Water Quality Analysis of Eutrophication for the Potomac River Montgomery County Watershed, Montgomery and Frederick Counties, Maryland

FINAL

DEPARTMENT OF THE ENVIRONMEN 1800 Washington Boulevard, Suite 540 Baltimore MD 21230-1718

Submitted to:

Water Protection Division U.S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

September 2011

EPA Submittal Date: Sept. 28, 2011 EPA Concurrence Date: May 18, 2012

WQA – Eutrophication Potomac River Montgomery County Document version: September 28, 2011

Table of Contents

List of Figures	. i
List of Tables	. i
List of Abbreviations	ii
EXECUTIVE SUMMARY	iii
1.0 INTRODUCTION	. 1
2.0 GENERAL SETTING	. 2
3.0 WATER QUALITY CHARACTERIZATION	, 9
3.1 Potomac River Montgomery County Watershed Monitoring Stations	10
3.2 Biological Stressor Identification Analysis	14
3.3 Dissolved Oxygen	15
3.4 Nutrients	16
3.5 Potomac River Core/Trend Monitoring Stations	19
4.0 CONCLUSION	20
REFERENCES	21
Appendix A – Tabular Water Quality Data A	1
Appendix B – Analysis of CORE/TREND Benthic Monitoring Results in the Potomac	
River Montgomery County Watershed Mainstem	31

List of Figures

Figure 1. Location Map of the Potomac River Montgomery County Watershed5
Figure 2. Land Use Map of the Potomac River Montgomery County Watershed7
Figure 3. Water Quality Stations in Potomac River Montgomery County Watershed Monitored
During 2000-2009
Figure 4: Potomac River Montgomery County Dissolved Oxygen Data for Growing Season
Periods May 2000 through October 200816
Figure 5: Potomac River Montgomery County Total Nitrogen for Growing Season Periods May
2000 through October 2008 17
Figure 6: Potomac River Montgomery County Total Phosphorus Data for Growing Season
Periods May 2000 through October 200818

List of Tables

Table 1: Point Source Facilities in the Potomac River Montgomery County Watershed	8
Table 2: Water Quality Stations in the Potomac River Montgomery County Watershed	
Monitored During 2000-2008	
Table 3: Potomac River Montgomery County CORE/TREND Data	19
Table A-1: DNR CORE/TREND Water Quality Data	A1
Table A-2: MBSS Water Quality Data	A10
Table A-3: MDE Water Quality Data	

List of Abbreviations

BSID	Biological Stressor Identification
COMAR	Code of Maryland Regulations
CWA	Clean Water Act
DNR	Department of Natural Resources
DO	Dissolved Oxygen
EPA	United States Environmental Protection Agency
EPT	Ephemeroptera, Plecoptera, and Trichoptera
MBSS	Maryland Biological Stream Survey
MDE	Maryland Department of the Environment
MDP	Maryland Department of Planning
MGS	Maryland Geological Survey
mg/l	Milligrams Per Liter
NPDES	National Pollution Discharge Elimination System
TMDL	Total Maximum Daily Load
TN	Total Nitrogen
ТР	Total Phosphorus
WQA	Water Quality Analysis
WQLS	Water Quality Limited Segment

EXECUTIVE SUMMARY

Section 303(d) of the federal Clean Water Act (CWA) and the U.S. Environmental Protection Agency's (EPA) implementing regulations direct each state to identify and list waters, known as water quality limited segments (WQLSs), in which current required controls of a specified substance are inadequate to achieve water quality standards. This list of impaired waters is commonly referred to as the 303(d) List. For each WQLS listed on the *Integrated Report of Surface Water Quality in Maryland* (Integrated Report), the State is to either establish a Total Maximum Daily Load (TMDL) of the specified substance that the waterbody can receive without violating water quality standards, or demonstrate via a Water Quality Analysis (WQA) that water quality standards are being met (CFR 2010). In 2002, the State began listing biological impairments on the Integrated Report. Maryland Department of the Environment (MDE) has developed a biological assessment methodology to support the determination of proper category placement for 8-digit watershed listings.

The Potomac River Montgomery County watershed (basin code 02140202), located primarily in Montgomery County, was identified on the 2008 Integrated Report under Category 5 as impaired by nutrients and sediments—non-tidal 8-digit watershed (1996 listings); impacts to biological communities—1st through 4th order streams (2006 listing); and toxics: polychlorinated biphenyls (PCBs) in fish tissues—non-tidal 8-digit watershed (2008 listing) (MDE 2008a). The 2008 Integrated Report specified that the designated use impaired by nutrients and sediment is Aquatic Life and Wildlife. The 1996 suspended sediment listing was refined in the 2008 Integrated Report to a listing for total suspended solids. Similarly, the 1996 nutrients listing was refined in the 2008 Integrated Report, and phosphorus was identified as the specific impairing substance. Consequently, for the purpose of this report the terms "nutrients" and "phosphorus" will be used interchangeably. The listings for sediments, impacts to biological communities, and PCBs in fish tissues will be addressed separately at a future date.

A data solicitation for information pertaining to pollutants, including nutrients, in the Potomac River Montgomery County watershed was conducted by MDE in 2009, and all readily available data from the period of 2000 through 2008 have been considered. Currently, there are no specific numeric criteria for nutrients in Maryland's water quality standards. Nutrients typically do not have a direct impact on aquatic life; rather, they mediate impacts through excessive algal growth leading to low dissolved oxygen, poor habitat, or shifts in the trophic relations in aquatic communities. Recently, MDE developed a biological stressor identification (BSID) methodology to identify the most probable cause(s) of the existing biological impairments in 1st through 4th order streams in Maryland 8-digit watersheds based on the suite of available physical, chemical, and land use data (MDE 2009a). The BSID analysis for the Potomac River Montgomery County watershed identifies sediment, instream habitat, and water chemistry (e.g., high chlorides, sulfates, conductivity) as potential biological stressors. The BSID identified neither nitrogen nor phosphorus as potential biological stressors. Therefore, because the BSID determined that biological impairments in 1st through 4th order streams in the Potomac River Montgomery County watershed are not associated with nutrients, it is concluded that excess eutrophication is not a cause of the biological impairments in the watershed.

An analysis of the Department of Natural Resources (DNR) CORE/TREND biological monitoring data confirms that the Potomac River Montgomery County is supporting its aquatic life use. Analyses of observed dissolved oxygen (DO) in the Potomac River mainstem show no violation of the DO criterion. Therefore, it is concluded that nutrients in general and phosphorus in particular are not impairing designated uses in the Potomac River Montgomery County mainstem.

The results of the BSID study, combined with the analysis of dissolved oxygen monitoring data presented in this report, indicate that the Potomac River Montgomery County watershed is not being impaired by nutrients. This WQA supports the conclusion that a TMDL for nutrients is not necessary to achieve water quality standards in the Potomac River Montgomery County. Although the waters of the Potomac River Montgomery County do not display signs of eutrophication, the State reserves the right to require future controls if evidence suggests that nutrients from the watershed are contributing to downstream water quality problems. For instance, reductions will be required to meet allocations assigned to the Potomac Tidal Fresh Bay Water Quality Segment by the Chesapeake Bay TMDL, established by EPA on December 29, 2010.

Barring the receipt of contradictory data, this report will be used to support a revision of the phosphorus listing for the Potomac River Montgomery County watershed, from Category 5 ("waterbody is impaired, does not attain the water quality standard, and a TMDL is required") to Category 2 ("waterbodies meeting some [in this case nutrients-related] water quality standards, but with insufficient data to assess all impairments") when MDE proposes the revision of the Integrated Report. The listings for sediments, impacts to biological communities, and PCBs in fish tissue will be addressed separately at a future date.

1.0 INTRODUCTION

Section 303(d) of the federal Clean Water Act (CWA) and the U.S. Environmental Protection Agency's (EPA) implementing regulations direct each state to identify and list waters, known as water quality limited segments (WQLSs), in which current required controls of a specified substance are inadequate to achieve water quality standards. This list of impaired waters is commonly referred to as the 303(d) List. For each WQLS, the State is required to either establish a Total Maximum Daily Load (TMDL) of the specified substance that the waterbody can receive without violating water quality standards, or demonstrate that water quality standards are being met (CFR 2010).

A segment identified as a WQLS may not require the development and implementation of a TMDL if more recent information invalidates previous findings. The most common scenarios that would eliminate the need for a TMDL are: 1) analysis of more recent data indicating that the impairment no longer exists (i.e., water quality standards are being met); 2) results of a more recent and updated water quality modeling which demonstrates that the segment is attaining standards; 3) refinements to water quality standards or to the interpretation of those standards accompanied by analysis demonstrating that the standards are being met; or 4) identification and correction of errors made in the initial listing.

The Potomac River Montgomery County watershed (basin code 02140202), located primarily in Montgomery County was identified on the 2008 Integrated Report under Category 5 as impaired by nutrients and sediments—non-tidal 8-digit watershed (1996 listings); impacts to biological communities—1st through 4th order streams (2006 listing); and toxics: polychlorinated biphenyls (PCBs) in fish tissues—non-tidal 8-digit watershed (2008 listing (MDE 2008a). The 2008 Integrated Report specified that the designated use impaired by nutrients and sediment is Aquatic Life and Wildlife. The 1996 suspended sediment listing was refined in the 2008 Integrated Report to a listing for total suspended solids. Similarly, the 1996 nutrients listing was refined in the 2008 Integrated Report, and phosphorus was identified as the specific impairing substance. Consequently, for the purpose of this report the terms "nutrients" and "phosphorus" will be used interchangeably. The listings for sediments, impacts to biological communities, and PCBs in fish tissues will be addressed separately at a future date.

The Maryland Surface Water Use Designation in the Code of Maryland Regulations (COMAR) for the waters of the Potomac River Montgomery County is Use I-P (Water Contact Recreation, Protection of Aquatic Life, and Public Water Supply) (COMAR 2010a,b,c).

This report provides an analysis of recent data that supports the removal of the nutrients (phosphorus) listing for the Potomac River Montgomery County watershed when MDE proposes the revision of the State's Integrated Report. The remainder of this report lays out the general setting of the Potomac River Montgomery County watershed area, presents a discussion of the water quality characteristics in the basin in terms of the existing water quality standards relating to nutrients, and presents an analysis of the available nutrient data. This analysis supports the conclusion that the waters of the Potomac River Montgomery County watershed do not display signs of eutrophication or nutrient over-enrichment.

2.0 GENERAL SETTING

Location

The Potomac River Montgomery County watershed, which is located predominately in Montgomery County, MD, covers 89,617 acres. Small portions also extend into Frederick County, MD (448 acres) and Washington, DC (1,369 acres). The watershed contains the mainstem of the Potomac River within Montgomery County and all tributaries except Seneca Creek and Cabin John Creek. The watershed encompasses numerous sub-watersheds, including Little Monocacy River, Broad Run, Horsepen Branch, Muddy Branch, Watts Branch, Rock Run, and Little Falls Branch (Figure 1). Several highly developed areas occur in the watershed including parts of Gaithersburg, Rockville, Bethesda, and Chevy Chase.

Geology/Soils

The Potomac River Montgomery County watershed lies within the Piedmont Plateau Physiographic Province, an open rolling terrain with low knobs and ridges, broad-bottom valleys, and abundant, often steeply incised streams. Areas immediately adjacent to the Potomac River mainstem occupy a well-defined floodplain. The Piedmont Plateau Province can be further subdivided into a smaller western Lowland Section and a larger eastern Upland Section (MGS 2008a,b).

Most of the Potomac River Montgomery County watershed is located in the Upland Section where differential weathering produced distinctive ridges, hills, barrens, and valleys (MGS 2008). This area is underlain by meta-sedimentary rocks of late Precambrian origin including schist, gneiss, and thins beds and lenses of quartzite and marble (MGS 2008a,b).

A small portion of the watershed lies within the Mesozoic Lowland Section. This area is characterized by a relatively flat to gently rolling topography. Here an outcrop of sandstones, siltstones, shales, and various conglomerates of Triassic age weathered into distinctive red soils (MGS 2008a,b).

Soils in the western part of the Potomac River Montgomery County watershed belong to the Glenning-Gaila-Occoquan series, whereas in the eastern part they belong primarily to the Penn-Brentsville-Readington series and some small portion to the Urban land – Wheaton –Glenelg association (USDA 1995). All three soil associations are loamy and occur on broad ridge tops and side slopes.

Glenning-Gaila-Occoquan soils occur in uplands. These well drained, deep to very deep soils are well suited for cultivated crops, pasture, or hay production (USDA 1995). Penn-Brentsville-Readington soils are moderately well drained to well drained and tend to be moderately deep to deep. Soils in this series are suitable for woodland and pasture. Both the Glenning-Gaila-Occoquan and Penn-Brentsville-Readington soil units are somewhat limited for urban

development because onsite sewage disposal is affected by restricted permeability, depth to bedrock, and sometimes slope (USDA 1995).

Of the three major soil associations in the Potomac River Montgomery County watershed, the soils in the Urban land – Wheaton –Glenelg unit are the best suited for urban development-the major limitation is restricted permeability. These soils are well drained and deep (USDA 1995).

Land Use

The western portion of the Potomac River Montgomery County watershed is largely rural with ample farmland, pastures, forests, and smaller urban centers. The eastern portion is highly urbanized, with both old and newly developed neighborhoods interspersed by pockets of commercial centers and research facilities. Based on the Chesapeake Bay Program's Phase 5.2 Watershed Model, urban land occupies approximately 42% of the watershed (7% impervious surfaces), with 38% of the watershed forested, and 20% agricultural (USEPA 2008). Figure 2 provides a land use map of the watershed.

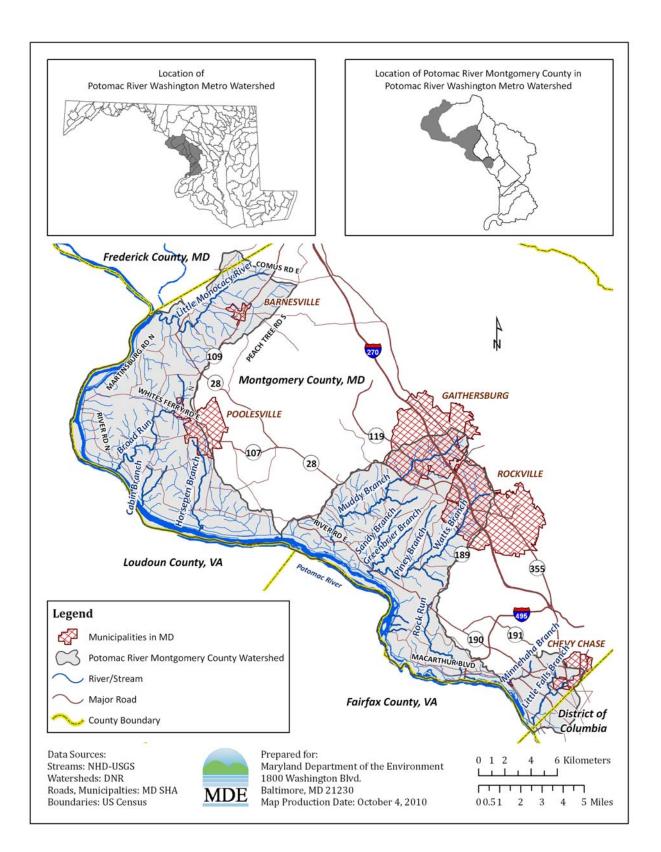
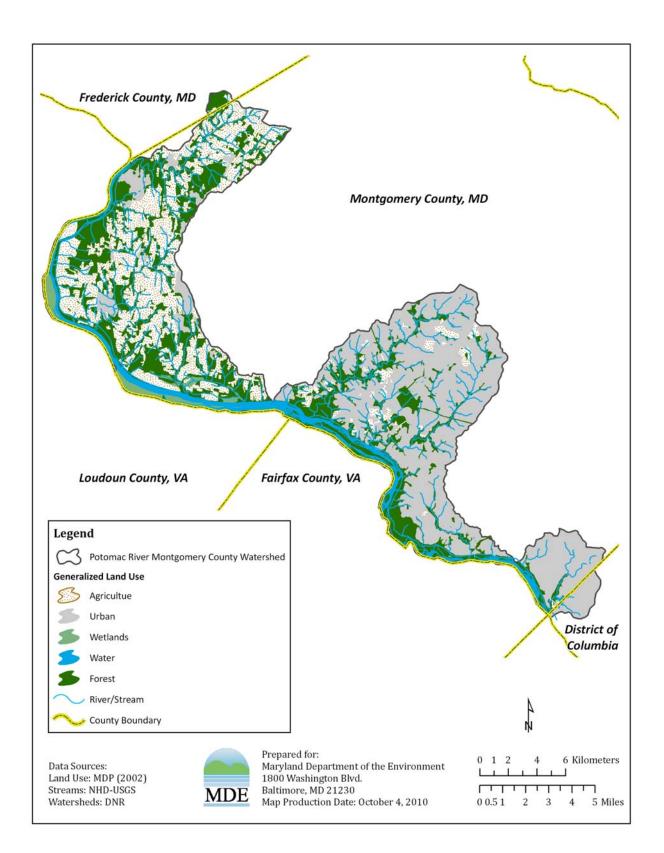



Figure 1. Location Map of the Potomac River Montgomery County Watershed

WQA – Eutrophication Potomac River Montgomery County Document version: September 28, 2011

Figure 2. Land Use Map of the Potomac River Montgomery County Watershed

Point Sources

According to the national Pollutant Discharge Elimination System (NPDES) data, there are 15 point source facilities with permits regulating their discharges in the Potomac River Montgomery County watershed. Of these, four municipal facilities have NPDES permits regulating the discharge of nutrients (Table 1).

				a
Table 1: Point Source	e Facilities in the	Potomac River	[•] Montgomery	County Watershed

	NPDES	MDE	Latitude	Longitude
Facility	Number	Number	(dec degree)	(dec degree)
KUNZANG ODSAL PALYUL CHANGCHUB CHOLING	MD0067539	00DP3163	39.0850	-77.3972
BRETTON WOODS RECREATION CENTER	MD0064777	03DP2754	39.0703	-77.3306
NIH ANIMAL CENTER	MD0020931	04DP2529	39.1250	-77.4825
LEESBURG WATER POLLUTION CONTROL FACILITY	VA0066184		39.1150	-77.5042

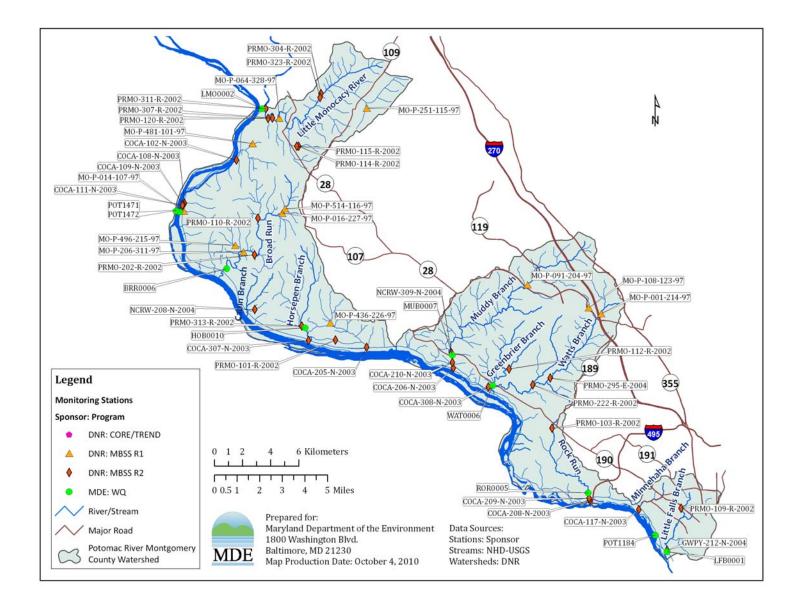
3.0 WATER QUALITY CHARACTERIZATION

The Maryland Surface Water Use Designation in the Code of Maryland Regulations (COMAR) for the waters of the Potomac River Montgomery County is Use I-P (Water Contact Recreation, Protection of Aquatic Life, and Public Water Supply) (COMAR 2010a,b,c).

A water quality standard is the combination of a designated use for a particular body of water and the water quality criteria designed to protect that use. Designated uses include support of aquatic life, primary or secondary contact recreation, drinking water supply, and shellfish propagation and harvest. Water quality criteria consist of narrative statements and numeric values designed to protect the designated uses. The criteria developed to protect the designated use may differ and are dependent on the specific designated use(s) of a waterbody.

The 2008 Integrated Report specified that the designated use impaired by nutrients is the Aquatic Life Use. Currently, there are no specific numeric criteria for nutrients in Maryland's water quality standards for the protection of aquatic life in free-flowing non-tidal waters. MDE has developed a biological stressor identification (BSID) analysis to identify potential stressor of aquatic life, including nutrients, in 1st through 4th order streams assessed by the Maryland Biological Stream Survey (MBSS). The impact of eutrophication on smaller-order streams in the watershed will be evaluated on the basis of the BSID analysis, which provides necessary and sufficient conditions for determining whether phosphorus is a potential stressor of the biological community in smaller-order streams.

Low levels of dissolved oxygen are sometimes associated with the decay of excess primary production and therefore nutrient over-enrichment. The dissolved oxygen (DO) concentration to protect Use I-P waters "may not be less than 5 milligrams per liter (mg/l) at any time" (COMAR 2010d). The water quality analysis must demonstrate that either the water quality standards for dissolved oxygen are met or that nutrients are not the cause of the violation of the standards.


A data solicitation was conducted by MDE in 2009, and all readily available water quality data from the time period of 2000 through 2008 were considered for this analysis. DNR collected water quality data from three stations on the Potomac River Montgomery County mainstem for its CORE/TREND network between January 2000 and December 2008 and from 31 stations located on tributaries for its MBSS program in the spring and summer of 2002 through 2004. MDE also sampled at the three CORE/TREND stations between October 2000 and September 2002 and at seven stations sited in tributaries in 2008.

3.1 Potomac River Montgomery County Watershed Monitoring Stations

A total of 41water quality monitoring stations were used to characterize the Potomac River Montgomery County watershed. The locations of the water quality monitoring stations are shown in Figure 3, and their geographical coordinates are listed in Table 1. Figures 4 through 7 provide graphical representation of the collected data for the parameters discussed below.

Forty-three biological/physical habitat monitoring stations from Rounds 1 and 2 of the MBSS program were used to characterize the Potomac River Montgomery County watershed in Maryland's 2008 Integrated Report as well as for the BSID analysis (Round 2 only). Biological data were also collected at three stations for the DNR CORE/TREND network on the mainstem Potomac River Montgomery County (see Figure 3 and Table 2).

The potential impact of eutrophication on water quality is best measured during the growing season, May through October. Water quality data for the mainstem Potomac River and smaller-order streams will be analyzed separately.

WQA – Eutrophication Potomac River Montgomery County Document version: September 28, 2011

Figure 3. Water Quality Stations in Potomac River Montgomery County Watershed Monitored During 2000-2009

Monitored During 2000-2008 Latitude Longitude						
Station Number	Sponsor	Site Type	Location	(dec. deg)	Longitude (dec. deg)	
POT1184	DNR	CORE/TREND	Potomac River	38.948166	-77.127205	
POT1471	DNR	CORE/TREND	Potomac River	39.154550	-77.521380	
POT1472	DNR	CORE/TREND	Potomac River	39.155384	-77.522210	
MO-P-001-214-97	DNR	MBSS Round 1	Watts Branch	39.090202	-77.172147	
MO-P-014-107-97	DNR	MBSS Round 1	Potomac River UT6	39.154903	-77.516223	
MO-P-016-227-97	DNR	MBSS Round 1	Broad Run UT1	39.153827	-77.435143	
MO-P-064-328-97	DNR	MBSS Round 1	Little Monocacy River	39.214815	-77.437913	
MO-P-091-204-97	DNR	MBSS Round 1	Muddy Branch	39.108597	-77.232983	
MO-P-108-123-97	DNR	MBSS Round 1	Watts Branch UT1	39.093948	-77.182392	
MO-P-206-311-97	DNR	MBSS Round 1	Broad Run	39.128897	-77.467122	
MO-P-251-115-97	DNR	MBSS Round 1 MBSS Round 1	Little Monocacy River UT1	39.221523	-77.365907	
MO-P-436-226-97	DNR	MBSS Round 1 MBSS Round 1	Horsepen Branch UT2 UT1	39.083595	-77.395120	
MO-P-481-101-97	DNR	MBSS Round 1 MBSS Round 1	Potomac River UT7	39.198428	-77.459830	
MO-P-496-215-97	DNR	MBSS Round 1 MBSS Round 1	Broad Run UT2 UT1	39.133172	-77.473733	
MO-P-514-116-97	DNR	MBSS Round 1 MBSS Round 1	Broad Run UT1	39.156757	-77.432763	
COCA-102-N-2003	DNR	MBSS Round 1 MBSS Round 2	Potomac River UT19	39.130737	-77.473292	
COCA-102-N-2003	DNR	MBSS Round 2 MBSS Round 2	Potomac River UT20	39.159897	-77.515942	
COCA-109-N-2003	DNR	MBSS Round 2 MBSS Round 2	Potomac River UT20	39.159897	-77.516793	
	DNR	MBSS Round 2 MBSS Round 2	Potomac River UT20	39.158539		
COCA-111-N-2003		MBSS Round 2 MBSS Round 2	Minnehaha Branch		-77.517485 -77.141014	
COCA-117-N-2003	DNR DNR		Horsepen Branch UT2	38.964452		
COCA-205-N-2003		MBSS Round 2 MBSS Round 2	-	39.068100	-77.365255	
COCA-206-N-2003	DNR		Muddy Branch Rock Run	39.054901	-77.294014	
COCA-208-N-2003	DNR	MBSS Round 2		38.970305	-77.181366	
COCA-209-N-2003	DNR	MBSS Round 2	Rock Run	38.971695	-77.181955	
COCA-210-N-2003	DNR	MBSS Round 2	Muddy Branch	39.058638	-77.294776	
COCA-307-N-2003	DNR	MBSS Round 2	Horsepen Branch	39.072327	-77.413086	
COCA-308-N-2003	DNR	MBSS Round 2	Watts Branch	39.042897	-77.265091	
GWPY-212-N-2004	DNR	MBSS Round 2	Little Falls Branch	38.938331	-77.117778	
NCRW-208-N-2004	DNR	MBSS Round 2	Cabin Branch UT1	39.091942	-77.457496	
NCRW-309-N-2004	DNR	MBSS Round 2	Muddy Branch	39.064718	-77.295551	
PRMO-101-R-2002	DNR	MBSS Round 2	Horsepen Branch UT1	39.072644	-77.390952	
PRMO-103-R-2002	DNR		Rock Run	39.016557	-77.212476	
PRMO-109-R-2002	DNR	MBSS Round 2	Willett Branch	38.965375	-77.106310	
PRMO-110-R-2002	DNR	MBSS Round 2	Broad Run	39.150634	-77.455215	
PRMO-112-R-2002	DNR	MBSS Round 2	Greenbriar Branch	39.054407	-77.247902	
PRMO-114-R-2002	DNR	MBSS Round 2	Little Monocacy River UT2	39.196887	-77.422092	
PRMO-115-R-2002	DNR	MBSS Round 2	Little Monocacy River UT2	39.196817	-77.423510	
PRMO-120-R-2002	DNR	MBSS Round 2	Little Monocacy River UT3	39.214530	-77.447216	
PRMO-202-R-2002	DNR	MBSS Round 2	Broad Run	39.127021	-77.457967	
PRMO-222-R-2002	DNR	MBSS Round 2	Watts Branch	39.044301	-77.228412	
PRMO-295-E-2004	DNR	MBSS Round 2	Watts Branch	39.048706	-77.214123	
PRMO-304-R-2002	DNR	MBSS Round 2	Little Monocacy River	39.230676	-77.403739	
PRMO-307-R-2002	DNR	MBSS Round 2	Little Monocacy River	39.214876	-77.443800	

Table 2: Water Quality Stations in the Potomac River Montgomery County Watershed Monitored During 2000-2008

				Latitude	Longitude
Station Number	Sponsor	Site Type	Location	(dec. deg)	(dec. deg)
PRMO-311-R-2002	DNR	MBSS Round 2	Little Monocacy River	39.220888	-77.449120
PRMO-313-R-2002	DNR	MBSS Round 2	Horsepen Branch	39.081529	-77.418792
PRMO-323-R-2002	DNR	MBSS Round 2	Little Monocacy River	39.228250	-77.404564
BRR0006	MDE	Water Quality	Broad Run	39.118133	-77.480750
HOB0010	MDE	Water Quality	Horsepen Branch	39.080383	-77.416000
LFB0001	MDE	Water Quality	Little Falls Branch	38.937433	-77.117833
LMO0002	MDE	Water Quality	Little Monocacy River	39.220833	-77.452317
MUB0007	MDE	Water Quality	Muddy Branch	39.063383	-77.294650
ROR0005	MDE	Water Quality	Rock Run	38.975067	-77.182617
WAT0006	MDE	Water Quality	Watts Branch	39.043850	-77.261283
POT1184	MDE	Water Quality	Potomac River at Little Falls	38.948000	-77.127500
POT1471	MDE	Water Quality	Potomac River at Whites Ferry MD side	39.154450	-77.519750
POT1472	MDE	Water Quality	Potomac River at Whites Ferry VA side	39.154983	-77.522783

UT = Unnamed Tributary

3.2 Biological Stressor Identification Analysis

In the process of evaluating the existing biological impairments in 1st through 4th order streams, MDE developed a biological stressor identification (BSID) methodology (MDE 2009a). The BSID methodology uses data available from the statewide DNR MBSS. Data used in the development of the BSID report for the Potomac River Montgomery County are presented in Appendix A.

The current MDE biological assessment methodology is a three-step process: (1) a data quality review, (2) a systematic vetting of the dataset, and (3) a watershed assessment that presents the results of this assignment in terms of currently used Integrated Report listing categories.

The BSID analysis for the Potomac River Montgomery County watershed did not identify nutrients as potential stressors or indicate any significant association between current nutrient levels and the degraded biological conditions (MDE 2009b). According to this report, nutrients are not associated with any impairment to aquatic life or biological communities in the Montgomery County watershed.

The BSID analysis did not implicate low DO concentrations as a potential stressor, which agrees with the data analysis in Section 3.3. Low DO concentrations are therefore not associated with biological impairments in the smaller order streams in the Potomac River Montgomery County watershed.

The BSID analysis for the Potomac River Montgomery County watershed found that 92% of stream miles with poor to very poor biological conditions are impacted by sediment, instream habitat, and water chemistry (e.g., high chlorides, sulfates, conductivity). The analysis further

suggests that 79% of stream miles with poor to very poor biological conditions are influenced by various types of urban land uses and a low percentage of forest cover, which in turn lead to altered hydrology, elevated levels of inorganic pollutants from impervious surface runoff, and increased sedimentation (MDE 2009b).

3.3 Dissolved Oxygen

MDE collected 38 samples during the growing season from tributaries to the Potomac River Montgomery County during 2008, with concentrations ranging from 5.7 to 10.7 mg/l and an average of 8.2 mg/l. The MBSS program also collected field DO samples in tributaries during the summers of 2002 - 2004. The concentrations range from 3.3 to 9.9 mg/l with an average concentration of 7.7 mg/l. Only one sample falls below the 5 mg/l criterion. Given that only one of a total of 68 samples is below 5 mg/l, MDE deems that the water quality standard for DO is being met in the 1st through 4th order streams in the Potomac River Montgomery County watershed.

DNR collected samples for its CORE/TREND program in the mainstem Potomac River Montgomery County from January 2000 through December 2008, and MDE collected samples in the mainstem from October 2000 through September 2002. Samples taken during the growing season (May through October) show DO concentrations ranging from 4.7 to 12.3 mg/l. Given that only one of 196 samples has a DO concentration below the Use I criterion of 5 mg/l, MDE considers that the water quality standard for DO is being met in the mainstem Potomac River Montgomery County.

The DO data are presented graphically in Figure 4 and in tabular form in Appendix A.

FINAL

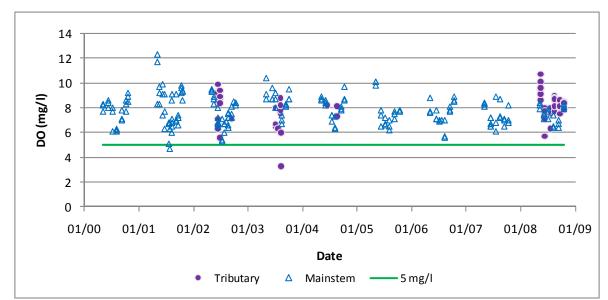


Figure 4: Potomac River Montgomery County Dissolved Oxygen Data for Growing Season Periods May 2000 through October 2008

3.4 Nutrients

In the absence of State water quality standards with specific numeric limits for nutrients for the protection of aquatic life in non-tidal free-flowing waters, evaluation of potentially eutrophic conditions is based on the BSID analysis and analysis of dissolved oxygen levels. Consequently, the nutrients data presented in this section are for informational purposes only.

Total nitrogen (TN) and total phosphorus (TP) data for the Potomac River Montgomery County watershed have been analyzed as part of this study. The results are presented here graphically in Figures 6 and 7, and in tabular form in Appendix A.

In the mainstem, DNR and MDE data show TN concentrations during the growing season (May through October) ranging from 0.31 to 2.59 mg/l and TP concentrations ranging from 0.02 to 0.34 mg/l. MDE also sampled several tributaries during the 2008 growing season. These data show TN concentrations ranging from 0.7 mg/l to 5.8 mg/l and TP concentrations ranging from 0.01 to 5.72 mg/l. Over 92% of the samples have TN values less than 2.85 mg/l and TP values less than 0.70 mg/l.

Nitrogen and phosphorus are essential nutrients for algae growth. If one nutrient is available in great abundance relative to the other, then the nutrient that is less available limits the amount of plant matter that can be produced; this is known as the "limiting nutrient." The amount of the abundant nutrient does not matter because both nutrients are needed for algae growth. In general, a Nitrogen:Phosphorus (TN:TP) ratio in the range of 5:1 to 10:1 by mass is associated with plant growth being limited by neither phosphorus nor nitrogen. If the TN:TP ratio is greater

than 10:1, phosphorus tends to be limiting; if the TN:TP ratio is less than 5:1, nitrogen tends to be limiting (Chiandani et al. 1974).

Both MDE and DNR sampled nutrients in the mainstem Potomac River Montgomery County. Across the two surveys, the average TN:TP ratio is 25.8 and the median 21.8. 95% of the samples have TN:TP ratios greater than ten, and none less than five. The observed data suggest that the mainstem is phosphorus limited.

87% of the samples taken in the lower-order streams during the 2008 growing season have TN:TP ratios greater than ten, and 13% have ratios below five. The average ratio is 55.9 and the median 46.1. This implies that the smaller-order streams in the Potomac River Montgomery County watershed are also phosphorus limited.

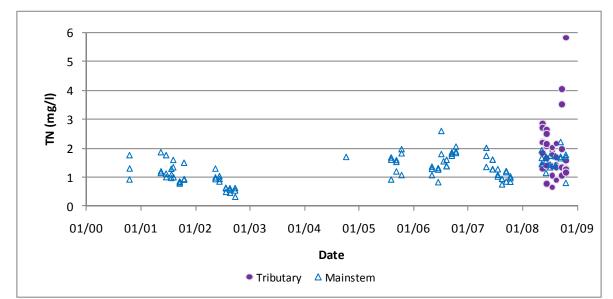


Figure 5: Potomac River Montgomery County Total Nitrogen for Growing Season Periods May 2000 through October 2008

FINAL

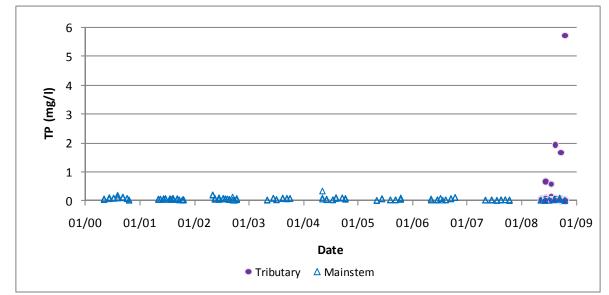


Figure 6: Potomac River Montgomery County Total Phosphorus Data for Growing Season Periods May 2000 through October 2008

3.5 **Potomac River Core/Trend Monitoring Stations**

Additional biological data for the Potomac River Montgomery County were obtained from the DNR CORE/TREND program. The program collected benthic macroinvertebrate data between 1976 and 2006. The data were used to calculate four benthic community measures: total number of taxa, Shannon-Weiner diversity index, modified Hilsenhoff biotic index, and percent Ephemeroptera, Plecoptera, and Trichoptera (EPT). DNR has extensive monitoring data for four stations on the mainstem of the Potomac River Montgomery County through the CORE/TREND program. These stations have between 21 and 23 years of benthic macroinvertebrate data (DNR 2009). A summary of the results for the two stations is presented in Table 3.

Site Number	Current Water Quality Status	Trend Since 1970's
POT1183	FAIR/GOOD	NO CHANGE
POT1471	GOOD	IMPROVEMENT

Table 3: Potomac	River Mor	taomery (ounty C	ORF/TREND	Data
Table 5. Fotomac	NIVEL MIOL	itgoinei y C	Junity C	UNE/INEND	Data

Generally, a CORE/TREND assessment of "GOOD" or better indicates that the waterbody is supporting its aquatic life use. Station POT1183, at Little Falls below the dam, achieved only FAIR/GOOD status, indicating a borderline water quality condition. POT1183 is the only station on the mainstem Potomac River below the confluence of the North and South Branches assessed as less than "GOOD." Appendix B provides an analysis which compares the benthic community metrics for all CORE/TREND stations in the mainstem Potomac River. For the period 2000-2008, the individual benthic community metrics for POT1183 are not significantly different from the other mainstem Potomac River stations, whose status is assessed as "GOOD" or better. Based on this comparative analysis of benthic community metrics in the mainstem Potomac River, the benthic macroinvertebrate data collected under the CORE/TREND program supports the conclusion that the mainstem Potomac River in Montgomery County is supporting its Aquatic Life Designated Use.

4.0 CONCLUSION

The BSID analysis of the Potomac River Montgomery County watershed does not identify phosphorus or nitrogen as a potential stressor of aquatic life in the watershed. Excess eutrophication is therefore not a cause of the biological impairments in the 1st through 4th order streams in the watershed. In addition, the BSID analysis does not associate low DO with biological impairments in the watershed. An analysis of available DO data from the 1st through 4th order streams in Potomac River Montgomery County watershed shows that only one of 68 DO samples collected from smaller-order streams in the watershed has a concentration below 5 mg/l. Therefore, the DO criteria are also met in the smaller-order streams draining to the mainstem Potomac River Montgomery County.

An analysis of benthic monitoring data from DNR's CORE/TREND program indicates that the Aquatic Life Designated Use is met in the mainstem Potomac River in Montgomery County. An analysis of available DO concentrations from the mainstem Potomac River also shows that the DO criterion is being met. Therefore, it is unlikely that nutrients are interfering with aquatic life use in the mainstem Potomac River Montgomery County.

MDE therefore concludes that currently the Potomac River Montgomery County Aquatic Life Use is not being impaired by nutrients. Barring the receipt of contradictory data, this report will be used to support a revision of the phosphorus listing for the Potomac River Montgomery County watershed, from Category 5 ("waterbody is impaired, does not attain the water quality standard, and a TMDL is required") to Category 2 ("waterbodies meeting some [in this case nutrients-related] water quality standards, but with insufficient data to assess all impairments"), when MDE proposes the revision of Maryland's Integrated Report.

Although the waters of the Potomac River Montgomery County do not display signs of eutrophication, the State reserves the right to require future controls if evidence suggests that nutrients from the basin are contributing to downstream water quality problems. For instance, reductions will be required to meet allocations assigned to the Potomac Tidal Fresh Bay Water Quality Segment by the Chesapeake Bay TMDL, established by EPA on December 29, 2010.

REFERENCES

- CFR (Code of Federal Regulations). 2010. 40 CFR 130.7. <u>http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&tpl=%2Findex.tpl_(Accessed October,</u> 2010).
- Chiandani, G. and M. Vighi. 1974. The N:P Ratio and Tests with *Selanastrum* to Predict Eutrophication in Lakes. *Water Research*, Vol. 8, pp. 1063-1069.
- COMAR (Code of Maryland Regulations). 2010a. 26.08.02.02. <u>http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.02.htm</u> (Accessed October 2010).

_____. 2010b. 26.08.02.08 A. <u>http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.08.htm (</u>Accessed October 2010).

_____. 2010c. 26.08.02.08 R. <u>http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.08.htm</u> (Accessed October 2010).

—____. 2008d. 26.08.02.03-3A(2).
<u>http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-3.htm</u> (Accessed October 2010).

DNR (Maryland Department of Natural Resources). 2009. Benthic Macroinvertebrate Communities at Maryland's Core/Trend Monitoring Stations: Water Quality Status And Trends. CBWP-MANTA-MN-09-1. Annapolis, MD: Maryland Department of Natural Resources. <u>http://dnr.maryland.gov/streams/pdfs/12-332009-375_benthic.pdf</u> (Accessed October, 2010).

MDE (Maryland Department of the Environment). 2008a. The 2008 Integrated Report of Surface Water Quality in Maryland. Baltimore, MD: Maryland Department of the Environment. <u>http://www.mde.state.md.us/Programs/WaterPrograms/TMDL/Maryland%20303%20dlist/</u> 2008 Final 303d_list.asp (Accessed October 2010).

——. 2009a. *Maryland Biological Stressor Identification Process*. Baltimore, MD: Maryland Department of the Environment.

——. 2009b. Draft. Watershed Report for Biological Impairment of the Potomac River Montgomery County Watershed, Montgomery County, Maryland and Washington DC Biological Stressor Identification Analysis Results and Interpretation. Baltimore, MD: Maryland Department of the Environment.

- MDP (Maryland Department of Planning). 2002. Land Use/Land Cover Map Series. Baltimore, MD: Maryland Department of Planning.
- MGS (Maryland Geological Survey). 2008a. *Geologic Maps of Maryland: Montgomery County* (1968). <u>http://www.mgs.md.gov/esic/geo/mon.html</u> (Accessed October 2010).

——. 2008b. Draft Physiographic Map of Maryland. OFR 08-03-1. <u>http://www.mgs.md.gov/coastal/maps/physio.html</u>. Baltimore, MD: Maryland Geological Survey.

USDA (United States Department of Agriculture), Soil Conservation Service (SCS). 1995. Soil Survey of Montogomery County, MD. Washington, DC: United States Department of Agriculture. <u>http://www.sawgal.umd.edu/nrcsweb/MDMont.pdf</u>

USEPA (U.S. Environmental Protection Agency). 2008. *Chesapeake Bay Phase V Community Watershed Model*. Annapolis, MD: U.S. Environmental Protection Agency with Chesapeake Bay Program.

[This page deliberately left blank]

ble A-1: DNR CORE/TREND Water Quality Da					
	Sampling	DO	TN	ТР	
Station	Date	(mg/l)	(mg/l)	(mg/l)	
POT1184	01/21/98	13.3		0.059	
POT1184	02/04/98	11.9		0.079	
POT1184	03/04/98	11.2		0.051	
POT1184	04/01/98	8.5		0.036	
POT1184	05/13/98	9.3		0.102	
POT1184	06/10/98	8.0		0.045	
POT1184	07/15/98	6.9		0.043	
POT1184	08/12/98	6.1		0.056	
POT1184	09/09/98	7.5		0.079	
POT1184	10/07/98	8.3		0.045	
POT1184	11/12/98	10.6		0.041	
POT1184	12/10/98	9.7		0.018	
POT1184	03/11/99	12.0		0.043	
POT1184	04/07/99	8.4		0.049	
POT1184	05/05/99	7.6		0.063	
POT1184	06/02/99	6.0		0.111	
POT1184	07/14/99	6.3		0.142	
POT1184	08/11/99	7.6		0.093	
POT1184	09/15/99	7.2		0.081	
POT1184	10/13/99	9.2		0.158	
POT1184	11/09/99	10.3		0.036	
POT1184	12/01/99	12.0		0.052	
POT1184	01/12/00	11.8		0.031	
POT1184	02/09/00	13.8		0.032	
POT1184	03/08/00	10.5		0.052	
POT1184	04/05/00	9.3		0.144	
POT1184	05/03/00	7.7		0.078	
POT1184	06/07/00	8.4		0.125	
POT1184	07/06/00	6.1		0.096	
POT1184	08/02/00	6.1		0.108	
POT1184	09/06/00	7.8		0.115	
POT1184	10/04/00	7.7		0.093	
POT1184	11/01/00	9.5		0.048	
POT1184	01/03/01	14.2		0.051	
POT1184	02/07/01	12.4		0.052	
POT1184	03/14/01	11.0		0.041	
POT1184	04/11/01	9.5		0.070	
POT1184	05/02/01	8.3		0.057	
POT1184	06/06/01	7.4		0.062	
POT1184	07/18/01	6.7		0.067	
POT1184	08/08/01	6.8		0.070	

Appendix A – Tabular Water Quality Data

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1184	09/05/01	6.9		0.068
POT1184	10/10/01	9.2		0.047
POT1184	11/07/01	10.1		0.031
POT1184	12/05/01	10.4		0.025
POT1184	01/02/02	14.0		0.028
POT1184	02/06/02	12.6		0.037
POT1184	03/06/02	11.9		0.023
POT1184	04/03/02	9.2		0.061
POT1184	05/01/02	9.5		0.217
POT1184	06/12/02	6.8		0.070
POT1184	07/10/02	7.1		0.078
POT1184	08/07/02	6.9		0.080
POT1184	09/11/02	7.5		0.142
POT1184	10/09/02	8.4		0.052
POT1184	11/06/02	10.7		0.099
POT1184	12/04/02	14.0		0.043
POT1184	01/08/03	13.2		0.058
POT1184	02/05/03	13.4		0.029
POT1184	03/05/03	12.6		0.048
POT1184	04/02/03	10.4		0.054
POT1184	05/01/03	10.4		0.046
POT1184	06/11/03	9.6		0.105
POT1184	07/02/03	8.0		0.046
POT1184	08/13/03	7.4		0.086
POT1184	09/10/03	8.3		0.079
POT1184	10/01/03	9.5		0.102
POT1184	11/12/03	10.6		0.050
POT1184	12/10/03	12.2		0.046
POT1184	01/07/04	12.3		0.030
POT1184	02/11/04	12.8		0.131
POT1184	03/10/04	12.0		0.032
POT1184	04/07/04	11.5		0.036
POT1184	05/05/04	8.6		0.343
POT1184	06/02/04	8.6		0.076
POT1184	07/14/04	7.4		0.049
POT1184	08/04/04	7.3		0.091
POT1184	09/15/04	7.8		0.117
POT1184	10/06/04	9.7		0.065
POT1184	11/03/04	9.0		0.026
POT1184	12/01/04	10.2		0.172
POT1184	01/05/05	11.5		0.040
POT1184	02/09/05	11.7		0.024
POT1184	03/09/05	11.8		0.026
POT1184	04/13/05	10.5		0.045
POT1184	05/04/05	9.8		0.030

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1184	06/08/05	6.5		0.087
POT1184	07/06/05	6.7		
POT1184	08/03/05	7.0	1.60	0.051
POT1184	09/07/05	7.1	1.52	0.052
POT1184	10/12/05	7.8	1.82	0.087
POT1184	11/09/05	8.6	1.37	0.035
POT1184	12/07/05	13.3	2.46	0.089
POT1184	01/04/06	12.7	2.57	0.140
POT1184	02/01/06	13.4	1.96	0.034
POT1184	03/01/06	9.9	1.63	0.015
POT1184	04/12/06	8.9	1.44	0.024
POT1184	05/03/06	8.8	1.28	0.079
POT1184	06/14/06	7.8	1.26	0.057
POT1184	07/20/06	7.0	1.54	0.039
POT1184	08/09/06	7.0	1.38	0.046
POT1184	09/13/06	7.8	1.81	0.081
POT1184	10/11/06	8.6	2.05	0.134
POT1184	11/08/06	9.4	1.30	0.159
POT1184	12/06/06	13.3	1.99	0.024
POT1184	01/03/07	12.2	2.13	0.063
POT1184	02/07/07	13.2	2.06	0.013
POT1184	03/07/07	14.6	2.13	0.086
POT1184	04/04/07	9.5	1.95	0.040
POT1184	05/02/07	8.1	1.73	0.035
POT1184	06/13/07	7.2	1.27	0.037
POT1184	07/18/07	6.80	1.08	0.03
POT1184	08/15/07	7.30	0.93	0.04
POT1184	09/12/07	7.10	0.84	0.05
POT1184	10/10/07	8.20	0.83	0.02
POT1184	11/01/07	8.90	1.29	0.04
POT1184	12/05/07	12.40	1.09	0.02
POT1184	01/09/08	11.80	1.85	0.03
POT1184	02/06/08	12.30	1.92	0.05
POT1184	03/12/08		2.62	0.21
POT1184	04/09/08	10.30	1.48	0.02
POT1184	05/07/08	8.20	1.93	0.03
POT1184	06/04/08	7.10	1.70	0.03
POT1184	07/02/08	7.10	1.33	0.03
POT1184	08/06/08	6.40	1.41	0.06
POT1184	09/10/08	7.00	1.65	0.08
POT1184	10/15/08	8.30	1.68	0.02
POT1184	11/12/08	10.40	1.03	0.01
POT1184	12/10/08	11.60	1.36	0.01
POT1471	01/21/98	12.0		0.047
POT1471	02/04/98	12.2		0.046

WQA – Eutrophication Potomac River Montgomery County Document version September 28, 2011

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1471	03/04/98	11.1		0.059
POT1471	04/01/98	8.4		0.032
POT1471	05/13/98	9.5		0.084
POT1471	06/10/98	8.0		0.059
POT1471	07/15/98	7.1		0.058
POT1471	08/12/98	6.0		0.315
POT1471	09/09/98	7.3		0.125
POT1471	10/07/98	8.2		0.085
POT1471	11/12/98	10.7		0.050
POT1471	12/10/98	10.4		0.037
POT1471	01/06/99	13.1		0.207
POT1471	03/10/99	12.8		0.026
POT1471	04/07/99	9.0		0.055
POT1471	05/05/99	8.8		0.049
POT1471	06/02/99	6.7		0.089
POT1471	07/14/99	10.2		0.111
POT1471	08/11/99	9.0		0.087
POT1471	09/15/99	5.9		0.120
POT1471	10/13/99	8.3		0.185
POT1471	11/09/99	10.2		0.059
POT1471	12/01/99	11.9		0.070
POT1471	01/12/00	10.6		0.157
POT1471	02/09/00	13.0		0.060
POT1471	03/08/00	10.0		0.051
POT1471	04/05/00	9.3		0.033
POT1471	05/03/00	8.3		0.053
POT1471	06/07/00	8.0		0.113
POT1471	07/06/00	7.7		0.098
POT1471	08/02/00	6.2		0.205
POT1471	09/06/00	7.1		0.140
POT1471	10/04/00	8.3		0.088
POT1471	11/01/00	10.0		0.050
POT1471	12/06/00	13.4		0.028
POT1471	01/03/01	11.9		0.066
POT1471	02/07/01	11.8		0.081
POT1471	03/14/01	11.2		0.077
POT1471	04/11/01	8.6		0.096
POT1471	05/02/01	11.7		0.071
POT1471	06/06/01	9.1		0.092
POT1471	07/18/01	5.1		0.064
POT1471	08/08/01	7.1		0.065
POT1471	09/05/01	7.0		0.056
POT1471	10/10/01	9.6		0.045
POT1471	11/07/01	9.9		0.044
POT1471	12/05/01	9.8		0.054

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1471	01/02/02	11.5		0.083
POT1471	02/06/02	11.7		0.064
POT1471	03/06/02	11.0		0.073
POT1471	04/03/02	8.2		0.088
POT1471	05/01/02	9.3		0.202
POT1471	06/12/02	6.5		0.062
POT1471	07/10/02	5.3		0.100
POT1471	08/19/02	7.5		0.058
POT1471	09/11/02	8.1		0.044
POT1471	10/09/02	8.2		0.097
POT1471	11/06/02	10.4		0.076
POT1471	12/04/02	13.0	2.20	0.041
POT1471	01/08/03	12.6		0.069
POT1471	02/05/03	12.6		0.071
POT1471	03/05/03	12.5		0.061
POT1471	04/02/03	10.7		0.047
POT1471	05/01/03	8.7		0.035
POT1471	06/11/03	8.7		0.103
POT1471	07/02/03	8.7		0.056
POT1471	08/13/03	7.0		0.098
POT1471	09/10/03	8.2		0.106
POT1471	10/01/03	8.7		0.092
POT1471	11/12/03	10.5		0.025
POT1471	12/10/03	12.1		0.037
POT1471	01/07/04	11.8		0.036
POT1471	02/11/04	13.1		0.138
POT1471	03/10/04	11.3		0.041
POT1471	04/07/04	10.7		0.032
POT1471	05/05/04	8.9		0.071
POT1471	06/02/04	8.4		0.052
POT1471	07/14/04	6.9		0.053
POT1471	08/04/04	6.3		0.130
POT1471	09/15/04	8.1		0.101
POT1471	10/06/04	8.7	1.70	0.072
POT1471	11/03/04	10.1		0.039
POT1471	12/01/04	10.9		0.066
POT1471	01/05/05	10.5		0.046
POT1471	02/09/05	12.7		0.037
POT1471	03/09/05	12.4		0.029
POT1471	04/13/05	9.1		0.045
POT1471	05/04/05	10.1		0.028
POT1471	06/08/05	7.8		0.075
POT1471	07/06/05	6.6		
POT1471	08/03/05	6.2	1.68	0.044
POT1471	09/07/05	7.5	1.59	0.048

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1471	10/12/05	7.8	1.97	0.113
POT1471	11/09/05	8.9	2.32	0.050
POT1471	12/07/05	12.3	2.61	0.047
POT1471	01/04/06	12.7	2.19	0.073
POT1471	02/01/06	11.4	2.64	0.036
POT1471	03/01/06	13.4	1.72	0.014
POT1471	04/12/06	9.5	1.64	0.037
POT1471	05/03/06	7.7	1.36	0.040
POT1471	06/14/06	7.1	1.31	0.047
POT1471	07/05/06	7.0	2.59	0.088
POT1471	08/09/06	5.6	1.60	0.049
POT1471	09/13/06	7.7	1.86	0.081
POT1471	10/11/06	8.5	1.88	0.123
POT1471	11/08/06	9.9	2.75	0.075
POT1471	12/06/06	12.1	2.29	0.028
POT1471	01/03/07	11.6	2.41	0.091
POT1471	02/07/07	14.6	3.00	0.021
POT1471	03/07/07	13.7	2.26	0.060
POT1471	04/04/07	9.0	1.66	0.050
POT1471	05/02/07	8.4	2.01	0.038
POT1471	06/13/07	6.5	1.60	0.045
POT1471	07/18/07	8.90	1.00	0.045
POT1471	08/15/07	8.70	0.74	0.02
POT1471	09/12/07	7.00	1.21	0.05
POT1471	10/10/07	6.80	1.02	0.05
POT1471	11/01/07	9.40	1.02	0.03
POT1471	12/05/07	10.60	2.49	0.07
POT1471	01/09/08	11.90	2.49	0.00
POT1471	02/06/08	11.50	2.71	0.04
POT1471	03/12/08	11.30	2.77	0.00
POT1471 POT1471	03/12/08	10.40		0.07
POT1471 POT1471	05/07/08		2.04 1.66	
		8.40		0.03
POT1471	06/04/08	7.50	1.57	0.02
POT1471	07/02/08	7.70	1.73	0.03
POT1471	08/06/08	6.50	1.72	0.05
POT1471	09/10/08	6.40	2.21	0.11
POT1471	10/15/08	7.90	1.77	0.03
POT1471	11/12/08	9.40	1.45	0.03
POT1471	12/10/08	11.60	2.74	0.02
POT1472	01/21/98	11.9		0.065
POT1472	02/04/98	11.9		0.071
POT1472	03/04/98	11.1		0.044
POT1472	04/01/98	8.3		0.028
POT1472	05/13/98	9.4		0.076
POT1472	06/10/98	8.0		0.043

WQA – Eutrophication Potomac River Montgomery County Document version September 28, 2011

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1472	07/15/98	8.4		0.029
POT1472	08/12/98	7.4		0.078
POT1472	09/09/98	8.0		0.126
POT1472	10/07/98	8.4		0.073
POT1472	11/12/98	11.6		0.022
POT1472	12/09/98	9.0		0.010
POT1472	02/03/99	11.6		0.080
POT1472	03/10/99	12.7		0.044
POT1472	04/07/99	9.1		0.065
POT1472	05/05/99	8.6		0.062
POT1472	06/02/99	7.2		0.145
POT1472	07/14/99	6.5		0.127
POT1472	08/11/99	7.3		0.095
POT1472	09/15/99	6.8		0.095
POT1472	10/13/99	8.9		0.097
POT1472	11/09/99	11.3		0.039
POT1472	12/01/99	12.7		0.072
POT1472	01/12/00	12.5		0.046
POT1472	02/09/00	15.0		0.028
POT1472	03/08/00	10.6		0.049
POT1472	04/05/00	9.5		0.039
POT1472	05/03/00	8.2		0.079
POT1472	06/07/00	8.6		0.082
POT1472	07/06/00	8.0		0.116
POT1472	08/02/00	6.3		0.139
POT1472	09/06/00	7.0		0.139
POT1472	10/04/00	8.6		0.141
POT1472	11/01/00	10.2		0.102
POT1472	12/06/00	13.5		0.020
POT1472 POT1472	01/03/01	13.3		0.033
POT1472 POT1472				
	02/07/01 03/14/01	12.5 11.2		0.043
POT1472				0.020
POT1472	04/11/01	8.5		0.094
POT1472	05/02/01	12.3		0.072
POT1472	06/06/01	9.9		0.088
POT1472	07/18/01	6.8		0.090
POT1472	08/08/01	9.1		0.104
POT1472	09/05/01	9.1		0.090
POT1472	10/10/01	9.8		0.036
POT1472	11/07/01	10.6		0.026
POT1472	12/05/01	11.2		0.029
POT1472	01/02/02	14.8		0.050
POT1472	02/06/02	14.1		0.036
POT1472	03/06/02	13.8		0.042
POT1472	04/03/02	8.8		0.098

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1472	05/01/02	9.4		0.207
POT1472	06/12/02	6.7		0.122
POT1472	07/10/02	5.4		0.094
POT1472	08/19/02	6.6		0.065
POT1472	09/11/02	7.2		0.040
POT1472	10/09/02	8.4		0.075
POT1472	11/06/02	10.8		0.099
POT1472	12/04/02	13.7		0.041
POT1472	01/08/03	12.7		0.059
POT1472	02/05/03	13.1		0.015
POT1472	03/05/03	12.0		0.104
POT1472	04/02/03	11.1		0.058
POT1472	05/01/03	9.1		0.045
POT1472	06/11/03	8.7		0.094
POT1472	07/02/03	9.2		0.064
POT1472	08/13/03	6.7		0.114
POT1472	09/10/03	8.1		0.084
POT1472	10/01/03	8.7		0.086
POT1472	11/12/03	10.2		0.028
POT1472	12/10/03	12.1	1.34	0.047
POT1472	01/07/04	11.8		0.029
POT1472	02/11/04	13.5		0.139
POT1472	03/10/04	10.7		0.031
POT1472	04/07/04	10.8		0.034
POT1472	05/05/04	8.7		0.111
POT1472	06/02/04	8.2		0.068
POT1472	07/14/04	7.4		0.048
POT1472	08/04/04	6.4		0.102
POT1472	09/15/04	7.9		0.112
POT1472	10/06/04	8.6		0.100
POT1472	11/03/04	10.1		0.025
POT1472	12/01/04	10.7		0.078
POT1472	01/05/05	11.0		0.034
POT1472	02/09/05	12.7		0.033
POT1472	03/09/05	12.1		0.024
POT1472	04/13/05	9.0		0.050
POT1472	05/04/05	10.1		0.025
POT1472	06/08/05	7.4		0.091
POT1472	07/06/05	7.2		
POT1472	08/03/05	6.5	0.91	0.050
POT1472	09/07/05	7.7	1.19	0.044
POT1472	10/12/05	7.7	1.07	0.060
POT1472	11/09/05	10.5	1.06	0.027
POT1472	12/07/05	12.2	1.89	0.050
POT1472	01/04/06	13.1	1.88	0.061

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1472	02/01/06	12.0	1.70	0.025
POT1472	03/01/06	13.3	1.36	0.018
POT1472	04/12/06	10.1	1.08	0.027
POT1472	05/03/06	7.6	1.07	0.046
POT1472	06/14/06	7.1	0.82	0.038
POT1472	07/05/06	6.9	1.80	0.101
POT1472	08/09/06	5.7	1.37	0.048
POT1472	09/13/06	8.1	1.74	0.094
POT1472	10/11/06	8.9	1.83	0.123
POT1472	11/08/06	10.5	1.33	0.235
POT1472	12/06/06	12.5	1.87	0.024
POT1472	01/03/07	12.1	1.47	0.016
POT1472	03/07/07	13.0	1.66	0.073
POT1472	04/04/07	8.6	1.55	0.045
POT1472	05/02/07	8.3	1.35	0.043
POT1472	06/13/07	6.7	1.27	0.049
POT1472	07/18/07	6.10	1.27	0.04
POT1472	08/15/07	7.20	0.93	0.05
POT1472	09/12/07	6.50	1.17	0.05
POT1472	10/10/07	7.00	0.96	0.05
POT1472	11/01/07	10.00	1.07	0.05
POT1472	12/05/07	12.10	1.13	0.03
POT1472	01/09/08	12.80	1.49	0.02
POT1472	02/06/08	10.80	1.21	0.03
POT1472	03/12/08	10.90	1.70	0.04
POT1472	04/09/08	10.80	1.27	0.04
POT1472	05/07/08	7.90	1.45	0.04
POT1472	06/04/08	7.40	1.14	0.03
POT1472	07/02/08	7.90	1.43	0.04
POT1472	08/06/08	7.40	1.39	0.07
POT1472	09/10/08	6.70	1.70	0.06
POT1472	10/15/08	8.10	0.80	0.02
POT1472	11/12/08	11.30	0.69	0.01
POT1472	12/10/08	13.40	0.96	0.01

Table A-2: MBSS Water Quality Data					
GL	Sampling	DO	TN	TP	
Station	Date	(mg/l)	(mg/l)	(mg/l)	
MO-P-514-116-97	07/15/97	7.6			
MO-P-496-215-97	06/17/97	9.8			
MO-P-481-101-97	06/05/97	8			
MO-P-436-226-97	06/05/97	6.4			
MO-P-251-115-97	07/02/97	7.9			
MO-P-206-311-97	06/17/97	7.3			
MO-P-108-123-97	07/15/97	6.7			
MO-P-091-204-97	06/04/97	8.9			
MO-P-064-328-97	07/07/97	8.9			
MO-P-016-227-97	06/19/97	8			
MO-P-014-107-97	07/15/97	5.5			
MO-P-001-214-97	06/05/97	9.3			
COCA-102-N-2003	04/14/03		3.9	0.02	
COCA-102-N-2003	07/22/03	6.3			
COCA-108-N-2003	04/14/03		0.4	0.02	
COCA-108-N-2003	07/02/03	8			
COCA-109-N-2003	04/14/03		0.4	0.03	
COCA-109-N-2003	07/02/03	6.5			
COCA-111-N-2003	04/14/03		0.4	0.04	
COCA-111-N-2003	07/02/03	6.7			
COCA-117-N-2003	04/23/03		2.2	0.02	
COCA-117-N-2003	08/06/03	7.8			
COCA-205-N-2003	04/14/03		0.3	0.08	
COCA-205-N-2003	08/07/03	3.3			
COCA-206-N-2003	04/15/03		1.8	0.02	
COCA-206-N-2003	07/30/03	7.9			
COCA-208-N-2003	04/15/03		0.7	0.03	
COCA-208-N-2003	08/06/03	8.8			
COCA-209-N-2003	04/15/03		0.7	0.04	
COCA-209-N-2003	08/06/03	8.2			
COCA-210-N-2003	04/15/03	0.2	1.7	0.02	
COCA-210-N-2003	07/30/03	7.7	1.7	0.02	
COCA-307-N-2003	04/14/03	7.7	0.7	0.1	
COCA-307-N-2003	08/07/03	6	0.7	0.1	
COCA-308-N-2003	04/15/03	0	1.5	0.02	
COCA-308-N-2003	04/15/03	7.5	1.5	0.02	
GWPY-212-N-2004	03/10/04	1.5	2.7	0.02	
GWP1-212-N-2004 GWPY-212-N-2004	06/14/04	8.2	2.1	0.02	
NCRW-208-N-2004	04/27/04	0.2	1.1	0.05	
NCRW-208-IN-2004 NCRW-208-N-2004		7.3	1.1	0.05	
	08/17/04	1.3	16	0.02	
NCRW-309-N-2004	04/27/04	0.1	1.6	0.03	
NCRW-309-N-2004	08/17/04	8.1	0.5	0.11	
PRMO-101-R-2002	03/05/02		0.5	0.11	
PRMO-103-R-2002	03/05/02		0.9	0.02	

Table A-2: MBSS Water Quality Data

WQA – Eutrophication Potomac River Montgomery County Document version September 28, 2011

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
PRMO-103-R-2002	06/25/02	5.6		
PRMO-109-R-2002	03/05/02		3.2	0.06
PRMO-109-R-2002	06/12/02	9.2		
PRMO-110-R-2002	03/04/02		1	0.01
PRMO-110-R-2002	06/10/02	9.3		
PRMO-112-R-2002	03/05/02		0.8	0.01
PRMO-112-R-2002	06/12/02	6.3		
PRMO-114-R-2002	03/04/02		0.7	0.01
PRMO-114-R-2002	06/12/02	8.5		
PRMO-115-R-2002	03/04/02		0.7	0.01
PRMO-115-R-2002	06/12/02	8.5		
PRMO-120-R-2002	03/04/02		1.7	0.05
PRMO-120-R-2002	06/24/02	8.8		
PRMO-202-R-2002	03/04/02		2.2	0.03
PRMO-202-R-2002	06/24/02	9.4		
PRMO-222-R-2002	03/05/02		1.4	0.02
PRMO-222-R-2002	06/25/02	8.9		
PRMO-295-E-2004	09/13/02	7.1		
PRMO-295-E-2004	04/22/04		2	0.01
PRMO-304-R-2002	03/06/02		1.9	0.01
PRMO-304-R-2002	06/11/02	7.1		
PRMO-307-R-2002	03/04/02		2	0.02
PRMO-307-R-2002	06/24/02	8.4		
PRMO-311-R-2002	03/04/02		2	0.02
PRMO-311-R-2002	06/10/02	8.4		
PRMO-313-R-2002	03/04/02		0.8	0.04
PRMO-313-R-2002	06/11/02	6.6		
PRMO-323-R-2002	03/06/02		1.9	0.02
PRMO-323-R-2002	06/11/02	9.9		

Table A-3: MDE Water Quality Data				
	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
BRR0006	01/24/08	16.2	3.39	0.471
BRR0006	02/14/08	14.0	3.00	0.179
BRR0006	03/12/08	12.0	3.87	0.181
BRR0006	04/16/08	13.8	1.88	0.221
BRR0006	05/14/08	9.6	2.85	0.057
BRR0006	06/11/08	7.1	2.64	0.670
BRR0006	07/16/08	7.5	1.89	0.583
BRR0006	08/13/08	7.7	2.17	1.927
BRR0006	09/17/08	7.5	4.04	1.667
BRR0006	10/16/08	8.4	5.82	5.716
BRR0006	11/13/08	9.1	0.58	0.429
BRR0006	12/10/08	11.3	3.88	0.539
HOB0010	01/24/08	13.7	2.65	0.010
HOB0010	02/14/08	13.5	3.78	0.047
HOB0010	03/12/08	11.3	3.66	0.026
HOB0010	04/16/08	12.0	1.02	0.021
HOB0010	05/14/08	8.6	2.24	0.068
HOB0010	06/11/08	5.7	0.78	0.059
HOB0010	07/16/08	6.3	0.65	0.063
HOB0010	12/10/08	10.8	1.03	0.017
LFB0001	01/24/08	13.4	2.61	0.122
LFB0001	02/14/08	13.5	2.55	0.123
LFB0001	03/12/08	11.0	2.66	0.086
LFB0001	04/16/08	11.8	1.96	0.095
LFB0001	05/14/08	9.5	2.71	0.074
LFB0001	06/11/08	7.5	2.06	0.094
LFB0001	07/16/08	7.5	1.76	0.136
LFB0001	08/13/08	9.0	1.68	0.084
LFB0001	09/17/08	8.2	1.97	0.080
LFB0001	11/13/08	10.1	2.06	0.640
LFB0001	12/10/08	10.7	2.63	0.248
LMO0002	01/24/08	14.3	2.42	0.015
LMO0002	02/14/08	14.4	2.45	0.050
LMO0002	03/12/08	12.0	2.92	0.010
LM00002	04/16/08	11.7	1.65	0.016
LM00002	05/14/08	10.1	2.20	0.048
LM00002	06/11/08	8.0	2.14	0.051
LMO0002	07/16/08	7.9	2.02	0.024
LM00002	08/13/08	8.6	1.33	0.018
LMO0002	09/17/08	8.6	1.34	0.018
LMO0002	10/16/08	8.5	1.34	0.013
LMO0002	11/13/08	10.7	0.91	0.024
LMO0002	12/10/08	11.7	2.19	0.027
MUB0007	01/24/08	14.7	2.03	0.008
100000/	01/24/00	14./	2.05	0.000

Table A-3: MDE Water Quality Data

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
MUB0007	02/14/08	13.9	1.68	0.037
MUB0007	03/12/08	12.2	1.70	0.011
MUB0007	04/16/08	12.3	1.32	0.007
MUB0007	05/14/08	9.1	1.40	0.030
MUB0007	06/11/08	7.5	1.65	0.016
MUB0007	07/16/08	7.7	1.06	0.015
MUB0007	08/13/08	8.1	1.40	0.013
MUB0007	09/17/08	8.6	1.35	0.009
MUB0007	10/16/08	8.5	1.57	0.008
MUB0007	11/13/08	10.5	1.45	0.021
MUB0007	12/10/08	12.1	2.27	0.006
ROR0005	01/24/08	14.0	1.43	0.007
ROR0005	02/14/08	13.4	1.58	0.054
ROR0005	03/12/08	11.5	1.64	0.030
ROR0005	04/16/08	11.6	0.98	0.008
ROR0005	05/14/08	10.7	1.29	0.042
ROR0005	06/11/08	8.0	1.39	0.071
ROR0005	07/16/08	8.0	1.37	0.044
ROR0005	08/13/08	8.8	0.90	0.017
ROR0005	09/17/08	8.0	1.05	0.034
ROR0005	10/16/08	8.4	1.28	0.025
ROR0005	11/13/08	9.7	0.90	0.035
ROR0005	12/10/08	11.4	1.59	0.014
WAT0006	01/24/08	14.2	1.91	0.009
WAT0006	02/14/08	13.7	1.96	0.031
WAT0006	03/12/08	12.1	2.59	0.008
WAT0006	04/16/08	11.9	2.03	0.009
WAT0006	05/14/08	9.6	1.82	0.031
WAT0006	06/11/08	7.7	2.49	0.018
WAT0006	07/16/08	8.0	1.77	0.020
WAT0006	08/13/08	8.7	1.33	0.018
WAT0006	09/17/08	8.1	3.51	0.018
WAT0006	10/16/08	7.9	1.16	0.014
WAT0006	11/13/08	9.6	1.25	0.027
WAT0006	12/10/08	11.8	2.31	0.009
POT1184	10/18/00	8.5	1.29	0.042
POT1184	11/16/00	10.6	1.20	0.026
POT1184	12/06/00	12.9	1.39	0.019
POT1184	01/10/01	13.8	2.11	0.044
POT1184	02/07/01	13.1	2.12	0.046
POT1184	03/21/01	11.6	1.52	0.047
POT1184	04/18/01	10.1	1.98	0.127
POT1184	05/16/01	9.2	1.20	0.072
POT1184	06/20/01	7.7	1.00	0.065
POT1184	07/25/01	6.3	1.09	0.065

WQA – Eutrophication Potomac River Montgomery County Document version September 28, 2011

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1184	08/08/01	6.5	0.99	0.061
POT1184	09/19/01	7.2	0.82	0.050
POT1184	10/18/01	9.3	0.93	0.052
POT1184	11/07/01	10.7	0.67	0.057
POT1184	12/19/01	10.6	0.97	0.028
POT1184	01/24/02	12.4	1.43	0.040
POT1184	02/21/02	11.9	1.09	0.035
POT1184	03/21/02	10.8	0.98	0.058
POT1184	04/18/02	8.0	0.98	0.077
POT1184	05/16/02	8.9	0.93	0.080
POT1184	06/12/02	7.2	0.94	0.070
POT1184	07/25/02	6.7	0.49	0.073
POT1184	08/21/02	7.2	0.45	0.059
POT1184	09/25/02	8.5	0.31	0.031
POT1471	10/17/00	8.9	0.91	0.031
POT1471	11/15/00	9.3	1.90	0.088
POT1471	12/05/00	12.3	1.62	0.040
POT1471	01/09/01	11.5	3.40	0.111
POT1471	02/06/01	12.2	3.15	0.066
POT1471	03/20/01	10.4	2.15	0.056
POT1471	04/17/01	8.6	2.30	0.135
POT1471	05/15/01	8.3	1.86	0.075
POT1471	06/19/01	6.3	1.76	0.082
POT1471	07/24/01	4.7	1.29	0.062
POT1471	08/06/01	6.0	1.59	0.074
POT1471	09/18/01	6.6	0.77	0.048
POT1471	10/17/01	8.6	1.49	0.063
POT1471	11/06/01	9.1	1.23	0.058
POT1471	12/18/01	9.4	1.63	0.083
POT1471	01/23/02	11.8	1.83	0.054
POT1471	02/20/02	10.3	1.53	0.053
POT1471	03/20/02	9.0	2.03	0.098
POT1471	04/17/02	7.0	1.20	0.091
POT1471	05/15/02	8.3	1.29	0.108
POT1471	06/11/02	6.8	1.03	0.062
POT1471	07/24/02	6.0	0.63	0.077
POT1471	08/20/02	7.6	0.62	0.055
POT1471	09/24/02		0.62	0.042
POT1472	10/17/00	9.2	1.76	0.047
POT1472	11/15/00	10.3	1.01	0.069
POT1472	12/05/00	13.0	1.12	0.015
POT1472	01/09/01	13.3	1.67	0.009
POT1472	02/06/01	12.6	1.66	0.038
POT1472	03/20/01	10.8	1.45	0.031
POT1472	04/17/01	8.7	1.63	0.085

WQA – Eutrophication Potomac River Montgomery County Document version September 28, 2011

	Sampling	DO	TN	ТР
Station	Date	(mg/l)	(mg/l)	(mg/l)
POT1472	05/15/01	9.7	1.14	0.060
POT1472	06/19/01	9.1	1.12	0.097
POT1472	07/24/01	6.8	0.97	0.068
POT1472	08/06/01	8.6	1.34	0.092
POT1472	09/18/01	7.4	0.85	0.049
POT1472	10/17/01	9.4	0.91	0.040
POT1472	11/06/01	10.5	0.56	0.048
POT1472	12/18/01	10.9	0.67	0.016
POT1472	01/23/02	13.0	1.27	0.042
POT1472	02/20/02	11.8	0.80	0.044
POT1472	03/20/02	9.9	0.83	0.097
POT1472	04/17/02	7.7	1.04	0.089
POT1472	05/15/02	8.7	0.99	0.062
POT1472	06/11/02	8.0	0.84	0.092
POT1472	07/24/02	6.7	0.61	0.086
POT1472	08/20/02	6.4	0.55	0.052
POT1472	09/24/02		0.53	0.039

FINAL

[This page deliberately left blank]

FINAL

Appendix B – Analysis of CORE/TREND Benthic Monitoring Results in the Potomac River Montgomery County Watershed Mainstem

The Maryland Department of Natural Resources' (DNR) CORE/TREND program monitors the benthic macroinvertebrate community at 111 fixed locations in Maryland. Monitoring has been performed at some of these sites as far back as the 1970s. The information collected is used to assess water quality status and trends, and is intended to complement water quality monitoring that is also performed under the CORE/TREND program.

Most of the fixed sites are on the larger rivers and streams draining Maryland's 8-digit watersheds. Although there is some overlap, these larger rivers and streams generally fall outside the domain of the Maryland Biological Stream Survey (MBSS) program, which assesses the integrity fish and macroinvertebrate community in 1st through 4th order streams. In most cases, the CORE/TREND data represent the only biological data available for these larger rivers and streams. Consequently, although it is not formally part of Maryland's assessment methodology, the evaluation of benthic macroinvertebrate data under the CORE/TREND program has played a large role in determining whether aquatic life is supported in larger rivers and streams in TMDLs and WQAs. Generally, a CORE/TREND status assessment of "GOOD" or better indicates that the waterbody is supporting its aquatic life use.

In the Potomac River Montgomery County watershed mainstem, there are two fixed stations at which the CORE/TREND program assesses water quality based on macroinvertebrate sampling: (1) POT1183, at Little Falls below the dam; and (2) POT1471, at White's Ferry. Figure B-1 shows the location of these stations. The CORE/TREND assessed the status of water quality at POT1471 as "GOOD," but rated the water quality status at POT1183 as "FAIR/GOOD," indicating borderline water quality conditions.

POT1183 is the only station on the mainstem Potomac River below the confluence of the North and South Branches assessed as less than "GOOD." Figure B-1 shows the location of the other CORE/TREND stations in the mainstem Potomac River. Table B-1 shows the location, status, and trend of these stations. The goal of this analysis is to compare the assessment of the benthic community at POT1183 with the assessment at other stations in the mainstem Potomac River to evaluate whether aquatic life use is supported in the mainstem Potomac River in Montgomery County.

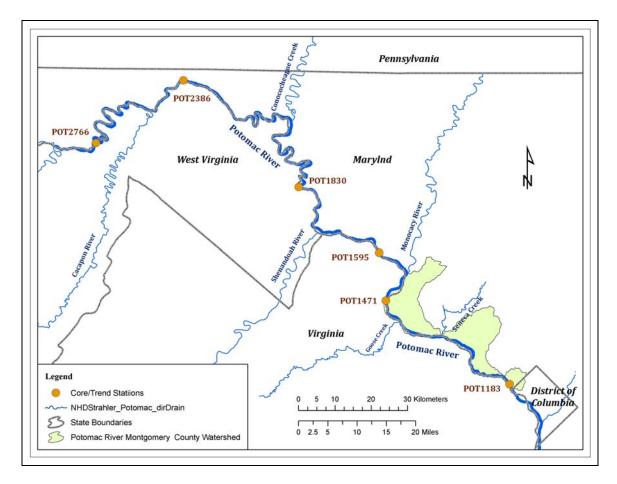


Figure B-1: CORE/TREND Monitoring Stations in the Mainstem Potomac River

Station	Location	Status	Trend		
POT1183	Little Falls below dam	FAIR/GOOD	NO CHANGE		
POT1471	Whites Ferry	GOOD	IMPROVEMENT		
POT1595	Point of Rocks	GOOD	NO CHANGE		
POT1830	Shepardstown	GOOD	DEGRADATION		
POT2386	Hancock	GOOD	IMPROVEMENT		
POT2766	Paw Paw	GOOD/VERY GOOD	IMPROVEMENT		

CORE/TREND Assessment Methodology

The CORE/TREND assessment is based on four metrics: (1) total number of taxa; (2) Shannon-Wiener diversity index (DI); (3) modified Hilsenhoff biotic index (HBI); and (4) percent Ephemeroptera, Plecoptera, and Tricoptera (%EPT).

Total number of taxa, as the name suggests, is simply the number of taxa identified in the sample. A larger number of taxa indicates a more diverse benthic community and better water quality. Table B-2 shows the range of values for the total number of taxa for each assessment category.

Assessment	Range
Excellent	≥28
Very Good	23-28
Good	18-22
Fair	12-17
Poor	6-11
Very Poor	1-5

Table B-2: As	sessment Range	s for Total	Number of Taxa ¹
1 abic D-2. 115	substituti mangu	sion rotan	

¹ Source: Friedman, 2010a.

The Shannon-Wiener diversity index (DI) is the measure of relative abundance of taxa or the degree to which the benthic community is dominated by a small number of taxa. Poorer water quality is associated with the greater dominance of a few taxa. Table B-3 shows the range of values of the DI for each assessment category.

Table D-5. Assessment Ranges for	Shannon- whener Diversity index		
Assessment	Range		
Excellent	4-5		
Good to Very Good	3-4		
Fair to Good	2-3		
Poor to Fair	1-2		
Very Poor to Poor	0-1		

			1
Table B-3: Assessment	D (CI 117	
Table R.4. Accessment	Ranges for	Nhannon_Wiener	Inversity Indev
$1 a \mu c D^{-} J \cdot A \beta c \beta \beta m c m c$	Mangus IVI	Shannon- Witcher	DIVESTLY INCLA

¹ Source: Friedman, 2009.

The Hilsenhoff Biotic Index (HBI) is a measure of the degree to which the taxa present in the benthic community can tolerate organic pollution, such as raw sewage. Individual taxa are classified according to their tolerance, and the overall score is a weighted average of the tolerance of the number of individuals of each taxa. The larger the value of the metric, the greater the overall tolerance of the community to organic pollution, and the greater the likelihood that the community is impacted by poor water quality. Table B-4 shows the range of values of the HBI for each assessment category.

	is for impermon brone maex		
Assessment	Range		
Excellent	0-1.75		
Very Good	1.76-2.25		
Good	2.26-2.75		
Fair	2.76-3.5		
Poor	3.51-4.25		
Very Poor	4.26-5		

 Table B-4: Assessment Ranges for Hilsenhoff Biotic Index¹

¹ Source: Friedman, 2009.

Percent EPT is the percent of individuals belonging to the families Ephemeroptera (mayflies), Plecoptera (stoneflies), and Tricoptera (caddisflies) in the sample. Mayflies, stoneflies, and caddisflies are generally intolerant of pollution or habitat impairment, and therefore their presence is indicative of good water quality. The larger the percentage of individuals from these taxa, the better the water quality. Table B-5 shows the range of values of %EPT for each assessment category.

Assessment	Range
Good to Excellent	75-100%
Good	50-75%
Fair	25-50%
Poor	0-25%

 Table B-5: Assessment Ranges for Percent Ephemeroptera, Plecoptera, and Tricoptera¹

¹ Source: Friedman, 2010a.

The evaluation of the overall status of a station is not based on a strict formula, but involves professional judgment in two respects (Friedman, 2010b). First, the overall rating is based on the rating of the four metrics, but is not a numerical average of the component metrics. Generally, the overall assessment should be in the assessment range of the metrics. Second, the number of years of data used to assess status is a function of the trend at the station. Only more years will be representative of a station that shows a strong trend in metric scores, while a longer period of record will be more representative of a station without strong trends in the metrics.

Evaluation of the Benthic Community Metrics for the Mainstem Potomac River

Table B-6 gives the benthic community metric scores for stations on the mainstem Potomac River between 2000 and 2007, the last year data are available from the CORE/TREND program. Table B-7 gives summary statistics for the metrics from those stations. Figures B-2, B-3, B-4, and B-5 compare the distribution of scores of the total taxa, HBI, DI, and %EPT, respectively, from Potomac River stations from that period. Metrics from POT2386 at Hancock have been omitted from the analysis because data were only collected in two years, 2004 and 2005.

		Total	C Metrics 2000-2008, Mainstem Potomac Rive Benthic Metric			
		Individuals	TOTAL		Shannon-Wiener	
STATION ¹	YEAR	Collected	TAXA (#)	HBI	DI	EPT (%)
	2000	2562	40	3.25	2.87	55
	2001	828	34	2.77	3.68	66
POT1183	2002	286	15	2.45	1.73	4
P011185	2003	1374	42	3.13	3.5	58
	2004	415	27	2.85	3.43	73
	2007	559	23	2.62	3.34	42
	2000	448	25	2.88	3.35	47
POT1471	2001	865	39	2.8	3.59	46
	2003	460	29	3.18	3.32	73
	2004	610	35	2.6	3.07	50
	2001	783	37	2.94	3.61	47
	2002	1470	32	2.51	2.44	3
POT1595	2003	531	43	2.86	4.31	50
	2004	511	33	2.78	3.62	75
	2005	546	22	2.58	2.93	45
	2006	438	28	2.89	3.4	40
	2000	1538	31	2.63	2.87	12
	2001	491	36	2.9	3.66	24
POT1830	2003	1602	42	2.65	3.17	87
	2004	357	34	2.44	3.42	87
	2005	378	38	2.59	4.2	67
	2006	687	35	2.77	3.84	21
	2000	231	30	2.76	3.92	26
	2001	790	52	2.79	4.14	55
	2002	842	47	2.97	4.52	66
POT2766	2003	618	33	2.74	3.56	59
	2004	394	35	2.6	3.95	69
	2005	237	29	2.39	3.5	73
	2006	512	39	2.54	4.06	67
	2007	345	28	2.29	2.88	69

Table B-6: CORE/TREND Benthic Metrics 2000-2008, Mainstem Potomac River

Note: ¹ The analysis includes all CORE/TREND stations located on the Potomac River mainstem below the confluence of the North and South Branches. Metrics from the POT2386 station at Hancock, however, are not included in the analysis, since data was only collected at the station during two years, 2004 and 2005.

		CORE	HB	/	00-2000		
Station ¹	\mathbf{n}^2	mean	minimum	25%	50%	75%	maximum
POT1183	6	2.85	2.45	2.6575	2.81	3.06	3.25
POT1471	4	2.87	2.6	2.75	2.84	2.955	3.18
POT1595	6	2.76	2.51	2.63	2.82	2.8825	2.94
POT1830	6	2.66	2.44	2.6	2.64	2.74	2.9
POT2766	8	2.64	2.29	2.5025	2.67	2.7675	2.97
			Shannon-W	Veiner DI			
Station	n	mean	minimum	25%	50%	75%	maximum
POT1183	6	3.09	1.73	2.9875	3.385	3.4825	3.68
POT1471	4	3.33	3.07	3.2575	3.335	3.41	3.59
POT1595	6	3.39	2.44	3.0475	3.505	3.6175	4.31
POT1830	6	3.53	2.87	3.2325	3.54	3.795	4.2
POT2766	8	3.82	2.88	3.545	3.935	4.08	4.52
			Percent E	PT (%)			
Station	n	mean	minimum	25%	50%	75%	maximum
POT1183	6	49.67	4	45.25	56.5	64	73
POT1471	4	54.00	46	46.75	48.5	55.75	73
POT1595	6	43.33	3	41.25	46	49.25	75
POT1830	6	49.67	12	21.75	45.5	82	87
POT2766	8	60.50	26	58	66.5	69	73
Total Taxa (#)							
Station	n	mean	minimum	25%	50%	75%	maximum
POT1183	6	30.17	15	24	30.5	38.5	42
POT1471	4	32.00	25	28	32	36	39
POT1595	6	32.50	22	29	32.5	36	43
POT1830	6	36.00	31	34.25	35.5	37.5	42
POT2766	8	36.62	28	29.75	34	41	52

Table B-7: Summary Statistics for Benthic Community Metrics, Potomac River CORE/TREND Stations, 2000-2008

Note: 1 The analysis includes all CORE/TREND stations located on the Potomac River mainstem below the confluence of the North and South Branches. Metrics from the POT2386 station at Hancock, however, are not included in the analysis, since data was only collected at the station during two years, 2004 and 2005. n = number of samples.

FINAL

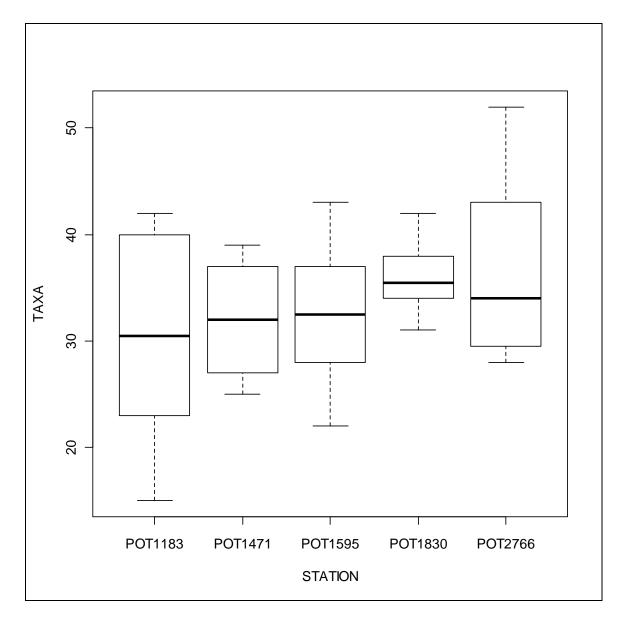


Figure B-1: Distribution of Number of Taxa, Potomac River CORE/TREND Stations, 2000-2008

FINAL

Figure B-2: Distribution of Hilenshoff Biotic Index, Potomac River CORE/TREND Stations, 2000-2008

FINAL

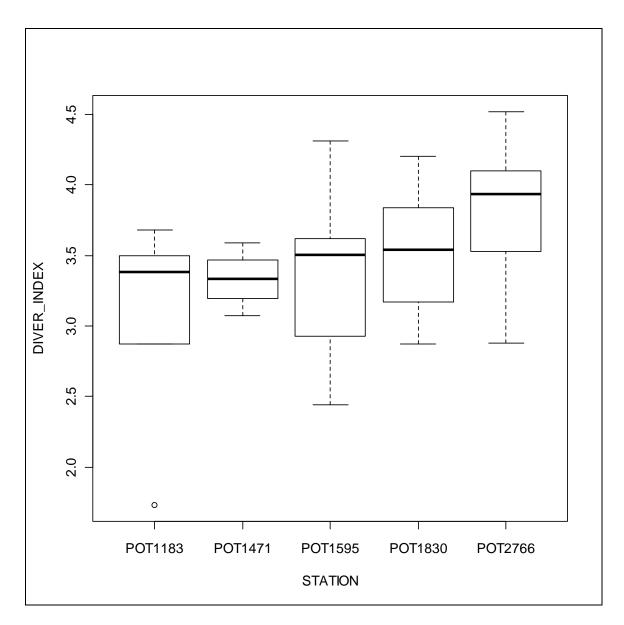


Figure B-3: Distribution of Shannon-Wiener Index, Potomac River CORE/TREND Stations, 2000-2008

FINAL

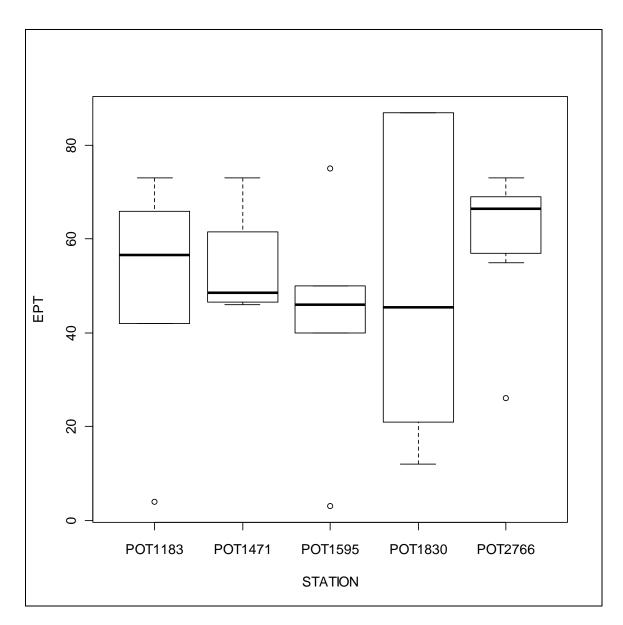


Figure B-4: Distribution Percent EPT, Potomac River CORE/TREND Stations, 2000-2008

An examination of Figures B-1 through B-3 seems to suggest that for the total number of taxa, DI, and HBI, the benthic community metric scores indicate a decrease in water quality in the downstream direction. Generally, POT1183 has the worst score among Potomac River stations for each metric, thanks to poor scores on each metric in 2002. However, Krusal-Wallis tests, performed on all of the benthic community metrics, indicate that there is no difference in the distribution of scores in the benthic community metrics among the Potomac River CORE/TREND stations. Table B-8 gives the results of these tests.

Metric	Chi-Square	p-value	
Number of Taxa	2.2712	0.686	
Biotic Index	4.0783	0.3955	
Diversity Index	5.9219	0.2051	
Percent EPT	2.6052	0.6259	

Table B-8: Results of Kruskal-Wallis Tests on Distribution of Benthic Community Indices
in CORE/TREND Stations in the Mainstem Potomac River, 2000-2008

The low scores at POT1183 in 2002 seem to be exceptions to the general trend in the distribution of scores at that station. With the exception of 2002, POT1183 tends to have the best Percent EPT scores of any Potomac River station except POT2766 at Paw Paw. Two-thirds of the samples have Percent EPT scores above 50, which is a greater rate than any other station except POT2766. The metric scores for Total Taxa and DI at POT1183 for 2002 are the only ones below the "Good" range for the period 2000-2007; otherwise, the metric scores from POT1183 are comparable to the other mainstem Potomac River stations. Although two-thirds of the HBI scores at POT1183 are outside the "Good" range, though this is generally true of the Potomac River stations below the confluence with the Shenandoah River.

In summary, since 2000, POT1183 generally has acceptable benthic community metric scores comparable to the other CORE/TREND stations in the mainstem Potomac River. During this period, there is no statistically significant difference in the distribution of metric scores from POT1183 than the other Potomac River stations. If only the benthic monitoring data from this decade are taken into account, water quality at POT1183 is therefore not statistically different from the water quality assessed as "GOOD" at other locations in the mainstem of the Potomac River.

FINAL

References

Friedman, E. 2009. Benthic Macroinvertebrate Communities at Maryland's CORE/TRED Monitoring Stations: Water Quality Status and Trends. Maryland Department of Natural Resources. Annapolis, MD. CBWP-MANTA-MN-09-1.

Friedman, E. 2010a. Personal communication (September 9, 2010 e-mail to Adam Griggs)

Friedman, E. 2010b. Personal communication. (October 7, 2010 telephone conversation).