Total Maximum Daily Load of Polychlorinated Biphenyls in the Severn River, Mesohaline Chesapeake Bay Tidal Segment, Anne Arundel County, Maryland ### **FINAL** ### Submitted to: Watershed Protection Division U.S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029 June 2015 EPA Submittal Date: September 14, 2015 EPA Approval Date: July 19, 2016 Severn River PCB TMDL Report Document version: July 2016 # FINAL # **Table of Contents** | List of | f Figures | | |---------|---|----------| | List of | f Tables | i | | List of | f Abbreviations | ii | | EXEC | CUTIVE SUMMARY | v | | 1.0 | INTRODUCTION | | | 2.0 | SETTING AND WATER QUALITY DESCRIPTION | 3 | | 2.1 | General Setting | 3 | | 2.2 | Water Quality Characterization and Impairment | <i>6</i> | | 3.0 | TARGETED WATER COLUMN AND SEDIMENT TMDL ENDPOINTS | 10 | | 4.0 | SOURCE ASSESSMENT | 12 | | 4.1 | Nonpoint Sources | 13 | | 4.2 | Point Sources | 16 | | 4.3 | Source Assessment Summary | 17 | | 5.0 | TOTAL MAXIMUM DAILY LOADS AND LOAD ALLOCATION | 19 | | 5.1 | Overview | 19 | | 5.2 | Analysis Framework | 19 | | 5.3 | Critical Condition and Seasonality | 23 | | 5.4 | TMDL Allocations | 23 | | 5.5 | Margin of Safety | 23 | | 5.6 | Maximum Daily Loads | 24 | | 5.7 | TMDL Summary | 24 | | 6.0 | ASSURANCE OF IMPLEMENTATION | 25 | | 7.0 | REFERENCES | 28 | | Apper | ndix A: List of Identified PCB Congeners | A-1 | | Apper | ndix B: Derivation of Adj-tBAF and Adj-SediBAF | B-1 | | Apper | ndix C: Method Used to Estimate Baseline Watershed tPCB Load | C-1 | | Apper | ndix D: Multi-Segment Tidally-Averaged One-Dimensional Transport Model | D-1 | | Apper | ndix E: Model Calculation for the Severn River | E-1 | | | ndix F: Calculation of Fractions of Different PCB Forms | | | Apper | ndix G: Technical Approach Used to Generate Maximum Daily Loads | G-1 | | | ndix H: List of NPDES Regulated Stormwater Permits | | | Apper | ndix I: Total PCB Concentrations and Locations of the PCB Monitoring Stations | I-1 | # **List of Figures** | Figure 1: Location Map of the Severn River Watershed | 4 | |--|-------| | Figure 2: Land Use of the Severn River Watershed | 5 | | Figure 3: Land Use Distribution in the Severn River Watershed | 6 | | Figure 4: The Locations of PCB Water Column, Sediment, Fish Tissue Monitoring Stations and Waste Water Treatment Plants in the Severn River | 9 | | Figure 5: Conceptual Model of the Key Transport and Transformation Processes of | | | PCBs in Surface Water and Bottom Sediments of the Severn River and Entry | | | Points to the Food Chain | 13 | | Figure 6: Change of Average Water Column and Bottom Sediment tPCB Concentrations with Time within the Severn River (Natural Attenuation Only) | 21 | | Figure 7: Change of Average Water Column and Bottom Sediment tPCB Concentrations with Time within the Severn River (100% Reduction to Watershed Load, WWTP | | | load, & Atmospheric Deposition) | 22 | | the Delineation of Subwatersheds. | . C-2 | | Figure C-2: Relative Locations of PCB Water Column Measurement Station Sampling Date Flow on the Flow Duration Curve | . C-3 | | Figure C-3: Regression between tPCB loads and the Associated Flows | . C-3 | # **List of Tables** | Table ES-1: Summary of Baseline tPCB Loads, TMDL Allocations, Load Reductions, and | | |--|------| | Maximum Daily Loads (MDLs) in the Severn River | Viii | | Table 1: Land Use Distributions in the Severn River Watershed | 6 | | Table 2: Water Column tPCB Criteria and tPCB Fish Tissue Listing Threshold | 7 | | Table 3: Summary of Fish Tissue, Water Column, and Sediment tPCB Data | 8 | | Table 4: Summary of Municipal WWTP tPCB Baseline Loads | 16 | | Table 5: Summary of tPCB Baseline Loads in the Severn River | 18 | | Table 6: Summary of tPCB Baseline Loads, TMDL Allocations, Load Reductions, and | | | MDLs in the Severn River | 24 | | Table A-1: List of Identified PCB Congeners | A-1 | | Table B-1: Species Trophic Levels and Home Ranges | B-1 | | Table B-2: K_{ow} Values of Homologs Used in the Baseline BAF Calculation | B-2 | | Table B-3: tBAF, Baseline BAF, Adj-tBAF, and Water Column TMDL Endpoint tPCB | | | Concentrations for Each Species | B-3 | | Table B-4: Individual Fish Length and Weight in White Perch and Yellow Perch | | | Composite | B-3 | | Table B-5: BSAF, Adj-SedBAF, and Sediment TMDL Endpoint tPCB Concentrations | B-4 | | Table C-1: Baseline Watershed Loads of the Six Segments of the Severn River | C-1 | | Table E-1: Physical Parameters of the Model for Each Segment | E-2 | | Table G-1: Summary of tPCB Maximum Daily Load | G-4 | | Table H-1: NPDES Regulated Stormwater Permit Summary for the Severn River | | | Watershed | H-1 | | Table I-1: Sediment tPCB Concentrations (ng/g) in the Severn River | I-1 | | Table I-2: Fish Tissue tPCB Concentrations (ng/g) in the Severn River | I-1 | | Table I-3: Water Column tPCB Concentrations (ng/L) in the Severn River | I-2 | #### **List of Abbreviations** Adj-SediBAF Adjusted Sediment Bioaccumulation Factor Adj-tBAF Adjusted Total Bioaccumulation Factor ARS Agricultural Research Service BAF Bioaccumulation Factor BCF Bioconcentration Factor BMP Best Management Practice BSAF Biota-sediment accumulation factor CBP Chesapeake Bay Program CFR Code of Federal Regulations COMAR Code of Maryland Regulations CSF Cancer Slope Factor CV Coefficient of Variation CWA Clean Water Act DEM Digital Elevation Model DOC Dissolved Organic Carbon DMR Daily Monitoring Report DRBC Delaware River Basin Commission EOF Edge of Field EOS Edge of Stream EPA U.S. Environmental Protection Agency FIBI Fish Index of Biotic Integrity Ft Feet GIS Geographic Information System G Gram Kg Kilogram Km² Square Kilometer Kow PCB Octanol-Water Partition Coefficient L Liter Lbs Pounds LA Load Allocation LMA Land Management Administration LRP-MAP Land Restoration Program Geospatial Database M² Square meterM³ Cubic meterMD Maryland MDE Maryland Department of the Environment Severn River PCB TMDL Report #### **FINAL** MDL Maximum Daily Load mg Milligram MGD Million gallons per day MOS Margin of Safety MS4 Municipal Separate Storm Sewer Systems ng Nanogram NOAA National Oceanic & Atmospheric Administration NPDES National Pollutant Discharge Elimination System NRCS Natural Resources Conservation Service PCB Polychlorinated Biphenyl POC Particulate Organic Carbon Ppb Parts per billion Ppt Parts per trillion RUSLE2 Revised Universal Soil Loss Equation Version II SediBAF Sediment Bioaccumulation Factor SIC Standard Industrial Classification TMDL Total Maximum Daily Load tBAF Total Bioaccumulation Factor tPCB Total PCB TSD Technical Support Document TSS Total Suspended Solids UMCES University of Maryland Center for Environmental Science iv USDA United States Department of Agriculture USGS United States Geological Survey VA Virginia VCP Voluntary Cleanup Program WLA Wasteload Allocation WQA Water Quality Analysis WQBEL Water Quality Based Effluent Limit WQLS Water Quality Limited Segment WQS Water Quality Standard WWTP Waste Water Treatment Plant μg Microgram #### **EXECUTIVE SUMMARY** This document, upon approval by the U.S. Environmental Protection Agency (EPA), establishes a Total Maximum Daily Load (TMDL) for polychlorinated biphenyls (PCBs) in the Severn River Mesohaline Chesapeake Bay Tidal Segment (from this point on in the document the "Severn River Mesohaline Chesapeake Bay Tidal Segment" will be referred to as "Severn River") (2012 Integrated Report of Surface Water Quality in Maryland Assessment Unit ID:MD-SEVMH). Section 303(d) of the federal Clean Water Act (CWA) and EPA's implementing regulations direct each State to identify and list waters, known as water quality limited segments (WQLSs), in which current required controls of a specified substance are inadequate to achieve water quality standards (WQSs). For each WQLS, the State is to either establish a TMDL of the specified substance that the waterbody can receive without violating WQSs, or demonstrate that WQSs are being met (CFR 2015a). Maryland WQSs specify that all surface waters of the State shall be protected for water contact recreation, fishing, and the protection of aquatic life and wildlife (COMAR 2015a). The designated use of the Severn River (Basin Code: 02131002) is Use II – *Support of Estuarine and Marine Aquatic Life and Shellfish Harvesting* (COMAR 2015b). The Maryland Department of the Environment (MDE) has identified the waters of the Severn River (Integrated Report Assessment Unit ID: MD-SEVMH-02131002) on the State's 2012 Integrated Report as impaired by nutrients (1996), sediments (1996), fecal coliform in tidal portions of the basin (1996), and PCBs in fish tissue (2006) and impacts to biological communities (2008) (MDE 2012). The fecal coliform TMDLs for the restricted areas in the Severn River watershed were approved by the EPA in 2006. The Chesapeake Bay nutrient and sediment TMDLs, which were approved by the EPA in December 2010, addressed the nutrient and sediment impairment listings for the Severn River Mesohaline Chesapeake Bay Segment. The TMDL established herein by MDE will address the total PCB (tPCB) listing for the Severn River Mesohaline. PCBs are a class of man-made, carcinogenic compounds with both acute and chronic toxic effects, which are also bioaccumulative and do not readily break down in the natural environment. There are 209 possible chemical arrangements of PCBs, known as congeners, which consist of two phenyl groups and one to ten chlorine atoms. The congeners differ in the number and position of chlorine atoms along the phenyl groups. PCBs were manufactured and used for a variety of industrial applications and sold as mixtures under
various trade names commonly known as Aroclors (QEA 1999). Sixteen different Aroclor mixtures were produced, each formulated based on a specific chlorine composition by mass. PCBs are a concern to human health, as regular consumption of fish containing elevated levels of PCBs will cause bioaccumulation within the fatty tissues of humans, which can potentially lead to the development of cancer. Since the Severn River was identified as impaired for PCBs in fish tissue, the overall objective of the tPCB TMDL established in this document is to ensure that the "fishing" designated use, which is protective of human health related to the consumption of fish, in the river is supported. However, this TMDL will also ensure the protection of all other applicable designated uses within the river. This objective was achieved via the use of extensive field observations and a multi-segment tidally-averaged one-dimensional transport model. The model incorporates the Severn River PCB TMDL Report long term influences of freshwater discharge, dispersion, and exchanges between the water column and bottom sediments, thereby representing the dynamic transport within the Severn River. The water quality model is used to: - 1. Estimate and predict PCB transport and fate based on observed tPCB concentrations in the water column and bottom sediments of the Severn River; - 2. Simulate long-term tPCB concentrations in the water column and bottom sediments; - 3. Estimate the load reductions necessary to meet the TMDL water column and sediment endpoint concentrations, which are derived from the Integrated Report fish tissue listing threshold and site specific total Bioaccumulation Factors (tBAFs); - 4. Estimate the amount of time necessary for tPCB concentrations to reach the TMDL water column and sediment endpoints, given the required load reductions from the individual source sectors and an estimated rate of decline in the tPCB concentrations at the boundary between the Severn River and the Chesapeake Bay mainstem. The CWA, as recently interpreted by the United States District Court for the District of Columbia, requires TMDLs to be protective of all the designated uses applicable to a particular waterbody (US District Court for the District of Columbia, 2011). Within the Severn River, these designated uses, as described previously, include "water contact recreation," "fishing," "the protection of aquatic life and wildlife," and "Support of Estuarine and Marine Aquatic Life and Shellfish Harvesting" (COMAR 2015b). The TMDL presented herein was developed specifically to be supportive of the "fishing" designated use, ensuring that the consumption of fish does not impact human health, thus addressing the impairment listings for "PCBs in fish tissue". The water column and sediment TMDL endpoint tPCB concentrations applied within this analysis are derived from Maryland's Integrated Report fish tissue listing threshold tPCB concentration and site specific tBAFs. In the Severn River, the established site specific tPCB endpoint concentrations are lower than: 1) EPA's human health criterion tPCB water column concentration relative to fish consumption, and 2) both Maryland's freshwater and saltwater chronic criteria tPCB water column concentrations. This indicates that the TMDL is not only protective of the "fishing" designated use but also the "aquatic life" designated use, specifically the protection of "Support of Estuarine and Marine Aquatic Life and Shellfish Harvesting" (COMAR 2015b). Lastly, the designated use for "water contact recreation" is not associated with any potential human health risks due to PCB exposure. Dermal contact and consumption of water from activities associated with "water contact recreation" are not a significant pathway for the uptake of PCBs. The EPA human health criterion was developed solely based on organism consumption, as drinking water consumption does not pose any risk for cancer development at environmentally relevant levels. The only human health risk associated with PCB exposure is through the consumption of aquatic organisms, which is addressed by the water column and sediment tPCB endpoint concentrations applied within this TMDL developed to be supportive of the "fishing" designated use. As part of this analysis, both point and nonpoint sources of PCBs have been identified throughout the Severn River watershed. Nonpoint sources include direct atmospheric deposition to the river, runoff from non-regulated watershed areas, resuspension and diffusion from bottom sediments, and tidal influence from the Chesapeake Bay mainstem. Point sources include Severn River PCB TMDL Report National Pollutant Discharge Elimination System (NPDES) permitted wastewater treatment plants (WWTPs) and regulated stormwater runoff within the watershed. Model estimated tPCB loads from these point and nonpoint sources represent the baseline conditions for the Severn River. The objective of the TMDL established herein is to reduce current tPCB loads to the Severn River so that the water column and sediment TMDL endpoint tPCB concentrations are achieved. All TMDLs need to be presented as a sum of Wasteload Allocations (WLAs) for the identified point sources, Load Allocations (LAs) for nonpoint source loads generated within the assessment unit, and where applicable, natural background, tributary, and adjacent segment loads. Furthermore, all TMDLs must include a margin of safety (MOS) to account for lack of knowledge and the many uncertainties in the understanding and simulation of water quality parameters in natural systems (*i.e.*, the relationship between modeled loads and water quality) (CFR 2015a). The MOS is intended to account for such uncertainties in a manner that is conservative from the standpoint of environmental protection. An explicit MOS of 5% was incorporated into the analysis to account for such uncertainty. A summary of the baseline load, TMDL and maximum daily load for the Severn River are presented in Table ES-1. When implemented, load reductions required under this TMDL will ensure that tPCB concentrations in the water column and sediment are at levels supportive of the "fishing" designated use. The transport of PCBs to the river from the Chesapeake Bay mainstem and from bottom sediment via resuspension and diffusion are currently estimated to be the major sources of PCBs. However, within this TMDL, as stated previously, the transport of PCBs from bottom sediments through resuspension and diffusion will not be assigned a tPCB baseline load or TMDL allocation. The water quality model developed for simulating ambient sediment and water column tPCB concentrations within the Severn River were used to determine the specific load reductions that would result in simulated tPCB concentrations in the sediment and water column that meet the TMDL endpoints. In this study, the model assumes that the tPCB concentrations in the Chesapeake Bay mainstem are decreasing at a rate of 5% per year, which was the rate used in the Back River PCB TMDL study (MDE, 2011b). Given this rate of decline, the tPCB targets in both water column and sediment of the Severn River embayment will be met in about 46.2 years with the natural attenuation of tPCB concentration in the Chesapeake Bay mainstem. Loads from the watershed, including non-point and point sources, and atmospheric deposition only account for 1.83% of the total tPCB baseline load. Therefore, no reduction to these loads is necessary in order to achieve the TMDL. When the targets are met, the tPCB loads from the Chesapeake Bay mainstem entering the embayment will be reduced by about 90.7% including an explicit 5% MOS. At that time, the total load will be reduced by 88.4% from its baseline load. Table ES-1: Summary of Baseline tPCB Loads, TMDL Allocations, Load Reductions, and Maximum Daily Loads (MDLs) in the Severn River | | Baseline | Baseline | TMDL | Load | MDL | |--|-----------------|---------------|---------------|-----------|----------------| | | Load | Percentage | | Reduction | | | Source | (g/year) | (%) | (g/year) | (%) | (g/day) | | Chesapeake Bay Mainstem Influence
Direct Atmospheric Deposition | 6,155.7
47.0 | 98.17
0.75 | 574.4
47.0 | 90.7
0 | 3.389
0.277 | | Non-regulated Watershed Runoff | 29.0 | 0.46 | 29.0 | 0 | 0.171 | | Nonpoint Sources | 6,231.7 | 99.38 | 650.4 | 89.6 | 3.838 | | WWTP | 17.1 | 0.273 | 17.1 | 0 | 0.145 | | NPDES Regulated Stormwater | 21.5 | 0.343 | 21.5 | 0 | 0.127 | | Point Sources | 38.6 | 0.62 | 38.6 | 0 | 0.272 | | MOS (5%) | - | • | 36.3 | - | 0.216 | | Total | 6,270.3 | 100.00 | 725.3 | 88.4 | 4.326 | Note: Columns may not precisely add to totals due to rounding. Note: MDL numbers are rounded numbers calculated from rounded conversion factors. Federal regulations require that TMDL analysis take into account the impact of critical conditions and seasonality on water quality (CFR 2015b). The intent of these requirements is to ensure that load reductions required by this TMDL, when implemented, will produce water quality conditions supportive of the designated use at all times. PCB levels in fish tissue become elevated due to long term exposure primarily through consumption of lower trophic level organisms, rather than a critical condition defined by acute exposure to temporary fluctuations in water column tPCB concentrations. Therefore, the selection of the annual average tPCB water column and sediment concentrations for comparison to the TMDL endpoints adequately considers the impact of seasonal variations and critical conditions on the "fishing" designated use in the river. Thus, the TMDL implicitly accounts for seasonal variations as well as critical conditions. Despite the fact that PCB loads from resuspension and diffusion are not considered to be directly controllable, these load contributions are still expected to decrease over time as the result of the
natural attenuation of PCBs in the environment. In addition, discovering and remediating any existing PCB land sources throughout the upstream Chesapeake Bay watershed via future TMDL development and implementation, will further aid in the decline of the boundary condition tPCB concentrations and in meeting water quality goals in the river. MDE also monitors and evaluates concentrations of contaminants in recreationally caught fish, shellfish, and crabs throughout Maryland. MDE will use these monitoring programs to evaluate progress towards meeting the "fishing" designated use in the Severn River. #### 1.0 INTRODUCTION This document, upon approval by the U.S. Environmental Protection Agency (EPA), establishes a Total Maximum Daily Load (TMDL) for polychlorinated biphenyls (PCBs) in the Severn River Mesohaline Chesapeake Bay Tidal Segment (from this point on in the document the "Severn River Mesohaline Chesapeake Bay Tidal Segment" will be referred to as the "Severn River") (2012 Integrated Report of Surface Water Quality in Maryland Assessment Unit ID:MD-SEVMH). Section 303(d) of the federal Clean Water Act (CWA) and EPA's implementing regulations direct each State to identify and list waters, known as water quality limited segment (WQLSs), in which current required controls of a specified substance are inadequate to achieve water quality standards (WQSs). For each WQLS, the State is to either establish a TMDL of the specified substance that the waterbody can receive without violating WQSs, or demonstrate that WQSs are being met (CFR 2015a). TMDLs are established to determine the pollutant load reductions required to achieve and maintain WQSs. A WQS is the combination of a designated use for a particular body of water and the water quality criteria designed to protect that use. Designated uses include activities such as swimming, drinking water supply, protection of aquatic life, fish and shellfish propagation and harvest, etc. Water quality criteria consist of narrative statements and numeric values designed to protect the designated uses. Criteria may differ among waters with different designated uses. Maryland WQSs specify that all surface waters of the State shall be protected for water contact recreation, fishing, and protection of aquatic life and wildlife (COMAR 2015a). The designated use of the Severn River (Basin Code: 02131002) is Use II- Support of Estuarine and Marine Aquatic Life and Shellfish Harvesting (COMAR 2015b). The Maryland Department of the Environment (MDE) has identified the waters of the Severn River (Integrated Report Assessment Unit ID: SEVMH-02131002) on the State's 2012 Integrated Report as impaired by nutrients (1996), sediments (1996), fecal coliform in tidal portions of the basin (1996), and PCBs in fish tissue (2006). The fecal coliform TMDLs for the restricted areas in the Severn River watershed were approved by the EPA in 2006. The Chesapeake Bay nutrient and sediment TMDLs, which were approved by the EPA in December 2010, has addressed the nutrient and sediment impairment listings for the Severn River. The TMDL established herein by MDE will address the total PCB (tPCB) listing for the Severn River. PCBs are a class of man-made compounds that were manufactured and used for a variety of industrial applications. They consist of 209 related chemical compounds (congeners) that were manufactured and sold as mixtures under various trade names, commonly referred to as Aroclors (sixteen different Aroclor mixtures were produced, each formulated based on a specific chlorine composition by mass) (QEA 1999). Each of the 209 possible PCB compounds consists of two phenyl groups and one to ten chlorine atoms. The congeners differ in the number and position of the chlorine atoms along the phenyl group. From the 1940s to the 1970s, they were extensively used as heat transfer fluids, flame retardants, hydraulic fluids, and dielectric fluids because of their dielectric and flame resistant properties. They have been identified as a pollutant of concern due to the following: Severn River PCB TMDL Report Document version: July 2016 - 1. They are bioaccumulative and can cause both acute and chronic toxic effects; - 2. They have carcinogenic properties; - 3. They are persistent organic pollutants that do not readily breakdown in the environment. In the late 1970s, concerns regarding potential human health effects led the U.S. government to take action to cease PCB production, restrict PCB use, and regulate the storage and disposal of PCBs. Despite these actions, PCBs are still being released into the environment through fires or leaks from old PCB containing equipment, accidental spills, burning of PCB containing oils, leaks from hazardous waste sites, etc. Since PCBs tend to bioaccumulate in aquatic organisms, including fish, people who consume fish may become exposed to PCBs. In fact, elevated levels of PCBs in edible parts of fish tissue are one of the leading causes of fish consumption advisories in the U.S. The Severn River was originally identified as impaired by PCBs in fish tissue on Maryland's 2006 Integrated Report based on fish tissue tPCB data from MDE's monitoring program that exceeded the tPCB fish tissue listing threshold of 39 ng/g, or ppb – (wet weight) based on 4 meals per month by a 76 kg individual (MDE 2012). In addition to identifying impaired waterbodies on the State's Integrated Report, MDE also issues statewide and site specific fish consumption advisories (ranging from 0 to 4 meals per month) and recommendations (ranging from 4 to 8 meals per month). Current recreational fish consumption advisories suggest limiting the consumption of white perch (2 meals per month) caught in the Severn River (MDE 2014a). ### 2.0 SETTING AND WATER QUALITY DESCRIPTION ## 2.1 General Setting # Location The Severn River is located in Anne Arundel County, Maryland, on the Western Shore of the Chesapeake Bay. The Severn River is approximately 12.5 miles in length, with a watershed area of approximately 43,985 acres (178 square kilometers). The City of Annapolis is located southwest of the Severn River mouth. Soils in the Severn River watershed are primarily moderate to well drained, silty soils (USDA 2006). The dominant tide in this region is the lunar semi-diurnal tide. The location of the Severn River watershed is shown in Figure 1. # **Land Use** According to the United States Geological Survey's (USGS) 2006 land cover data (USGS 2013), which was specifically developed to be applied within the Chesapeake Bay Program's (CBP) Phase 5.3.2 watershed model, land use in the Severn River watershed is a mixture of forest, urban, and agriculture. Forest occupies approximately 29.1% of the watershed, while 25.1% is water/wetland, 42.6% is urban, and 3.2% is agriculture. The land use distribution is displayed and summarized in Figures 2 and 3 as well as in Table 1. Figure 1: Location Map of the Severn River Watershed Figure 2: Land Use of the Severn River Watershed **Table 1: Land Use Distributions in the Severn River Watershed** | Land Use | Area (km²) | Percent (%)
of Total | | | |---------------|------------|-------------------------|--|--| | Water/Wetland | 44.6 | 25.1 | | | | Urban | 75.7 | 42.6 | | | | Forest | 51.9 | 29.1 | | | | Agriculture | 5.7 | 3.2 | | | | Total | 177.9 | 100.0 | | | Figure 3: Land Use Distribution in the Severn River Watershed ### 2.2 Water Quality Characterization and Impairment Maryland WQSs specify that all surface waters of the State shall be protected for water contact recreation, fishing, and protection of aquatic life and wildlife (COMAR 2015a). The designated use of the waters of the Severn River is Use II– *Support of Estuarine and Marine Aquatic Life and Shellfish Harvesting* (COMAR 2015b). There are no "high quality", or Tier II, stream segment located within the direct drainage portions of the Severn River (COMAR 2015d). ### Water Column Criteria The State of Maryland has adopted three separate water column tPCB criteria to account for different aspects of water quality. There is (1) a human health criterion that addresses the consumption of PCB-contaminated fish, (2) a freshwater chronic criterion that is protective of aquatic life in non-tidal systems, and (3) a saltwater chronic criterion that is protective of aquatic life in tidal systems. As the Severn River is a tidal system, both the human health criterion and saltwater aquatic life chronic criterion are applied for assessing these waters. The Maryland human health tPCB criterion is set at 0.64 nanograms/liter (ng/L), or parts per trillion (ppt) (COMAR 2015c; US EPA 2013a). The human health criterion is based on a cancer slope factor (CSF) of 2 milligrams/kilogram-day (mg/kg-day), a bioconcentration factor (BCF) of 31,200 liters/kilogram (L/kg), a cancer risk level of 10⁻⁵, a lifetime risk level and exposure duration of 70 years, and a fish intake of 17.5 g/day. A CSF is used to estimate the risk of cancer associated with exposure to a carcinogenic substance (i.e. PCBs). The slope factor is a toxicity value for evaluating the probability of an individual developing cancer from exposure to a chemical substance over a lifetime through ingestion or inhalation. A BCF is the ratio of the concentration of a chemical (i.e. tPCBs) in an aquatic organism to the concentration of the chemical in the water column. A cancer risk level provides an estimate of the additional incidence of cancer that may be expected in an exposed population. A risk level of 10⁻⁵ indicates a probability of one additional case of cancer for every 100,000 people exposed. The Maryland fresh and salt water chronic aquatic life tPCB criteria are set at 14 ng/L and 30 ng/L, respectively (COMAR 2015c; US EPA 2013a). The water column mean tPCB concentration in the Severn River exceeds the human health tPCB criterion of 0.64 ng/L; however, none of the water column samples exceed the salt water aquatic life tPCB criterion of 30 ng/L. Water
column tPCB criteria and the tPCB fish tissue listing threshold are displayed in Table 2. Table 2: Water Column tPCB Criteria and tPCB Fish Tissue Listing Threshold | tPCB Criteria/Threshold | Concentration | |--|---------------| | Fresh Water Chronic Aquatic Life Criterion | 14 ng/L | | Salt water Chronic Aquatic Life Criterion | 30 ng/L | | Human Health Criterion | 0.64 ng/L | | Fish Tissue Listing Threshold | 39 ng/g | #### Fish Tissue Criteria In addition to the water column criteria described above, fish tissue monitoring can serve as an indicator of PCB water quality conditions. The Maryland fish tissue monitoring data is used to determine whether Maryland waterbodies are meeting the "fishing" designated use and issue fish consumption advisories/recommendations. Only data results from the analysis of skinless fillets (the edible portion of fish typically consumed by humans) is used for assessment purposes and development of this TMDL. Currently Maryland applies 39 ng/g as the tPCB fish tissue listing threshold, based on a fish consumption limit of 4 meals per month. When tPCB fish tissue concentrations exceed this threshold, the waterbody is listed as impaired for PCBs in fish tissue in Maryland's Integrated Report as it is not supportive of the "fishing" designated use (MDE 2012). MDE collected fish tissue samples for PCB analysis in the Severn River and their watershed in 2002, 2004, 2007, 2011, and 2012. The tPCB concentrations in 4 out of 6 fish tissue composite samples collected in 2002, 2004 and 2007 exceed the listing threshold; 5 out of 6 fish tissue composite samples collected in 2011 and 2012 (white perch and yellow perch) exceed the listing threshold, demonstrating that PCB impairment exists within the Severn River. Severn River PCB TMDL Report In 2011 and 2012, monitoring surveys were conducted by MDE to measure water column tPCB concentrations at seven tidal and six non-tidal monitoring stations throughout the Severn River and its watershed. One of the tidal stations is located at the boundary of the Severn River and the main stem of the Chesapeake Bay. The tPCB water column concentration data from this station is required to characterize tidal influences from the Bay. Sediment samples were collected at tidal stations, including the boundary station, in 2011 to characterize tPCB sediment concentrations. Table 3 summarizes the tPCB data for the fish tissue, water column, and sediment samples that were applied in developing this TMDL. Table 3: Summary of Fish Tissue, Water Column, and Sediment tPCB Data | Sample | | | Sample | Sample | tPCB Concentration | | | | |-------------|------------------------|-------|-----------|--------|--------------------|--------|-------|--| | Media | Sample Type | Units | Years | Size | Mean | Max. | Min. | | | Fish Tissue | Tidal | ng/g | 2011/2012 | 30* | 84.41 | 180.45 | 35.74 | | | | Tidal | | | 12 | 62.38 | 140.00 | 21.52 | | | Sediment | Tidal (Boundary) | ng/g | 2011 | 2 | 12.83 | 25.13 | 0.53 | | | | Tidal | | 2011/2012 | 18 | 0.82 | 1.71 | 0.07 | | | | Tidal (Boundary) | | 2011/2012 | 3 | 0.85 | 1.32 | 0.20 | | | Water | Non-Tidal (Stream) | | 2011/2012 | 8 | 0.57 | 1.36 | 0.04 | | | Column | Non-Tidal (Stormwater) | ng/L | 2011 | 4 | 0.60 | 0.83 | 0.39 | | ^{*}Total Fish Tissue Samples *tPCB concentrations "Mean, Max.," and "Min." values for water column data are rounded numbers based on water column data compiled in Table I-3. The non-tidal tPCB water column concentration data is required to characterize loadings from the watershed. Because the watershed is relatively small and the tidal portion extends most of its length, only four streams were identified with both adequate flow and site access for water column sampling. To ensure that there were a sufficient number of samples to fully characterize the load from the watershed, two additional sampling stations were established in stormwater culverts and sampled during rain events. PCB analytical services were provided by the University of Maryland Center for Environmental Science (UMCES), using a slightly modified version of the PCB congener specific method described in Ashley and Baker (1999), in which the identities and concentrations of each congener in a mixed Aroclor standard are determined based on their chromatographic retention times relative to the internal standards. Based on this method, upwards of 100 chromatographic peaks can be quantified. A detailed description of this method is provided in Appendix A. Figure 4 shows a map of the PCB water column, sediment and fish tissue sampling locations in the Severn River. Appendix I contains tables of all of the tPCB data. Figure 4: The Locations of PCB Water Column, Sediment, Fish Tissue Monitoring Stations and Waste Water Treatment Plants in the Severn River #### 3.0 TARGETED WATER COLUMN AND SEDIMENT TMDL ENDPOINTS As described in Section 2.2, MDE evaluates whether a waterbody meets PCB related WQSs based on three criteria: 1) the tPCB Integrated Report fish tissue listing threshold (39 ng/g, or ppb), 2) the human health tPCB water column criterion (0.64 ng/L, or ppt), or 3) the saltwater chronic tPCB criterion for protection of aquatic life (30 ng/L, or ppt). Since the Severn River was identified as impaired for PCBs in fish tissue, the overall objective of the tPCB TMDL established in this document is to ensure that the "fishing" designated use, which is protective of human health related to the consumption of fish, is supported; however, this TMDL will also ensure the protection of all other applicable designated uses. The tPCB fish tissue listing threshold was translated into an associated tPCB water column concentration to provide a TMDL endpoint as the water quality model used in this TMDL analysis only simulates tPCB water column and sediment concentration and does not incorporate a food web model to predict tPCB fish tissue concentrations (see Equation 3.1 and Calculation 3.1). This was accomplished using the Adjusted Total Bioaccumulation Factor (Adj-tBAF) of 199,953 L/kg for the Severn River, the derivation of which follows the method applied within the Potomac River tPCB TMDLs (Haywood and Buchanan, 2007). A total Bioaccumulation Factor (tBAF) is calculated per fish species, and subsequently the tBAFs are normalized by the median species lipid content and median dissolved tPCB water column concentration in their home range to produce the Adj-tBAF per species (see Appendix B for further details regarding the calculation of the Adj-tBAF). The most environmentally conservative of the Adj-tBAFs is then selected to calculate the TMDL endpoint water column concentration. This final water column tPCB concentration was then compared to the water column tPCB criteria concentrations, as described in Section 2.2, to ensure that all applicable criteria within the embayment would be attained (Calculation 3.1). $$tPCB \ Water \ Column \ Concentration = \frac{tPCB \ Fish \ Tissue \ Concentration \ Listing \ Threshold}{Adj - tBAF \times Unit \ Conversion} \tag{Equation 3.1}$$ Substituting 39 ng/g into the equation results in: tPCB Water Column Concentration = $$\frac{39 \text{ ng/g}}{199,953 \text{ L/kg} \times 0.001 \text{ kg/g}} = 0.195 \text{ ng/L}$$ (Calculation 3.1) which is < 0.64 ng/L (human health tPCB water column criterion). Based on this analysis, the water column tPCB concentration of 0.195 ng/L, derived from the tPCB fish tissue listing threshold, is selected as the TMDL endpoint for the river. This is more stringent than the value of 0.64 ng/L for human health and the fresh and salt water chronic aquatic life tPCB criteria of 14 ng/L and 30 ng/L, respectively. Similarly, in order to establish a tPCB TMDL endpoint for the sediment in the river, a target tPCB sediment concentration was derived from the tPCB fish tissue listing threshold. This is because the water quality model only simulates tPCB sediment concentrations and not tPCB fish tissue concentrations (see Equation 3.2 and Calculation 3.2) to apply within this analysis as the sediment TMDL endpoint concentration. This was done using the Adjusted Sediment Severn River PCB TMDL Report Bioaccumulation Factor (Adj-SediBAF) of 2.13 (unit-less) for the river, the derivation of which follows the method applied within the Potomac River tPCB TMDLs (Haywood and Buchanan 2007). Similar to the calculation of the water column Adj-tBAF, a sediment Bioaccumulation Factor (SediBAF) is calculated per fish species, and subsequently the SediBAFs are normalized by the median species lipid content and median organic carbon tPCB sediment concentration in their home range to produce the Adj-SediBAF (see Appendix B for further details regarding the calculation of the Adj-SediBAF). The most environmentally conservative of the Adj-SediBAFs is then selected to calculate the sediment TMDL endpoint tPCB concentration. $$tPCB \ Sediment \ Concentrat \ ion = \frac{tPCB \ Fish \ Tissue \ Concentrat \ ion \ Listing \ Threshold}{Adj - SediBAF} \ (Equation \ 3.2)$$ Substituting 39 ng/g and the derived Adj – SediBAF of 2.13 into the equation, results in: tPCB Sediment Concentration = $$\frac{39 \text{ ng/g}}{2.13}$$ = 18.3 ng/g (Calculation 3.2) Based on this analysis, the tPCB level of 18.3 ng/g derived from the fish tissue listing threshold is set as the sediment TMDL endpoint. The CWA, as recently interpreted by the United States District Court for the District of Columbia, requires TMDLs to be protective of all the designated uses applicable to a particular waterbody (US District Court for the District of Columbia 2011). In addition to the "fishing" designated use, the TMDL presented herein is also supportive of the other applicable designated uses within the impaired waters, as described in the introduction to this report and in Section 2.2. These include "marine and estuarine aquatic life", "shellfish harvesting", and "water contact recreation". The water column
endpoint tPCB concentrations are more stringent than Maryland's saltwater aquatic life chronic criterion tPCB water column concentration. This indicates that the TMDLs are protective of the "aquatic life" designated use, specifically the protection of "marine and estuarine aquatic life and shellfish harvesting". Lastly, the designated use for "water contact recreation" is not associated with any potential human health risks due to PCB exposure. Dermal contact and accidental consumption of water from activities associated with "water contact recreation" is not a significant pathway for the uptake of PCBs. The EPA human health criterion was developed solely based on aquatic organism (e.g. fish, shellfish, etc...) consumption, as drinking water consumption does not pose any risk for cancer development at environmentally relevant levels. The only human health risk associated with PCB exposure is through the consumption of aquatic organisms. #### 4.0 SOURCE ASSESSMENT PCBs do not occur naturally in the environment. Therefore, unless existing or historical anthropogenic sources are present, their natural background levels are expected to be zero. Although PCBs are no longer manufactured in the United States, they are still being released to the environment via accidental fires, leaks, or spills from PCB-containing equipment; potential leaks from hazardous waste sites that contain PCBs; illegal or improper dumping; and disposal of PCB-containing products (*e.g.*, transformers, old fluorescent lighting fixtures, electrical devices or appliances containing PCB capacitors, old microscope oil, and old hydraulic oil) into landfills not designed to handle hazardous waste. Once in the environment, PCBs do not readily break down and tend to cycle between various environmental media such as air, water, and soil. PCBs exhibit low water solubility, are moderately volatile, strongly adsorb to organics, and preferentially partition to upland and bottom sediments. The major fate process for PCBs in water is adsorption to sediment or other organic matter. Adsorption and subsequent sedimentation may immobilize PCBs for relatively long periods of time. However, desorption into the water column may also occur; PCBs contained in layers near the sediment surface may be slowly released over time, while concentrations present in the lower layers may be effectively sequestered from environmental distribution (RETEC 2002). The linkage between the "fishing" designated use and PCB concentrations in the water column is via the uptake and bioaccumulation of PCBs by aquatic organisms. Bioaccumulation occurs when the combined uptake rate of a given chemical from food, water, and/or sediment by an organism exceeds the organism's ability to remove the chemical through metabolic functions, dilution, or excretion, resulting in excess concentrations of the chemical being stored in the body of the organism. Depending on the life cycle and feeding patterns, aquatic organisms can bioaccumulate PCBs via exposure to concentrations present in the water column (in dissolved and/or particulate form) and sediments, as well as from consumption of other organisms resulting in the biomagnification of PCBs within the food chain (RETEC 2002). Humans can be exposed to PCBs via consumption of aquatic organisms, which over time have bioaccumulated PCBs. A simplified conceptual model of PCB fate and transport in the Severn River is diagrammed in Figure 5. PCB sources, resulting primarily from historical uses of these compounds and potential releases to the environment as described above, include point and nonpoint sources. This section provides a summary of these existing nonpoint and point sources that have been identified as contributing tPCB loads to the Severn River. Figure 5: Conceptual Model of the Key Transport and Transformation Processes of PCBs in Surface Water and Bottom Sediments of the Severn River and Entry Points to the Food Chain ### 4.1 Nonpoint Sources For the purpose of this TMDL, under current conditions, the following nonpoint sources of PCBs have been identified: 1) Chesapeake Bay mainstem tidal influence, 2) direct atmospheric deposition to the river, and 3) runoff from non-regulated watershed areas within the Severn River's direct drainage. The transport of PCBs from bottom sediments to the water column through resuspension and diffusion can also be a major source of PCBs in estuarine systems; however, under the framework of this TMDL it is not considered a source. A detailed explanation of each nonpoint source category will be presented in the following sections including additional information on resuspension and diffusion from bottom sediments. # **Chesapeake Bay Mainstem Tidal Influence** The Severn River embayment is highly influenced by tidal exchange of PCBs from the Chesapeake Bay mainstem. Based on the tPCB concentrations measured at the mouth of the Severn River and the dispersion coefficient calculated and calibrated from the available salinity data, the Chesapeake Bay tPCB Baseline Load of 6,156 g/year is the major source of tPCB to the Severn River embayment (see Table 5). ## **Atmospheric Deposition** PCBs enter the atmosphere through volatilization. There is no recent study of the atmospheric deposition of PCBs to the surface of the Severn River. An Atmospheric Deposition Study by the Chesapeake Bay Program (CBP) (US EPA 1999) estimated a net deposition of 16.3 micrograms/square meter/year (µg/m²/year) of tPCBs for urban areas and a net deposition of 1.6 μg/m²/year of tPCBs for regional (non urban) areas. In the Delaware River estuary, an extensive atmospheric deposition monitoring program conducted by the Delaware River Basin Commission (DRBC) found PCB deposition rates ranging from 1.3 (non urban) to 17.5 (urban) µg/m²/year of tPCBs (DRBC 2003). The urban deposition rate defined in CBP's study is a result of heavily urbanized areas comprised primarily of high density residential, industrial and commercial land uses. While urban land use accounts for 43% of the Severn River watershed the land area is comprised primarily of low and medium density residential land uses. Therefore, the 1.6 µg/m²/year tPCB depositional rate for non-urban areas resultant from CBP's 1999 study will be applied in the Severn River watershed. Therefore, the atmospheric deposition load to the direct watershed can be calculated by multiplying 1.6 µg/m²/year by the watershed area of 148.2 km², which results in a load of 237.12 g/year. However, according to Totten et al. (2006), only a portion of the atmospherically deposited tPCB load to the terrestrial part of the watershed is expected to be delivered to the embayment. Applying the PCB pass-through efficiency estimated by Totten et al. (2006) for the Delaware River watershed of approximately 1%, the atmospheric deposition load to the Severn River from the watershed is approximately 2.4 g/year (rounded from 2.3712). This load is accounted for within the loading from the watershed and is inherently modeled as part of the non-regulated watershed runoff and the National Pollutant Discharge Elimination System (NPDES) Regulated Stormwater loads described below and in Section 4.2. Similarly, the direct atmospheric deposition load to the surface of the river of 47.0 g/year (rounded from 47.04) was calculated by multiplying the surface area of the river (29.4 km²) and the deposition rate of 1.6 μ g/m²/year. ### **Watershed Sources: Non-regulated Watershed Runoff** The non-regulated watershed runoff tPCB load corresponds to the non-urbanized areas (*i.e.*, primarily forest, agricultural and wetland areas) of the watershed. The load associated with the urbanized area of the watershed represents the NPDES Regulated Stormwater tPCB load which is presented in Section 4.2 under Point Sources. MDE collected water column samples for PCB analysis at 6 non-tidal monitoring stations in the Severn River on May, June, July, and October of 2011 and March of 2012 (See Appendix J). To calculate the watershed flow, the daily flow rates from January 1, 2004 to December 31, 2013 at the United States Geological Survey (USGS) station located at south fork Jabez Branch of Millersville in the Severn River watershed (USGS 01589795, Figure 4) were obtained and the mean flows were calculated. The direct drainage of the Severn River was divided into six subwatersheds (See Section 5.2 and Appendix C for details). Severn River PCB TMDL Report Document version: July 2016 The flow of each subwatershed was calculated by dividing the USGS 01589795 station mean flow by the USGS drainage area, and multiplying this quotient by the subwatershed area (Equation 4.1). Subwatersh ed Flow = $$\frac{\text{USGS Mean Flow}}{\text{USGS Drainage Area}} \times \text{Subwatersh ed Area}$$ (Equation 4.1) A tPCB load for each sample was then calculated based on the observed tPCB concentration and average daily flow, and the relationship between loads and flows was developed via regression analysis for the monitoring station. With this relationship, the tPCB load corresponding to any flow can be estimated. The total direct drainage watershed baseline load of the Severn River (50.5 g/year) is the sum of the loads of the 6 direct drainage subwatersheds (See details in Appendix C). As mentioned above, about 2.4 g/year of the Severn River watershed's baseline load is attributed to atmospheric deposition to the land surface of the direct drainage, and is inherently captured within the total watershed tPCB baseline load of 50.5 g/year. The non-regulated watershed runoff tPCB baseline load (29.0 g/year) was estimated by multiplying the percentage of non-urban land use (57.4 %) within the watershed by the total watershed baseline load (50.5 g/year). ### **Resuspension and Diffusion from Bottom Sediments** The transport of PCBs from bottom sediments to the water column through resuspension and diffusion can be a major source of PCBs in estuarine systems; however, under
the framework of this TMDL it is not considered a non-point source. The water quality model developed for this TMDL simulates conditions within the water column and sediment as a single system. Therefore, exchanges between the sediment and water column are considered an internal loading. Only external sources to the system are assigned a baseline load or allocation within a TMDL. As PCBs bind to the organic carbon fraction of suspended sediment in the water column and settle onto the embayment floor, a large portion of the tPCB loads delivered from various point and non-point sources to the embayment deposits within the bottom sediments. This accumulation of PCBs can subsequently become a significant source of PCBs to the water column via the disturbance and resuspension of sediments. Dissolved tPCB concentrations in sediment pore water will also diffuse into the water column. Under current conditions (due to elevated particulate tPCB concentrations resultant from PCB adsorption to the organic carbon component of suspended sediment in the water column when compared to tPCB concentrations in the bottom sediment) there is a net transport of PCBs to the bottom sediment from the water column in the Severn River through settling and deposition. The water quality model, applying observed tPCB concentrations in the water column and sediment, predicts a net tPCB transport of 5,191 g/year from the water column to the bottom sediment in the Severn River under baseline condition. Even if resuspension and diffusion from bottom sediments served as a source of PCBs to the water column, the load contribution is resultant from other point and nonpoint source inputs (both historic and current) and is not considered to be a directly controllable (reducible) source. Therefore, it would not be assigned a baseline load or allocation. Severn River PCB TMDL Report #### 4.2 Point Sources Point Sources in the Severn River watershed include two waste water treatment plants (WWTP), five industrial process water discharges, and eighteen storm water discharges regulated under Phase I and Phase II of the NPDES stormwater program. This section provides detailed explanations regarding the calculation of the point source tPCB baseline loads. ## **WWTPs** No tPCB effluent concentration data is available for the Annapolis Water Reclamation Facility or the Naval Support Activity Annapolis WWTP (see Figure 4 for their locations), so the concentration was estimated based on the median tPCB effluent concentration from 13 WWTPs monitored by MDE in the Chesapeake Bay watershed (MDE 2006). The baseline tPCB load for these facilities were calculated based on the design flow from these facilities and the estimated median tPCB concentration from the 2006 study. Table 4 provides information on the data used in calculating the baseline loads. | Facility Name | NPDES # | Average
Concentration
(ng/L) | Design
Flow
(MGD) | tPCB
Baseline
Load (g/year) | |---------------------------------------|-----------|------------------------------------|-------------------------|-----------------------------------| | Naval Support Activity Annapolis WWTP | MD0023523 | 0.906 1 | 0.700 | 0.876 | | Annapolis Water Reclamation | MD0021814 | 0.906 1 | 13.000 | 16.273 | Table 4: Summary of Municipal WWTP tPCB Baseline Loads # **Industrial Process Water Facility** Industrial process water facilities are included in Maryland's PCB TMDL analyses if: 1) they are located within the applicable watershed, and 2) they have the potential to discharge PCBs. Per guidance developed by Virginia for monitoring point sources in support of TMDL development, specific types of industrial and commercial operations are more likely than others to discharge PCBs based on historic or current activities. The State identified specific types of permitted industrial and municipal facilities based on their Standard Industrial Classification (SIC) codes as having the potential to contain PCBs within their process water discharge (VADEQ 2009). This methodology was previously applied within Maryland's Baltimore Harbor and other PCB TMDLs which has been approved by the EPA (MDE 2011a). Five industrial discharges were identified within the Severn River watershed; their permit subcategories are "cooling water," "dewatering non-construction", "groundwater remediation chemical" and marinas. These five facilities have SIC codes defined in Virginia's guidance as having no potential to discharge PCBs. Therefore, there is no baseline PCB load from these five industrial facilities. ¹ These concentration are based upon a 2006 MDE study that analyzed PCB concentrations from the effluent of 13 WWTPs in Maryland ### NPDES Regulated Stormwater The Department applies EPA's requirement that "stormwater discharges that are regulated under Phase I or Phase II of the NPDES stormwater program are point sources that must be included in the Wasteload Allocation (WLA) portion of a TMDL" (US EPA 2002). Phase I and II permits can include the following types of discharges: - Small, medium, and large Municipal Separate Storm Sewer Systems (MS4s) these can be owned by local jurisdictions, municipalities, and state and federal entities (*e.g.*, departments of transportation, hospitals, military bases); - Industrial facilities permitted for stormwater discharges; and - Small and large construction sites. A list of all the NPDES regulated stormwater permits within the Severn River watershed that could potentially convey tPCB loads to the river is presented in Appendix H. MDE estimates pollutant loads from NPDES regulated stormwater areas based on urban land use classification within a given watershed. The 2006 USGS spatial land cover, which was used to develop CBP's Phase 5.3.2 watershed model land use, was applied in this TMDL to estimate the NPDES Regulated Stormwater tPCB Baseline Load. The Severn River watershed is entirely located within Anne Arundel County, Maryland. The NPDES stormwater permits within the watershed include: (i) the area covered under Anne Arundel County's Phase I jurisdictional MS4 permit, (ii) Phase II MS4 permit for the City of Annapolis, (iii) the State Highway Administration's Phase I MS4 permit, (iv) state and federal general Phase II MS4s, (v) industrial facilities permitted for stormwater discharges, and (vi) construction sites (see Appendix H for a list of all NPDES regulated stormwater permits). The NPDES Regulated Stormwater tPCB Baseline Load (21.5 g/year) was estimated by multiplying the percentage of urban land use (42.6%) of the direct drainage by the total direct drainage baseline load (50.5 g/year). # 4.3 Source Assessment Summary From this source assessment all point and nonpoint sources of PCBs to the Severn River watershed have been identified and characterized. Nonpoint sources of PCBs have been identified: 1) Chesapeake Bay mainstem tidal influence, 2) direct atmospheric deposition to the river, and 3) runoff from non-regulated watershed areas within the Severn River's direct drainage. Point sources include two municipal WWTPs and NPDES regulated stormwater runoff. Estimated tPCB loads from these point and nonpoint sources represent the baseline conditions for the watershed A summary of the tPCB baseline loads for the Severn River is presented in Table 5. The total tPCB load is 6,270.3 g/year (6.27 kg/year). In order to address the long term PCB load variation, the watershed loads are calculated using a 10-year mean flow from January 1, 2004 to December 31, 2013 (PCB water column concentration samples were taken in 2011 and 2012). Severn River PCB TMDL Report Document version: July 2016 As explained in Section 4.1, since the loads from resuspension and diffusion from bottom sediments are not considered to be directly controllable (reducible) loads and are considered as internal loads within the modeling framework of the TMDL, they are not included in the tPCB baseline load summaries. Table 5: Summary of tPCB Baseline Loads in the Severn River | | Baseline | Percent of | |-----------------------------------|----------|----------------| | Source | Load | Total Baseline | | | (g/year) | Load (%) | | Chesapeake Bay Mainstem Influence | 6,155.7 | 98.17 | | Direct Atmospheric Deposition | 47.0 | 0.75 | | (to the Surface of the Embayment) | 47.0 | 0.73 | | Non-regulated Watershed Runoff | 29.0 | 0.46 | | Nonpoint Sources | 6,231.7 | 99.38 | | WWTP | 17.1 | 0.27 | | NPDES Regulated Stormwater | 21.5 | 0.34 | | Point Sources | 38.6 | 0.62 | | Total | 6,270.3 | 100.00 | Note: Individual Baseline loads may not add to total load due to rounding. #### 5.0 TOTAL MAXIMUM DAILY LOADS AND LOAD ALLOCATION #### 5.1 Overview A TMDL is the total amount of an impairing substance that a waterbody can receive and still meet WQSs. The TMDL may be expressed as a mass per unit time, toxicity, or other appropriate measure and should be presented in terms of WLAs, load allocations (LAs), and either an implicit or explicit margin of safety (MOS) (CFR 2015a): $$TMDL = WLAs + LAs + MOS$$ (Equation 5.1) This section describes how the tPCB TMDL and the corresponding LAs and WLAs have been developed for the Severn River. The analysis framework for simulating PCB concentrations is described in Section 5.2. Section 5.3 addresses critical conditions and seasonality, and Section 5.4 presents the allocation of loads between point and nonpoint sources. The Margin of Safety (MOS) is discussed in Section 5.5, model uncertainties are discussed in Section 5.6, and the TMDL is summarized in Section 5.7. # 5.2 Analysis Framework A tidally averaged multi-segment one-dimensional transport model was applied to simulate the tPCB dynamic interactions between the water column and bottom sediments within the Severn River embayment and the Chesapeake Bay mainstem (MDE 2005, Kuo et al.2005). The river was divided into 6 segments and the direct drainage watershed into 6 subwatersheds (Figure C-1). In general, tidal waters are
exchanged through their connecting boundaries. Within the Severn River embayment the dominant processes affecting the transport of PCBs throughout the water column include: the dispersion induced by tide and concentration gradient between the Bay and the River, freshwater discharge, the atmospheric exchange due to volatilization and deposition, and the exchange with the bottom sediments (through diffusion, resuspension, and settling). Burial to the deeper inactive layers and the exchange with the water column (through diffusion, resuspension, and settling) are the dominant processes affecting the transport of PCBs in the bottom sediments. A detailed description of the model is presented in Appendices D and E. The observed average tPCB concentrations in each segment were used as the model input representing baseline conditions. Based on the study of Ko and Baker (2004), on average the tPCB concentrations in the Upper Chesapeake Bay are decreasing at a rate of 6.5% per year. As a conservative estimation, this study assumes a PCB attenuation rate of 5.0% per year at the boundary between the Severn River and the Chesapeake Bay mainstem as used in the Back River PCB TMDL study (MDE, 2011b). All other inputs (i.e., fresh water inputs, tidal exchange rates, sediment and water column exchange rates, atmosphere deposition, and burial rate) were kept constant. The model was initially run for 40,000 days to predict the time needed for the water column tPCB concentration to meet the site-specific tPCB water column TMDL endpoint. The results indicated that when the site-specific water column TMDL endpoint (0.195 ng/L) was met at day #16,878, the site-specific sediment TMDL endpoint (18.3 ng/g) was met as well. The average PCB concentration of the six segments was used in assessing both the water column and the sediment results. Consequently, the model was run again for 40,000 days to predict the time Severn River PCB TMDL Report needed for the sediment concentrations to reach the TMDL endpoint. Figure 6 shows the simulated results: after 16,878 days (about 46.2 years) the water column concentration reached 0.195 ng/l, at which time the sediment tPCB concentration was equal to 6.5 ng/L, well below the sediment TMDL endpoint of 18.3 ng/g (see Figure 6). If the model inputs for freshwater discharge (i.e., tPCB watershed load), WWTP load, and atmospheric deposition are reduced by 100%, the time it takes to achieve the TMDL endpoints is only reduced by 2031 days (5.6 years). Figure 7 shows the simulated result: after 14,847 days (about 40.7 years) the tPCB sediment concentration reached 7.5 ng/l, at which time the water column tPCB concentration was equal to 0.195 ng/l. As stated in Section 4, the Chesapeake Bay mainstem tidal influence is the primary source of tPCB baseline loads resulting in the PCB impairment in the Severn River embayment. The transport of PCBs from bottom sediments to the water column through resuspension and diffusion can also be a major source of PCBs in estuarine systems; however, under the framework of this TMDL it is not considered a controllable source. Attainment of the site-specific tPCB water quality TMDL endpoints is expected to take place over time as the Chesapeake Bay mainstem tPCB concentrations continue to decline, which also results in the natural attenuation of tPCB levels in the surface layer of the sediments (i.e., the covering of contaminated sediments with newer, less contaminated materials, flushing of sediments during periods of high stream flow, and biodegradation). Assuming that the tPCB concentrations in the Chesapeake Bay mainstem will continue to decline, at or above the current rate of 5% per year, no additional tPCB reductions will be necessary to meet the "fishing" designated use in the Severn River embayment. Figure 6: Change of Average Water Column and Bottom Sediment tPCB Concentrations with Time within the Severn River (Natural Attenuation Only) Figure 7: Change of Average Water Column and Bottom Sediment tPCB Concentrations with Time within the Severn River (100% Reduction to Watershed Load, WWTP load, & Atmospheric Deposition) ### 5.3 Critical Condition and Seasonality Federal regulations require TMDL analysis to take into account the impact of critical conditions and seasonality on water quality (CFR 2015a). The intent of this requirement is to ensure that water quality is protected when it is most vulnerable. This TMDL is protective of human health at all times; thus, it implicitly accounts for seasonal variations as well as critical conditions. Achievement of the TMDL endpoints for both the water column and sediment will result in fish tissue PCB concentrations associated with a cancer risk value of less than 10⁻⁵ based on the consumption levels previously described in Section 2.3. Bioaccumulation of PCBs in fish is driven by long-term exposure through respiration, dermal contact, and consumption of lower order trophic level organisms. The critical condition, defined by acute exposure to temporary fluctuations in PCB water column concentrations during storm events, is not a significant pathway for uptake of PCBs. Monitoring of PCBs was conducted on a quarterly basis to account for seasonal variation in establishing the baseline condition for ambient water quality in the Severn River and estimation of watershed loadings. Since PCB levels in fish tissue become elevated due to long-term exposure, it has been determined that the selection of the annual average tPCB water column and sediment concentrations for comparison to the endpoints applied within the TMDL adequately considers the impact of seasonal variations and critical conditions on the "fishing" designated use in the Severn River. Furthermore, the water column TMDL endpoint is also supportive of the "protection of aquatic life" designated use at all times, as it is more stringent than the freshwater chronic tPCB criterion. ### **5.4** TMDL Allocations All TMDLs need to be presented as a sum of WLAs for point sources and LAs for nonpoint source loads generated within the assessment unit and, if applicable, LAs for the natural background, tributary, and adjacent segment loads (CFR 2013b). The State reserves the right to revise these allocations provided the revisions are consistent with achieving WQSs. The allocations described in this section summarize the tPCB TMDL established to meet the "fishing" designated use in the Severn River. These allocations are also supportive of the "protection of aquatic life" designated use as explained above. As stated in Section 4.3, the PCB loads from the Chesapeake Bay mainstem are the major source for the Severn River embayment, and they account for about 98.17% of total baseline loads to the river. In Section 5.2, model simulation results show that both the water column and sediment PCB targets will be met in about 46.2 years with only natural attenuation of tPCB concentration from the Chesapeake Bay mainstem. Therefore, no reduction is assigned to the watershed loads, including both the non-point source and point source loads from the watershed. When the targets are met, the tPCB load from the Chesapeake Bay mainstem will be reduced by about 90.7% from its baseline load, including an explicit 5% Margin of Safety which is discussed below (Table 6). ### 5.5 Margin of Safety All TMDLs must include a MOS to account for the lack of knowledge and the many uncertainties in the understanding and simulation of water quality parameters in natural systems Severn River PCB TMDL Report (i.e., the relationship between modeled loads and water quality). The MOS is intended to account for such uncertainties in a manner that is conservative from the standpoint of environmental protection. Uncertainty within the model framework includes the estimated rate of decline in tPCB concentrations within the Chesapeake Bay mainstem as well as the initial condition of mean tPCB concentrations that was selected for the model. In order to account for these uncertainties, MDE applied an explicit 5% MOS, in order to provide an adequate and environmentally protective TMDL. # **5.6 Maximum Daily Loads** All TMDLs must include maximum daily loads (MDLs) consistent with the average annual TMDL. For this TMDL, tPCB MDLs are developed for each source category by converting daily time-series loads into TMDL values consistent with available EPA guidance on generating daily loads for TMDLs (US EPA 2007). The approach builds upon the TMDL modeling analysis that was conducted to ensure that average annual load targets result in compliance with the TMDL endpoint tPCB concentrations and considers a daily load level of a resolution based on specific data for each source category. The detailed calculation of MDLs is stated in Appendix G and the results are shown on Table 6. ## 5.7 TMDL Summary Table 6 summarizes the tPCB baseline loads, TMDL allocations, load reductions, and MDLs for the Severn River. Table 6: Summary of tPCB Baseline Loads, TMDL Allocations, Load Reductions, and MDLs in the Severn River | | Baseline | Baseline | TMDL | Load | MDL | |--|-----------------|---------------|---------------|-----------|----------------| | | Load | Percentage | | Reduction | | | Source | (g/year) | (%) | (g/year) | (%) | (g/day) | | Chesapeake Bay Mainstem Influence
Direct Atmospheric Deposition | 6,155.7
47.0 | 98.17
0.75 | 574.4
47.0 | 90.7
0 | 3.389
0.277 | | Non-regulated Watershed Runoff | 29.0 | 0.46 | 29.0 | 0 | 0.171 | | Nonpoint Sources | 6,231.7 | 99.38 | 650.4 | 89.6 | 3.838 | | WWTP | 17.1 | 0.273 | 17.1 | 0 | 0.145 | | NPDES Regulated Stormwater | 21.5 | 0.343 | 21.5 | 0 | 0.127 | | Point Sources | 38.6 | 0.62 | 38.6 | 0 | 0.272 | | MOS (5%) | - | | 36.3 | - | 0.216 | | Total | 6,270.3 | 100.00 | 725.3 | 88.4 | 4.326 | Note: Columns may not precisely add to totals due to rounding. Note: MDL numbers are rounded numbers calculated
from rounded conversion factors. #### 6.0 ASSURANCE OF IMPLEMENTATION This section provides the basis for reasonable assurance that the tPCB TMDLs for the Severn River will be achieved and maintained. As discussed in the previous sections, the Chesapeake Bay mainstem tidal influence and resuspension and diffusion from the bottom sediments have been identified as the two major sources of tPCBs to the Severn River embayment. Since the loads from resuspension and diffusion from bottom sediments are not considered to be directly controllable (reducible) loads and are considered as internal loads within the modeling framework of the TMDL, they are not included in the tPCB baseline load and TMDL allocation. Given that PCBs are no longer manufactured, and their use has been substantially restricted, it is reasonable to expect that with time, PCB concentrations in the aquatic environment will decline. In this study, it is assumed that the tPCB concentrations in the Chesapeake Bay mainstem are decreasing at a rate of 5% per year as used in the Back River PCB TMDL study (MDE, 2011b). Other processes, such as the burial of contaminated sediments with newer, less contaminated materials, flushing of sediments during periods of high stream flow, and biodegradation will contribute to this natural attenuation. Model scenarios predict that with the natural attenuation of tPCB concentrations in the Chesapeake Bay mainstem, the tPCB targets in both water column and sediment of the Severn River embayment will be met in about 46.2 years. Loads from the watershed, including non-point and point sources, and atmospheric deposition only account for 1.83% (see Table 6) of the total tPCB baseline load. Therefore, no reductions to these loads are necessary in order to achieve the TMDL. A new Chesapeake Bay Watershed Agreement was signed on June 16, 2014 which includes goals and outcomes for toxic contaminants including PCBs (CBP 2014). The toxic contaminant goal is to "ensure that the Bay and its rivers are free of effects of toxic contaminants on living resources and human health." Objectives for the toxic contaminant outcomes regarding PCBs include: 1) characterizing the occurrence, concentrations, sources and effects of PCBs, 2) identifying best management practices (BMPs) that may provide benefits for reducing toxic contaminants in waterways, 3) improving practices and controls that reduce and prevent the effects of toxic contaminants, and 4) building on existing programs to reduce the amount and effects of PCBs in the Bay and watershed. Implementation of the toxic contaminant goal and outcomes under the new Bay agreement, as well as discovering and minimizing any existing PCB land sources throughout the Chesapeake Bay watershed via future TMDL development and implementation efforts, could further help to meet water quality goals in the Severn River. Aside from the processes of natural attenuation, an alternative approach that can assist in reducing the tPCB concentrations in the water column so as to meet WQSs is the physical removal of the PCB-contaminated sediments (*i.e.*, dredging). This process would minimize one of the primary, potential sources of tPCBs to the water column. When considering dredging as an option, the risk versus benefit must be weighed as the removal of contaminated sediment may potentially damage the habitat and health of the existing benthic community. The process of stirring up suspended sediments during dredging may damage the gills and/or sensory organs of benthic macroinvertebrates and fish. Suspended sediments can also affect the prey-gathering ability of sight-feeding fish during dredging operations. In addition, the resuspension of Severn River PCB TMDL Report contaminated sediments causes additional exposure of PCBs to aquatic organisms. In the case of the Severn River, by allowing for natural attenuation of PCBs in the sediment, water quality supportive of the "fishing" designated use will be achieved within 46.2 years while avoiding disturbance of the benthic habitat. MDE's Environmental Assessment and Standards Program will periodically monitor and evaluate concentrations of contaminants in recreationally caught fish, shellfish, and crabs throughout Maryland. This information will be used to evaluate the PCB impairment in the Severn River embayment on an ongoing basis. Any future monitoring should include congener specific analytical methods. Ideally, either the most current version of EPA Method 1668 or other equivalent methods capable of providing low-detection level, congener specific results should be used. In establishing the necessity and extent of data collection within Maryland, MDE will collaborate with the affected stakeholders, and take into account data that is already available as well as the proper characterization of intake (or pass through) conditions, consistent with NPDES program "reasonable potential" determinations and the applicable provisions of the Environment Article and COMAR for permitted facilities. Similar approaches may be applicable for all upstream jurisdictions with regards to PCB monitoring and stakeholder collaboration. Under certain conditions, EPA's NPDES regulations allow the use of non-numeric, BMP water quality based effluent limits (WQBELs). BMP WQBELs can be used where "numeric effluent limitations are infeasible; or the practices are reasonably necessary to achieve effluent limitations and standards or to carry out the purposes and intent of the CWA" (CFR 2015c). For example, MDE's Phase I MS4 permits require restoration targets for impervious surfaces (i.e., restore 10% or 20% of a jurisdiction's total impervious cover with no stormwater management/BMPs), and these restoration efforts have known total suspended solids (TSS) reduction efficiencies. Since PCBs are known to adsorb to sediments and their concentrations correlate with TSS concentrations, the significant restoration requirements in the MS4 permits, which will lead to a reduction in sediment loads entering the Severn River, will also contribute toward tPCB load reductions and meeting PCB water quality goals. Implementation of similar restoration measures within other jurisdictions in the Chesapeake Bay watershed would also contribute additional reductions to PCB loadings from the Severn River watershed and provide progress towards achieving the TMDL. Other BMPs that focus on PCB source tracking and elimination at the source rather than end-of-pipe controls are also warranted. Where necessary, the source characterization efforts will be followed with pollution minimization and reduction measures that will include BMPs for reducing runoff from urban areas, identification and termination of ongoing sources (e.g., industrial uses of equipment that contain PCBs), etc. The identified NPDES regulated WWTP and stormwater control agency permits will be expected to be consistent with the WLAs presented in this report. Numerous stormwater dischargers are located in the watershed including Municipal Phase I MS4, the SHA Phase I MS4, industrial facilities, and any construction activities on area greater than 1 acre (see Appendix H of this document to view the current list of known NPDES stormwater dischargers). #### **FINAL** An example of one jurisdiction with a PCB TMDL implementation plan is Montgomery County. The current Montgomery County Phase I MS4 permit requires that the jurisdiction develop implementation plans to meet its assigned NPDES Regulated Stormwater WLAs. In this TMDL, because the watershed's load was estimated as being only 0.27% of the total PCB baseline load, the Anne Arundel County Phase I MS4 permit was not assigned a reduction and therefore no PCB implementation plan will be required. Development of implementation plans by regulated stormwater dischargers within other jurisdictions in the Chesapeake Bay watershed would also contribute additional reductions to PCB loadings from the Chesapeake Bay and provide progress towards achieving the TMDL. PCBs are still being released to the environment via accidental fires, leaks, or spills from older PCB-containing equipment; potential leaks from hazardous waste sites that contain PCBs; illegal or improper dumping; and disposal of PCB containing products (*e.g.*, transformers, old fluorescent lighting fixtures, electrical devices, or appliances containing PCB capacitors, old microscope oil, and old hydraulic oil) into landfills that are not designed to handle hazardous waste. MDE will continue to monitor PCB levels in fish and evaluate the PCB impairment in the Severn River embayment on an ongoing basis. #### 7.0 REFERENCES - Ayris, S., Currado, G. M., Smith, D., and Harrad, S. 1997. GC/MS Procedures for the Determination of PCBs in Environmental Matrices. *Chemosphere* 35(5): 905-917. - Ashley, J. T. F., and J. E. Baker. 1999. Hydrophobic Organic Contaminants in Surficial Sediments of Baltimore Harbor: Inventories and Sources. *Environmental Toxicology and Chemistry* 18(5): 838-849. - CFR (Code of Federal Regulations). 2015a. 40 CFR 130.2. http://www.gpo.gov/fdsys/pkg/CFR-2002-title40-vol18/pdf/CFR-2002-title40-vol18-sec130-2.pdf (Accessed June, 2015). ________. 2015b. 40 CFR 130.7. http://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol22/pdf/CFR-2011-title40-vol22-sec130-7.pdf (Accessed June, 2015). . 2015c. 40 CFR 122.44(k). http://www.gpo.gov/fdsys/pkg/CFR-2011-title40- - Chapra, S.C. 1997. Surface Water-Quality Modeling. McGraw-Hill, New York, USA, pp. 844. vol22/pdf/CFR-2011-title40-vol22-sec122-44.pdf (Accessed June, 2015). COMAR (Code of Maryland Regulations). 2015a. 26.08.02.07. http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.07.htm (Accessed June, 2015). 2015b. 26.08.02.08 B(2)(a). http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.08.htm (Accessed June, 2015). _____. 2015c. 26.08.02.03-2 G (4). http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm (Accessed June, 2015). _____. 2015d. 26.08.02.04-1.
http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.04-1.htm (Accessed June, 2015). - De Bruijn, J., Busser, F., Seinen, W. and Hermens, J. 1989. Determination of Octanol/Water Partition Coefficients for Hydrophobic Organic Chemicals with the "Slow-Stirring" Method. *Environmental Toxicology and Chemistry* 8(6): 499-512. - Delaware River Basin Commission (DRBC). 2003. PCB Water Quality Model for Delaware Estuary (DELPCB). West Trenton, NJ: Delaware River Basin Commission. - Di Toro, D.M., Fitzpatrick, J.J., and Thomann, R.V. 1983. Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP) Documentation. Hydroscience, Inc., Westwood, NY, for U.S. EPA, Duluth, MN, Contract No. 68-01-3872. - Haywood, H. C., and Buchanan, C.. 2007. Total Maximum Daily Loads of Polychlorinated Biphenyls (PCBs) for Tidal Portions of the Potomac and Anacostia Rivers in the District of Columbia, Maryland, and Virginia. Rockville, MD: Interstate Commission on the Potomac River Basin. - Hoke, R. A., Ankley, G. T., Cotter, A. M., Goldstein, T., Kosian, P. A., Phipps, G. L. and VanderMeiden, F. M. 1994. Evaluation of Equilibrium Partitioning Theory for Predicting Acute Toxicity to Field Collected Sediments Contaminated with DDT, DDE and DDD to the Amphipod Hyalella Azteca. *Environmental Toxicology and Chemistry* 13(1): 157-166. - Howell, N., Suarez, M. P., Rifai, H. S., and Koenig, L. 2007. Concentrations of Polychlorinated Biphenyls (PCBs) in Water, Sediment, and Aquatic Biota in the Houston Ship Channel, Texas. *Chemosphere* 70(4): 593-606. - Ko F. C., and Baker, J. E. 2004. Seasonal and Annual Loads of Hydrophobic Organic Contaminants from the Susquehanna River Basin to the Chesapeake Bay. *Marine Pollution Bulletin* 48(9-10): 840–851. - Konieczka, P., and Namiesnik, J. 2008. Determination of PCBs in Marine Sediment Using Pressurised Liquid Extraction-Gas Chromatography-Isotope Dilution Mass Spectrometry-Method Validation. *Chemical Analysis* 53(6): 785-796. - Kuo, A., K. Park, S. Kim, and J. Lin. 2005. A tidal Prism Water Quality Model for Small Coastal Basins. *Coastal Management* 33: 101-117. - MDE (Maryland Department of the Environment). 2006. Chesapeake Bay WWTP PCB Survey Dataset. Baltimore, MD: Maryland Department of the Environment. _______. 2009a. Total Maximum Daily Loads of Polychlorinated Biphenyls in Northwest River Embayment, Cecil County, Maryland. Baltimore, MD: Maryland Department of the Environment. ______. 2009b. Total Maximum Daily Loads of Polychlorinated Biphenyls in the Bohemia River, Oligohaline Segment, Cecil County, Maryland. Baltimore, MD: Maryland Department of the Environment. _____. 2009c. Total Maximum Daily Loads of Polychlorinated Biphenyls in Corsica River of the Lower Chester River, Mesohaline Segment, Queen Anne's County, Maryland. Baltimore, MD: Maryland Department of the Environment. - . 2011a. Total Maximum Daily Loads of Polychlorinated Biphenyls in Baltimore Harbor, Curtis Creek/Bay, and Bear Creek Portions of Patapsco River Mesohaline Tidal Chesapeake Bay Segment, Maryland. Baltimore, MD: Maryland Department of the Environment. - ______. 2011b. Total Maximum Daily Loads of Polychlorinated Biphenyls in Back River Oligohaline Tidal Chesapeake Bay Segment, Maryland. Baltimore, MD: Maryland Department of the Environment. - ______. 2011c. Statewide Fish Consumption Guidelines for All Ages: Table (September 2011). - http://www.mde.state.md.us/programs/marylander/citizensinfocenterhome/pages/citizensinfocenter/fishandshellfish/index.aspx (Accessed June, 2015). - ______. 2012. The 2012 Integrated Report of Surface Water Quality in Maryland. Baltimore, MD: Maryland Department of the Environment. Also Available at: - http://www.mde.maryland.gov/programs/water/tmdl/integrated303dreports/pages/2012_ir_aspx. (Accessed June, 2015). ______. 2014a. Statewide Fish Consumption Guidelines for All Ages: Table (September 2011). http://mde.maryland.gov/programs/Marylander/CitizensInfoCenterHome/Documents/Fish%20Consumption%20Docs/Maryland_Fish_Advisories_2014_Web_bluecatedit.pdf ______. 2014b. Land Restoration Program's Geospatial Database (LRP-MAP). Baltimore, MD: Maryland Department of the Environment. http://www.mde.state.md.us/programs/Land/MarylandBrownfieldVCP/mapping/Pages/programs/landprograms/errp_brownfields/mapping/index.aspx (Accessed June, 2015). - Mydlova-Memersheimerova, J., Tienpont, B., David, F., Krupcik, J., and Sandra, P. 2009. Gas Chromatography of 209 Polychlorinated Biphenyl Congeners on An Extremely Efficient Nonselective Capillary Column. *Journal of Chromatography A* 1216(32): 6043-6062. - NOAA (National Oceanic and Atmospheric Administration). 2015. *Tides Online*. http://tidesonline.nos.noaa.gov/ (Accessed June, 2015). - QEA (Quantitative Environmental Analysis, LLC). 1999. PCBs in the Upper Hudson River Volume I, Historical Perspective and Model Overview. Albany, NY: Quantitative Environmental Analysis, LLC. - RETEC (The RETEC Group, Inc.). 2002. Remedial Investigation Report Lower Fox River and Green Bay, Wisconsin Prepared for Wisconsin Department of Natural Resources. - Risser, D.W., and S. F. Siwiec. 1996. Water-Quality Assessment of the Severn River Basin. Pennsylvania and Maryland: Environmental Setting: US Geological Survey Water-Resources Investigations Report 94-4245, 7. - Thomann R. V., and Mueller, J. A. 1987. Principles of Surface Water Quality Modeling and Control. New York City, NY: Harper & Row. - Totten, L. A., Panangadan, M., Eisenreich, S. J., Cavallo, G. J. and Fikslin, T. J. 2006. Direct and Indirect Atmospheric Deposition of PCBs to the Delaware River Watershed. Environmental Science and Technology. 40(7): 2171-2176. - USDA (U.S. Department of Agriculture). 2006. State Soil Geographic (STATSGO) Database for Maryland. http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/index.html (Accessed September, 2006). - US District Court for the District of Columbia. 2011. Anacostia Riverkeeper Inc., *et al.*, Plaintiffs, v. Lisa Jackson, Administrator, United States Environmental Protection Agency, *et al.*, Defendants: Order and Judgment. Washington, DC: US District Court of the District of Columbia. - US EPA (US Environmental Protection Agency). 1991. Technical Support Document (TSD) for Water Quality-based Toxics Control. Washington, DC: U.S. Environmental Protection Agency. Also Available at http://www.epa.gov/npdes/pubs/owm0264.pdf - . 1999. Chesapeake Bay Basin Toxics Load and Release Inventory. Annapolis, MD: U.S. Environmental Protection Agency with Chesapeake Bay Program. | 2002. Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs. Washington, DC: U.S. Environmental Protection Agency. | |---| | 2003. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health. Washington, DC: U.S. Environmental Protection Agency. | | 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States: National Sediment Quality Survey, 2nd Edition. Washington, D.C: US EPA, Office of Science and Technology. | | 2007. Options for Expressing Daily Loads in TMDLs. U.S. Environmental Protection Agency, Office of Wetlands, Oceans & Watersheds. http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/2007_06_26_tmdl_draft_dsily_loads_tech-2.pdf (accessed June, 2015). | | 2013a. National Recommended Water Quality Criteria. Washington, D.C: U.S Environmental Protection Agency, Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm (Accessed June, 2015) | | 2013b. Superfund Site Information Database. http://cfpub.epa.gov/supercpad/cursites/srchsites.cfm (Accessed March, 2013). | | USGS (United States Geological Survey). 2013. 2006 National Land Cover Dataset
Chesapeake Bay Area, Modified Version 2.0. Annapolis, MD: United States Geological | VADEQ (Virginia Department of Environmental Quality). 2009. Guidance for Monitoring Point Sources for TMDL Development Using Low-Level PCB Method 1668. Richmond, VA: Virginia Department of Environmental Quality. Survey, Chesapeake Bay Program Office. ### **Appendix A: List of Identified PCB Congeners** PCB analytical services were provided by the University of Maryland Center for Environmental Science (UMCES). Specific PCB congeners were identified and quantified by high resolution gas chromatography with GC-MS detection (Ayris *et al.* 1997, Holwell *et al.* 2007, Konietckka and Namiesnik 2008, Mydlová-Memersheimerová *et al.* 2009). This method is based on EPA method 8082 which was developed in 1996. UMCES uses a slightly modified version of the PCB congener specific method described in Ashley and Baker (1999), in which the identities and concentrations of each congener in a mixed Aroclor standard (25:18:18 mixture of Aroclors 1232, 1248, and 1262) are determined based on their chromatographic retention times relative to the internal standards (PCB 30 and PCB 204 and ten C13 labeled standards). Based on this method, upwards of 100 chromatographic peaks can be quantified. Some of the peaks contain one PCB congener, while many are comprised of two or more co-eluting congeners. PCB congeners identified under this method are displayed in Table A-1. The PCB analysis presented in this document is based on tPCB concentrations that are calculated as the sum of the detected PCB congeners/congener groups representing the most common congeners that
were historically used in the Aroclor commercial mixtures. **Table A-1: List of Identified PCB Congeners** | 1 | 45 | 110, 77 | 177 | |------------|---------|---------------|---------------| | 3 | 46 | 114 | 180 | | 4, 10 | 47, 48 | 118 | 183 | | 6 | 49 | 119 | 185 | | 7, 9 | 51 | 123, 149 | 187, 182 | | 8, 5 | 52 | 128 | 189 | | 12, 13 | 56, 60 | 129, 178 | 191 | | 16, 32 | 63 | 132, 153, 105 | 193 | | 17 | 66, 95 | 134 | 194 | | 18 | 70, 76 | 135, 144 | 197 | | 19 | 74 | 136 | 198 | | 22 | 81, 87 | 137, 130 | 199 | | 24 | 82, 151 | 141 | 201 | | 25 | 83 | 146 | 202, 171, 156 | | 26 | 84, 92 | 157, 200 | 203, 196 | | 29 | 89 | 158 | 205 | | 31, 28 | 91 | 163, 138 | 206 | | 33, 21, 53 | 97 | 167 | 207 | | 37, 42 | 99 | 170, 190 | 208, 195 | | 40 | 100 | 172 | 209 | | 41, 64, 71 | 101 | 174 | | | 44 | 107 | 176 | | Severn River PCB TMDL Report Document version: July 2016 #### Appendix B: Derivation of Adj-tBAF and Adj-SediBAF This appendix describes how the Adjusted Total Bioaccumulation Factor (Adj-tBAF) and Adjusted Sediment Bioaccumulation Factor (Adj-SediBAF) were derived. The method followed the method developed and used in the Potomac River tPCB TMDL (Haywood and Buchanan 2007). #### I. Data Description The observation-based Adj-tBAF and Adj-SediBAF were calculated for the fish species within the Severn River from the available fish tissue, water column, and sediment tPCB data. Each fish species was assigned a trophic level and a home range (see Table B-1). The Adj-tBAF and Adj-SediBAF were calculated based on the geometric mean tPCB concentrations of all the samples within the home range for each species. Common NameScientific NameTrophic LevelHome Range (miles)White PerchMorone americanaPredator10Yellow PerchPerca flavescensBenthivore-generalist2 Table B-1: Species Trophic Levels and Home Ranges #### II. Total BAFs First, the tBAFs were calculated using Equation B-1 (US EPA 2003): $$tBAF = \frac{[tPCB]_{fish}}{[tPCB]_{Water}}$$ (B-1) Where: [tPCB]_{fish} = tPCB concentration in wet fish tissue (ng/kg) [tPCB]_{water} = water column tPCB concentration in fish species home range (ng/L) #### III. Baseline BAFs As the tBAFs vary depending on the food habits and lipid concentration of each fish species as well as the freely-dissolved tPCB concentrations in the water column, the baseline BAFs were calculated as recommended by US EPA (2000): Baseline BAF = $$\frac{[PCB]_{fish} / \%Lipid}{[PCB]_{Water} \times \% fd}$$ (B-2) Where: %fd = fraction of the tPCB concentration in water that is freely-dissolved %lipid = fraction of tissue that is lipid (if the lipid content was not available for a certain fish, the average lipid content of the whole ecosystem was used.) The freely-dissolved tPCBs are those not associated with dissolved organic carbon (DOC) or particulate organic carbon (POC). The %fd can be calculated as (US EPA 2003): $$\% fd = \frac{1}{1 + POC \times K_{ow} + DOC \times 0.08 \times K_{ow}}$$ (B-3) Where: K_{ow} is the PCB octanol-water partition coefficient, POC and DOC are the particulate and dissolved organic carbon concentrations in the water column. The K_{ow} of PCB congeners have large ranges. Therefore, a %fd was calculated for each PCB homolog using the midpoint of the homolog's K_{ow} range [see Table B-2 (Hayward and Buchanan 2007)]. Table B-2: K_{ow} Values of Homologs Used in the Baseline BAF Calculation | Homolog | Midpoint Kow | |---------|--------------| | Mono+Di | 47,315 | | Tri | 266,073 | | Tetra | 1,011,579 | | Penta | 3,349,654 | | Hexa | 5,370,318 | | Hepta | 17,179,084 | | Octa | 39,810,717 | | Nona | 82,224,265 | | Deca | 151,356,125 | The %fd for tPCBs (PCB %fd) was derived by dividing the freely-dissolved PCB concentrations by the water column tPCB concentrations: $$PCB \% fd = \frac{\sum (Homolog \% fd \times Homolog Concentration)}{[tPCB]_{water}}$$ (B-4) The PCB %fd was used in Equation B-2 to calculate the baseline BAFs. ### IV. Adjusted Total BAFs The baseline BAFs were normalized by the species median lipid content and a single freely-dissolved PCB concentration (*i.e.*, median %fd within the fish's home range) representative of the ecosystem, resulting in no variability attribution to differences in fish lipid content or freely-dissolved PCB concentration in the water column: $$Adj - tBAF = (Baseline BAF \times Median \% Lipid + 1) \times Median \% fd$$ (B5) The tPCB fish tissue listing threshold of 39 ng/g can then be divided by the median Adj-tBAF for each species to obtain an associated tPCB water column threshold concentration. According to the data requirement for listing a waterbody as impaired by PCBs in fish tissue (http://www.mde.state.md.us/programs/Water/TMDL/Integrated303dReports/Pages/Programs/WaterPrograms/TMDL/maryland%20303%20dlist/ir_listing_methodologies.aspx), the minimum data requirement is 5 fish (individual or composite of the same resident species) for a given waterbody and all fish that comprise a composite sample must be within the same size class, i.e., the smallest fish must be within seventy-five percent of the total length of the largest fish. The lowest tPCB water column concentration of all the fish species will be selected as the TMDL endpoint in order to be supportive of the "fishing" designated use (Table B-3). In the Severn River, the lowest concentration (0.195 ng/L) is associated with White Perch. There are five fish composites for White Perch and each composite is composed of 5 fish. The length and weight for these fish are shown in Table B-4. For the Severn River, 0.195 ng/L from White Perch is selected as the water column tPCB endpoint. Table B-3: tBAF, Baseline BAF, Adj-tBAF, and Water Column TMDL Endpoint tPCB Concentrations for Each Species | Species Name | Number
of Fish
(composite) | tBAF
(L/kg) | Baseline
BAF (L/kg) | Adj-tBAF
(L/kg) | Water Column TMDL Endpoint tPCB Concentration (ng/L) | |--------------|----------------------------------|----------------|------------------------|--------------------|--| | White Perch | 25(5) | 169,670 | 54,115,930 | 199,953 | 0.195 | | Yellow Perch | 5(1) | 92,641 | 65,491,411 | 103,062 | 0.378 | Table B-4: Individual Fish Length and Weight in White Perch and Yellow Perch Composite | Composite ID
Number | Number fish in Composite | Individual Fish
Field ID Number | Length (cm) | Weight (g/lbs.) | |------------------------|--------------------------|------------------------------------|-------------|-----------------| | 2011FTC_SEV_A | 5 | 09/2011_SEV_01 | 25.3 | 223 | | - | - | 09/2011_SEV_02 | 23.4 | 179 | | - | - | 09/2011_SEV_03 | 22.6 | 184 | | - | - | 09/2011_SEV_04 | 22.0 | 152 | | - | - | 09/2011_SEV_05 | 21.7 | 157 | | 2011FTC_SEV_B | 5 | 09/2011_SEV_06 | 21.6 | 155 | | - | - | 09/2011_SEV_07 | 22.0 | 154 | | - | - | 09/2011_SEV_08 | 18.1 | 94 | | - | - | 09/2011_SEV_09 | 17.8 | 81 | | - | - | 09/2011_SEV_10 | 17.4 | 90 | | 2012FTC_SEV_C | 5 | 03/2012_ SEV_01 | 26.0 | 313 | | - | - | 03/2012_ SEV_02 | 24.5 | 277 | | - | - | 03/2012_SEV_03 | 23.8 | 236 | | - | - | 03/2012_SEV_04 | 22.5 | 198 | | - | - | 03/2012_SEV_05 | 21.8 | 206 | | 2012FTC_SEV_D | 5 | 03/2012_SEV_06 | 22.2 | 204 | | - | - | 03/2012_SEV_07 | 21.0 | 179 | | - | - | 03/2012_SEV_08 | 21.3 | 174 | | - | - | 03/2012_SEV_09 | 21.0 | 169 | | - | - | 03/2012_SEV_10 | 22.0 | 183 | | 2012FTC_SEV_E | 5 | 03/2012_SEV_11 | 20.9 | 160 | | - | - | 03/2012_SEV_12 | 21.0 | 175 | | - | - | 03/2012_SEV_13 | 20.5 | 156 | | - | - | 03/2012_SEV_14 | 20.1 | 154 | | - | - | 03/2012_SEV_15 | 20.3 | 143 | Severn River PCB TMDL Report Document version: July 2016 | Composite ID
Number | Number fish in Composite | Individual Fish
Field ID Number | Length (cm) | Weight (g/lbs.) | |------------------------|--------------------------|------------------------------------|-------------|-----------------| | 2012FTC_SEV_G | 5 | 03/2012_SEV_21 | 26.4 | 221 | | - | - | 03/2012_SEV_22 | 26.0 | 228 | | - | - | 03/2012_SEV_23 | 23.2 | 154 | | - | - | 03/2012_SEV_24 | 22.6 | 141 | | - | - | 03/2012_SEV_25 | 22.3 | 149 | #### V. Biota-Sediment Accumulation Factors and Adjusted Sediment BAFs The biota-sediment accumulation factors (BSAFs) were derived by the following equation: $$BSAF = \frac{tPCB_{tissue} / \% Lipid}{tPCB_{sediment} / \% Organic Carbon}$$ (B-6) where: % Organic Carbon is the species home range's average sediment organic carbon fraction. Since there is no available % Organic Carbon information for some of the study sites, a default value of 1% was used (US EPA 2004). Each species' BSAF was then standardized to a common condition by normalizing them to the median lipid content of the species and a sediment organic carbon fraction representative of the ecosystem: $$Adj-SedBAF = BSAF \times \frac{Median \% Lipid}{Median \% Oraganic Carbon}$$ (B-7) The tPCB fish tissue listing threshold of 39 ng/g can then be divided by the median Adj-SedBAF for each species to translate an associated tPCB sediment threshold concentration. The lowest tPCB sediment concentration of all the fish species will be selected as the TMDL endpoint in order to be supportive of the "fishing" designated use (Table B-5). In the Severn River, the lowest concentration (White perch, 18.3 ng/g) is selected as the sediment TMDL endpoint. Table B-5: BSAF, Adj-SedBAF, and Sediment TMDL Endpoint tPCB Concentrations | Species Name | BSAF | Adj-SedBAF | Sediment TMDL
Endpoint tPCB
Concentration (ng/g) | |--------------|------|------------|--| | White Perch | 1.05 | 2.13 | 18.27 | | Yellow Perch | 0.61 | 0.64 | 60.77 | B-4 ### Appendix C: Method Used to Estimate Baseline Watershed tPCB Load In June, July, and October of 2011 and March of 2012, MDE collected water column samples for PCB analysis at 6 watershed monitoring stations in the non-tidal tributaries of the Severn River (Stations SEV8, SEV9, SEV10, SEV11, SEV12, and SEV13)
(Figure C-1). In order to assess whether or not these samples covered all flow ranges so that they could be used to calculate watershed loads, the daily average flow rates from January 1, 2004 to December 31, 2013 of the USGS Station 1589795 located at south fork Jabez branch at Millersville (Figure C-1) was used to generate the flow duration curves. The flows for the dates on which the watershed samples were collected were identified on the flow duration curve (Figure C-2). This comparison indicates that the PCB samples span the full range of flows. It was therefore justifiable to apply the regression method applied in the Back River tPCB TMDL (MDE 2011b) to the Severn River. Using the average daily flow at USGS station 01589795 and the ratio of watershed stations' drainage areas to the USGS station drainage area, the flow corresponding to each sampling date at each station was calculated. The tPCB load was calculated as the flow multiplied by the measured tPCB concentration. Then, the relationship between flow and tPCB loads was generated, as shown in Figure C-3. The direct drainage of the Severn River was divided into six subwatersheds. Each subwatershed flow was calculated by dividing the USGS station mean flow by the USGS drainage area, and multiplying the subwatershed area. Then, the converted flow was fit to the linear regression in order to predict the subwatershed tPCB load. The total tPCB watershed load of the Severn River is the sum of the tPCB watershed loads of the six segments (Table C-1). Table C-1: Baseline Watershed Loads of the Six Segments of the Severn River | River Segment | Watershed Load (g/year) | |---------------|-------------------------| | 1 | 5.00 | | 2 | 4.91 | | 3 | 5.91 | | 4 | 3.19 | | 5 | 3.95 | | 6 | 27.55 | | Total | 50.50 | Figure C-1: Locations of PCB Water Column Monitoring Stations, the USGS station, and the Delineation of Subwatersheds Note: The red points represent the locations of the watershed station sample flows Figure C-2: Relative Locations of PCB Water Column Measurement Station Sampling Date Flow on the Flow Duration Curve Figure C-3: Regression between tPCB loads and the Associated Flows ### Appendix D: Multi-Segment Tidally-Averaged One-Dimensional Transport Model A tidally averaged multi-segment one-dimensional transport model was used to simulate the total polychlorinated biphenyl (tPCB) dynamic interactions between the water column and bottom sediments within the Severn River embayment and the Chesapeake Bay. The model is based on one-dimensional tidally averaged model (Thomann and Mueller 1987) and adopts the basic assumptions and methodology of the Water Quality Analysis Simulation Program (WASP) (Di Toro *et al.* 1983, Chapra 1997). It is assumed that the pollutant is well mixed in each segment and there is no decay of PCBs. The average observed tPCB concentrations in each segment were used as the model input representing baseline conditions. All other inputs (*i.e.*, freshwater inputs, dispersion coefficients, sediment and water column exchange rates, atmosphere exchange rates, and burial rates) were kept constant. The river was divided into 6 segments and the watershed into 6 subwatersheds as well (Figure C-1). In each segment, PCBs can enter the water column via loadings from adjacent watersheds and atmosphere (W_n) , loadings from upstream through flow $(Q_{n+1}Cw_{n+1})$, loadings from upstream and downstream through dispersion $(D_{n+1}(Cw_{n+1}-Cw_n)CA_{n+1}/L_{n+1})$, resuspension from the sediment $(Vr_nSA_nCs_n)$, and diffusion between sediment-water column interface $(VdSA_n(Fds_nCs_n-Fdw_nCw_n))$. PCBs leave the water column via loadings to downstream segments through flow and dispersion $(Q_nCw_n$ and $D_n(Cw_n-Cw_{n-1})CA_n/L_n)$, volatilization $(VvSA_nFdw_nCw_n)$, and settling $(VsetSA_nFpw_nCw_n)$. In the sediment, the PCBs enter the system via settling ($VsetSA_nFpw_nCw_n$), and leave the system via diffusion ($VdSA_n(Fds_nCs_n - Fdw_nCw_n)$), resuspension ($Vr_nSA_nCs_n$) and burial to a deeper layer ($VbSA_nCs_n$). Specifically, the mass balance for the tPCBs in the water column of segment n can be written as: $$\frac{dVw_{n}Cw_{n}}{dt} = W_{n} + Q_{n+1}Cw_{n+1} + D_{n+1}(Cw_{n+1} - Cw_{n})CA_{n+1}/L_{n+1} + Vr_{n}SA_{n}Cs_{n} + VdSA_{n}(Fds_{n}Cs_{n}) - Fdw_{n}Cw_{n} - Q_{n}Cw_{n} - D_{n}(Cw_{n} - Cw_{n-1})CA_{n}/L_{n} - VvSA_{n}Fdw_{n}Cw_{n} - VsetSA_{n}Fpw_{n}Cw_{n}$$ (D-1) and that in the sediment of segment *n* can be written as: $$\frac{dV s_n C s_n}{dt} = V set S A F p w_n C w_n - V d S A (F d s_n C s_n - F d w_n C w_n) - V r_n S A_n C s_n - V b S A C s_n$$ (D-2) Where: n = the nth river segment; Vw_n and Vs_n = volume of the water and sediment (m³); Cw_n and $Cs_n = tPCB$ concentration in water and sediment (ng/L); t = time (day); W_n = tPCB loading from adjacent watershed (including tributaries) and atmosphere (ug/day); Q_n = quantity of water that flows from segment n to n-l (m³/day); Q_{nb} = quantity of water that flows from adjacent branch to segment n (m³/day); D_n = dispersion coefficients (tidal averaged diffusivity) at the upstream side of segment $n \pmod{\frac{n^2}{\text{day}}}$; CA_n = cross sectional area between segment n and n-l (m²); L_n = distance between center of segment n to n-l (m); SA_n = surface area of segment n (m²); Vr_n = rate of resuspension (m/day); Vd = diffusive mixing velocity (m/day), which is same for all the segments; Vv = volatilization coefficient (m/day), which is same for all the segments; *Vset* = rate of settling (m/day); Vb = burial rate (m/day), which is same for all the segments; Fdw_n = fraction of truly dissolved and dissolved organic carbon (DOC) associated PCBs in the water column; Fds_n = fraction of truly dissolved and DOC associated PCBs in the sediment; Fpw_n = fraction of particular associated PCBs in the water column. #### **Appendix E: Model Calculation for the Severn River** For the Severn River, the model domain includes the whole embayment, which is divided into 6 segments (Figure C-1). The parameter values and methods for deriving some of the parameters are as follows: n = 6. It was delineated in consideration of the locations of the water quality monitoring stations and the bathymetry. Vw_n = mean water depth of segment $n \times surface$ area of segment n. The mean water depth was obtained from the bathymetry data. Vs_n = active sediment layer thickness × surface area of segment n. Cw_n = measured tPCB water column concentration of segment n. If the measurement was not available, the linear interpolation of the most adjacent segments' concentrations was used. Cs_n = Measured tPCB concentration on a dry sediment base × Sediment density × (1-porosity) ÷ Fraction of particulate associated PCBs in the sediment, and the porosity (water content on a volume base) of 0.85 is selected based on observations and reference (Thomann and Mueller 1987); W_n = tPCB loading from the adjacent watershed of segment n and atmosphere. As showed in Figure C-1, the watershed was divided into 6 subwatersheds. The subwatershed baseline tPCB loading was calculated as the flow multiplying its mean measured PCB concentration. The direct atmospheric deposition load to the surface of each segment was calculated by multiplying the surface area and the deposition rate of $1.6 \,\mu\text{g/m}^2/\text{year}$. Q_n = total flow across the outlet of Segment n-1. The flow was calculated using the 10-year daily mean flows at the USGS station 01589795. D_n = dispersion coefficient of each segment. The coefficients are calculated based on the salinity data of the Severn River (MDE 2011). Salinity is a conservative constituent. It has no loss due to reaction, volatilization, or settling in the water and no source from the watershed. The deposition from the atmosphere is minimal and can be ignored. Therefore, the only source of salinity in the system is from the Chesapeake Bay water at the mouth. Consequently, in Equation (D1), all the terms W_n , $Vr_nSA_nCs_n$, $VdSA_n(Fds_nCs_n - Fdw_nCw_n)$, $VvSA_nFdw_nCw_n$, and $VsetSA_nFpw_nCw_n$ become zero. Dispersion coefficient can be obtained by solving the steady state, Equation (C1) providing known parameters of flow and measured salinity. D_n can be estimated for Segment 6, the upstream boundary segment, using the equation: $0 = -Q_6Cw_6 - D_6(Cw_6 - Cw_5)CA_6/L_6$ The D_n values of Segments 5, 4, 3, 2 and 1 can then be estimated in sequence. The calculated dispersion coefficients are presented in Table E-1. CA_n = depth × length of the cross section. L_n = distance between segments directly measured using ArcView GIS. SA_n = surface area calculated from ArcView GIS. $Vd = 69.35 \times \text{Porosity} \times (\text{Molecular weight of PCBs})^{-2/3} \div 365 = 69.35 \times 0.85 \times (305.6)^{-2/3} \div 365 = 0.00356 \text{ (m/day, Thomann and Mueller 1987)}.$ Vv = 0.246 m/day, which was derived from empirical method of Chapra (1997). Vset = 1 (m/d), a default value of settling rate used in literature (DRBC 2003). $Vb = 3.935 \times 10^{-6}$ (m/day, average of the measured sedimentation rates through 210Pb technology for Cosica River, Northeast River, Bohemia river, and Sassafras River). V_r can be calculated via mass balance of the sediment in the active sediment layer at steady state: $$\frac{d\rho(1-\varphi)}{dt} = V_s \times TSS - V_r \times \rho \times (1-\varphi) - V_b \times \rho \times (1-\varphi) = 0$$ (E-1) Where: TSS is the total suspended solid concentration (g/m³, measured) ρ is the sediment density (g/m³; Thomann and Mueller, 1987) φ is the porosity. Some physical parameters of each segment can be found in Table E-1. For Fdw_n , Fds_n , and Fpw_n see Appendix F for derivation. Table E-1: Physical Parameters of the Model for Each Segment | n | $SA(m^2)$ | $Vw(m^3)$ | $CA(m^2)$ | L(m) | Fdw | Fds | Fpw | $D(m^2/day)$ | |---|-----------|------------
-----------|-------|--------|--------|--------|--------------| | 1 | 8,551,625 | 30,311,235 | 11,601 | 3,389 | 0.6400 | 0.0017 | 0.3600 | 5.78E+06 | | 2 | 4,751,595 | 20,759,719 | 2,897 | 3,894 | 0.7131 | 0.0017 | 0.2869 | 4.90E+06 | | 3 | 4,382,097 | 18,911,378 | 2,982 | 3,899 | 0.7242 | 0.0017 | 0.2758 | 3.50E+06 | | 4 | 6,376,528 | 31,177,396 | 7,407 | 2,728 | 0.7025 | 0.0017 | 0.2975 | 1.70E+06 | | 5 | 4,167,565 | 19,114,954 | 8,930 | 3,178 | 0.7604 | 0.0017 | 0.2396 | 1.20E+06 | | 6 | 1,157,930 | 1,968,134 | 952 | 3,906 | 0.7627 | 0.0017 | 0.2373 | 9.80E+05 | #### **Appendix F: Calculation of Fractions of Different PCB Forms** The fractions in equations D-1 and D-2 can be calculated as follows: $$Fpw_n = \frac{TSS \times 10^{-6} K_{oc} \times f_{oc1}}{1 + (K_{oc} \times 10^{-6})(TSS \times f_{oc1} + DOC_1)}$$ (F-1) $$Fdw_n = \frac{1 + (K_{oc} \times 10^{-6})DOC_1}{1 + (K_{oc} \times 10^{-6})(TSS \times f_{oc1} + DOC_1)}$$ (F-2) $$Fds_{n} = \frac{\phi + \phi(K_{oc} \times 10^{-6})DOC_{2}}{\phi + (K_{oc} \times 10^{-6})(f_{oc2} \times \rho \times (1 - \phi) + \phi DOC_{2})}$$ (F-3) Where: K_{oc} = the organic carbon/water partition coefficient of PCBs (L/kg). It describes the ratio of a compound adsorbed to solids and in solution, normalized for organic carbon content. It can be calculated via the relationship of $\log_{10} K_{oc} = 0.00028 + 0.983 \times \log_{10} K_{ow}$ (Hoke *et al.* 1994), where K_{ow} is the octanol-water partition coefficient with $\log_{10} K_{ow}$ equals to 6.261 (De Bruijn *et al.* 1989). f_{oc1} and f_{oc2} = the fractions of organic carbon in suspended solids in the water column and the sediment solids, respectively (US EPA 2004). DOC_1 and DOC_2 = the dissolved organic carbon concentration in water column and pore water, respectively. φ = the porosity of the sediment. #### **Appendix G: Technical Approach Used to Generate Maximum Daily Loads** ### I. Summary This appendix documents the technical approach used to define MDLs of tPCBs consistent with the average annual TMDL, which is protective of the "fishing" designated use, which is protective of human health related to the consumption of fish, in the Severn River. The approach builds upon the modeling analysis that was conducted to determine the loads of tPCBs and can be summarized as follows. - The approach defines MDLs for each of the source categories; - The approach builds upon the TMDL modeling analysis that was conducted to ensure that average annual load targets result in compliance with the TMDL endpoint tPCB concentrations: - The approach converts daily time-series loads into TMDL values in a manner that is consistent with available EPA guidance on generating daily loads for TMDLs; - The approach considers a daily load level of a resolution based on the specific data that exists for each source category. #### II. Introduction This appendix documents the development and application of the approach used to define TMDLs on a daily basis. It is divided into sections discussing: - Basis for approach, - Options considered, - Selected approach, - Results of approach. #### III. Basis for Approach The overall approach for the development of daily loads was based upon the following factors: - **Average Annual TMDL:** The basis of the average annual tPCB TMDL is that the baseline tPCB load rates result in tPCB levels in fish tissue that exceed the tPCB fish tissue listing threshold. Thus, the average annual tPCB TMDL was calculated to be protective of the "fishing" designated use, which is protective of human health related to the consumption of fish. - **Draft EPA guidance document entitled** *Developing Daily Loads for Load-based TMDLs*: This guidance provides options for defining MDLs when using TMDL approaches that generate daily output. The rationale for developing TMDLs expressed as *daily* loads was to accept the existing average annual TMDL, but then develop a method for converting this value to a MDL – in a manner consistent with EPA guidance and available information. #### **IV. Options Considered** The draft EPA guidance document for developing daily loads does not specify a single approach that must be adhered to, but rather, it contains a range of acceptable options. The selection of a specific method for translating a time-series of allowable loads into the expression of a TMDL requires decisions regarding both the level of resolution (*e.g.*, single daily load for all conditions vs. loads that vary with environmental conditions) and level of probability associated with the TMDL. This section describes the range of options that were considered when developing methods to calculate the MDL for the Severn River. #### Level of Resolution The level of resolution pertains to the amount of detail used in specifying the MDL. The draft EPA guidance on daily loads provides three categories of options for level of resolution, all of which are potentially applicable for the Severn River: - 1. **Representative daily load:** In this option, a single daily load (or multiple representative daily loads) is specified that covers all time periods and environmental conditions. - 2. **Flow-variable daily load:** This option allows the MDL to vary based upon the observed flow condition. - 3. **Temporally-variable daily load:** This option allows the MDL to vary based upon seasons or times of varying source or water body behavior. #### **Probability Level** All TMDLs have some probability of being exceeded, with the specific probability being explicitly specified or implicitly assumed. This level of probability directly or indirectly reflects two separate phenomena: - 1. Water quality criteria consist of components describing acceptable magnitude, duration, and frequency. The frequency component addresses how often conditions can allowably surpass the combined magnitude and duration components. - 2. Pollutant loads, especially from wet weather sources, typically exhibit a large degree of variability over time. It is rarely practical to specify a "never to be exceeded value" for a daily load, as essentially any load value has some finite probability of being exceeded. The draft daily load guidance document states that the probability component of the MDL should be "based on a representative statistical measure" that is dependent upon the specific TMDL and best professional judgment of the developers. This statistical measure represents how often the MDL is expected/allowed to be exceeded. The primary options for selecting this level of protection would be: - 1. **The MDL reflects some central tendency:** In this option, the MDL is based upon the mean or median value of the range of loads expected to occur. The variability in the actual loads is not addressed. - 2. The MDL reflects a level of protection implicitly provided by the selection of some "critical" period: In this option, the MDL is based upon the allowable load that is predicted to occur during some critical period examined during the analysis. The developer does not explicitly specify the probability of occurrence. 3. **The MDL is a value that will be exceeded with a pre-defined probability:** In this option, a "reasonable" upper bound percentile is selected for the MDL based upon a characterization of the variability of daily loads. For example, selection of the 95th percentile value would result in a MDL that would be exceeded 5% of the time. # V. Selected Approach The approach selected for defining a Severn River MDL was based upon the specific data that exists for each source category. The approach consists of unique methods for each of the following categories of sources: - Approach for Nonpoint Sources and NPDES Regulated Stormwater Point Sources - Approach for WWTPs ### VI. Approach for Nonpoint Sources and NPDES Regulated Stormwater Point Sources The level of resolution selected for the Severn River MDL was a representative daily load, expressed as a single daily load for each load source. This approach was chosen due to the nature of PCBs and the focus of this study on a TMDL endpoint protective of the "fishing" designated use. Daily flow and temporal variability do not affect the rate of PCB bioaccumulation in fish tissue over the long term thus establishing no influence on achievement of the TMDL endpoint. A MDL at this level of resolution is unwarranted. The MDL was estimated based on three factors: a specified probability level, the average annual tPCB TMDL, and the coefficient of variation (CV) of the initial condition for ambient water column tPCB concentrations in the Severn River. The probability level (or exceedance frequency) is based upon guidance from US EPA (1991) where examples suggest that when converting from a long-term average to a daily value, the z-score corresponding to the 99th percentile of the log-normal probability distribution should be used. The CV was calculated using the arithmetic mean and standard deviation of the baseline ambient water column tPCB concentrations in the Severn River. The resulting CV of 0.654 was calculated using the following equation: $$CV = \frac{\beta}{\alpha}$$ (Equation G-1) Where, CV = coefficient of variation α = mean (arithmetic) β = standard deviation (arithmetic) The maximum "daily" load for each contributing source is estimated as the long-term average annual load multiplied by a factor that accounts for expected variability of daily load values. The equation is as follows: $$MDL = LTA * e^{(z\sigma - 0.5\sigma^2)}$$ (Equation G-2) Where, MDL = Maximum daily load LTA = Long-term average (average annual load) Z = z-score associated with target probability level $\sigma = \ln(CV^2 + 1)$ CV = Coefficient of variation based on arithmetic mean and standard deviation Using a z-score associated with the 99th percent probability of 2.33, a CV of 0.654, and consistent units, the resulting dimensionless conversion factor from long-term average loads to a maximum daily value is 2.2
(rounded to tenths). The average annual tPCB TMDL in the Severn River is reported in g/year, and the conversion from g/year to a maximum daily load in g/day is 0.0059 (e.g. 2.2/365) ### VIII. Approach for WWTPs The TMDL also considers contributions from NPDES permitted WWTPs that discharge quantifiable concentrations of tPCBs to the Severn River. The MDLs were calculated for these WWTPs based on the guidance provided in the Technical Support Document (TSD) for Water Quality-based Toxics Control (US EPA 1991). The long-term average annual TMDL was converted to maximum daily limits using Table 5-2 of the TSD assuming a coefficient of variation of 0.6 and a 99th percentile probability. This results in a dimensionless multiplication factor of 3.11 (rounded to hundredths). The average annual Severn River TMDL of PCBs is reported in g/year, and the conversion from g/year to a maximum daily load in g/day is 0.0085 (*i.e.* 3.11/365). #### IX. Results of Approach Table G-1 lists the results of the selected approach to define the Severn River MDLs. Table G-1: Summary of tPCB Maximum Daily Load (MDL) | Source | TMDL (g/year) | MDL (g/day) | |-----------------------------------|---------------|-------------| | Chesapeake Bay Mainstem Influence | 574.4 | 3.389 | | Direct Atmospheric Deposition | 47.0 | 0.277 | | Non-regulated Watershed Runoff | 29.0 | 0.171 | | Nonpoint Sources | 650.4 | 3.838 | | WWTP | 17.1 | 0.145 | | NPDES Regulated Stormwater | 21.5 | 0.127 | | Point Sources | 38.6 | 0.272 | | MOS (5%) | 36.3 | 0.216 | | Total | 725.3 | 4.326 | Note: MDL numbers are rounded numbers calculated from rounded conversion factors. # **Appendix H: List of NPDES Regulated Stormwater Permits** $Table \ H-1: NPDES \ Regulated \ Stormwater \ Permit \ Summary \ for \ the \ Severn \ River \ Watershed^1$ | MDE Permit | NPDES | Facility | City | County | Type | TMDL | |-------------|-------------------|---|--------------|----------------------------------|------|----------------| | 05-SF-5501 | Phase I
Permit | State Highway Administration (MS4) | State-wide | All Phase I
(Anne
Arundel) | WMA6 | Stormwater WLA | | 09-GP-0000 | MDR100000 | MDE General Permit to Construct | All | All | | Stormwater WLA | | 04-DP-3316 | MD0068306 | Anne Arundel Phase I MS4 | County-wide | Anne
Arundel | WMA6 | Stormwater WLA | | 03-IM-5500 | MDR05550 | City of Annapolis MS4 | City-wide | Anne
Arundel | WMA6 | Stormwater WLA | | 02-SW-1798 | MDR001798 | Annapolis Bus Company, Inc | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1182 | MDR05550 | Anne Arundel County-St. Margrets | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1680 | MDR001680 | Earle's Moving Printing of Annapolis | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1488 | MDR001488 | Frank Gumpert Printing of Annapolis | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1473 | MDR001473 | Garman Brothers Lumber | Crownsville | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-0051 | MDR000051 | Gomoljack Block Company | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1279 | MDR001279 | Hi-Tech Color, Inc | Odenton | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1472 | MDR001472 | L& W Recycling, Inc | Odenton | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-0940A | MDR000940 | Lonergans Charter Service, Inc | Millersville | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-2047 | MDR002047 | MDTA-William Preston Lane Jr.
Memorial Bridge | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1304 | MDR001304 | Millersville Landfill & Resource
Recovery Facility | Severna Park | Anne
Arundel | WMA5 | Stormwater WLA | # **FINAL** | MDE Permit | NPDES | Facility | City | County | Type | TMDL | |------------|-----------|---|-----------|-----------------|------|----------------| | 02-SW-2000 | MDR002000 | Northrop Grumman-Undersea Systems | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-1943 | MDR001943 | USPS-Annapolis DDU | Annapolis | Anne
Arundel | WMA5 | Stormwater WLA | | 02-SW-2026 | MDR002026 | US Food Service Inc. –Baltimore
Division | Severn | Anne
Arundel | WMA5 | Stormwater WLA | Note: ¹ Although not listed in this table, some individual process water permits incorporate stormwater requirements and are accounted for within the NPDES Stormwater WLA, as well as additional Phase II permitted MS4s, such as military bases, hospitals, etc. ### **Appendix I: Total PCB Concentrations and Locations of the PCB Monitoring Stations** Tables I-1 through I-3 list the tPCB concentrations in the sediment, fish tissue, and water column samples collected in the Severn River. Figure 4 in the main document shows the locations of water column, sediment and fish tissue monitoring stations. Table I-1: Sediment tPCB Concentrations (ng/g) in the Severn River | Station | Date | Conc. | |---------|-----------|--------| | SEV1 | 6/3/2011 | 25.13 | | SEV1 | 10/5/2011 | 0.53 | | SEV2 | 6/3/2011 | 26.36 | | SEV2 | 10/5/2011 | 21.52 | | SEV3 | 6/3/2011 | 44.57 | | SEV3 | 10/5/2011 | 23.77 | | SEV4 | 6/3/2011 | 50.67 | | SEV4 | 10/5/2011 | 24.90 | | SEV5 | 6/3/2011 | 136.55 | | SEV5 | 10/5/2011 | 75.03 | | SEV6 | 6/3/2011 | 139.61 | | SEV6 | 10/5/2011 | 85.34 | | SEV7 | 6/3/2011 | 82.89 | | SEV7 | 10/5/2011 | 37.42 | Table I-2: Fish Tissue tPCB Concentrations (ng/g) in the Severn River | Station ID | Site ID | Date | Conc. (ng/g) | Number
Fish in
Composite | Mean
Length
(cm) | Mean
Weight
(g) | Lipid
Content
(%) | Species | |------------|---------|-----------|--------------|--------------------------------|------------------------|-----------------------|-------------------------|--------------| | XGF9908 | SEV-A | 8/30/2011 | 75.2 | 5 | 23.0 | 179.0 | 4.73 | White Perch | | XGF9908 | SEV-B | 8/30/2011 | 55.4 | 5 | 19.4 | 114.8 | 2.04 | White Perch | | XHE4832 | SEV-C | 3/12/2012 | 85.2 | 5 | 23.7 | 246.0 | 2.21 | White Perch | | XHE4832 | SEV-D | 3/12/2012 | 74.4 | 5 | 21.5 | 181.8 | 1.77 | White Perch | | XHE4832 | SEV-E | 3/12/2012 | 180.5 | 5 | 20.6 | 157.6 | 1.45 | White Perch | | XHE4832 | SEV-G | 3/12/2012 | 35.7 | 5 | 24.1 | 178.6 | 1.05 | Yellow Perch | Conc. (ng/g) values are rounded based on Table 3. Table I-3: Water Column tPCB Concentrations (ng/L) in the Severn River | Date | Station | Type | Conc. | |------------|---------|------------------|-------| | 6/2/2011 | SEV-1 | Tidal (Boundary) | 0.198 | | 10/5/2011 | SEV-1 | Tidal (Boundary) | 1.034 | | 3/8/2012 | SEV-1 | Tidal (Boundary) | 1.322 | | 10/5/2011 | SEV-2 | Tidal | 1.474 | | 3/8/2012 | SEV-2 | Tidal | 1.418 | | 6/2/2011 | SEV-3 | Tidal | 0.350 | | 10/5/2011 | SEV-3 | Tidal | 1.296 | | 3/8/2012 | SEV-3 | Tidal | 1.093 | | 6/2/2011 | SEV-4 | Tidal | 0.190 | | 7/21/2011 | SEV-4 | Tidal | 0.068 | | 10/5/2011 | SEV-4 | Tidal | 1.249 | | 3/8/2012 | SEV-4 | Tidal | 0.897 | | 6/2/2011 | SEV-5 | Tidal | 0.135 | | 10/5/2011 | SEV-5 | Tidal | 0.556 | | 3/8/2012 | SEV-5 | Tidal | 1.122 | | 6/2/2011 | SEV-6 | Tidal | 0.278 | | 10/5/2011 | SEV-6 | Tidal | 0.859 | | 3/8/2012 | SEV-6 | Tidal | 0.783 | | 6/2/2011 | SEV-7 | Tidal | 0.414 | | 10/5/2011 | SEV-7 | Tidal | 0.947 | | 3/8/2012 | SEV-7 | Tidal | 1.706 | | 7/21/2011 | SEV-8 | Non-tidal | 0.042 | | 10/5/2011 | SEV-8 | Non-tidal | 0.530 | | 3/8/2012 | SEV-8 | Non-tidal | 1.147 | | 3/8/2012 | SEV-9 | Non-tidal | 0.130 | | 10/5/2011 | SEV-10 | Non-tidal | 1.082 | | 3/8/2012 | SEV-10 | Non-tidal | 1.358 | | 10/5/2011 | SEV-11 | Non-tidal | 0.127 | | 3/8/2012 | SEV-11 | Non-tidal | 0.120 | | 5/4/2011 | SEV-12 | Stormwater | 0.394 | | 10/20/2011 | SEV-12 | Stormwater | 0.545 | | 5/4/2011 | SEV-13 | Stormwater | 0.827 | | 10/20/2011 | SEV-13 | Stormwater | 0.632 |