

Design Example 1 - Shallow Wetland (W-1)

The following example demonstrates the process for the design of a shallow wetland (W-1) BMP.

Site Specific Data

Clevenger Community Center is a recreational center located in Charles County, Maryland. The site area and drainage area to the proposed stormwater management facility is 5.3 acres. The project consists of constructing the community center and parking for a total impervious area of 1.94 acres. Existing ground at the outlet of the facility is 44.5^{\prime} above mean sea level (MSL). Soil borings indicate that the seasonally high water table is at elevation 41'. The underlying soils are loams. TR-55 calculations for the existing and developed hydrologic conditions are shown in Figures C.1.2 and C.1.3.

Confirm Design Criteria

The site is within the Eastern Rainfall Zone and located on the Western Shore of the Chesapeake Bay (see Volume I, Chapter 2, Figures 2.1 and 2.4). Additionally, the site is located within a USE I watershed. Therefore, the following criteria apply:

1. WQ_{v} treatment is required. In the Eastern Rainfall Zone, $\mathrm{P}=1$ ".
2. Re_{v} treatment is required.
3. Cp v treatment is required.
4. $\mathrm{Q}_{\mathrm{p} 10}$ may be required by the local jurisdiction. For this example, $\mathrm{Q}_{\mathrm{p} 10}$ will be required.
5. Q_{f} may be required by the local jurisdiction. For this example, Q_{f} will not be required. However, safe conveyance of the 100-year design storm is required through the proposed stormwater management facility.

Preliminary Design

Step 1. Compute WQ_{v}
Step 1a. Compute Volumetric Runoff Coefficient (R_{v})

$$
\begin{aligned}
R_{v} \quad & =0.05+(0.009)(I) ; \mathrm{I}=1.94 \text { acres } / 5.3 \text { acres }=0.366 \text { or } 36.6 \% \\
& =0.05+(0.009)(36.6)=0.379
\end{aligned}
$$

Step 1b. Compute WQ_{v}

$$
\begin{aligned}
\mathrm{WQ}_{\mathrm{v}} & =\left[(P)\left(R_{v}\right)(A)\right] / 12 \\
& =[(1 ")(0.379)(5.3 \mathrm{ac})] / 12 \\
& =\underline{0.167 \mathrm{ac}-\mathrm{ft}}(7,292 \mathrm{cf} .)
\end{aligned}
$$

Figure C.1.1 Clevenger Community Center Site Plan

C.1.2

Figure C.1.2 Clevenger Community Center - Existing Conditions (source: TR-55 computer printouts)

Figure C.1.3 Clevenger Community Center - Developed Conditions (source: TR-55 computer printouts)

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)

Step 2. Compute Re_{v}

Step 2a. Determine Soil Specific Recharge Factor (S) Based on Hydrologic Soil Group
Soils found throughout the site are loams and silt loams therefore $S=0.26$
Step 2b. Compute Rev Using Percent Volume Method

$$
\begin{aligned}
\operatorname{Re}_{\mathrm{v}} & =\left[(S)\left(R_{v}\right)(\mathrm{A})\right] / 12 \\
& =[(0.26)(0.379)(5.3)] / 12 \\
& =0.0456 \mathrm{ac}-\mathrm{ft} .(1,986 \mathrm{cf})
\end{aligned}
$$

Step 2c. Compute Rev Using Percent Area Method

$$
\begin{aligned}
\operatorname{Re}_{\mathrm{v}} & =(S)\left(A_{i}\right) \\
& =(0.26)(1.94 \mathrm{ac} .) \\
& =0.50 \text { acres }
\end{aligned}
$$

The Re_{v} requirement may be met by: a) treating $1,986 \mathrm{cf}$ using structural methods, b) treating 0.50 acres using non-structural methods, or c) a combination of both (e.g. 994 cf structurally and 0.25 acres non-structurally).

Step 3. Compute Cp_{v}

The proposed community center is located within a USE I watershed, therefore an extended detention time (T) of 24 hours for the one-year storm event. The time of concentration $\left(t_{c}\right)$ and one-year runoff (Q_{a}) are 0.26 hours and 0.72 " respectively (see Fig. C.1.3).

Use the MDE Method to Compute Storage Volume (Appendix D.11):
Initial abstraction (I_{a}) for CN of 74 is 0.703: (TR-55) [$\left.I_{a}=(200 / \mathrm{CN})-2\right]$
$I_{a} / P=(0.703) / 2.7 "=0.26$
$t_{c}=0.26$ hours
$q_{u}=625 \mathrm{csm} / \mathrm{in} . \quad$ (Figure D.11.1, Appendix D.11)
$q_{i}=q_{u} A Q_{a} \quad$ where A is the drainage area in square miles
$=(625 \mathrm{csm})(0.0083$ square miles $)(0.72 ")$
$=3.7 \mathrm{cfs} ; q_{i}>2.0 \mathrm{cfs} \therefore \mathrm{Cp}_{\mathrm{v}}$ is required.
Knowing q_{u} and T (extended detention time), find q_{o} / q_{i} from Figure D.11.2, "Detention Time Versus Discharge Ratios."

Peak outflow discharge / peak inflow discharge $\left(q_{o} / q_{i}\right)=0.030$
With q_{o} / q_{i}, compute V_{s} / V_{r} for a Type II rainfall distribution,

$$
\begin{aligned}
& V_{s} / V_{r}=0.683-1.43\left(q_{o} / q_{i}\right)+1.64\left(q_{o} / q_{i}\right)^{2}-0.804\left(q_{o} / q_{i}\right)^{3} ;(\text { Appendix D.11) } \\
& V_{s} / V_{r}=0.64
\end{aligned}
$$

Therefore, $V_{s}=\left[\left(V_{s} / V_{r}\right)\left(Q_{a}\right)(A)\right] / 12$

$$
\begin{aligned}
& =[(0.64)(0.72 ")(5.3 \mathrm{ac} .)] / 12 \\
& =0.204 \mathrm{ac}-\mathrm{ft}(8,886 \mathrm{cf} .)
\end{aligned}
$$

With q_{o} / q_{i}, compute the Cp_{v} release rate,

$$
\begin{aligned}
q_{o} & =\left(q_{o} / q_{i}\right)\left(q_{i}\right) ; \quad q_{i}=4.0 \mathrm{cfs} \\
& =(0.030)(4.0 \mathrm{cfs}) \\
& =0.12 \mathrm{cfs}
\end{aligned}
$$

With q_{o}, determine the required orifice area $\left(A_{o}\right)$ for extended detention design:

$$
A_{o}=\frac{q_{o}}{C \sqrt{2 g h_{o}}}=\frac{q_{o}}{4.81 \sqrt{h_{o}}}
$$

" h_{o} " is the maximum storage depth associated with V_{s}. For this example, assume h_{o} to be no more than 3.0 ft .

$$
\begin{aligned}
\therefore A_{o} & =(0.12 \mathrm{cfs}) /(4.81 \sqrt{ } 3.0 \mathrm{ft}) \\
& =(0.12 \mathrm{cfs}) /(8.33 \mathrm{ft}) \\
& =0.014 \mathrm{sf} .
\end{aligned}
$$

With A_{o}, determine the required orifice diameter $\left(d_{o}\right)$:

$$
d_{o}=\sqrt{4 A_{o} / \pi}=\sqrt{4 \times 0.014 s f / \pi}=0.134 \mathrm{ft} \quad \text { (1.6") USE } 1.5 "
$$

" d_{o} 's" of less than 3 " are subject to local jurisdictional approval, and are not recommended unless an internal control for orifice protection is used. For this example, use a d_{o} of 3 ".

Step 4. Compute $\mathrm{Q}_{\mathrm{p} 10}$ Storage Volume

Per TR-55, Figure 6-1 (Page 6-2 of TR-55) for an inflow (Qin) of 15 cfs and an allowable outflow ($\mathrm{Q}_{\text {out }}$) of 6 cfs , the volume of storage $\left(\mathrm{V}_{\mathrm{s}}\right)$ necessary for control is $0.37 \mathrm{ac}-\mathrm{ft}$, with a developed CN of 74 (see TR-55 Worksheet 6a, Page 6-5 of TR-55). Note that there is 5.3 inches of rainfall during this event with 2.6 inches of runoff.

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)
Step 5. Compute Q_{f}
For this example, management of Q_{f} is not required. However, the 100 -year storm event must be conveyed safely through the stormwater management practice.

Table C.1. 1 Summary of General Storage Requirements for Clevenger Community Center

Step	Requirement	Volume Required (acre-feet)	Notes
1.	WQ_{v}	0.167	
2.	Re_{v}	0.0456 (or 0.50 acres)	volume is included within the WQ_{v} storage
3.	Cp_{v}	0.204	Cp $_{\mathrm{v}}$ release rate is 0.10 cfs
4.	$\mathrm{Q}_{\mathrm{p} 10}$	0.36	10-year release rate is 6.0 cfs
5.	Q_{f}	N / A	provide safe passage for the 100-year event in final design

Final Design

Step 1. BMP Selection Process

While the stormwater management BMP's listed in Chapter 2.7 (Volume I) are equivalent in meeting the established pollutant removal goals, site characteristics are an important consideration in selecting the most appropriate BMP for a specific design. The process outlined in Chapter 4 (Volume I) provides guidance for screening BMP's as part of the selection process.
(1) Watershed Factors: Is the project located in a watershed that has special design objectives or constraints that must be met? This project is located in a USE I watershed and there are no other special objectives or constraints that must be considered.
(2) Terrain Factors: Is the project located in a portion of the State that has particular design constraints imposed by local terrain and or underlying geology? The project is located in a region of the State that has no constraints imposed by local terrain or underlying geology
(3) Stormwater Treatment Suitability: Can the BMP meet all five stormwater criteria at the site or are a combination of BMPs needed? For this project, a single BMP will not satisfy all of the required criteria (see Table 4.3 BMP Selection Matrix No. 3). Therefore, one BMP will treat $\mathrm{WQ}_{\mathrm{v}}, \mathrm{Cp}_{\mathrm{v}}$, and $\mathrm{Q}_{\mathrm{p} 10}$ while a separate BMP will treat Re_{v}.

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)
(4) Physical Feasibility Factors: Are there any physical constraints at the project site that may restrict or preclude the use of a particular BMP? Although the soils encountered are infiltratable, the depth to the existing water table is less than 4.0'. Therefore infiltration is not feasible for treating WQ_{v}. Additionally, the soils indicate that wet pond designs may require a liner. Sand filters will require substantial pretreatment as the proposed imperviousness is near 37%. The drainage area, 5.3 acres, is marginally low to support either ponds or wetlands. However, the groundwater table may be sufficient to support a shallow wetland.
(5) Community and Environmental Factors: Do the remaining BMPs have any important community or environmental benefits or drawbacks that might influence the selection process? The projected use of the site as a community center may require that BMPs possess a greater acceptance by the community. Additionally, habitat quality is important if environmental education is provided at the center. Finally, ease of maintenance and costs relative to drainage area are important considerations as the sources of future funding may be limited.
(6) Location and Permitting Factors: What environmental features must be avoided or considered when locating the BMP system at a site to fully comply with local, State and federal regulations? There are no wetlands, stream buffers, floodplains or forest conservation areas located on the site although the area of existing woods should be preserved if possible.

After considering all factors and the site layout, use a shallow wetland (W-1) for treating WQ_{v}. $\mathrm{C} p_{\mathrm{v}}$ and $\mathrm{Q}_{\mathrm{p} 10}$ will be treated by providing sufficient storage above the shallow wetland. Finally, Re_{v} will be treated prior to the wetland by providing storage around the inlet, I-1.

Step 2. Shallow Wetland (W-1) Design
Using the information developed in Preliminary Design Steps 1 and 2, design a shallow wetland to treat WQ_{v} (see Figure C.1.4).
A. Calculate Design Volume

Because Re_{v} will be treated prior to the shallow wetland, Re_{v} may be subtracted from the WQ_{v} for the design of this BMP:

$$
\begin{aligned}
W Q Q_{v}{ }^{\prime} & =W Q_{v}-\operatorname{Re}_{v} \\
& =7,292 \mathrm{cf.}-1,986 \mathrm{cf} . \\
& =5,306 \mathrm{cf} .
\end{aligned}
$$

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)
B. Calculate Pretreatment (Forebay) Volume

Forebays shall be sized to capture 10% of the design runoff volume (in this case $\mathrm{WQ}{ }^{\prime}$) at each inflow point; assume that inflow is divided equally between the two inflow points for this design.

$$
\begin{aligned}
\text { forebay volume } & =(10 \%)(5,306 \mathrm{cf} . / 2) \\
& =265.3 \mathrm{cf} . \text { at each inflow point }
\end{aligned}
$$

forebay volume provided $=800 \mathrm{cf}$. and 700 cf . respectively

B. Determine Shallow Wetland Size Criteria

Using the design criteria set forth in Chapter 3 for the design of shallow wetland systems, the configuration shown in Figure C.1.4, and the information in Table C.1.2, design a shallow wetland to treat $\mathrm{WQ}^{\prime}{ }^{\prime}$. Specific criteria that govern the configuration of the shallow wetland design are as follows.

1. Surface area $\geq 1.5 \% \times$ drainage area

$$
\geq 1.5 \% \times 5.3 \text { acres }
$$

$$
\geq 0.0795 \text { acres (} 3,463 \mathrm{sf} . \text {) }
$$

Surface area of shallow wetland at elevation $44.0=0.1366$ acres $(5,950 \mathrm{sf}$.) -OKAY
2. Deepwater (depth $\geq 4^{\prime}$) zones $\geq 25 \% \times \mathrm{WQ}{ }^{\prime}{ }^{\prime}$

$$
\begin{aligned}
& \geq 25 \% \times 5,306 \mathrm{cf} \\
& \geq 1,326.5 \mathrm{cf}
\end{aligned}
$$

Deepwater zones provided $=1,950 \mathrm{cf}$. (forebays and micropool)
3. High marsh (depth $\leq 6 "$) zones $\geq 35 \% \times$ total surface area

$$
\geq 35 \% \times 3,463 \mathrm{sf}
$$

$$
\geq 1,212.1 \mathrm{sf}
$$

High marsh area provided $=2,160 \mathrm{sf}$.
4. Total marsh area (depth ≤ 18 ") zones $\geq 65 \% \times$ total surface area

$$
\begin{aligned}
& \geq 65 \% \times 3,463 \mathrm{sf} \\
& \geq 2,251 \mathrm{sf}
\end{aligned}
$$

Total marsh area provided $=4,200 \mathrm{sf}$.
5. Check for water balance (see Appendix D.3) for maintenance of wet pool:

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)
a. Calculate maximum drawdown:

Inflow Runoff Volume $=P \times E$ where $P=$ Precipitation $\& E=$ Runoff Efficiency

- for a CN of 74, Volume of runoff (2 year storm) $=1.10$ "
- for Charles County, $P(2$ year rainfall $)=3.3^{\prime \prime}\left(0.275^{\prime}\right)$
- $E=1.1 " / 3.3 "=0.33$
\therefore Inflow $=P x E=0.275^{\prime} \times 0.33 \times 5.3$ acres $=0.48 \mathrm{ac}-\mathrm{ft}$
Outflow $=$ surface area x evaporation losses
$=0.137$ acres $\times 0.54 \mathrm{ft}$ (see Table D.3.2)
$=0.074 \mathrm{ac}-\mathrm{ft}$

Inflow (0.48 ac-ft) is greater than Outflow (0.074 ac-ft) -OKAY
b. Check for drawdown over an extended period without rainfall:

Using 45 day "worst case" drought conditions

- highest evaporation occurs in July - 0.54 ft per month
- average evaporation per day $=0.54 / 31$ days $=0.017 \mathrm{ft} / \mathrm{day}$
- over 45 day interval, evaporation loss $=45 \times 0.017 \mathrm{ft} /$ day $=0.78 \mathrm{ft}$.
- assume surface of wetland may drop up to 0.78 ft . over this interval -OKAY

Table C.1.2 Stage - Storage Data for Stormwater Management Design

Stage - Storage Data					
Elevation	Δ Storage	Storage (cubic feet)		Storage (acre-feet)	
40.0	0.0	0.0	0.0	Storage Above $W_{\text {(acr-feet) }}$	
41.0	372.0	372.0	0.0085		
42.0	665.0	$1,037.0$	0.0238		
43.0	$1,428.0$	$2,465.0$	0.0566		
44.0	$3,990.0$	$6,455.0$	0.1482	0.0	
45.0	$11,200.0$	$17,665.0$	0.4055	0.2573	
45.5	$8,478.0$	$26,133.0$	0.5999	0.4517	
46.0	$8,987.0$	$35,120.0$	0.8062	0.6581	
47.0	$19,530.0$	$54,650.0$	1.2546	1.1064	
48.0	$21,646.0$	$76,296.0$	1.7515	1.6033	

Figure C.1.4 Plan View of Shallow Wetland Design

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)

Step 3. Cp_{v} Design
Using the information from Preliminary Design Step 3, the stage-storage data from Table C.1.2, and the stage-discharge data for the 3" orifice in Table C.1.3, design an extended-detention basin to treat Cp_{v}.

Table C.1.3 Stage - Discharge Data for Clevenger Community Center

Stage - Discharge Data							
Elevation	3" Orifice centerline - 44.125,		$5.2^{\prime} \mathrm{Weir}^{2}$crest @ 45.00’		$\begin{aligned} & 10.0^{\prime} \mathrm{Weir}^{3} \\ & \text { crest @ } 45.50 \\ & \hline \end{aligned}$		Total Discharge
	Head (h)	Discharge	Head (h)	Discharge	Head (h)	Discharge	
44.00	0.0	0.00					0.00
44.25	0.1	0.085					0.085
44.50	0.4	0.150					0.150
44.75	0.6	0.194					0.194
45.00	0.9	0.229	0.0	0.0			0.229
45.50	1.4	0.287	0.5	5.70	0.0	0.0	5.70
46.00	1.9	0.335	1.0	16.12	0.5	10.96	27.08
47.00	2.9	0.415	2.0	45.59	1.5	56.95	102.54
48.00	3.9	0.482	3.0	83.76	2.5	122.53	206.29
1. Using orifice equation $Q=c a \sqrt{2 g h}$ where $c=0.61, a=0.05 \mathrm{sf}$., and $g=32.2 \mathrm{ft} / \mathrm{sec}^{2}$ 2. Using weir equation $Q=c h^{3 / 2}$ where $c=3.1 \& l=5.2$ ' 3. Using weir equation $Q=\operatorname{ch}^{3 / 2}$ where $c=3.1 \& l=10.0^{\prime}$							

From Preliminary Step 3, the storage volume (V_{s}) for Cp_{v} is $0.204 \mathrm{ac}-\mathrm{ft}$ and the required orifice diameter $\left(d_{o}\right)$ is $3 "$. Using Table C.1.2 and starting at elevation 44.0, the storage volume of the proposed stormwater management structure is $0.2573 \mathrm{ac}-\mathrm{ft}$ at elevation 45.0^{\prime}. Therefore, $C p_{v}$ treatment will be provided between elevations 44.0^{\prime} and 45.0^{\prime}.

Step 4. $\mathrm{Q}_{\mathrm{p} 10}$ Treatment

From Preliminary Step 5, the estimated storage volume $\left(V_{s}\right)$ for treating $\mathrm{Q}_{\mathrm{p} 10}$ is 0.36 ac - ft and the allowable discharge rate is 6.0 cfs . Using Table C.1.2 and starting at elevation 44.0', the storage volume of the proposed stormwater management structure is $0.4517 \mathrm{ac}-\mathrm{ft}$ at elevation 45.5'. Therefore, design a control structure that will produce a discharge rate of 6.0 cfs at storage elevation 45.5^{\prime}. This will be a conservative design since the volume provided (0.4517 $\mathrm{ac}-\mathrm{ft}$) is greater than the $0.36 \mathrm{ac}-\mathrm{ft}$ required. Using a weir with crest at elevation 45.0^{\prime} and including flow from the 3 " orifice, the ten-year discharge (q_{10}) may be computed as follows:

$$
q_{10}=c_{w} l h_{w}^{3 / 2}+c_{o} a \sqrt{2 g h_{o}}
$$

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)

```
where: \(\quad q_{10}=10 \mathrm{yr}\). discharge \(=6.0 \mathrm{cfs}\)
\(c_{w}=\) weir coefficient \(=3.1\)
\(l=\) length of weir
\(h_{w}=\) head on weir; at elevation 45.5, \(h_{w}=0.5\),
\(c_{o}=\) orifice coefficient \(=0.61\)
\(a=\) area of 3 " orifice \(=0.05\)
\(g=\) gravitational acceleration \(=32 \mathrm{ft} / \mathrm{sec}^{2}\)
\(h_{o}=\) head on orifice; at elevation 45.5, \(h_{o}=1.375\)
therefore:
\[
q_{10}=(3.1)(l)(0.5)^{3 / 2}+(0.61)(0.05)[(2)(32.2)(1.375)]^{1 / 2}
\]
\[
6.0 \mathrm{cfs}=1.1 l \mathrm{cfs}+0.29 \mathrm{cfs}
\]
\[
\text { by rearranging this equation and solving for } l ; l=5.2^{\prime}
\]
```

use a 5.2^{\prime} weir with crest at elevation 45.0 -OKAY

Step 5. Qf Treatment

From Preliminary Step 5, the 100-year storm event must be conveyed safely through the stormwater management facility. From Figure C.1.3, 100-year discharge rate (q_{100}) is 27 cfs and from Figure C.1.4, the top of the proposed stormwater management facility is at elevation 48.0'. Allowing for 2.0' of freeboard, design a control structure that will discharge 27 cfs at elevation 46.0^{\prime}. Using a weir with crest at elevation 45.5 ', including flow from the 5.5 ' weir and assuming that the 3 " orifice is clogged, q_{100} may be computed as follows:

$$
q_{100}=c l_{100} h_{100}^{3 / 2}+c l_{10} h_{10}^{3 / 2}
$$

where: $\quad q_{100}=100 \mathrm{yr}$. discharge $=27 \mathrm{cfs}$.

$$
c=\text { weir coefficient }=3.1
$$

$$
l_{100}=\text { length of } 100 \mathrm{yr} . \text { weir }
$$

$$
h_{100}=\text { head on } 100 \text { yr. weir; at elev. } 46.0^{\prime}, h_{100}=0.5^{\prime}
$$

$$
l_{10}=\text { length of } 10 \mathrm{yr} . \text { weir }=5.2
$$

$$
h_{10}=\text { head on } 10 \text { yr. weir; at elev. } 46.0^{\prime}, h_{10}=1.0^{\prime}
$$

therefore: $\quad q_{100}=(3.1)\left(l_{100}\right)(0.5)^{3 / 2}+(3.1)\left(5.2^{\prime}\right)(1.0)^{3 / 2}$

$$
27 \mathrm{cfs}=1.1 l_{100} \mathrm{cfs}+16.1 \mathrm{cfs}
$$

by rearranging this equation and solving for $l_{100} ; l_{100}=9.89^{\prime}$
use a 10.0^{\prime} weir with crest at elevation 45.5^{\prime}-OKAY
See Figure C.1.5 for a schematic of the control structure and Figure C.1.6 for a profile through the centerline of the dam and control structure. See Figures C.1.7 and C.1.8 for the TR-20 input and summary tables.

Figure C.1.5 Schematic of Control Structure

Step 6. Investigate Potential Pond Hazard Classification
Using NRCS-MD Code No. 378 Pond Standards/Specifications (Appendix B.1), review downstream conditions and compute a preliminary Breach Peak Discharge ($Q_{\max }$) to determine pond hazard classification.

$$
Q_{\text {max }}=(3.2)\left(H_{w}^{5 / 2}\right)
$$

where: $\quad Q_{\max }=$ Breach Peak Discharge
$H_{w}=$ depth of water at the dam at time of failure, in feet, and is measured from the design high water to the lowest point in the original cross section at the centerline of the dam; $H_{w}=46.0^{\prime}-44.0^{\prime}=2.0^{\prime}$

$$
Q_{\max }=(3.2)(2.0)^{5 / 2}=18.1 \mathrm{cfs}
$$

$Q_{\text {max }}$ will not overtop downstream roads or infrastructure, therefore the stormwater management facility may be considered as a Class "a" low hazard structure per the NRCS-MD 378 standards.

Figure C.1.6 Profile of Principle Spillway

Appendix C.1. Design Example 1 - Shallow Wetland (W-1)

Figure C.1.7 TR-20 Computer Program Input File

Figure C.1.8 TR-20 Computer Program Output Summary Table

Step 7. Rev Treatment
Using the information developed n Preliminary Step 2, design a structural practice to treat Rev. Non-structural practices will not be utilized therefore the entire $\operatorname{Re}_{\mathrm{v}}(1,986 \mathrm{cf})$ must be treated. For this example, design an infiltration area around inlet I-1 (see Figure C.1.9) that will treat the entire Re_{v}. Because of its high visibility and the communal nature of the project, this infiltration area will be designed and planted similar to a bioretention area.

The surface area around I-1 that is available for this practice has an area $(A L$ of $2,250 \mathrm{sf}$. Using a porosity (n) of $0.30 *$ for the sand and planting soil mixture, the required depth (d) to treat the entire $\operatorname{Re}_{\mathrm{v}}$ is equal to: $\quad\left[\left(\operatorname{Re}_{\mathrm{v}}\right) /(A)\right] / n$

$$
\begin{aligned}
& =[(1,986 \mathrm{cf} .) /(2,250 \mathrm{sf} .)] / 0.30 \\
& =0.883 / 0.30 \\
& =2.94 \mathrm{ft} . \text { Use } d=3.0 \mathrm{ft}
\end{aligned}
$$

*Note: The porosity of mixed-grained sand varies from 0.30 (dense) to 0.40 (loose). Using the minimum value, 0.30 , results in a more conservative design.

Using a depth of 3.0^{\prime}, a surface area of $2,250 \mathrm{sf}$. and a n of 0.3 , storage for Re_{v} treatment is equal to: $\quad(A \times d) \times n$

$$
=(2,250 \mathrm{sf} . \times 3.0 \mathrm{ft} .) \times 0.3
$$

$$
=2,025 \text { cf. -OKAY }
$$

Using the dimensions above, a cross section of the infiltration area is shown in Figure C.1.10.

Step 8. Landscaping

The BMP's for both WQ_{v} and Re_{v} treatment have specific landscaping requirements for proper implementation. Therefore, landscaping plans developed in accordance with Chapter 3 and using the guidelines provided in Appendix A will be required with submittal of the final design.

Figure C.1.9 Location of Rev Treatment

Figure C.1.10 Cross Section "A-A"

