

Design Example 1 – Shallow Wetland (W-1)

Design Example 1 – Shallow Wetland (W-1)

The following example demonstrates the process for the design of a shallow wetland (W-1) BMP.

Site Specific Data

Clevenger Community Center is a recreational center located in Charles County, Maryland. The site area and drainage area to the proposed stormwater management facility is 5.3 acres. The project consists of constructing the community center and parking for a total impervious area of 1.94 acres. Existing ground at the outlet of the facility is 44.5' above mean sea level (MSL). Soil borings indicate that the seasonally high water table is at elevation 41'. The underlying soils are loams. TR-55 calculations for the existing and developed hydrologic conditions are shown in Figures C.1.2 and C.1.3.

Confirm Design Criteria

The site is within the Eastern Rainfall Zone and located on the Western Shore of the Chesapeake Bay (see Volume I, Chapter 2, Figures 2.1 and 2.4). Additionally, the site is located within a USE I watershed. Therefore, the following criteria apply:

- 1. WQ_v treatment is required. In the Eastern Rainfall Zone, $P = 1^{\circ}$.
- 2. Rev treatment is required.
- 3. Cp_v treatment is required.
- 4. Q_{p10} may be required by the local jurisdiction. For this example, Q_{p10} will be required.
- 5. Qf may be required by the local jurisdiction. For this example, Qf will not be required. However, safe conveyance of the 100-year design storm is required through the proposed stormwater management facility.

Preliminary Design

Step 1. Compute WQ_v

Step 1a. Compute Volumetric Runoff Coefficient (R_{ν})

 $R_{\nu} = 0.05 + (0.009)(I); I = 1.94 \text{ acres} / 5.3 \text{ acres} = 0.366 \text{ or } 36.6\%$ = 0.05 + (0.009)(36.6) = 0.379

Step 1b. Compute WQ_v

 $WQ_v = [(P)(R_v)(A)]/12$ = [(1")(0.379)(5.3 ac)]/12 = 0.167 ac-ft (7,292 cf.)

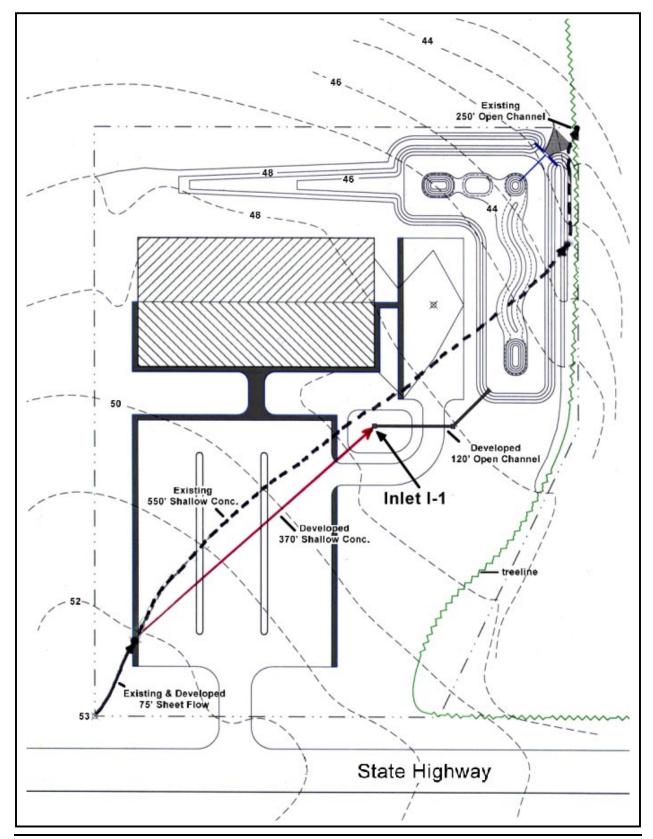


Figure C.1.1 Clevenger Community Center Site Plan

Figure C.1.2 Clevenger Community Center – Existing Conditions (source: TR-55 computer printouts)

RUNOFF CURVE NUMBER COM Project : CLEVENGER COM County : CHARLES Subtitle: EXISTING		State:	MD	Check	ed:	_ Da	ate: 06 ate:	-18-99
Hydrologic Soil Group COVER DESCRIPTION Acres (CN)				А	B	(D
OTHER AGRICULTURAL LAND	S n grazed ic Soil	d) good Group)		- -	5.0(58) 0.3(55) 5.3)	-	
TOTAL DRAINAGE AREA: 5.3	3 Acres	1	WEIGHTE	D CURVE	NUMBER	: 58*		
* - Generated for use by								
TIME OF CONCENTRATION A								
Flow Type 2 year Lex rain (ft) (ft/ft)	ngth : code	Slope	Surface (sq/ft)	n . (ft)	Area (ft/sed	Wp c) (hr)	
Sheet3.37Shallow Concent'd5Open Channel2	5 50	0.013 0.016			me of Co		4.0	0.221 0.075 <u>0.017</u>
Sheet Flow Surface A Smooth Surface B Fallow (No Res.) C Cultivated < 20 % Res D Cultivated > 20 % Res E Grass-Range, Short * - Generated for use by	FG: GG: . HW . IW JR	rass, De rass, Br oods, L oods, De ange, Na	urmuda ight ense atural		Surfa	ace Code Paved	es -	
GRAPHICAL PEAK DISCHARG Data: Drainage Area Runoff Curve Number : Time of Concentration: Rainfall Type : Pond and Swamp Area :	: 58 * 0.31 * II NONE	5.3 * A Hours	cres					
Storm Number	1	2	3	4	5	6	7	_
 Frequency (yrs) 24-Hr Rainfall (in)	1 2.7	2	5 4.4	10 5.3	25	50 6.6	100 7.5	
Ia/P Ratio Used	0.54	0.44	0.33	0.27	0.24	0.22	0.19	
Runoff (in) Unit Peak Discharge	0.18	0.38	0.85	1.34 0.904	1.76 0.929	2.14	2.76	
<pre> Onit Feak Discharge (cfs/acre/in) Pond and Swamp Factor 0.0% Ponds Used</pre>	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	
Peak Discharge (cfs)	 0	 1	 4	 6	 9	 11	 14	
<pre>* - Value(s) provided f:</pre>								=

Figure C.1.3 Clevenger Community Center – Developed Conditions (source: TR-55 computer printouts)

roject : CLEVENGER COM ounty : CHARLES ubtitle: DEVELOPED		CENTER State:	MD	Use Checke		D D		18-99
							il Group	
OVER DESCRIPTION cres (CN)				A	-	В	C	D
ULLY DEVELOPED URBAN AF								
pen space (Lawns,parks Good condition; grass mpervious Areas	etc.)			- :	3.06(61)	-	-
Paved parking lots, ro THER AGRICULTURAL LANDS		riveway	S	- :	L.94(98)	-	-
oods	5	good		-	0.3(55)	-	-
otal Area (by Hydrologi	ic Soil	Group)			5.3			
	RAINAGE	AREA:	5.3 Ac	res	WEIGH			R: 74*
- Generated for use by								
TIN				AND TRAVI				
low Type 2 year Ler rain (1	ngth	Slope	Surfac	e n i	Area	Wр	Velocity	Time
heet 3.3 7(hallow Concent'd 31 pen Channel	0 1 0	0.013 0.013	F P	Tit			5.0 ation =	0.209 0.037 0.007
Sheet Flo A Smooth Surface B Fallow (No Res.) C Cultivated < 20 % D Cultivated > 20 % E Grass-Range, Short - Generated for use by	Res. Res. t y GRAPH	F Grass G Grass H Woods I Woods J Range IC methe	s, Den s, Bur s, Lig s, Den e, Nat od	se		P Pav U Unp	ed aved	
Data: Drainage Area Runoff Curve Nur Time of Concent Rainfall Type Pond and Swamp A	: nber : ration: : Area :	5.3 * 74 * 0.26 II NONE	Acres * Hour	s				00
Storm Number	1	2	3	4	5	6	7	
Frequency (yrs) 24-Hr Rainfall (in)				10			100 7.5	
Ia/P Ratio	0.26	0.21	0.16		0.12	0.11	0.09	
Used Runoff (in)		0.21	0.16 1.90		0.12	0.11	0.10	
Unit Peak Discharge (cfs/acre/in)	0.72 0.995 	1.10 1.033	1.90 1.076 		3.18 1.110	3.70 1.119	4.48 1.124	
Pond and Swamp Factor 0.0% Ponds Used	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		6	 11	-	 19	22	27	

Step 2. Compute Rev

Step 2a. Determine Soil Specific Recharge Factor (S) Based on Hydrologic Soil Group

Soils found throughout the site are loams and silt loams therefore S = 0.26

Step 2b. Compute Rev Using Percent Volume Method

 $Re_v = [(S)(R_v)(A)]/12$ = [(0.26)(0.379)(5.3)]/12 = <u>0.0456 ac-ft.</u> (1,986 cf)

Step 2c. Compute Rev Using Percent Area Method

$$Re_v = (S)(A_i) = (0.26)(1.94 \text{ ac.}) = 0.50 \text{ acres}$$

The Re_v requirement may be met by: a) treating 1,986 cf using structural methods, b) treating 0.50 acres using non-structural methods, or c) a combination of both (e.g. 994 cf structurally and 0.25 acres non-structurally).

Step 3. Compute Cp_v

The proposed community center is located within a USE I watershed, therefore an extended detention time (*T*) of 24 hours for the one-year storm event. The time of concentration (t_c) and one-year runoff (Q_a) are 0.26 hours and 0.72" respectively (see Fig. C.1.3).

Use the MDE Method to Compute Storage Volume (Appendix D.11):

Initial abstraction (I_a) for CN of 74 is 0.703: (TR-55) [$I_a = (200/\text{CN})-2$]

 $I_a/P = (0.703)/2.7" = 0.26$ $t_c = 0.26$ hours

 $q_u = 625 \text{ csm/in.}$ (Figure D.11.1, Appendix D.11)

 $q_i = q_u A Q_a$ where A is the drainage area in square miles = (625 csm)(0.0083 square miles)(0.72") = 3.7 cfs; $q_i > 2.0$ cfs \therefore Cp_v is required.

Knowing q_u and T (extended detention time), find q_o/q_i from Figure D.11.2, "Detention Time Versus Discharge Ratios."

Peak outflow discharge / peak inflow discharge $(q_0/q_i) = 0.030$

With q_o/q_i , compute V_s/V_r for a Type II rainfall distribution,

 $V_s/V_r = 0.683 - 1.43(q_o/q_i) + 1.64(q_o/q_i)^2 - 0.804(q_o/q_i)^3$; (Appendix D.11) $V_s/V_r = 0.64$

Therefore, $V_s = [(V_s/V_r)(Q_a)(A)] / 12$ = [(0.64)(0.72")(5.3 ac.)] / 12= 0.204 ac-ft (8,886 cf.)

With q_o/q_i , compute the Cp_v release rate,

$$q_o = (q_o/q_i)(q_i);$$
 $q_i = 4.0 \text{ cfs}$
= (0.030)(4.0 cfs)
= 0.12 cfs

With q_o , determine the required orifice area (A_o) for extended detention design:

$$A_o = \frac{q_o}{C\sqrt{2gh_o}} = \frac{q_o}{4.81\sqrt{h_o}}$$

" h_o " is the maximum storage depth associated with V_s . For this example, assume h_o to be no more than 3.0 ft.

$$\therefore A_o = (0.12 \text{ cfs}) / (4.81\sqrt{3.0 \text{ ft}}) = (0.12 \text{ cfs}) / (8.33 \text{ ft}) = 0.014 \text{ sf.}$$

With A_o , determine the required orifice diameter (d_o) :

$$d_o = \sqrt{\frac{4A_o}{\pi}} = \sqrt{\frac{4 \times 0.014 \text{sf}}{\pi}} = 0.134 \text{ ft}$$
 (1.6") USE 1.5"

" d_o 's" of less than 3" are subject to local jurisdictional approval, and are not recommended unless an internal control for orifice protection is used. For this example, use a d_o of 3".

Step 4. Compute Q_{p10} Storage Volume

Per TR-55, Figure 6-1 (Page 6-2 of TR-55) for an inflow (Q_{in}) of 15 cfs and an allowable outflow (Q_{out}) of 6 cfs, the volume of storage (V_s) necessary for control is 0.37 ac-ft, with a developed CN of 74 (see TR-55 Worksheet 6a, Page 6-5 of TR-55). Note that there is 5.3 inches of rainfall during this event with 2.6 inches of runoff.

Step 5. Compute Q_f

For this example, management of Q_f is not required. However, the 100-year storm event must be conveyed safely through the stormwater management practice.

Step	Requirement	Volume Required (acre-feet)	Notes
1.	WQv	0.167	
2.	Rev	0.0456	volume is included within the WQ _v
		(or 0.50 acres)	storage
3.	Cpv	0.204	Cp _v release rate is 0.10 cfs
4.	\mathbf{Q}_{p10}	0.36	10-year release rate is 6.0 cfs
5.	Qf	N/A	provide safe passage for the 100-year
			event in final design

Table C.1.1 Summary of General Storage Requirements for Clevenger Community Center

Final Design

Step 1. BMP Selection Process

While the stormwater management BMP's listed in Chapter 2.7 (Volume I) are equivalent in meeting the established pollutant removal goals, site characteristics are an important consideration in selecting the most appropriate BMP for a specific design. The process outlined in Chapter 4 (Volume I) provides guidance for screening BMP's as part of the selection process.

- Watershed Factors: Is the project located in a watershed that has special design objectives or constraints that must be met? This project is located in a USE I watershed and there are no other special objectives or constraints that must be considered.
- O Terrain Factors: Is the project located in a portion of the State that has particular design constraints imposed by local terrain and or underlying geology? The project is located in a region of the State that has no constraints imposed by local terrain or underlying geology
- Stormwater Treatment Suitability: Can the BMP meet all five stormwater criteria at the site or are a combination of BMPs needed? For this project, a single BMP will not satisfy all of the required criteria (see Table 4.3 BMP Selection Matrix No. 3). Therefore, one BMP will treat WQv, Cpv, and Qp10 while a separate BMP will treat Rev.

Appendix C.1. Design Example 1 – Shallow Wetland (W-1)

- **9** Physical Feasibility Factors: Are there any physical constraints at the project site that may restrict or preclude the use of a particular BMP? Although the soils encountered are infiltratable, the depth to the existing water table is less than 4.0'. Therefore infiltration is not feasible for treating WQ_v. Additionally, the soils indicate that wet pond designs may require a liner. Sand filters will require substantial pretreatment as the proposed imperviousness is near 37%. The drainage area, 5.3 acres, is marginally low to support either ponds or wetlands. However, the groundwater table may be sufficient to support a shallow wetland.
- **6** Community and Environmental Factors: Do the remaining BMPs have any important community or environmental benefits or drawbacks that might influence the selection process? The projected use of the site as a community center may require that BMPs possess a greater acceptance by the community. Additionally, habitat quality is important if environmental education is provided at the center. Finally, ease of maintenance and costs relative to drainage area are important considerations as the sources of future funding may be limited.
- Considered when locating the BMP system at a site to fully comply with local, State and federal regulations? There are no wetlands, stream buffers, floodplains or forest conservation areas located on the site although the area of existing woods should be preserved if possible.

After considering all factors and the site layout, use a shallow wetland (W-1) for treating WQ_v. Cp_v and Q_{p10} will be treated by providing sufficient storage above the shallow wetland. Finally, Re_v will be treated prior to the wetland by providing storage around the inlet, I-1.

Step 2. Shallow Wetland (W-1) Design

Using the information developed in Preliminary Design Steps 1 and 2, design a shallow wetland to treat WQ_v (see Figure C.1.4).

A. Calculate Design Volume

Because Re_v will be treated prior to the shallow wetland, Re_v may be subtracted from the WQ_v for the design of this BMP:

$$WQ_{v'} = WQ_{v} - Re_{v}$$

= 7,292 cf. - 1,986 cf.
= 5,306 cf.

B. Calculate Pretreatment (Forebay) Volume

Forebays shall be sized to capture 10% of the design runoff volume (in this case $WQ_{v'}$) at each inflow point; assume that inflow is divided equally between the two inflow points for this design.

forebay volume = (10%)(5,306 cf./2)= 265.3 cf. at each inflow point

forebay volume provided = 800 cf. and 700 cf. respectively

B. Determine Shallow Wetland Size Criteria

Using the design criteria set forth in Chapter 3 for the design of shallow wetland systems, the configuration shown in Figure C.1.4, and the information in Table C.1.2, design a shallow wetland to treat WQ_v' . Specific criteria that govern the configuration of the shallow wetland design are as follows.

1. Surface area $\geq 1.5\% \times \text{drainage area}$ $\geq 1.5\% \times 5.3 \text{ acres}$ $\geq 0.0795 \text{ acres} (3,463 \text{ sf.})$

Surface area of shallow wetland at elevation 44.0 = 0.1366 acres (5,950 sf.) -OKAY

2. Deepwater (depth \geq 4') zones \geq 25% × WQ_v' \geq 25% × 5,306 cf. \geq 1,326.5 cf.

Deepwater zones provided = 1,950 cf. (forebays and micropool)

3. High marsh (depth ≤ 6 ") zones $\geq 35\% \times \text{total surface area}$ $\geq 35\% \times 3,463 \text{ sf.}$

$$\geq$$
 1,212.1 sf.

High marsh area provided = 2,160 sf.

4. Total marsh area (depth ≤ 18 ") zones $\geq 65\% \times \text{total surface area}$ $\geq 65\% \times 3,463 \text{ sf.}$ $\geq 2,251 \text{ sf.}$

Total marsh area provided = 4,200 sf.

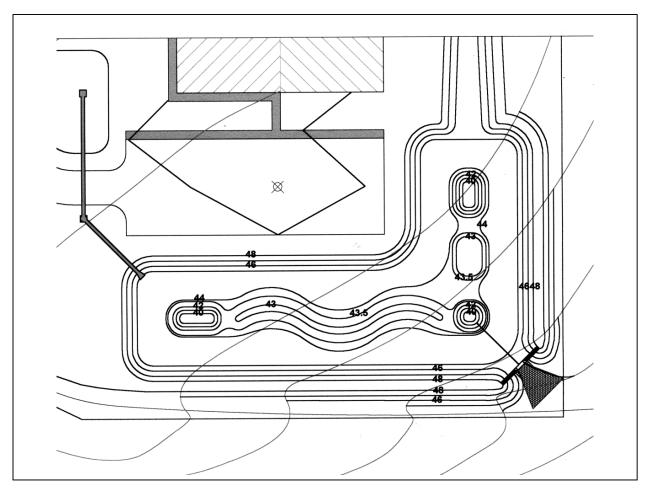
5. Check for water balance (see Appendix D.3) for maintenance of wet pool:

a. Calculate maximum drawdown:

Inflow Runoff Volume = $P \times E$ where P = Precipitation & E = Runoff Efficiency - for a CN of 74, Volume of runoff (2 year storm) = 1.10" - for Charles County, P (2 year rainfall) = 3.3" (0.275') - E = 1.1"/3.3" = 0.33 \therefore Inflow = $P \times E$ = 0.275' x 0.33 x 5.3 acres = 0.48 ac-ft Outflow = surface area x evaporation losses = 0.137 acres x 0.54 ft (see Table D.3.2) = 0.074 ac-ft

Inflow (0.48 ac-ft) is greater than Outflow (0.074 ac-ft) –OKAY

b. Check for drawdown over an extended period without rainfall:


Using 45 day "worst case" drought conditions

- highest evaporation occurs in July 0.54 ft per month
- average evaporation per day = 0.54/31 days = 0.017 ft/day
- over 45 day interval, evaporation loss = 45×0.017 ft/day = 0.78 ft.
- assume surface of wetland may drop up to 0.78 ft. over this interval -OKAY

		Stage - Storage Data		
Elevation	Δ Storage	Storage (cubic feet)	Storage (acre-feet)	Storage Above WQ _v (acre-feet)
40.0	0.0	0.0	0.0	
41.0	372.0	372.0	0.0085	
42.0	665.0	1,037.0	0.0238	
43.0	1,428.0	2,465.0	0.0566	
44.0	3,990.0	6,455.0	0.1482	0.0
45.0	11,200.0	17,665.0	0.4055	0.2573
45.5	8,478.0	26,133.0	0.5999	0.4517
46.0	8,987.0	35,120.0	0.8062	0.6581
47.0	19,530.0	54,650.0	1.2546	1.1064
48.0	21,646.0	76,296.0	1.7515	1.6033

 Table C.1.2 Stage – Storage Data for Stormwater Management Design

Figure C.1.4 Plan View of Shallow Wetland Design

Step 3. Cpv Design

Using the information from Preliminary Design Step 3, the stage–storage data from Table C.1.2, and the stage-discharge data for the 3" orifice in Table C.1.3, design an extended-detention basin to treat Cp_v .

			Stage - Dis	scharge Dat	a				
Elevation	3" O	rifice ¹	5.2'	Weir ²	10.0'	Weir ³	Total		
	centerline	- 44.125'	crest @	2 45.00'	crest @	45.50'	Discharge		
	Head (h)	Discharge	Head (h)	Discharge	Head (h)	Discharge			
44.00	0.0	0.00					0.00		
44.25	0.1	0.085					0.085		
44.50	0.4	0.150					0.150		
44.75	0.6	0.194					0.194		
45.00	0.9	0.229	0.0	0.0			0.229		
45.50	1.4	0.287	0.5	5.70	0.0	0.0	5.70		
46.00	1.9	0.335	1.0	16.12	0.5	10.96	27.08		
47.00	2.9	0.415	2.0	45.59	1.5	56.95	102.54		
48.00	3.9	0.482	3.0	83.76	2.5	122.53	206.29		
1. Using orific	ce equatior	$Q = ca\sqrt{2}$	2gh where	c=0.61, a=	=0.05 sf., a	and $g = 32.2$	2 ft/sec^2		
2. Using weir	equation §	$Q = clh^{3/2}$	where $c = 3$	1 & l = 5.2	2,				

 Table C.1.3 Stage – Discharge Data for Clevenger Community Center

From Preliminary Step 3, the storage volume (V_s) for Cp_v is 0.204 ac-ft and the required orifice diameter (d_o) is 3". Using Table C.1.2 and starting at elevation 44.0, the storage

3. Using weir equation $Q = clh^{3/2}$ where c = 3.1 & l = 10.0'

volume of the proposed stormwater management structure is 0.2573 ac-ft at elevation 45.0'. Therefore, Cp_v treatment will be provided between elevations 44.0' and 45.0'.

Step 4. Qp10 Treatment

From Preliminary Step 5, the estimated storage volume (V_s) for treating Q_{p10} is 0.36 ac-ft and the allowable discharge rate is 6.0 cfs. Using Table C.1.2 and starting at elevation 44.0', the storage volume of the proposed stormwater management structure is 0.4517 ac-ft at elevation 45.5'. Therefore, design a control structure that will produce a discharge rate of 6.0 cfs at storage elevation 45.5'. This will be a conservative design since the volume provided (0.4517 ac-ft) is greater than the 0.36 ac-ft required. Using a weir with crest at elevation 45.0' and including flow from the 3" orifice, the ten-year discharge (q_{10}) may be computed as follows:

$$q_{10} = c_w l h_w^{3/2} + c_o a \sqrt{2gh_o}$$

where:	$q_{10} = 10$ yr. discharge = 6.0 cfs c_w = weir coefficient = 3.1 l = length of weir h_w = head on weir; at elevation 45.5, h_w = 0.5' c_o = orifice coefficient = 0.61 a = area of 3" orifice = 0.05 g = gravitational acceleration = 32 ft/sec ² h_o = head on orifice; at elevation 45.5, h_o = 1.375
therefore:	$q_{10} = (3.1)(l)(0.5)^{3/2} + (0.61)(0.05)[(2)(32.2)(1.375)]^{1/2}$ 6.0 cfs = 1.1 <i>l</i> cfs + 0.29 cfs by rearranging this equation and solving for <i>l</i> ; <i>l</i> = 5.2'

use a 5.2' weir with crest at elevation 45.0 -OKAY

Step 5. Qf Treatment

From Preliminary Step 5, the 100-year storm event must be conveyed safely through the stormwater management facility. From Figure C.1.3, 100-year discharge rate (q_{100}) is 27 cfs and from Figure C.1.4, the top of the proposed stormwater management facility is at elevation 48.0'. Allowing for 2.0' of freeboard, design a control structure that will discharge 27 cfs at elevation 46.0'. Using a weir with crest at elevation 45.5', including flow from the 5.5' weir and assuming that the 3" orifice is clogged, q_{100} may be computed as follows:

$$q_{100} = c l_{100} h_{100}^{3/2} + c l_{10} h_{10}^{3/2}$$

where:	$q_{100} = 100 \text{ yr. discharge} = 27 \text{ cfs.}$
	c = weir coefficient = 3.1
	$l_{100} = \text{length of } 100 \text{ yr. weir}$
	h_{100} = head on 100 yr. weir; at elev. 46.0', $h_{100} = 0.5$ '
	$l_{10} = \text{length of 10 yr. weir} = 5.2$
	h_{10} = head on 10 yr. weir; at elev. 46.0', $h_{10} = 1.0$ '
therefore:	$q_{100} = (3.1)(l_{100})(0.5)^{3/2} + (3.1)(5.2')(1.0)^{3/2}$ 27 cfs = 1.1 l_{100} cfs + 16.1 cfs
	by rearranging this equation and solving for l_{100} ; $l_{100} = 9.89$ '

use a 10.0' weir with crest at elevation 45.5' -OKAY

See Figure C.1.5 for a schematic of the control structure and Figure C.1.6 for a profile through the centerline of the dam and control structure. See Figures C.1.7 and C.1.8 for the TR-20 input and summary tables.

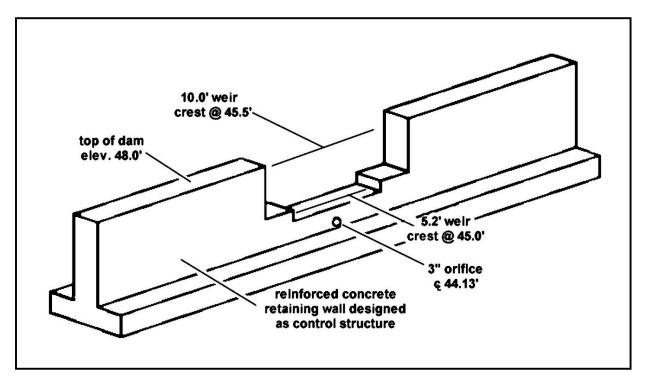
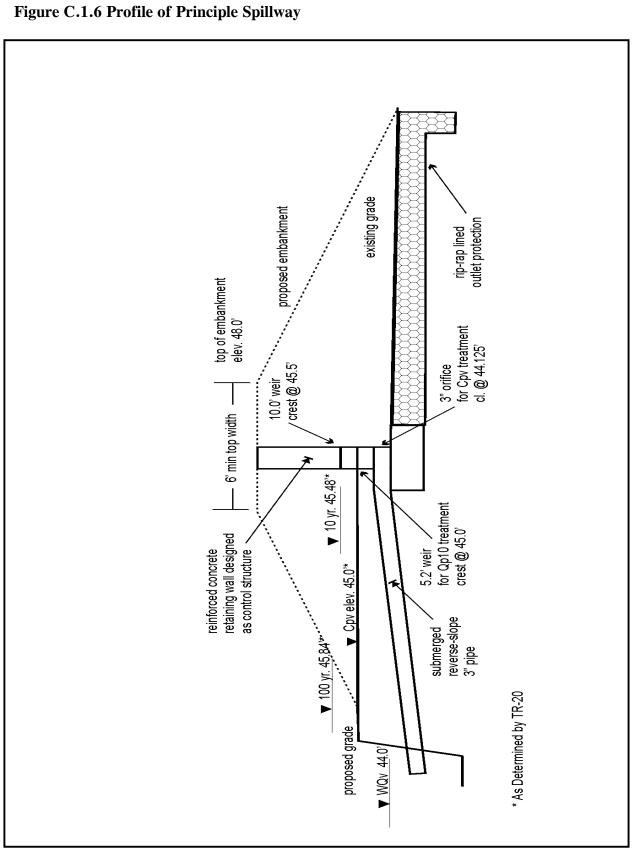


Figure C.1.5 Schematic of Control Structure

Step 6. Investigate Potential Pond Hazard Classification


Using NRCS-MD Code No. 378 Pond Standards/Specifications (Appendix B.1), review downstream conditions and compute a preliminary Breach Peak Discharge (Q_{max}) to determine pond hazard classification.

$$Q_{\rm max} = (3.2)(H_w^{5/2})$$

where: Q_{max} = Breach Peak Discharge H_w = depth of water at the dam at time of failure, in feet, and is measured from the design high water to the lowest point in the original cross section at the centerline of the dam; H_w = 46.0' - 44.0' = 2.0'

$$Q_{max} = (3.2)(2.0)^{5/2} = 18.1 \text{ cfs}$$

 Q_{max} will not overtop downstream roads or infrastructure, therefore the stormwater management facility may be considered as a Class "a" low hazard structure per the NRCS-MD 378 standards.

C.1.15

тот	ר מידי כ	57		1	r O r		RINT PASS=001		CI	ו גר כ		c	
							ER COMMUNITY		GI	κA1	PHIC	5	
	STRUCT			SAAM	211		ER COMMONITI	CENTER					
8			01			44.0	0.0	0.0					
8						44.25	0.12	0.060					
8						44.25	0.12	0.128					
8						44.5	0.21	0.128					
8						44.75	0.21	0.2573					
8						45.5							
							5.70	0.4517					
8						46.0	27.08	0.6581					
8						47.0	102.54	1.1064					
8						48.0	206.29	1.6033					
	ENDTBL		0.01		-			0.06	-	-	-		
						.00828	74.	0.26				1 1	
	RESVOR											1 1	
6	RUNOFF		003		3	.00828	58.	0.31	1	1	1	1 1	-
L _	ENDATA												
	INCREM								-	_			
7	COMPUT			003		0.0	2.7	1.0	2	2	01	01	-
	ENDCMP												
	INCREM					0.10							
7	COMPUT			003		0.0	3.3	1.0	2	2	01	02	2
	ENDCMP												
	INCREM					0.10							
7	COMPUT			003		0.0	5.3	1.0	2	2	01	10)
	ENDCMP												
	INCREM					0.10							
7	COMPUT			003		0.0	7.5	1.0	2	2	01	99)
	ENDCMP	1											
	ENDJOB	2											

Figure C.1.7 TR-20 Computer Program Input File

Figure C.1.8 TR-20 Computer Program Output Summary Table

ID				RUNOFF				
				AMOUNT	ELEVAT	ION TIME (HR)		RATE
RAINTABLE	NUM	2.70 inche BER 2, REMENT .1	ARC 2		DURATION,	BEGINS AT	.0 hrs.	
		1 STOP						
XSECTION			.01	.72		12.07T	4T	400.0
STRUCTURE			.01				0	
XSECTION	3	RUNOFF	.01	.71		.00	0	.0
XSECTION	3	RUNOFF	.01	.71		.00	0	.0
RAINFALL O	F	3.30 inche	es AND	24.00 hr	DURATION,	BEGINS AT	.0 hrs.	
		1 STOP						
		RUNOFF		1.10		12.06	7	700.0
STRUCTURE	1	RESVOR	.01	1.09			0	. 0
XSECTION	3	RUNOFF	.01	.38				100.0
		5.30 inche REMENT .1			DURATION,	BEGINS AT	.0 hrs.	
		1 STOP						
XSECTION	1	RUNOFF	.01	2.60		12.05		
STRUCTURE	1	RESVOR RUNOFF	.01	2.59	45.50	12.32	6	600.0
XSECTION	3	RUNOFF	.01	1.34		12.10	7	700.0
RAINFALL O	F	7.50 inche	es AND	24.00 hr	DURATION,	BEGINS AT	.0 hrs.	
		1 STOP	RM 99					
XSECTION	1	RUNOFF	.01	4.48			28	2800.0
 XSECTION	1		.01	4.48 4.43	45.84		28 20	2800.0 2000.0

Step 7. Rev Treatment

Using the information developed n Preliminary Step 2, design a structural practice to treat Re_v . Non-structural practices will not be utilized therefore the entire Re_v (1,986 cf) must be treated. For this example, design an infiltration area around inlet I-1 (see Figure C.1.9) that will treat the entire Re_v . Because of its high visibility and the communal nature of the project, this infiltration area will be designed and planted similar to a bioretention area.

The surface area around I-1 that is available for this practice has an area (A) of 2,250 sf. Using a porosity (n) of 0.30* for the sand and planting soil mixture, the required depth (d) to treat the entire Rev is equal to: [(Rev)/(A)]/n

- = [(1,986 cf.)/(2,250 sf.)] / 0.30= 0.883 / 0.30 = 2.94 ft. Use d = 3.0 ft.
- *Note: The porosity of mixed-grained sand varies from 0.30 (dense) to 0.40 (loose). Using the minimum value, 0.30, results in a more conservative design.

Using a depth of 3.0', a surface area of 2,250 sf. and a *n* of 0.3, storage for Rev treatment is equal to: $(A \times d) \times n$ $= (2,250 \text{ sf.} \times 3.0 \text{ ft.}) \times 0.3$

= 2,025 cf. -OKAY

Using the dimensions above, a cross section of the infiltration area is shown in Figure C.1.10.

Step 8. Landscaping

The BMP's for both WQ_v and Re_v treatment have specific landscaping requirements for proper implementation. Therefore, landscaping plans developed in accordance with Chapter 3 and using the guidelines provided in Appendix A will be required with submittal of the final design.

Figure C.1.9 Location of Rev Treatment

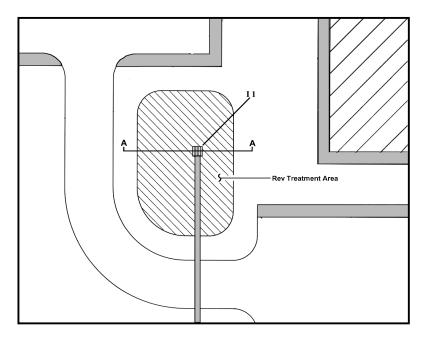
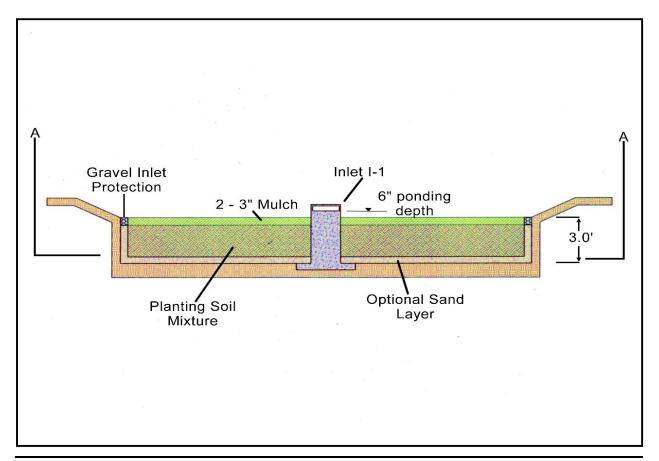



Figure C.1.10 Cross Section "A-A"

