEY W. RUSSELL G. BYERS, JR. D. KEITH CAMPBELL JOHN T. CASTEEN III THOMAS M. DAVIS III AMANDA DEAVER RICHARD L FRANYO G. WADDY GARRETT LAUREN GLEASON CAROLYN GROOBEY JANET F. HAAS, M.D. ANN FRITZ HACKETT MICHAEL J. HANLEY ANNA IOHNSON ROBERT A. KINSLEY BURKS B. LAPHAM HARRY T. LESTER BYRON F. MARCHANT H. TURNEY MCKNIGHT CHARLES W. MOORMAN W TAYLOF MURPHY IR ARNOLD J. RICHMAN ALEXIS G. SANT TRUMAN T. SEMANS ANNE B. SHUMADINE JENNIFER STANLEY BISHOP EUGENE TAYLOR SI ANTHONY & WILLIAMS SUSAN P WILMERDING PETER L. WOICKE ALAN L. WURTZEL

HONORARY TRUSTEES

DONALD F. BOESCH, Ph.D. LOUISA C. DUEMLING C.A. PORTER HOPKINS T. GAYLON LAYFIELD III H.F. LENFEST M. LEE MARSTON Mr. Raymond Bahr Maryland Department of the Environment Sediment, Stormwater and Dam Safety Program 1800 Washington Boulevard Baltimore, MD 21230

July 10, 2013

BY: U.S. mail and e-mail **RE:** <u>National Pollution Discharge Elimination System, Tenative Municipal Separate</u> <u>Storm Sewer System Discharge Permit for Baltimore County 11-DP-3317</u> MD0068314

Dear Mr. Bahr:

Thank you for the opportunity to present our views on the above-titled tentative Municipal Separate Storm Sewer System ("MS4") permit for Baltimore County ("the Permit"). On behalf of our 100,000 Maryland members, including more than 8,000 members in Baltimore County, the Chesapeake Bay Foundation ("CBF") is vitally interested in improving the management of polluted stormwater runoff in Baltimore County. Stormwater pollution is a significant problem in Maryland and across the entire Chesapeake Bay watershed. According to the *Chesapeake Bay Total Maximum Daily Load* ("TMDL"), Maryland stormwater delivers 28 percent of the total nitrogen load, 28 percent of the total phosphorus load, and 32 percent of the total sediment load to the Bay.¹

U.S. Environmental Protection Agency ("EPA") investigators and Chesapeake Bay Program scientists (respectively) estimate that the only pollution sector that is substantially growing is the suburban stormwater sector, while the other major sectors' contributions to water pollution in the Bay (*e.g.* agriculture or wastewater treatment) are being reduced.² In Baltimore County, stormwater is a significant source of nutrients and sediments to local waters and the Bay. Even with the increased restoration requirements in this draft permit, Baltimore County has recognized that "meeting the renewed NPDES – MS4 Permit requirements may not be sufficient to meet the nutrient reduction allocations for 2017."³ As this round of MS4 permits are

 M. LEE MARSTON
WAYNE A. MILLS
MARIE W. RIDDER
JAMES E. ROGERS
U.S. Environmental Protection Agency, *Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment* (December 29, 2010), §4.3, at 4-5, 4-6 [hereinafter "Bay TMDL"].

RUSSELL C. SCOTT ² U.S. Environmental Protection Agency, Office of the Inspector General, *Development Growth* THOMAS H. STONER ALLEEN BOWDOIN TRAIN Outpacing Progress in Watershed Efforts to Restore the Chesapeake Bay, Evaluation Report No. 2007-P-00031, September 10, 2007, Summary Recommendations, Chesapeake Bay

Program, *Bay Barometer*, CBP/TRS 293-09, EPA-903-R-09-001 (March 2009), 8. ³ Gardina, Vincent J. *Baltimore County Phase II Watershed Implementation Plan.* July 2, 2012.

PHILIP MERRILL ENVIRONMENTAL CENTER 6 HERNDON AVENUE ANNAPOLIS, MD 21403 410/268-8816 FAX: 410/268-6687 CBF.ORG intended to be the "regulatory backbone" for achieving compliance with Watershed Implementation Plans (WIPs) under the Bay TMDL,⁴ it is crucial that they contain objective, enforceable criteria and a mechanism for tracking progress through the permit term, such as numeric interim benchmarks or milestones and adequate monitoring. The comments and recommendations below are designed to bring Baltimore County closer to compliance with their WIP and TMDL goals.

While the following represents the considered views of CBF, please note that, to the extent that the written comments of our colleagues and partners within the Maryland Stormwater Consortium (e.g. Blue Water Baltimore/Baltimore Harbor Riverkeeper, NRDC, EarthJustice, etc.) do not conflict with our own, we hereby adopt those comments as our own and incorporate them by reference. If there is a conflict, of course, our own comments and proposals shall be considered CBF's official position.

Summary

• The Permit must include a quantification of the current loading of nitrogen, phosphorus and sediment from all identified sources in order to establish a quantitative baseline from which to assess progress towards either the Baywide or any local TMDLs and WLAs.

• The stormwater management section of the Permit allows for stormwater management exemptions and waivers, and therefore must include a requirement to account for those waivers and exemptions.

• The Permit must include a mechanism for tracking progress through the permit term, such as numeric interim benchmarks and milestones to determine compliance with the Permit terms and to allow for adaptive management.

• The Permit should include a preference for environmental site design practices (ESD) where reasonable and appropriate.

- The Permit must require inspection and maintenance of best management practices (BMPs) at least every three years, in accordance with state law.
- The Permit must include a monitoring and assessment program which is capable of providing accurate, timely, representative, and statistically significant information on water quality countywide.

⁴ Maryland Department of the Environment, *National Pollution Discharge Elimination System*, [Tentative] Municipal Separate Storm Sewer System Discharge Permit for Baltimore County, 11-DP-3317 MD0068314 (2013) Part IV.A [hereinafter "County Permit"].

Detailed Commentary

1. The Permit must include a quantification of the current loading of nitrogen, phosphorus and sediment from all identified sources in order to establish a quantitative baseline from which to assess progress towards applicable WLAs for each established TMDL for each receiving water body.

Under the terms of this Permit, the County must attain applicable WLAs for each TMDL for each receiving water body. However, under the Permit's current draft, there is no way to determine whether the practices considered or implemented are reducing pollutant loads down to the WLAs. Because this new permit round seeks to tie the MS4 implementation to meeting the WIP goals as mentioned above, these sources should apply Chesapeake Bay Model values or monitored Event Mean Concentrations to quantify the current loading of nitrogen, phosphorus and sediment from the existing stormwater infrastructure. This quantification is necessary to establish a baseline for meeting either the Baywide or any local TMDLs.

Proposed Language – Part E.2.b

b. Within one year of permit issuance, Baltimore County shall submit to MDE for approval a restoration plan for each stormwater WLA approved by EPA prior to the effective date of the permit. The County shall submit restoration plans for subsequent TMDL WLAs within one year of EPA approval. Upon approval by MDE, these restoration plans will be enforceable under this permit. As part of the restoration plans, Baltimore County shall:

i. <u>Establish a quantitative assessment of the County's current pollutant loadings using the</u> information collected during the source identification process required by Part IV.C of this Permit. This assessment of current loadings shall serve as the baseline from which the pollutant load reductions called for in the County's compliance schedule shall be calculated.

2. Section IV.D.1.b. in the Permit Concerning Management Programs allows for stormwater management exemptions and waivers, and therefore must include a requirement to account for those waivers and exemptions.

The section on stormwater management (Part IV.D.1.b) must require a programmatic assessment of the impact, and a full documentation of all stormwater exemptions and waivers. Since the MDE Guidelines⁵ for impervious assessment calculations incorporated in the permit

⁵ Maryland Department of the Environment, *Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated: Guidance for National Pollutant Discharge Elimination System Stormwater Permits*, June 2011. Available at:

<u>http://www.mde.state.md.us/programs/Water/StormwaterManagementProgram/Documents/NPDES%20Draft</u> <u>%20Guidance%206 14.pdf</u> (last visited 5/31/2013).

assume certain loads based on the era of the development (i.e. assuming ESD for post-2007 development), development that did not comply with all existing stormwater laws and regulations must be recorded and accounted for in any reduction calculations. Further, Maryland law requires that waivers and exemptions to stormwater management requirements granted by a county must ensure that development will not adversely impact stream quality and that the cumulative effects of the waivers are evaluated.⁶ Therefore, the permit must require the county to not only document the waivers and exemptions, but also to evaluate the impacts to ensure that they will not adversely impact stream quality. Allowing exemptions and waivers without evaluating the impact to ensure there are no adverse effects would be contrary to law.

Proposed Language:

IV.D.1.b.iii. Number of stormwater exemptions issued, *including the justification for the exemption and associated pollutant load;* and

IV.D.1.b.iv. Number and type of waivers received and issued, including those for quantity control, quality control, or both. Multiple requests for waivers may be received for a single project and each should be counted separately, whether part of the same project or plan. The total number of waivers requested and granted for qualitative and quantitative control shall be documented, *along with the justification for the waivers and associated pollutant load.*

3. The Permit must include a mechanism for tracking progress through the permit term, such as numeric interim benchmarks and milestones to determine compliance with the Permit terms and to allow for adaptive management.

Baltimore County is currently subject to twenty-seven TMDLs including those for the Chesapeake Bay; twenty of the TMDLs concern only local waters.⁷ Total maximum daily loads are pollution limits scientifically developed for water bodies that do not meet current water quality standards and have been designated as "impaired" under §303(d), 33 U.S.C. §1313(d) of the Clean Water Act. TMDLs express the maximum amount of a particular pollutant or pollutants which can be discharged into a water body, while allowing the water to meet water quality standards. The sources of pollution are provided "allocations:" waste load allocations ("WLAs") for point sources of pollution (e.g. industrial discharge pipes or municipal systems and outfalls), and load allocations ("LAs") for non-point sources of pollution (e.g. farmland). The allocations are set at a level calculated to permit the water body to recover and thereafter be maintained.

While the Baltimore County draft MS4 does require that the BMPs and restoration programs implemented under the permit "be consistent" with the applicable WLAs, it does *not* provide a method of assessment of whether the chosen implementation strategies are actually

⁶ See COMAR 26.17.02.05(C)(1).

⁷ See Attachment B, County Permit.

obtaining the WLAs. The draft permit fails to require the numeric benchmarks or interim standards or milestones in the implementation plan to be quantified as defined in Maryland law and under the federal Clean Water Act regulations. ⁸ Maryland law specifically states that where a schedule of compliance is required as a permit condition (which is the case here), "then quantitative limits shall be set for the interim period and following the final compliance date."⁹ Further, federal regulations require that "if a permit established a schedule of compliance which exceeds 1 year from the date of permit issuance, the schedule shall set forth interim requirements and the dates for their achievement."¹⁰ The restoration plan requirements outlined in Part IV. E. 2. of the draft permit clearly trigger these requirements for quantitative benchmarks under federal and Maryland law.

Maryland regulations allow MDE to include a compliance schedule as a condition of a permit for "existing discharges which do not comply with permit conditions, effluent limits, or water quality standards."¹¹ The regulations also require a compliance schedule longer than 9 months to include interim dates.¹² The permit should clearly specify that the County must use the watershed assessment and restoration plans required under Part IV. E. to articulate specific annual pollution loading reductions and enforceable interim milestones that will be achieved by certain deadlines, necessary to meet the MS4's share of the WLAs. These should at the least and in their outermost margins be consistent with the deadlines associated with the Chesapeake Bay TMDL and the Watershed Implementation Plan, but because some of these deadlines and milestones are multi-year in nature, enforceable interim benchmarks are also required under the federal and state law cited above. Benchmarks and milestones are also essential to determining whether the implementation strategy and chosen practices are sufficient to meet the final WLAs, as is required by PART III of the draft permit. They are critical for "adaptive management," a tool which should be used both to learn about the system, and also to change a system as necessary. If the County does not have any milestones by which to gauge the efficiency of the implementation programs, the County is putting itself at risk for violating the requirement to reach WLAs by the end of the permit term or a specific following permit term. In the end, the only way to ensure compliance with water quality standards is to insist upon enforceable interim waypoints so that corrections of course can be made. Considering the clear requirements under Maryland and federal law for deadlines and quantified interim standards, it would be arbitrary, capricious and otherwise contrary to law for MDE to issue a final permit to Baltimore County that does not address these legal deficiencies.

Undoubtedly, quantitative goals and dates certain for their attainment are not only legally required, but also necessary for enforcement under federal law to create an "enforceable framework" when compliance is going to extend beyond a single permit term. The need for clear, measurable benchmarks is reinforced in EPA's *Permit Improvement Guide:*

⁸ See Md. Code Regs. 26.08.04.02-1(A)(3).

⁹ Md. Code Regs 26.08.04.02.1.

¹⁰ 40 C.F.R. §122.47(a)(3).

¹¹ Md. Code Regs. 26.08.04.02.

¹² Md. Code Regs. 26.08.04.02.

"Finally, and most importantly, permit provisions should be clear, specific, measurable, and enforceable. Permits should include specific deadlines for compliance, incorporate clear performance standards, and include measurable goals or quantifiable targets for implementation. Doing so will allow permitting authorities to more easily assess compliance, and take enforcement actions as necessary."¹³

Finally, the interim benchmarks or milestones must be made fully enforceable by incorporating them into the permit via a major modification, which would trigger full public notice and comment process. Under federal and state law, modifications of a compliance schedule are a cause for a major permit modification.¹⁴ Federal regulations further state that major permit modifications must follow all permit issuance procedures, including public notice and comment, an opportunity for a public hearing, and the right to appeal.¹⁵ Simply stating that "the restoration plans will be enforceable under this permit" does not satisfy the regulatory requirements or provide the public their legal rights.

Proposed Language:

PART IV.E.2.b Within one year of permit issuance, Baltimore County shall submit to MDE for approval a restoration plan for each stormwater WLA approved by EPA prior to the effective date of the permit. The County shall submit restoration plans for subsequent TMDL WLAs within one year of EPA approval. Upon approval by MDE, these restoration plans will be *incorporated into, and be made enforceable under, this permit via a major modification to the permit, which shall include milestones, benchmarks, and final dates for attainment of applicable WLAs. The County shall fully implement the plan upon MDE approval.*

If the County cannot demonstrate that its selected projects, programs, and controls will achieve WLAs, MDE will revise this permit to include additional controls and/or additional numeric effluent limitations sufficient to ensure that all applicable WLAs will be met. The County shall post the most current version of the plan on the County's website.

As part of the restoration plans, Baltimore County shall:

i. Include <u>a compliance schedule containing</u> the final date for meeting applicable WLAs and <u>interim milestones and numeric benchmarks</u>. Final attainment dates shall be set as the soonest possible date by which each WLA can be attained and shall be consistent with the deadlines associated with the Chesapeake Bay TMDL and associated Watershed Implementation Plans.

a. Numeric benchmarks will specify annual pollutant load reductions and will be used to assess progress toward attainment of milestones and ultimate WLA attainment;

¹³ U.S. EPA, *MS4 Permit Improvement Guide*, EPA 833-R-10-001 (April 2010), 5-6.

¹⁴ 40 C.F.R. § 122.62(a)(4); Md. Code Regs. 26.08.04.10(D).

¹⁵ 40 C.F.R. § 122.62 (cross-referencing 40 C.F.R. Part 124).

b. Interim milestones will be expressed as a pollutant load reduction, with associated deadlines for attainment, will be enforceable upon incorporation into the permit, and will be included where final attainment of applicable WLAs requires more than five (5) years. Milestone intervals will be as frequent as possible but will in no case be less frequent than every five(5) years;

ii. Include a detailed schedule for implementing all structural and nonstructural water quality projects, enhanced stormwater management programs, *illicit discharge detection and elimination program, erosion and sediment control program,* and alternative stormwater control initiatives necessary for meeting applicable WLAs, *along with provision of the basis for the chosen approach, through demonstration with modeling of how each applicable WLA (and associated benchmarks and milestones) will be attained using the chosen projects, programs, and controls, by the date for ultimate attainment;*

iii. Establish a quantitative assessment of the County's current pollutant loadings using the information collected during the source identification process required by Part IV.C of this Permit. This assessment of current loadings shall serve as the baseline from which the pollutant load reductions called for in the County's compliance schedule shall be calculated:

ii. <u>iv.</u> Provide detailed cost estimates for individual projects, programs, controls, and plan implementation <u>and maintenance</u>;

iii. \underline{v} . Evaluate and track the implementation of restoration plans through monitoring or and modeling to document the progress toward meeting established benchmarks, deadlines, and stormwater WLAs; and

iv. <u>vi.</u> Develop an ongoing, iterative process that continuously implements structural and nonstructural restoration projects, program enhancements, new and additional programs, and alternative BMPs where EPA approved TMDL stormwater WLAs are not being met according to the benchmarks and deadlines established as part of the County's watershed assessments. <u>If data indicate failure to meet any applicable WLA, including failure to attain any interim milestone or benchmark, the County shall make appropriate adjustments to its programs and controls within (6) months to address these failures.</u>

4. The Permit must include specific, objective criteria for stormwater management and restoration, and include a preference for ESD green infrastructure practices.

The current permit requires compliance with state stormwater regulations. This is, of course, the standard, fall-back approach for the general application of standards under an NPDES permit. In this instance, however – given the exigencies and challenges of meeting the deadlines set under the Chesapeake Bay TMDL, the continuing impairment of many of the County's waters as evidenced by local TMDLs, and the continuing difficulties of meeting water quality standards in Baltimore County under Maryland law – it is neither a sufficient nor a reasonable approach, nor is it the only lawful one that may be taken. Perhaps most importantly,

clear and objective performance standards are also desired by the County government, so that the permittee has specific criteria by which to evaluate proper practices and projects.

Section 402(p), 33 U.S.C. \$1342(p) of the CWA mandates that municipal permits must require controls that reduce pollutant discharges to the maximum extent practicable. According to case law, the term "maximum extent practicable" imposes a duty to fulfill the statutory command to the extent that it is at all technologically feasible¹⁶ or physically possible.¹⁷ Furthermore, \$402(p)(3)(B)(iii), 33 U.S.C. \$1342(p)(3)(B)(iii) states that "permits for discharges from municipal storm sewers...shall require...such other provision as the Administrator...determines appropriate for the control of such pollutants." With the County's continuing problems meeting water quality standards, as evidence by the twenty local TMDLs, together with the necessity of meeting WLAs, this permit must institute or impose *all* the controls and the *highest* levels of management and treatment that are *capable of being put into practice* – most decidedly not standard practices.¹⁸ At the very least, this would mean expressing the strongest of preferences for ESD. And under such challenging circumstances, findings or convincing evidence that the simple application of the state's basic standards will produce the results necessary for meeting WLAs and water quality standards under this permit should be provided.¹⁹ No such supporting evidence, however, has been adduced by MDE.

Clearly, a set of performance standards which go above and beyond the regular state stormwater standards that might ordinarily apply in the County are required – and are fully permitted by law to be imposed. This was the judgment of the U.S. EPA when it promulgated the MS4 permit for the District of Columbia recently: the then-current stormwater management requirements under District regulation were not deemed strong enough to effect the sea-change in pollution loading reductions demanded by the Chesapeake Bay and other TMDLs, and by the City's on-going failures to meet water quality standards.

This permit should impose a higher performance standard in Baltimore County, similar to that chosen for the District of Columbia's permit and similar to that used in numerous states and local jurisdictions around the country: i.e. the on-site retention and treatment of at least the *full* 90th percentile, 24-hour storm event from a 72-hour antecedent dry period (about 1 inch of treatment). This approach has many benefits, such as flexibility as it responds to "real time" changes in precipitation patterns over the next several years, its ability to accommodate any differences in precipitation across a permit area, and its alignment with the level of performance required for federal construction projects. This performance-based approach should be done

¹⁶ *NC Wildlife Federation v. NC Division of Water Quality,* 5 E.H.R. 2055, 6 E.H.R. 0164, at 21 (Oct. 2006) (citing to several 9th Cir. Cases). [hereinafter *NC Wildlife*].

¹⁷ Defenders of Wildlife v. Babbitt, 130 F.Supp.2d 121, 131 (D.D.C. 2001); Friends of Boundary Waters Wilderness v. Thomas, 53 F.3d 881, 885 (8th Cir. 1995).

¹⁸ NC Wildlife, at 21-22.

¹⁹ *In re Gov't of D.C. Mun. Separate Storm Sewer Sys.*, 10 E.A.D. 323 *at* 324, 343, 2002 WL 257698 (EPA) ("...there is nothing in the record, apart from the District's section 401 certification, that supports the conclusion that the Permit would, in fact, achieve water quality standards. Without such record support, the Board cannot conclude that the approach selected by the Region is rational...").

primarily through Environmental Site Design (ESD) or "green infrastructure," as recommended in many EPA guidance documents.²⁰

Environmental site design (ESD) represents the "MEP technology" for stormwater pollutant reduction in most circumstances. ESD is defined by the Maryland Stormwater Management Act of 2007 as "using small-scale stormwater management practices, nonstructural techniques, and better site planning to mimic natural hydrologic runoff characteristics and minimize the impact of land development on water resources."²¹ ESD techniques include engineered technologies like green roofs and rain gardens, along with nonstructural techniques like conservation of natural landscapes and minimization of impervious surfaces. Maryland regulations state that stormwater management programs should "implement[] environmental site design to the maximum extent practicable and us[e] the appropriate structural best management process only when necessary."²² To be consistent with this state mandate, the language proposed below specifies that ESD must be used unless impracticable.

Proposed Language

Section IV.E.2.a

By the end of this permit term, Baltimore County shall commence and complete the implementation of restoration efforts for twenty percent of the County's impervious surface area that has not already been restored to the MEP, *in addition to any impervious surface area which the County is under a previous obligation to restore. Such restoration efforts shall be designed to retain on-site at least 1 inch of stormwater from a 24-hour storm through evapotranspiration, infiltration, and/or reuse using Environmental Site Design retrofit techniques, unless the County demonstrates that:*

(*i*) <u>Sole use of such techniques to meet the requirements of this section is impracticable and</u> the County has exhausted all reasonable opportunities to use ESD to meet this requirement, and

(ii) <u>That other types of restoration techniques will, in combination with ESD techniques, be</u> adequate to achieve all applicable benchmarks, milestones, and final deadlines for attainment of WLAs and protect or restore the physical and biological integrity of the County's streams and rivers.

²⁰ See, e.g., Protecting Water Quality with Green Infrastructure in EPA Water Permitting and Enforcement <u>Programs</u>, signed by Nancy Stoner, Acting Assistant Administrator, Office of Water, and Cynthia Giles, Assistant Administrator, Office of Enforcement and Compliance Assurance, April 20, 2011.

²¹ Md. Code Ann., Envir. § 4-201.1(b).

²² COMAR 26.17.02.01(A).

5. The permit must require inspection and maintenance of BMPs at least every three years, in accordance with state law.

Some failing infrastructure is easy to see, such as potholes and rotting bridges. Failing stormwater systems are not. Stormwater facilities can become clogged by trash, debris, sediments, or other stormwater pollutants. The facilities themselves can develop structural cracks and leaks over time. Unmaintained stormwater management structures lose effectiveness and provide little to no water quality benefits.²³ Stormwater management systems require regular maintenance, which varies depending on the facility but usually involves removing debris, dredging accumulated sediments, ensuring native plants are healthy, and removing invasive species. A facility that is neglected too long often requires time- and money-intensive repairs.

What's more, Maryland law requires that all county and municipal ordinances provide for inspection and maintenance of all completed ESD treatment practices and structural stormwater management measures.²⁴ Inspections must be done during the first year of operation and then at least once every three years thereafter.²⁵ Placing such requirements in a permit as well as in state regulation will make them enforceable as permit standards.

Proposed Language

In a new section titled "Maintenance of Stormwater Management Practices" – this can replace Section IV.D.1.d (regarding inspections):

d. Maintenance of Stormwater Management Practices

i. County Owned and Operated Practices

Within 18 months of the effective date of this permit, the County shall develop and implement a maintenance plan for all County-owned and operated stormwater management practices. This plan shall be designed to ensure that these practices are properly maintained so that they operate as designed, are safe, and are free from trash. The plan shall provide for the inspection of all practices at least once every three years and shall identify the means by which the County will keep the practices properly maintained. The County shall submit documentation in its annual reports identifying the practices inspected, the number of maintenance inspections performed, the County's inspection schedules, the actions used to ensure compliance, and any other relevant information.

ii. Non-County Owned and Operated Practices

 ²³ See, e.g., Watershed Management Institute, Inc., US EPA, Operation, Maintenance, and Management of Stormwater Management Systems, August 1997.
²⁴ COMAR 26.17.02.11

²⁵ Id.

In conjunction with updating of relevant ordinances and policies, as required by COMAR 26.17.02, the County shall develop accountability mechanisms to ensure maintenance of stormwater control measures on non-County property. Those mechanisms may include combinations of deed restrictions, ordinances, maintenance agreements, or other policies deemed appropriate by the permittee. The County must also include a long-term maintenance verification process, which may include County inspections, 3rd party inspections, owner/operator certification on a frequency deemed appropriate by the permittee, and/or other mechanisms.

6. The Permit must include a monitoring and assessment program which is capable of providing accurate, timely, representative, and statistically significant information on water quality countywide.

The only way that the County and MDE can determine whether, or the extent to which, this MS4 permit for the County is working and accomplishing the difficult task of reducing stormwater pollution to the County's streams and rivers, is to carefully and effectively monitor various streams and outfalls for those impacts. This is especially true since the permit contemplates an iterative or adaptive process that regularly reviews the performance of restoration activities and management practices and makes adjustments as necessary to better accomplish the objective of meeting waste load allocations and attaining water quality standards. The monitoring and assessment program presented in this permit towards that end falls woefully short of providing such utility.

"Assessment of controls" is noted in the permit as "critical for determining the effectiveness of the NPDES stormwater management program and progress toward improving water quality."26 We agree. However, under "Watershed Restoration Assessment," the permit contemplates monitoring of just two small watersheds for this purpose, the Scotts Level Branch watershed and the Windlass Run watershed. These sub-watersheds are not sufficient to provide meaningful information about the larger watersheds in which they are located, much less provide information about the County as a whole. Further, only the Scotts Level Branch watershed will include chemical, biological and physical monitoring of "[o]ne outfall and associated in-stream station..."²⁷ The Windlass Run watershed monitoring includes only physical monitoring. Monitoring the chemical and biological components of only one outfall in a system of over 3,500 outfalls is patently insufficient. For example, please see the attached expert report from CBF's Senior Regional Water Quality Scientist regarding a nearly identical monitoring plan proposed for Baltimore City.²⁸ Both monitoring plans propose to monitor only one small watershed for physical parameters and one small watershed for biological, chemical and physical parameters. The similarities between the two proposed monitoring plans make this expert report's principles and analysis applies equally in this case.

²⁶ County Permit at Part IV.F.

²⁷ County Permit at Part IV.F.1.

²⁸ Attachment I, Beth McGee, Ph.D., "Monitoring and Stormwater Management Assessment Under the Tentative Baltimore City Municipal Separate Storm Sewer System Permit" (September 4, 2012).

Despite the assertion of MDE that the combination of data from these one or two sites, combined with equally small sets of data from other counties, is sufficient to develop an overall profile of how BMPs are generally working statewide, it is not the "general" but the "specific," in *this* specific county, which this permit is about. The minimal proposed monitoring is scientifically insufficient to support a complex permit, and to help determine the effectiveness of BMP and retrofit regimes over time – as is crucial for adaptive management. It is also contrary to federal guidance²⁹ and certain federal laws.³⁰ An effective monitoring and assessment program is essential.

Conclusion

The Chesapeake Bay TMDL asserts, quite appropriately, that NPDES permits (such as the County's tentative MS4 permit under consideration here) "provide the reasonable assurance that the [WLAs] in the TMDL will be achieved."³¹ As noted previously, such permits form the basic Clean Water Act infrastructure connecting the TMDL's science with the State's Watershed Implementation Plans, and giving the latter the implementation platform necessary for success.

CBF appreciates the Department's careful consideration of the comments and recommendations above, and believes that the success in Baltimore County depends upon the incorporation of these key principles:

- 1. A quantification of current baseline loadings;
- 2. A reasonable compliance schedule, with interim numeric benchmarks, for attaining WLAs and measuring progress to be used as enforceable parts of the permit;
- 3. Accounting for the impact of stormwater management waivers and exemptions;
- 4. A preference for environmental site design practices (ESD) where reasonable and appropriate;
- 5. An inspection and maintenance program for implementation of best management practices; and
- 6. A monitoring and assessment program that is capable of returning useful data on water quality, County-wide, as well as on the effects of stormwater management practices and controls under this permit, as required by regulation.

²⁹ *E.g.* U.S. Environmental Protection Agency Region 3, *Urban Stormwater Approach for the Mid-Atlantic Region and the Chesapeake Bay Watershed* (July 2010), at IV(A)(8), which reads: "Pursuant to 40 C.F.R. §122.48(i), Phase I permits must include relevant, interpretable and statistically significant evaluation and monitoring provisions."

³⁰ See 40 C.F.R. §122.44(i), concerning monitoring requirements in all permits as applicable. See also, 40 C.F.R. §122.48(b), which specifies that permits shall contain monitoring, "including type, intervals, and frequency sufficient to yield data which are representative of the monitoring activity including, when appropriate, continuous monitoring."

³¹ U.S. Environmental Protection Agency, *Chesapeake Bay Total Maximum Daily Load for Nitrogen*, *Phosphorus and Sediment*, December 29, 2010.

The tentative draft Baltimore County permit under consideration is notably better than previous permit cycles, but as set out above, it does not yet meet the obligations of the law, nor does it meet the administrative law standard of being reasonable rather than arbitrary and capricious in the respects enumerated. The recommended changes and comments are necessary to meet the challenge of the Chesapeake Bay TMDL and the many local TMDLs. We sincerely hope the Department will make the appropriate changes to accomplish these ends, and we pledge to assist in any way we can.

Again, thank you for the opportunity to present these comments.

Yours sincerely,

An as the

Alison Prost Maryland Executive Director

cc: Lee R. Epstein, CBF Jeff Corbin, U.S. EPA David B. McGuigan, U.S. EPA Evelyn MacKnight, U.S. EPA

ATTACHMENT 1

Monitoring and Stormwater Management Assessment Under the Tentative Baltimore City Municipal Separate Storm Sewer System Permit

Report of Beth McGee, Ph.D.

Introduction

My name is Dr. Beth McGee and I am the Senior Water Quality Scientist at the Chesapeake Bay Foundation (CBF) in Annapolis, Maryland. I hold a B.A. in Biology from the University of Virginia, an M.S. in Ecology from the University of Delaware, and a Ph.D. in Environmental Science from the University of Maryland. For more than 20 years, I have been active in Chesapeake Bay water quality issues, conducting research, and serving on technical subcommittees and advisory groups. I have published numerous peer-reviewed papers and served on a National Academy of Sciences Committee, as well as the Society of Environmental Toxicology and Chemistry's Board of Directors. In addition, I have worked for a variety of state and federal agencies, including the U.S. Fish and Wildlife Service, U.S. Environmental Protection Agency (EPA), and the Maryland Department of the Environment (MDE).

In this instance, I have been asked by CBF to review and comment upon the monitoring program proposed in the tentative National Pollutant Discharge Elimination System Permit for the Baltimore City Municipal Separate Storm Sewer System ["MS4"], NPDES Permit No. MD0068292, MDE Permit No. 11-DP-3315 (June 12, 2012). In sum, in my professional opinion, the monitoring and assessment program proposed in the tentative permit:

(1) Runs counter to best practices described in certain EPA and other expert guidance on this topic;

(2) Compares unfavorably with monitoring and assessment programs referenced in similar permits elsewhere around the country and readily utilized by other municipal permittees; and

(3) Is wholly inadequate to the task of assessing how effective the permit will be in reducing the impact of stormwater-borne pollution into the creeks and streams of the City and the Bay.

This three-part rationale is explained below.

First, however, it is useful to describe the proposed monitoring program.¹ The permit describes a simple and, in my opinion, inadequate two-part monitoring and assessment regime. The permittee, Baltimore City, would be tasked with monitoring certain physical parameters in a single, small watershed (Stony Run, which has a 3.3 square mile watershed) presumably to determine the effectiveness of stormwater management practices for stream channel protection across the City. Second, the City would be required to continue monitoring a single stormwater outfall and a single, associated in-stream station in Moores Run (a stream which has a 3.6 square mile watershed), for certain chemical, biological, and physical parameters, to help the state collect water quality information. These two elements constitute the full extent of the monitoring and assessment program in the tentative permit.

Report Rationale

(1) Expert Guidance and Federal Regulation

With respect to professional or expert guidance, in my opinion, the best and most appropriate references are three documents in particular. First, in July 2010, EPA published its *Urban Stormwater Approach for the Mid-Atlantic Region and the Chesapeake Bay Watershed*. In this guidance document, Part IV(A)(8) refers to water quality monitoring requirements, referencing relevant NPDES permit-writing regulations: "Pursuant to 40 C.F.R. §122.44(i), Phase I permits must include relevant, interpretable, and statistically significant evaluation and monitoring provisions...".²

Second, in 2009, EPA co-sponsored and published an excellent manual describing how an effective stormwater monitoring program that focuses upon Best Management Practice (BMP) performance evaluation should be constructed (available at <u>http://water.epa.gov/scitech/wastetech/guide/stormwater/monitor.cfm</u>)³. The manual extensively describes both BMP and water quality monitoring protocols.

The third reference is to the National Academies of Science, National Research Council scholarly report, *Urban Stormwater Management in the United States* (2008).⁴ Chapter 4 represents the eminent research committee's considered views on monitoring and modeling. "The biggest issue," the report noted, "is the number of data points needed. In many cases, insufficient data are collected to address the objectives of a monitoring program with a reasonable amount of confidence and power."⁵ The report suggests that sampling at multiple

¹ Tentative National Pollutant Discharge Elimination System Permit for the Baltimore City Municipal Separate Storm Sewer System, NPDES Permit No. MD0068292, MDE Permit No. 11-DP-3315 (June 12, 2012), Part III(F)(1) and (2).

² U.S. Environmental Protection Agency, *Urban Stormwater Approach for the Mid-Atlantic Region and the Chesapeake Bay Watershed* (July 2010), Part IV(A)(8).

³ Geosyntec Consultants and Wright Water Engineers, Inc. (for U.S. EPA et al.), *Urban Stormwater BMP Performance Monitoring* (October 2009).

⁴ National Academies of Science, National Research Council, *Urban Stormwater Management in the United States* (2008); *see* Chapter 4 in general.

⁵ Id. at 267.

sites, with several samples/events chronicled per year can, over the course of five-year permit cycle, provide a reasonable calculation of average conditions and effects.⁶

This report would be remiss, however, if it did not mention an article that is critical of socalled "representative stormwater runoff monitoring." Robert Chandler published a critique in the proceedings of a 1999 Water Resources Planning and Management Conference,⁷ in which he stated his belief that characterizing the quality of stormwater runoff from "representative" land use areas and types, given their variability and the expense involved, was not worth the effort. He noted that there were likely sufficient data already available from "various sources" in most any region that could be analyzed so that, when aggregated, they would likely provide stormwater runoff information of equal value. (He also noted that, on the other hand, "[p]roperly designed research efforts...on the efficiencies and effectiveness of urban best management practices (BMPs) are always valid monitoring endeavors."⁸)

The problem with Dr. Chandler's assumptions about extensive stormwater runoff data already being available for analyses is, first, that these data are simply not equally available everywhere in the country or even in our region; second, that the "rich pool" of data to which he specifically refers were collected more than twenty years ago using a federal research effort⁹; and third, that what are crucial in our situation are the specific data on specific streams at issue, not the general or aggregated data from streams in one or several broad, multi-state regions. The Chesapeake Bay watershed, now subject to the Chesapeake Bay TMDL and its Waste Load Allocations ("WLAs"), requires much better, more contemporary, and more specific data than referenced by Chandler, to measure runoff in particular major Phase I MS4 permittee jurisdictions in the 2012-2017 timeframe. That is why particularized monitoring and data collection is, in my opinion, necessary and useful.

Finally, there are several important regulatory references of particular note. While referring specifically to a large municipality's application for a stormwater permit rather than to the permit itself, one federal regulation provides a good general description of the minimum monitoring expected. 40 C.F.R. §122.26(d)(2)(iii) describes a Phase I permitee/applicant's minimum monitoring program: quantitative data from at least 5-10 representative outfalls in drainages representative of various land uses; estimates of annual pollutant loads from cumulative discharges to waters of the United States from all identified municipal outfalls; and a monitoring program that would collect representative data over the term of the permit. 40 C.F.R. \$122.44(i) pertains to and describes types of monitoring requirements appropriate to various NPDES permits, as applicable to the types of systems being monitored. 40 C.F.R. §122.48(b) summarizes permit requirements for monitoring, "including type, intervals, and frequency sufficient to yield data which are representative of the monitored activity including, when appropriate, continuous monitoring."

⁶ Id. at 266. ⁷ Chandler, Robert D., Ph.D., "The Case Against Representative Stormwater Runoff Monitoring," in Wilson, Erin M., *Preparing for the 21st Century: Water Resources Planning and Management Conference '99* Proceedings (1999).

⁸ Id. at 14.

⁹ While there are newer data bases to mine for helpful general information (e.g. the Nationwide Stormwater Quality Database or "NSQD"), they unfortunately do not resolve the site/locality-specific problem noted here.

(2) The Experience of Other MS4 Permittees

In addition to guidance documents and regulations, MS4 permits promulgated around the country provide real world examples of substantially broader and better monitoring programs than the one contained in the subject permit. In our own Mid-Atlantic EPA Region 3, in 2011 EPA promulgated an MS4 permit for the District of Columbia which details the components of an extensive monitoring and assessment program adequate to determine whether WLAs are being timely attained, due within two years of permit issuance. In an interim phase, six representative wet weather monitoring sites are designated, nine pollutants are specified, and dry weather screening processes are also outlined.¹⁰

As another example, the Phase I MS4 permit for Portland, Oregon contains a monitoring program that evaluates 15-16 sites, chosen probabilistically for stormwater and in-stream water quality, sampled several times/events yearly; and three continuous in-stream monitoring stations.¹¹ The City of Sacramento, California performs receiving-water monitoring on both the Sacramento and American Rivers at least six times annually at several locations; creek monitoring for various constituents on multiple creeks several times annually, during both wet and dry seasons; and urban discharge monitoring during rain events at three outlet/discharge locations, approximately five times yearly.¹² Florida Phase I MS4 jurisdictions follow exacting state guidance in constructing their extensive monitoring programs.¹³

Similarly, the City of Raleigh, North Carolina conducts a rigorous NPDES permit monitoring program at 18 locations four times annually, with field measurements for 11 parameters/pollutants; benthos are sampled annually at 22 stream locations; four BMP locations are regularly sampled for inflow and outflow pollutants during rain events.¹⁴ Under its NPDES permit, Greensboro, North Carolina has conducted a regular program of monthly sampling that monitors ambient conditions at 20 sites representing the major land uses in the City and County.¹⁵ Both grab samples to capture "first flush" runoff, and three-hour, time-weighted composite samples are taken at multiple locations. Several dozen fish and macroinvertebrate sites also are located around the City, and lakes/reservoirs undergo monthly monitoring at multiple sites.

Clearly, if one compares the tentative permit's monitoring program to those of other such programs in many jurisdictions around the country, the proposed Baltimore City MS4 permit's monitoring program falls woefully short.

¹⁰ U.S. EPA, NPDES Permit No. DC0000221, Authorization to Discharge Under the national Pollutant discharge Elimination System Municipal Separate Storm Sewer System Permit (Sept. 30, 2011), at §5.

http://www.deq.state.or.us/wg/wgpermit/docs/individual/npdes/ph1ms4/portland/Portland/S4Permit201101131.pdf (last viewed August 20, 2012).

http://www.sacstormwater.org/AboutSQIP/ProgramInformation/NPDESWaterDischargeRequirements.pdf (last viewed Aug. 2, 2012)

Florida Department of Environmental Protection, Guidance for Preparing Monitoring Plans as Required for Phase I Municipal Separate Sewer System (MS4) Permits (August 1, 2009), found at http://www.dep.state.fl.us/water/stormwater/npdes/docs/phase1-ms4-monitor-plan-guidance.pdf.

www.raleighnc.gov/environment/content/PWksStormwater/ (last viewed July 17, 2012).

¹⁵ http://www.greensboro-nc.gov/index.aspx?page=2300 (last viewed August 20, 2012).

(3) Professional Judgment

Finally, in my own professional opinion, the proposed monitoring program is technically deficient. The program constitutes monitoring two small watersheds comprising just seven square miles within a 92 square mile jurisdiction which has multiple, geographically distinct streams and watersheds, as well as 350 major stormwater outfalls. In the one case where physical, chemical and biological data are collected (Moores Run), the program would monitor a <u>single</u> stormwater outfall and <u>one</u> sampling station.

Conclusion

In sum, a more rigorous, well-designed, representative, and statistically significant monitoring and assessment program is needed. Such a program would: (1) effectively calculate stormwater pollutant loadings from major outfalls, and provide scientifically valid information on the ambient condition of major streams and watersheds; and (2) evaluate the overall effectiveness of the City's stormwater management program. In particular, such a program should be able to evaluate the panoply of BMPs and watershed restoration practices the state and City are promoting and which are then being installed (as described in the Phase I NPDES MS4 permit and subsequent restoration plans), with technically sufficient sampling from different areas of the City representative of different land use types or watershed profiles, in particular from areas where such practices and restoration activities are taking place.

Beth McGee, Ph.D. September 4, 2012